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Abstract
Development of state-of-the-art automatic speech recognition
(ASR) systems requires acoustic resources (i.e., transcribed
speech) as well as lexical resources (i.e., phonetic lexicons). It
has been shown that acoustic and lexical resource constraints
can be overcome by first training an acoustic model that cap-
tures acoustic-to-multilingual phone relationships on language-
independent data; and then training a lexical model that cap-
tures grapheme-to-multilingual phone relationships on the tar-
get language data. In this paper, we show that such an ap-
proach can be employed to discover a latent space of sub-
word units for under-resourced languages, and subsequently im-
prove the performance of the ASR system through both acoustic
and lexical model adaptation. Specifically, we present two ap-
proaches to discover the latent space: (1) inference of a subset
of the multilingual phone set based on the learned grapheme-
to-multilingual phone relationships, and (2) derivation of auto-
matic subword unit space based on clustering of the grapheme-
to-multilingual phone relationships. Experimental studies on
Scottish Gaelic, a truly under-resourced language, show that
both approaches lead to significant performance improvements,
with the latter approach yielding the best system.
Index Terms: under-resourced ASR, acoustic model adapta-
tion, subword unit set discovery, multilingual ANN

1. Introduction
A crucial step towards development of hidden Markov model
(HMM)-based automatic speech recognition (ASR) systems is
to model the relationship between the acoustic features {xt}Tt=1

and the lexical subword units {li}Ii=1. It has been eluci-
dated in [1] that, when estimating emission likelihood score
p(xt|qt = li) at each HMM state qt, such a relationship can
be factored through latent variables {ad}Dd=1 referred to here
as acoustic units into two models, namely the acoustic model
(which captures the relationship between acoustic features and
acoustic units) and the lexical model (which captures the lexical
unit-to-acoustic unit relationships):

p(xt|qt = li) =
D∑

d=1

p(xt|ad)︸ ︷︷ ︸
acoustic model

P (ad|qt = li)︸ ︷︷ ︸
lexical model

= vT
t · yi, (1)

where vt = [v1t , . . . , v
d
t , . . . , v

D
t ]T, vdt = p(xt|ad), yi =

[y1i , . . . , y
d
i , . . . , y

D
i ]T and ydi = P (ad|li).

In standard HMM-based ASR approaches, the lexical units
are typically context-dependent (CD) subword units. The
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acoustic units are the clustered CD subword unit states ob-
tained through decision tree clustering. vt is estimated by Gaus-
sian mixture models (GMMs) [2] or artificial neural networks
(ANNs) [3]. yi is either deterministic, i.e., a Kronecker delta
distribution, based on the decision tree learned during state ty-
ing [4] or probabilistic [5, 6, 1]. In the latter case, it is referred
to as probabilistic lexical model.

Eqn. (1) can be regarded as a match between acoustic in-
formation and lexical information in the latent variable space,
i.e., acoustic unit space. In recent years, a probabilistic lexi-
cal modeling approach in the framework of Kullback-Leibler
divergence-based HMM (KL-HMM) [7, 8] has emerged. In
this approach, the match between acoustic information and lex-
ical information is obtained by matching posterior probability
estimates of acoustic units zt = [z1t , . . . , z

d
t , . . . , z

D
t ]T, zdt =

P (ad|xt) (instead of vt) with yi based on KL-divergence,

S(zt,yi) =

D∑
d=1

zdt log(
zdt
ydi

) (2)

In this case, yi is trained using a cost function based on
KL-divergence, and zt is estimated either using ANNs or
GMMs [9].

As most of the ASR systems use phones as lexical subword
units, in order to learn the acoustic model and the lexical model,
two well developed resources are needed: acoustic resources
(transcribed speech) and lexical resources (phonetic lexicons).
Unfortunately, for many languages it can be difficult to obtain
either acoustic or lexical resources or both. In the literature,
the acoustic resource constraint has been approached through
use of cross-lingual or multilingual resources [10, 11, 12, 13].
Typically, in these approaches a common phone set or acous-
tic unit space is defined based on cross-lingual or multilin-
gual resources and a language-independent acoustic model is
trained. The multilingual acoustic model is then adapted on tar-
get language (TL) data based on a deterministic lexical model
learned on TL data. The adaptation process can also involve re-
definition of acoustic unit space based on TL data [14, 15, 16].
In the absence of lexical resources in the literature, typically
graphemes are used as subword units [17, 18, 19].

The acoustic and lexical resources constraint scenario, how-
ever, has been seldom addressed in the literature [20, 21].
The present paper focuses on this scenario, in particular on
truly under-resourced languages which have limited acoustic re-
sources and no phonetic lexicon. In that respect, probabilistic
lexical modeling has emerged as a promising method. Specif-
ically, the two constraints can be addressed by first training
an acoustic model that learns the relationship between acous-
tic features and multilingual phones on language-independent
data, and then training a lexical model that learns a probabilis-
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tic relationship between TL graphemes and multilingual phones
on target language acoustic data [1]. A potential advantage
of this approach is that the probabilistic relationship between
TL graphemes and multilingual phones can be learned on a
very limited acoustic resource to yield significantly better sys-
tems when compared to conventional grapheme-based ASR ap-
proaches. However, it has also been seen that such gains dimin-
ish as TL acoustic resources increase, the main reason being
that the TL data is leveraged to only learn the lexical model.

This paper builds on the above described probabilistic lex-
ical modeling framework (to address both acoustic and lexi-
cal resource constraints) to develop an approach where the TL
data is leveraged for both acoustic modeling and lexical mod-
eling. Specifically, in this approach, first a language-dependent
acoustic unit space is defined based on the learned grapheme-
to-multilingual phone relationships. The acoustic model is then
adapted to classify the language-dependent acoustic units on TL
data. Finally, a lexical model that captures the probabilistic re-
lationship between the TL graphemes and language-dependent
acoustic units is trained. Through an investigation on Scottish-
Gaelic, a truly under-resourced minority language, we show that
the proposed approach not only helps in significantly improving
the performance of the ASR system (relative improvement of up
to 16%) but also enables discovery of a language-specific phone
set, which could be potentially exploited to develop lexical re-
sources for the target under-resourced language.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed approach along with a brief back-
ground on KL-HMM. Section 3 explains the experimental
setup. Section 4 presents the experimental results and analysis.
Finally, Section 5 concludes the paper.

2. Proposed approach
This section first provides a brief background on how acoustic
and lexical resource constraints can be addressed using the KL-
HMM framework by simply learning a lexical model that cap-
tures TL grapheme-to-multilingual phone relationships. It then
presents the proposed approach to adapt both acoustic model
and lexical model in this framework by discovering a language-
dependent acoustic unit space.
2.1. Grapheme-based KL-HMM for low-resourced ASR

As briefly explained in Section 1 and illustrated in Figure 1, in
under-resourced scenarios [1]:

1. A multilingual ANN is trained on acoustic and lexical data
from resource-rich languages which is used to estimate mul-
tilingual phone posterior features {zt}Tt=1.

2. Given the {zt}Tt=1 estimator, a KL-HMM is trained on
TL data in which each state representing a CD grapheme
is parameterized by categorical distribution yi of multi-
lingual phones. The parameters {yi}Ii=1 are estimated
through Viterbi Expectation-Maximization by minimizing a
cost function based on KL-divergence local score (Eqn. (2)).
The unseen grapheme contexts are handled by tying KL-
HMM states [22].

During recognition, the most probable sequence of words is in-
ferred by using a standard Viterbi decoder where the state log-
likelihood is replaced by KL-divergence.

2.2. Adaptation based on language-dependent acoustic unit
discovery

We present two approaches to discover language-dependent
acoustic units given the multilingual ANN and the grapheme-
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Figure 1: Illustration of grapheme-based KL-HMM framework.

to-multilingual phone relationships learned by KL-HMM.

2.2.1. Approach-I: Acoustic units as a subset of multilingual
phone set

In this approach, as illustrated in Figure 2, given the multi-
lingual phone posterior probabilities {zt}Tt=1 estimated on TL
data and the categorical distributions {yi}Ii=1 from the trained
CD grapheme KL-HMM, an optimal KL-HMM state sequence
for the TL training utterance is obtained using the Viterbi algo-
rithm (Figure 2-Part I). Then, for the aligned state li in time
frame t, the multilingual phone ad with the highest probability
in yi = [P (a1|li), . . . , P (aD|li)] is selected as the phone label
at time t, i.e., ut (Figure 2-Part II). In doing so, we not only get
labels for ANN adaptation, but also a subset of the multilingual
phone set corresponding to the language.
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Figure 2: Illustration of acoustic unit discovery from the multi-
lingual phone set.

2.2.2. Approach-II: Acoustic units as automatically derived
subword units

Recently, it has been shown that phone-like automatic sub-
word units can be derived from the clustered CD grapheme
states in the HMM/GMM framework using standard cepstral
features [23, 24]. In the present work, a similar approach is
adopted where posterior features zt instead of cepstral features
are used. More precisely, the acoustic units are the clustered
CD grapheme states of the KL-HMM explained in Section 2.1,
which could again be expected to be phone-like. The labels
for ANN adaption are obtained by aligning posterior features
zt with the KL-HMM after state tying similar to Approach-
I (Figure 2-Part I) and using the decision tree to map the CD
graphemes to clustered CD grapheme states.

Given the discovered language-dependent acoustic units
and the corresponding alignment to the acoustic data, the ASR



system development finally involves: (a) adaptation of multi-
lingual ANN by re-initializing the weights between last hid-
den layer and the output layer, which now models the discov-
ered language-dependent acoustic units; and then (b) learning
a new probabilistic lexical model that captures the relationship
between TL graphemes and the discovered language-dependent
acoustic units.

3. Experimental setup
We investigate the proposed approach on Scottish Gaelic, a gen-
uinely under-resourced and minority language.
3.1. Scottish Gaelic

Scottish Gaelic is considered as an endangered language spo-
ken by only 60,000 people which belongs to the class of Celtic
languages. There are about 51 phonemes in the language [25].
However, the number of phonemes can vary depending on the
dialect. The language lacks a proper phonetic lexicon and the
available transcribed speech data are limited.

Scottish Gaelic alphabet has 18 letters, consisting of five
vowels and thirteen consonants. The long vowels are repre-
sented with grave accents (À, È, Ì, Ò, Ù). There are twelve basic
consonant types in Scottish Gaelic (B, C, D, F, G , I , L, M, N,
P, R, S, T) which are:
• Fortis (produced with greater energy) or lenis (produced with

lesser energy): The lenited consonants appear in the orthog-
raphy with a grapheme [H] next to them.

• Broad (velarized) or slender (palatalized): Broad consonants
are surrounded by broad vowels (A, O or U), while slender
consonants are surrounded by slender vowels (E or I).

3.2. Database

The Scottish Gaelic corpus was collected by the University of
Edinburgh in 2010. It consists of recordings from broadcast
news and discussion programs.1 In this paper, the database is
partitioned into training, cross-validation (CV) and test sets ac-
cording to the structure provided in [26]. Table 1 provides an
overview of the Scottish Gaelic corpus. The vocabulary size in
the corpus was 5080. There are a total of 2246 unique words in
the test set of which 772 are not seen during training.

Table 1: Overview of the Scottish Gaelic corpus.

Number of Train CV Test
Utterances 2389 1112 1317
Hours 3 1 1
Speakers 22 12 12

The corpus does not provide any phonetic lexicon. The
grapheme lexicon can be obtained from the orthography of the
words. Additionally, prior knowledge about broad and slender
consonants can be applied to the word orthographies. Along
these lines we investigated using two different lexicons:
• ortho: In this scenario, the lexicon is obtained directly

from the orthography of the words without incorporating any
knowledge about the language. As the corpus also contains
borrowed English words, the graphemes J, K, Q, V, W, X, Y
and Z are also present in the lexicon. Therefore the lexicon
consists of 32 graphemes including silence (sil).

• ortho+know: In this case, the lexicon is obtained by con-
sidering broad, slender and lenited consonants as separate
graphemes. The lexicon contains 83 graphemes including sil.

1http://forum.idea.ed.ac.uk/tag/scots-gaelic

As there is no language model provided in the corpus, we used
an optimistic bigram language model trained on the sentences
from the test set, similar to [26].

3.3. System setup

The setups for multilingual ANN training, KL-HMM training,
acoustic and lexical model adaptation are as follows:
Multilingual ANN training: We trained a multilingual ANN,
more precisely a 5-layer multilayer perceptron (MLP) using 63
hours of speech data from five languages in the SpeechDat(II)
corpus, namely British English, Italian, Spanish, Swiss French
and Swiss German. The input to the MLP was a 39 dimen-
sional PLP cepstral feature with four frames preceding and four
frames following context. Each hidden layer had 2000 units.
The MLP output units were obtained by merging phones in the
SAMPA format that share the same symbol across different lan-
guages to form a multi-lingual phone set of 117 units. The MLP
was trained with output non-linearity of softmax and minimum
cross-entropy error criterion using Quicknet software [27].
Approach-I: We trained single-preceding single-following
context-dependent grapheme-based KL-HMMs on Scottish
Gaelic data using the ortho lexicon. Each CD grapheme KL-
HMM was modeled with three states. The acoustic unit space
and the alignments were then obtained by aligning the trained
KL-HMM with the posterior features as described in Sec-
tion 2.2.1. This resulted in 71 phones, i.e., {ad}71d=1.
Approach-II: We trained single-preceding single-following
context-dependent grapheme-based KL-HMMs on Scottish
Gaelic data using the ortho lexicon. Each CD grapheme KL-
HMM was modeled with a single state and states were tied us-
ing a single question set following the previous work on au-
tomatic subword unit discovery [24]. In the KL-divergence
based decision tree state tying method [22], similar to the log-
likelihood based decision tree based approach in [4], stopping
criterion based on minimum cluster occupancy and minimum
decrease in the cost function threshold exists. We obtained dif-
ferent number of clustered CD grapheme states by adjusting the
threshold based on decrease in the KL-divergence cost function
during decision-tree based state tying and chose the one that
yielded best system on the cross-validation data set. Specifi-
cally, this resulted in 306 clustered CD grapheme states, i.e.,
acoustic units {ad}306d=1. The alignments for ANN adaptation
were obtained as described in Section 2.2.2.
Acoustic model adaptation: For each of the approaches, given
the acoustic units and the alignment to acoustic data, the multi-
lingual ANN was adapted by re-initializing the weights between
the last hidden layer and the output layer and the biases of the
output layer. We investigated only last layer adaptation as well
as adaptation of the whole ANN. For both approaches, we found
adaptation of the whole ANN yields better frame level accuracy.
Lexical model re-training: For both approaches, given the
posterior features from the adapted ANNs, single-preceding
single-following CD grapheme-based KL-HMM systems were
trained. Here we studied use of two different lexicons, namely
ortho lexicon and ortho+know lexicon. Each CD grapheme was
modeled by three states. To handle unseen grapheme contexts
state tying was performed.

4. Results and analysis
This section first presents the ASR results. It then presents an
analysis on the discovered units along with a comparative study
w.r.t related approaches.



4.1. ASR Results

Table 2 presents the ASR performance in terms of word accu-
racy (WA). Our baseline represents the ASR performance of
grapheme-based KL-HMM explained in Section 2.1 using ei-
ther the ortho or ortho+know lexicons, i.e., no acoustic unit
discovery or adaptation is done. We have also presented the
performance of the grapheme-based HMM/GMM system on
this corpus as reported in [1]. A comparison between the per-
formance of the HMM/GMM system and our baseline shows
the high quality of the baseline system. It can be seen that
language-specific acoustic units discovery through either of ap-
proaches and subsequent adaptation of acoustic model and re-
training of lexical model leads to statistically significant ASR
improvements. The improvements can be consistently observed
in both cases of using a ortho lexicon and ortho+know lexi-
con. Comparison of the results in Approach-I and Approach-II
shows that the second approach yields significantly better ASR
systems. This indicates that clustering the learned grapheme-to-
multilingual phone relationships leads to a better language spe-
cific acoustic unit space representation compared to selecting a
subset of multilingual phones based on the learned grapheme-
to-multilingual phone relationships. Finally, ortho+know lexi-
con consistently yields better systems when compared to ortho.
This is consistent with previous work in [1].

Table 2: ASR WA of different systems using the ortho and or-
tho+know lexicons.

ortho ortho+know

HMM/GMM 64.2 [1] 68.0 [1]

KL-HMM-no-adapt (Baseline) 69.2 74.0

KL-HMM-adapt-Approach-I 70.9 75.1

KL-HMM-adapt-Approach-II 74.2 78.2

4.2. Analysis

In this section we analyze the acoustic units discovered by the
two approaches. Table 3 presents the multilingual phones dis-
covered as acoustic units in Approach-I. It is worth mention-
ing that about 20 phones from Scottish Gaelic were not cov-
ered by the multilingual phone set used in our studies. These
were mainly diphthongs. We have split the discovered phones
into three categories: (a) phones existing in Scottish Gaelic ac-
cording to [25] (b) phones existing in British English accord-
ing to [28], and (c) phones from other languages. Among the
phones existing in Scottish Gaelic and the multilingual phone
set, only two phones are missing from the labels: {/È/, /L/}.
However, it can be observed in the table that for each of the
missing phones from Scottish Gaelic, an acoustically similar
phone exists or is discovered. For example, /L/ sounds acous-
tically similar to /j/. The appearance of phones from British
English are due to existence of English words in the training
data. Analysis of the phones from other languages shows that
some of the phones are related to the diphthongs in the Scottish
Gaelic, which were originally not covered by the multilingual
phone set. A detailed phonetic analysis is part of our future
work.

Unlike Approach-I, in the case of Approach-II the CD
graphemes are not deterministically mapped to a multilingual
phone. Rather they are probabilistically related to multilingual
phones through the categorical distribution of the correspond-

Table 3: Discovered acoustic units in Approach-I in IPA format.

Phones in
Scottish Gaelic

/m/, /n/, /ñ/, /6/, /p/, /b/, /t/, /d/, /k/, /g/, /f/, /v/,
/s/, /S/, /ç/,/x/, /h/, /r/, /j/, /l/, /i/, /i:/, /u/, /u:/,
/e/, /e:/, /o/, /o:/, /@/, /E/, /O/, /O:/, /a/, /a:/, /aU/

Phones in
British English

/aI/, /A/ , /6/, /A:/, /U/, /I/, /I@/, /tS/, /dZ/,
/w/, /z/, /θ/, /ð/ ,/eI/

Phones from other
languages

/6U/, /Z/, /ö/, /jj/, /y/, /y:/, /õ/, / œ /, / 3 :/, /i:5/, /y:5/,
/U5/, /bö/, /e:5/, /O5/ ,/OY /, /a5/, /ã/, /a:5/, /As/, /E6/

ing tied state or clustered CD grapheme state. We analyzed
the categorical distributions of each tied state by selecting the
phones with a probability higher than a threshold of 0.05. We
observed that most of the phones were same as the ones pre-
sented in Table 3.2 Furthermore, the phone /L/ that was omitted
in Approach-I was covered here.

4.3. Comparison to related approaches

As pointed earlier in Section 1, in phone-based ASR the multi-
lingual ANN can be simply adapted by replacing the last layer
with clustered CD phones of TL [14, 16]. A similar approach
could be employed in our scenario in which the acoustic units
are the clustered CD graphemes of TL. As noted earlier in Sec-
tion 2.2.2 such an approach would be similar to the case where
the acoustic units are automatic subword units derived using
acoustic features [23, 24]. For sake of completeness, we in-
vestigated such a system by using the 1158 clustered grapheme
states obtained through HMM/GMM using the ortho lexicon.
Table 4 presents the results in terms of word accuracy. It can
be seen that such a system performs better than Approach-I,
however it does not beat the performance of Approach-II. This
indicates that the clustered CD grapheme units obtained using
posterior features could be better than clustered CD grapheme
units obtained using acoustic features. This could have potential
implications for development of automatic subword unit based
lexicon development [29].

Table 4: ASR results when obtaining the acoustic units from the
clustered CD grapheme units of HMM/GMM system.

ortho ortho+know
WA 73.8 77.0

5. Summary and future work
This paper proposed approaches to discover a language specific
acoustic unit space based on grapheme-to-multilingual phone
relationships, and using them to improve the grapheme-based
ASR system of under-resourced languages through acoustic
model and lexical model adaptation. It is worth mentioning
that though the approaches have been developed in the KL-
HMM based ASR framework, they can also be realized in the
standard HMM-based ASR framework through corresponding
probabilistic lexical modeling techniques [5, 6].

Our investigations on Scottish Gaelic showed that the pro-
posed approaches, in addition to significantly improving the
ASR system performance, help in discovering phone sets of
the under-resourced language. Alternately, the proposed ap-
proaches provide means for automatic development of linguistic
knowledge and resources for under-resourced languages by ex-
ploiting the existing multilingual acoustic and lexical resources.
For our future studies, we aim to generate pronunciations based
on the discovered acoustic units by exploiting the acoustic data-
driven grapheme-to-phoneme conversion technique in the KL-
HMM framework proposed in [30].

2The selected phones are not presented here due to space limitations.
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