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Abstract

In structural materials with both brittle and ductile phases, cracks often initiate
within the brittle phase and propagate dynamically towards the ductile phase. The
macroscale, quasistatic toughness of the material thus depends on the outcome of
this microscale, dynamic process. Indeed, dynamics has been hypothesized to sup-
press dislocation emission, which may explain the occurrence of brittle transgranular
fracture in mild steels at low temperatures [1]. Here, crack tip blunting and cleavage
under dynamic conditions is explored using continuum mechanics and molecular dy-
namics simulations. The focus is on two questions: 1) whether dynamics can affect
the energy barriers for dislocation emission and cleavage, and 2) what happens in the
dynamic “overloaded” situation, in which both processes are energetically possible.
In either case, dynamics may shift the balance between brittle cleavage and ductile
blunting, thereby affecting the intrinsic ductility of the material. To explore these
effects in simulation, a novel interatomic potential is used for which the intrinsic duc-
tility is tunable, and a novel simulation technique is employed, termed a “dynamic
cleavage test,” in which cracks can be run dynamically at a prescribed energy release
rate into a material. Both theory and simulation reveal, however, that the intrinsic
ductility of a material is unaffected by dynamics. The energy barrier to dislocation
emission appears to be identical in quasi-static and dynamic conditions, and, in the
overloaded situation, dislocation emission is kinetically preferred. Thus, dynamics
cannot embrittle a ductile material, and the origin of brittle failure in certain alloys
(e.g., mild steels) appears to be unrelated to dynamic effects at the crack tip.

1 Introduction

Tough structural metals are often composed of a ductile matrix phase and brittle inclu-
sions or precipitates. Cracks initiate in the brittle phase and should be arrested when
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they encounter the ductile phase. Since such cracks run dynamically in the brittle phase
after initiating from pre-existing flaws, the dynamic response of the system may gov-
ern the macroscopic “quasi-static” toughness [2, 3]. One important example is mild steel,
where cracks develop within grain boundary carbides and propagate dynamically toward
the primary α-ferrite grains. At sufficiently low temperatures, these cracks are observed
to cleave through the ferrite, resulting in an undesirable, low-toughness, transgranular
mode of failure [1]. Researchers have speculated that dynamic effects are responsible for
the propagation of the crack into the ductile matrix, suggesting that, although a stationary
crack in the ferrite might emit dislocations and blunt, a running crack may be stabilized
against dislocation emission [1]. In other words, dynamics is postulated to alter the com-
petition between the brittle (Griffith cleavage) and ductile (dislocation emission/crack
blunting) response. Aside from the engineering problem of practical relevance, a fun-
damental question is how a dynamic crack behaves when the energy release rate G or
stress intensity factor K exceeds both the Griffith cleavage value and the dislocation emis-
sion value. Is it possible that cleavage is preferred over dislocation emission in such an
“overloaded” dynamic condition, even though dislocation emission is preferred under
quasistatic conditions?

There is no theoretical basis for the supposition that a dynamic crack prefers to cleave
rather than to blunt. Lin and Thomson [4] analyzed the role of dynamics in the context
of the classical Rice-Thomson analysis [5] in mode III loading, and found that dynamic
effects were negligible when the slip plane was inclined relative to the crack plane. Fur-
thermore, as we show in Section 2, the more rigorous, energy-based analysis of Rice [6]
yields a similar conclusion in mode II: the criterion for dynamic dislocation emission is
identical to that for quasi-static emission. Thus, even when its speed is nonzero, the en-
ergy barrier to dislocation emission from a crack tip is G = γus, where γus is the unstable
stacking fault energy for slip [6]. However, it is also possible that atomic-scale effects
are important. It is well-known that continuum fracture mechanics is unable to explain
many important fracture phenomena, including lattice trapping [7–9], crack tip instabil-
ities [10–13], and crack velocities in steady-state [14], all of which depend intimately on
the details of bonding between atoms [15]. Atomistic simulations have therefore become
increasingly popular for studying crack tip deformation mechanisms and their implica-
tions for ductility [16], both in quasi-static [17–20] and dynamic [21–24] conditions. In the
latter case, model interatomic potentials have found great utility in molecular dynamics
simulations [12, 13, 25–29]. Although such potentials do not correspond to any specific
real material, they help to elucidate the general principles governing crack tip behavior
and fracture, such as “hyperelasticity” [12, 13].

Here, we use molecular dynamics simulations to investigate the influence of atomic struc-
ture and properties on the dynamic behavior of cracks in ductile materials. Specifically,
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we assess whether dynamics can suppress dislocation emission in a nominally ductile
material, thereby promoting brittle cleavage, as proposed by Lin et al. [1]. To study this
problem in a controlled manner, we employ a family of novel interatomic potentials for
which the intrinsic ductility is tunable [30]. Specifically, for all potentials, the lattice con-
stant, elastic constants, and fracture surface energy are held constant, so that the critical
energy release rate for cleavage, GIc, is fixed. However, the unstable stacking fault en-
ergy γus can be independently varied to tune the critical energy release rate for disloca-
tion emission, GIe. This allows us to conduct a “dynamic cleavage test” in which a crack
initiates within a brittle material and runs dynamically into a second material (typically
ductile). We find that dynamics cannot embrittle a ductile material; that is, if a crack tip
at rest emits dislocations, then the same crack tip in motion will also emit dislocations.
The origin of cleavage-like failure in mild steels at low temperatures is thus not due to
a fundamental change in the competition between brittle and ductile crack tip behavior
under dynamic conditions.

The remainder of this paper is organized as follows. In Section 2, we present the contin-
uum analysis of dislocation emission and cleavage under quasistatic and dynamic condi-
tions. In Section 3, we conduct molecular dynamics simulations of the dynamic cleavage
test described above. In Section 4, we discuss our results further and propose alternative
explanations for the observed brittleness of mild steels at low temperatures.

2 Continuum analyses of dislocation emission and cleavage

As has been widely discussed [14, 15], continuum-level analyses of crack tip deforma-
tion mechanisms such as cleavage and dislocation emission are not wrong, but simply
incomplete. The first reason is that atoms play an important role in crack tip phenomena,
such as lattice trapping (in quasi-static fracture) and forbidden steady-state velocities (in
dynamic fracture). The second is that most continuum-level analyses consider only ther-
modynamics while neglecting kinetics. In dynamic fracture, many crack tip processes,
including dislocation emission, cleavage, and phonon emission, may be thermodynami-
cally possible, but all of these processes need not occur simultaneously. Instead, in such
an “overloaded” state, kinetics—i.e., the complicated details of motion of atoms directly
at the crack tip—will dictate which processes actually take place [26, 31]. Such details
are often not amenable to analytical treatment, and thus the only recourse is numerical
simulation. In spite of their deficiencies, continuum-level analyses remain useful because
the thermodynamic criteria that they yield provide necessary, if not sufficient, conditions
for crack tip deformation [7]. Two important examples are the Griffith criterion for brittle
cleavage [32] and the Rice criterion for dislocation emission [6]. The competition between
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these two deformation mechanisms governs the intrinsic ductility of materials [6]. One
powerful technique for deriving the Griffith and Rice criteria relies on path-independent
crack tip contour integrals [33]. This method is convenient because it applies equally well
to quasi-static and to dynamic steady-state cracks, as long as the appropriate crack tip
integral is chosen.

We consider a crack in plane strain, with the crack plane normal in the x2-direction. The
crack propagates in the x1-direction, and thus its crack front lies along the x3-direction.
Griffith cleavage in mode I occurs by the breaking of atomic bonds along the crack plane.
The force law for tensile stretching of bonds is assumed to be given by σ22 = f (δ2), where
δ is the inelastic bond stretch. Using the quasistatic contour integral of Rice [34], and
specializing the contour (Γ) to the “process zone” within which all of the nonlinearity is
confined, yields [34]

J =
∫
Γ

[
Wn1 − niσij

duj

dx1

]
ds = −

∫
zone

f (δ2)
dδ2

dx1
dx1 =

δ2,max∫
0

f (δ2)dδ2 (1)

since n1 = 0 for the process zone. Since the integral of the atomic force law f (δ2) is simply
twice the surface energy, the Griffith criterion becomes

GIc = 2γs (2)

where G, which is identical to J for linear elastic materials, characterizes the energy per
unit area flowing towards the crack tip, and can be computed from the external loading.
In exact analogy, dislocation emission in mode II can be predicted by considering slip in
the x1 direction along a process zone (the Peierls zone) normal to the x2-direction. Slip
is characterized a force-displacement relationship σ12 = f (δ1). An essentially identical
derivation [6] gives the result

GI Ie = γus (3)

where γus is the unstable stacking fault energy, which is the area under the positive part
of f (δ1). Thus, each criterion is couched in terms of a critical energy: 2γs for the Griffith
criterion and γus for the Rice criterion. Indeed, the ratio γs/γus characterizes the intrinsic
ductility of the material [6].

For mode I dislocation emission along a slip plane oriented at some angle θ ̸= 0 with
respect to the crack plane, the situation is more complicated and no exact analytical so-
lutions are available. Rice [6] developed an approximate criterion for quasistatic mode I
emission by assuming that emission occurs when a critical distribution of shear stresses
is attained within the Peierls zone inclined at θ. This distribution can be characterized by
a single stress intensity factor Kτ. In mode II, the critical value of Kτ is determined by
computing the shear stresses at θ = 0 when G = γus. In mode I, emission is assumed to

4

This is a pre-print of the following article: Rajan, V. P.; Curtin, W. A. J. Mech. Phys. Solids 2016, 90, 18–28.. The formal publication is
available at http://dx.doi.org/10.1016/j.jmps.2016.02.014

http://dx.doi.org/10.1016/j.jmps.2016.02.014


occur when an identical Kτ exists along the plane oriented at θ, yielding

GIe =
8γus

(1 + cos θ) sin2 θ
(4)

assuming that the material is isotropic and that the emitted dislocation lies parallel to the
crack front [6].

We can straightforwardly extend the previous quasistatic analyses to the case of a dynamic,
steady-state crack by using the dynamic path-independent integral [35, 36]

I =
∫
Γ

[
(T + W)n1 − niσij

duj

dx1

]
ds (5)

where T is the kinetic energy density. I characterizes the energy flowing to the crack
tip and thus equals G for linear elastic materials [36]. Note, however, that for mode I
cleavage and mode II emission, n1 = 0, and so the kinetic energy term drops out of the
analysis. Thus, these dynamic cases are identical to the quasistatic case: i.e., GIc = 2γs

and GI Ie = γus.1

The approximate analysis of Rice for quasi-static mode I emission, based on stresses along
the Peierls zone (Kτ), cannot be generalized to the dynamic case. For a steady-state dy-
namic crack loaded at a fixed G, all stress components decrease in magnitude as the ve-
locity of the crack approaches the Rayleigh wave speed, cR [38]. In fact, as v → cR, the
stresses become vanishingly small since all of the energy G is converted into kinetic en-
ergy [38]. Thus, a stress-based analysis using Kτ would predict that dislocation emission
would become highly unfavorable at large velocities, regardless of mode mixity. But this
conclusion contradicts the exact analysis for mode II presented above. The contradiction
arises because the stress-based approach assumes that only shear stresses drive disloca-
tion emission while, in reality, both stresses and kinetic energy are important and the
contribution of the latter is dominant at high velocities. Therefore, we suggest using the
quasistatic GIe as the condition for emission from a mode I dynamic crack, just as GI Ie is
identical for both static and dynamic cracks. The atomistic results presented in Section 4
reveal that this condition works well.

The above continuum analyses for cleavage and dislocation emission based on path-
independent contour integrals indicate that the thermodynamic barriers for these pro-
cesses are unaffected by dynamics. However, these analyses do not provide direct insight
into the problem of key interest in this paper: notably, the “overloaded” situation when G
exceeds both GIe and GIc. Such overloading is essentially forbidden for quasi-static cracks,

1Indeed, it is observed in molecular dynamics simulations of brittle fracture that cracks cannot propagate
dynamically if G < GIc. They may propagate at G > GIc if additional processes consume the excess energy
[37].
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since deformation will occur when G equals the lesser of GIe and GIc. It can, however, oc-
cur for dynamic cracks crossing between materials, as in experiments and in the dynamic
simulations presented below.

3 Simulation of dynamic cleavage

We conduct dynamic cleavage simulations in both 2D (hexagonal lattice) and 3D (FCC
lattice) using molecular dynamics (MD). Although the 3D simulations are more computa-
tionally costly, they might also be more realistic: crack front variation in 3D might enable
cracks to propagate when they would instead arrest in 2D. In other words, 2D materials
might be artificially resistant to cleavage [15].

The simulation, illustrated schematically in Figure 1, uses a bi-material strip geometry.
The strip geometry has two principal advantages with respect to loading [15, 26, 31]. First,
a prescribed energy release rate, G, can be delivered to the crack tip to drive crack growth:
it is readily demonstrated that G = hu(ε22), where u(ε22) is the strain energy density
for uniform straining in the x2-direction [15]. Second, the strip geometry enables steady-
state crack growth, at a constant crack-tip velocity, using relatively small samples [15].
In steady state, the crack-tip stress fields can be computed analytically using standard
expressions in dynamic fracture mechanics, and the contour integral analysis presented
above is applicable [38].

The specimen is oriented with its crack front in the x3-direction, and its crack plane per-
pendicular to the x2-direction. The dimension of the specimen in the x2-direction is h,
where h = 356 in 2D and 223 in 3D; these values are sufficiently large that the steady states
should be approximately those associated with an infinitely tall specimen [15]; through-
out this paper, all lengths are in units of the separation between nearest-neighbor atoms.
We choose the specimen length in the x1 direction, L, to be long enough (L/h ≥ 4) that
the energy release rate is constant and that the crack reaches a steady-state velocity before
encountering the interface. In the 2D simulation, the specimen length in the x3-direction,
w, is irrelevant. In the 3D simulations, we apply periodic boundary conditions in the z-
direction with w = 45; with this value, the specimen should be wide enough to allow
dislocation loops to form [39], and to allow the crack front to vary over its length.

The boundary conditions are applied by fixing the positions of the top and bottom rows
of atoms, and the system is loaded using the procedure described in Gumbsch et al. [26].
First, the specimen is stretched, by rescaling the atomic positions, to a strain correspond-
ing to a G slightly less than GIc. The system is subsequently equilibrated using molecular
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statics so that the correct crack profile develops. Second, it is stretched again, to a G
slightly above GIc, so that the crack begins to run. Finally, it is rescaled a third time to
achieve the desired G. We also apply ramped viscous damping [25, 26] at the boundaries
of the strip to mitigate the influence of reflected waves on crack motion. The simula-
tions are essentially athermal, and we use the standard Velocity-Verlet algorithm with
a timestep of 0.0018. The simulations are run using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) (Version June 28, 2014, Plimpton [40]), and the
results are visualized using the Open Visualization Tool (OVITO) (Version 2.8.2, [41]).2

To describe interatomic interactions, we use a new flexible pair potential, developed for
both 2D (hexagonal) crystals and 3D (FCC/HCP) crystals [30]. For these potentials, the
unstable stacking fault energy can be tuned independently of all other relevant material
properties. In other words, all materials studied here have the same lattice constant, elas-
tic constants, and surface energy, and therefore they all have the same Griffith fracture
energy, GIc. The materials differ only in the value of GIe, which can be tuned over a wide
range, spanning the transition between brittle (GIe > GIc) to ductile (GIe < GIc) materials.
In what follows, we refer to these potentials by their characteristic ratio of GIe/GIc, with
larger values indicating greater brittleness. Because all near-equilibrium properties are
the same, the bimaterial specimen is also elastically homogeneous and free of any resid-
ual stresses due to lattice mismatch; thus the effects of GIe can be probed independent of
other complications.

In the 2D system, we start the crack in the most brittle material (GIe/GIc = 2.53). When
propagating in this material, the crack remains atomically sharp, and is able to achieve
a steady-state velocity for applied loads G/GIc less than roughly 1.8. We then run the
crack into the more-ductile materials having lower GIe and observe the behavior of the
crack. The 3D FCC system is more challenging. Recall that the crack plane is a close-
packed (111) plane and the crack front is [110]. This orientation is crystallographically
unsymmetric about the crack plane, which is undesirable since purely tensile straining
in the x2-direction gives rise to mixed-mode loading in the strip geometry. Therefore,
we symmetrize the system about x2 by creating a symmetric twin boundary at x2 = 0,
and run the crack along this boundary (see Figure 5). In the 3D system, even the most
brittle material emits before cleaving. To circumvent this problem, we alter the bonding
along the putative crack plane (the twin boundary), thereby creating a weak interface that
fails by atomically sharp cleavage. The elastic properties of the new bonds are the same,
however, so the overall system remains elastically and crystallographically matched. The
weak interface exists only in Material 1 (see Figure 1). We then run this crack into the
more ductile 3D materials with lower GIe. In both 2D and 3D, the interactions between

2We also post-process and visualize the data using a suite of Python tools, including NumPy (Version
1.8.1, [42]), Matplotlib (Version 1.3.1, [43]), and IPython (Version 0.12, [44]).
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atoms in Material 1 and Material 2 are given by the potential used in Material 1—the
brittle potential. This “interface” interaction appears to be unimportant, however, since
neither crack growth nor dislocation emission along the interface is observed. Note also
that, since atomic masses and the elastic constants in the two materials are identical, no
wave reflection arises at the interface, and the Rayleigh wave speed, cR, is the same in
both materials.

4 Results

4.1 Dynamic cleavage in 2D

In 2D, dynamic cleavage tests were run at two values of applied load: G/GIc = 1.27 and
G/GIc = 1.61. The normalized crack velocity, v/cR, vs. crack position is shown in Figure
2. 3

At the lower loading of G/GIc = 1.27, dynamic cracks encountering the more-brittle ma-
terials (GIe/GIc = 1.72, 2.10, 2.53) grow dynamically into the second material while re-
maining atomically sharp, although the steady-state velocity may change. The velocity
decreases with increasing GIe, echoing previous findings that cracks in “softer,” longer-
range potentials typically attain lower steady-state velocities [15, 46]. For these materials,
in which G < GIe, dislocation emission does not occur. The material with GIe/GIc = 1.37
is a borderline case in this analysis. Thus, the critical energy release rate for dynamic
dislocation emission appears to be identical to that in the quasistatic case, GIe; dynamics
does not affect the energetics of this process.

At this lower loading, dynamic cracks entering the more-ductile materials (GIe/GIc =

0.56, 0.78, 1.05), are overloaded since G exceeds both GIe and GIc. Therefore both dislo-
cation emission and cleavage are energetically possible. The molecular dynamics simu-
lations reveal that dislocation emission always occurs for overloaded cracks. And, once a
single dislocation has been emitted, the competition between brittle and ductile behavior
changes irrevocably. After emission, the crack rapidly slows to zero velocity, since it has
essentially zero inertia and becomes blunted (see Figure 5(a)). Its subsequent behavior
then depends on the critical quasistatic GIe and GIc in the blunted configuration [47]. For
typical interatomic potentials, the crack tip radius ρ does not affect the relative favorabil-
ity of dislocation emission and brittle cleavage; if a sharp crack emits before cleaving, a
blunted crack should as well [47]. Therefore, the crack continues to emit dislocations until

3Centrosymmetry [45] is used to locate the crack tip; the crack velocity is then computed by numerically
differentiating the crack tip position with respect to time.
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GIe(ρ) drops below G. We conclude that all dynamic cracks running into ductile materials
should arrest: materials that are quasistatically ductile are also dynamically ductile.

Identical conclusions emerge in studies at the higher overload of G/GIc = 1.61. At this
load level, the case GIe/GIc = 1.72 is borderline. In this case, the crack emits a single
dislocation immediately upon entering the material, causing it to decelerate, but it subse-
quently manages to re-cleave and eventually reaches a steady-state velocity. For a higher
overload of G/GIc = 1.75 (not shown), the crack emits more than one dislocation and
arrests without re-cleaving, as expected since G > GIe. Again, dislocation emission from
dynamic cracks can be predicted reasonably well using the quasistatic Rice criterion, al-
though borderline cases where G ≈ GIe are not consistent.

In real materials, cracks typically propagate into ductile phases that are more compliant
and denser than the brittle phases in which they originated. Recall that the crack speed
scales with the Rayleigh wave speed, cR ∝

√
µ/ρ. Therefore, the “apparent” speed of the

crack in the brittle material, as it just reaches the ductile material, may be large compared
to cR of the ductile material (“relativistic”). We can explore these effects simply by alter-
ing the mass of the atoms in the second material, leaving the elastic constants unaffected.
Here, we select m2/m1 = 4, so that the ratio of the Rayleigh wave speeds is cR,2/cR,1 = 0.5
and the crack enters Material 2 at a speed of nearly cR,2, well above the steady-state crack
velocity in the material. Results for these “fast crack” simulations, with G/GIc = 1.61, are
presented in Figure 3. As seen, cracks with G < GIe continue to propagate via cleavage,
although their speed decreases drastically upon encountering the second material. Con-
versely, cracks with G > GIe emit dislocations, blunt, and arrest at the interface. Therefore,
even when the crack velocities are relativistic, the quasistatic Rice criterion for dislocation
emission works well and dislocation emission is kinetically preferred when the crack is
overloaded.

We also explore effects of larger overloads, since brittle fracture in steels and other al-
loys usually involves energy release rates significantly in excess of the Griffith energy [1].
Marder [15] found that, in the thin strip geometry, highly-overloaded cracks blunt and ar-
rest even in brittle materials, since no steady state can be attained. We have found that this
arrest appears to be associated with wave reflections from the boundary. Although such
reflections are of small amplitude, being heavily attenuated by the ramped viscous damp-
ing boundary conditions, they are sufficient to disrupt the unstable crack. We circumvent
this issue by performing simulations in a much wider strip (h = 2670, L/h = 4). For
this size, waves emitted by the crack do not affect its subsequent propagation, since these
waves do not have sufficient time to reflect off the boundary and interact with the crack.
After an initial transient regime, the crack should be driven by a constant energy release
rate and its velocity should attain an approximately constant value. At a large overload of
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G/GIc = 4, cracks in Material 1 (with GIe/GIc = 2.53) emit dislocations as expected, but
also simultaneously cleave. The cracks thus propagate unsteadily with velocities fluctuat-
ing around some average. Results are plotted in Figure 4, for times less than that needed
for the reflected waves to return to the crack. Cracks in the more brittle materials (with
GIe/GIc = 1.72, 2.10, 2.53) propagate by simultaneous dislocation emission and cleavage.
A similar mechanism was observed by Gumbsch [48]. On the other hand, cracks in the
more ductile materials (with GIe/GIc = 0.56, 0.78, 1.05) simply arrest directly at the in-
terface. In the intermediate material with GIe/GIc = 1.37, the crack cleaves over a short
distance before blunting and arresting. There appears to be no simple criterion based on
GIe and GIc for distinguishing between brittle and ductile fracture in this case, since even
“brittle” fracture is accompanied by dislocation emission. However, GIe and GIc in the
blunted configuration are likely important, since re-cleavage of the blunted crack must be
possible for the brittle mode of failure to occur.

Every case reported above supports our main conclusion: materials that are quasi-statically
ductile are also dynamically ductile. Dislocation emission occurs because its energy bar-
rier is unaffected by dynamics and because it is evidently a kinetically favorable process
when cleavage is also thermodynamically possible. Thus, dynamics appears not to be a
contributing factor in material embrittlement at the atomistic crack tip.

4.2 Dynamic cleavage in 3D

The 3D FCC simulations yield similar results, and an identical conclusion: dynamic cracks
emit dislocations if G & GIe, which causes them to blunt and arrest. For an applied load
of G/GIc = 1.39, cracks run along the artificially-weakened interface in the first material
and emit partial dislocations when they enter the second material, which has no weak
interface. The emitted dislocations propagate away from the crack tip, leaving behind a
faulted, HCP-like structure (Figure 5(b)). All cracks blunt and arrest (Figure 6(a)), even in
the most brittle material (GIe/GIc = 1.66 > G/GIc). For a larger overload, G/GIc = 2.47
(not shown), all cracks again arrest upon reaching the second material. Note, however,
that the crack dynamics are far more complicated at such a high overload, since the crack
motion is unstable and many different mechanisms for energy dissipation can operate
simultaneously [31].

The unexpected blunting of cracks in the FCC dynamic cleavage test may be related to the
special geometry employed: that is, mirroring of the crystal using the twin boundary. The
local elasticity may be slightly asymmetric, since the crack runs along one side of the twin
boundary. This asymmetry leads to mode II loading, which can significantly promote
dislocation emission even in small amounts [6]. Note, however, that in real materials,
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cracks running along {111} planes do not run along special boundaries, and therefore
these cracks experience a significantly greater component of mode II than in our simula-
tions. Our test thus underestimates the ductility observed in a real crystal, which reinforces
our conclusion that dynamics cannot embrittle a ductile material.

We have also run dynamic cleavage simulations in a special HCP orientation with a (1010)
crack plane and [1210] crack front. In this orientation, the loading is pure mode I, disloca-
tions emit at 90◦ to the crack plane, and both brittle and ductile fracture is possible in the
pure material, without a weak interface. Results for an applied load of G/GIc = 1.44 with
ductility ranging from GIe/GIc = 0.61 to 1.92 are shown in Figure 6(b). As with the FCC
and 2D systems, the crack remains sharp and cleaves through Material 2 when G < GIe,
whereas it emits dislocations, blunts, and arrests when G > GIe.

We also fail to find any new effects associated with the 3D geometry. In 3D, the crack front
may vary spatially, which means the crack can continue to propagate even if it happens
to arrest locally. In the simulation, however, the crack front is observed to remain straight
through the thickness of the specimen, as are the stacking faults left behind by the partial
dislocations, even though the dislocation is likely nucleated from the crack tip as a loop
[39]. Our examination of 3D effects in this study is somewhat limited, and so the conclu-
sion that 3D effects are insignificant remains tentative. Like Marder [15], we believe that a
more careful study of 3D effects, perhaps combined with effects of nonzero temperature,
in brittle and ductile fracture is warranted.

5 Discussion and conclusions

Our two principal conclusions are as follows. First, the thermodynamics of dislocation
emission are the same for static and dynamic cracks. This is exactly true for emission
in Mode II, as demonstrated by the contour integral analysis, and appears to be approxi-
mately true for emission in Mode I, as demonstrated by the atomistic simulations. Second,
if dislocation emission is thermodynamically possible, it is also kinetically favorable. That
is, overloaded dynamic cracks entering a second material where G > GIe, GIc will emit
dislocations and subsequently blunt and arrest. Thus, there is no evidence that dynamic
effects can embrittle a material, as hypothesized by Lin et al. [1], at least in terms of alter-
ing the local crack tip behavior.

Local blunting at the crack tip is not inconsistent with a nominally “brittle” low-toughness
mode of fracture. Measured values of toughness in low temperature transgranular frac-
ture are significantly larger than the Griffith energy [1], and fracture surfaces are not
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atomically flat. Thus, this failure mode is likely accompanied by substantial local plastic-
ity. Fracture may then involve the interaction between the blunted crack tip and far-field
dislocations, which may cause re-cleavage of the crack tip. The dynamic motion of dislo-
cations emitted from the crack tip has been postulated as the mechanism for the brittle-
ductile transition in Si [49] and a similar analysis was used by Hartmaier and Gumbsch
[50] to explain semibrittle fracture in tungsten. These mechanisms are inherently larger-
scale phenomena, involving long-range dislocation interactions, and are thus not easily
captured with atomistic methods alone. Multi-scale methods (e.g., Shilkrot et al. [51])
may therefore be able to resolve the disparities between experiments and atomistic simu-
lations found in many material systems [52].

The findings of the present paper are consistent with the behavior in many material sys-
tems. In metal-matrix composites, such as SiC/Al, cracking of the brittle reinforcement
does not embrittle the metal matrix and cause brittle fracture [53]. In fact, the deformation
of the metal can be described reasonably well using a continuum plasticity model [53].
Blunting of cracks at the reinforcement/matrix interface has also been observed, using in
situ microscopy, in Ti composites reinforced with TiB whiskers [54].

Finally, the experimental findings that originally motivated the hypothesis that, at low
temperatures, brittle transgranular fracture can occur in mild steel remains unexplained.
However, we can rationalize these experiments as follows. The α-ferrite grains in mild
steel are oriented randomly with respect to the dynamic cracks. In certain orientations,
GIe is large, since dislocation emission needs to occur on planes that are oblique to the
crack plane. In such orientations, the crack can cleave through these grains. Further-
more, ferrite is well-known to be quasi-ductile [47, 55], i.e. relatively low-toughness, and
thus it is possible that local grain orientation can affect the delicate balance between emis-
sion and cleavage that exists in quasi-ductile materials. Cleavage of the overall material
would then be a statistical process associated with the probability of finding grains favor-
ably oriented for cleavage over emission, which is a different statistical argument than
that proposed by Lin et al. [1]: notably, that the statistics of carbide strength and size con-
trol notched strength and toughness. One implication of our rationalization is that the
toughness of steels may be improved through manipulation of the polycrystalline texture.
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for implementing ramped viscous damping in LAMMPS.
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Figure 1: Strip geometry for dynamic cleavage test.
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Figure 2: Crack velocity in 2D dynamic cleavage test. The second material has varying
ductility (GIe/GIc = 0.56 – 2.53). Two values of applied load: (a) G/GIc = 1.27 and (b)
G/GIc = 1.61.
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Figure 3: Crack velocity in 2D dynamic cleavage test, with materials of different mass:
m2/m1 = 4, so that the ratio of the Rayleigh wave speeds is cR,2/cR,1 = 0.5. The second
material has varying ductility (GIe/GIc = 0.56 – 2.53). The applied load is G/GIc = 1.61,
and crack velocities are normalized by cR,2.
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Figure 4: Crack velocity in a highly overloaded 2D dynamic cleavage test (G/GIc = 4).
The second material has varying ductility (GIe/GIc = 0.56 – 2.53).
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(a) 2D

(b) 3D

Figure 5: Profiles of blunted cracks, just after reaching the interface in the dynamic cleav-
age test, in (a) 2D (G/GIc = 1.27) and (b) 3D FCC (G/GIc = 1.39). For both tests, the
second material corresponds to the most ductile potential; atoms in the second material
are colored according to their centrosymmetry, which reveals dislocations/stacking faults.
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Figure 6: Crack velocity in 3D dynamic cleavage test. The second material has varying
ductility (GIe/GIc = 0.53 – 1.66). In the FCC system (a), the applied load is G/GIc = 1.39;
in the HCP system (b), G/GIc = 1.44.
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