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Abstract

In order to fully exploit the potential of renewable energy resources (RERs)
for building applications, optimal design and control of the different energy
systems is a compelling challenge to address. This paper presents a two-step
multi-objective optimization approach to size both thermal and electrical energy
systems in regard of thermo-economic performance indicators to suit consumer
and grid operator interests. Several utilities such as storage, conversion sys-
tems, and RERs are hence modelled and formulated through mixed-integer lin-
ear programming. Simultaneously, the algorithm defines the optimal operation
strategy, based on a model predictive control structure, for each deterministic
unit embedded within the energy management system of the building to meet
the different comfort and service requirements.

The developed design framework is successfully applied on several energy
systems configuration of typical Swiss building types. Different component sizes
are analysed, regarding the present investment cost and the self-consumption
share. In addition, this paper presents a novel optimal design criteria based on
the maximum cost benefits in the view of both the consumer and the distribution
network operator.
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• Advanced thermal modelling by applying discrete control-oriented models
of thermo-electrical energy systems and heat cascading.
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Nomenclature

Acronyms
DHW Domestic hot water
MILP Mixed integer linear programming
NG Natural gas
SH Space heating

Roman Symbols
Ė, E Power flow [kW]
ṁ Mass flow [kg/s]
Q̇, Q Heat flow [kW]
A Aera [m2]
c Energy cost [CHF/kWh]
E, E Electrical energy [kWh]
I, I Global solar irradiation [kW/m2]
Q, Q Thermal energy [kWh]
T, T Temperature [K]
t Continuous time index

Superscripts
+/− Respectively incoming and outgoing flow/power
d Design parameter
loss Relative to losses
min/max Relative to maximum and minimum values

Subscripts
bat Relative to the battery stack
build Relative to the building
cg Relative to the cogeneration unit
dhw Relative to the domestic hot water tank
grid Relative to the distribution grid
hp Relative to the heat pump
hs Relative to the heat storage
k Discrete time step
l Discrete temperature level/interval
pv Relative to the photovoltaic array
ts Relative to the thermal solar collector array
u Relative to the storage/conversion units
wat Relative to the domestic water

• Holistic optimization approach providing cost and self-sufficient trade-off
solutions to both the sizing and control problem.
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2. Inroduction

In effort of addressing the growing energy demand while decreasing the en-
vironmental impact of power generation, the use of renewable energy resources
(RERs) has been heavily promoted over the last decade. Especially small and
micro-scale, distributed energy resource (DER) systems for building applica-
tions strongly expanded due to attractive incentives in form of beneficial feed-in
tariffs and governmental subsidies on investments. Nevertheless, the significant
power exports engendered by the large penetration of highly stochastic and low-
inertia energy sources, e.g. photovoltaic (PV) systems, have pushed distribution
grids to their current operating limits [1].

The resulting end of the different support plans and hence, the drop of
feed-in tariffs below the grid selling price has endorsed self-consumption in the
building sector. Indeed, self-consumption strongly reduces power curtailments
losses and building operating costs while increasing the grid DER connection
capacity, thus avoiding the need of over-hauling the entire power network. Both
demand response and the use of storage systems represent two promising op-
tions to enhance on-site, self-consumption of the generated power [2]. Hence,
in order to fully exploit the benefits of RERs, in view of both the grid operator
and consumer interests, optimal sizing and operation of the different DER sys-
tems is of high importance. To tackle this compelling challenge, several sizing
approaches have been developed to identify the optimal combination of conven-
tional and RER based energy systems [3–5]. However, the growing integration
of polygeneration (e.g. CHP) and efficient conversion units (e.g. HP) raises
the need of including thermal power flows during the design problem formu-
lation. Indeed, space heating (SH) and domestic hot water (DHW) demands
represent the largest share of the residential energy requirements [6], illustrating
the strong interest of appropriate sizing and control of both the thermal and
electrical subsystems.

2.1. State of the Art

The problem of optimal DER systems operation and sizing has been exten-
sively addressed in literature [4–11]. In particular, a large number of studies
propose to tackle the optimization problem implementing two main approaches:
(i) a simultaneous or a (ii) two-step 1 method.

In (i), a superstructure-based MILP model is established in order to simul-
taneously solve the optimal control strategy and design configurations of the
different DERs. The following method has been proven particularly suited for
the considered design problem [12], in addition of providing the advantage of ap-
plying deterministic algorithms to solve the problem formulation. Ashouri et al.
[5] proposed a modular and robust framework to minimize the total annualized
DER system expenses for buildings. The authors applied a variable electricity
tariff generated from the spot market price and the grid utilization factor to

1i.e hybrid
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steer consumption towards low demand periods. Steen et al., [7] introduced
a multi-layer thermal storage model in order to improve the self-discharging
estimation of thermal storage units and utility integration during the design
procedure. During (ii), the problem resolution is decoupled into two specific
layers: the sizing and the system operation layer. Weber et al., [8] presented
a hybrid multi-objective optimisation approach to size a SOFC cogeneration
utility for office building use, minimizing both the total annualized cost and
environmental impact of the fuel cell. The authors in [6] and [9] extended the
latter framework by including additional DER technologies such as HPs, natural
gas powered CHP and storage units (i.e. hot water tanks and battery stacks).

Despite introducing innovative and detailed frameworks, the aforementioned
models solely targeted specific problems for DER system design, mainly related
to economic and environmental objectives from the consumer perspective. A
holistic sizing method including a sustainable and efficient self-consumption in-
dicator has yet not been proposed to the best of the author’s knowledge. Hence,
this paper contributes the state of art by introducing a novel optimal design and
operation approach for building energy systems by considering the mentioned
challenges. In order to study the current potential of DER systems, typical util-
ities are modelled and analysed through a hybrid optimization approach. The
paper is structured as follows: Section II presents the mathematical models and
parameter values of the different DER systems investigated in this study. Sec-
tion III describes the multi-objective optimization algorithm applied throughout
the case studies. In Section IV the simulation results are presented and discussed
while Section V finally provides concluding comments about the proposed design
method.

3. System Modelling

The system considered throughout this study, presented in Figure 1, con-
sists of a residential building (H) which includes several conversion and storage
units (u ∈ H) to satisfy the different service needs: SH, DHW preparation and
electricity consumption. The thermal energy demands are directly delivered by
the respective hot-water storage tanks, the outlet flow temperatures being set
in regard to the specific heating requirement. In the system configuration (a),
an air/water HP extracting heat from the environment Tout is used to supply
the water tanks. In order to ensure the thermal service provision during peak
demand periods, the storage units are equipped with an additional electrical
heater. In (b), the thermal energy requirements are satisfied through the means
of a NG-fired cogeneration engine.

The building energy management system is based on model predictive con-
trol (MPC) which has been identified as an appropriate methodology for this
problem formulation [13, 14]. The building regulator hence computes the opti-
mal input variable values for each time step, k of the defined control horizon,
nk. In this case, the predicted operation strategy relies on the following DER
systems set points:

4



(i) The conversion units loads in both configurations
a. HP input power Ė+

hp,k

b. CHP fuel inlet mass flow ṁ+
NG,k

(ii) The SH tank charging Q̇+
bat,k and discharging load Q̇−

bat,k

(iii) The battery charging Ė+
bat,k and discharging load Ė−

bat,k

The controller performance indicator applied throughout this study relies on the
building energy system daily operating costs while considering specific comfort
and service constraints (section 4.2). The optimization problem solved by the
predictive regulator is based on a MILP formulation as follows:

min
x,y

cTx+ cTy

subject to A1x+A2y ≤ b

l ≤ x ≤ u, y ∈ (0, 1)

(1)

where x represents the vector of continuous variables, y the set of integer vari-
ables, A1,2 the coefficient matrices and (b,l,u) vectors of defined parameters.
The following section describes the different control-oriented MILP models of
the domestic DER systems analysed in this study and thus included in Eq. 1.

3.1. Building

In order to model the thermal behaviour of the building, a typical resistance-
capacitance (RC) structure is used. As discussed in [15], a first-order 1R1C
network provides a good description of the building thermal capacity while re-
maining simple and thus, a similar model has been selected in this study. The
construction is thus lumped into a single temperature zone of heat capacitance
Cbuild. The building temperature transient can thus be described by the follow-
ing differential equation:

Cbuild
dT (t)

dt
=

1

Rbuild
(T (t)− Tout(t)) + Q̇+(t)build (2)

where Tout and T are the outdoor and interior temperatures respectively, the
parameters Rbuild is the thermal resistances between both temperature zones
and Q̇+

build represents the net heat load supplied to the building. Regarding the
different thermal loads considered within the dwelling, Q̇+

build can be further
decomposed into the following elements:

Q̇+
build(t) = Q̇+

hs(t) +AbuildI
+(t) (3)

where Q̇+
hs is the heat provided by the SH storage tank and Abuild is the effective

window area. The values and units of the parameters correspond to the Swiss
Society of Engineers and Architect (SIA) norm 380/1 [16] while time-related
values have been identified by [17]. It is worth mentioning that, as discussed by
the authors of [18], a more accurate description of the dynamics of the building
temperature could be achieved though the means of a multiple order model and
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(a)

SH
tank

Ė+
hs

ṁ+
dhw

DHW
tank

Ė+
dhw

HP

Tout

BAT

Ė−
batĖ+

bat

PV

I+I+

TS

Ė+
build

Ė+
hp

Ė−
pv

(b)

SH
tank

Ė+
hs

ṁ+
dhw

DHW
tank

Ė+
dhw

CHP

Tout

ṁ+
NG,chp

BAT

Ė−
batĖ+

bat

PV

I+I+

TS

Ė+
build

Ė−
cg

Ė−
pv

Figure 1: System configurations with (a) an air-water heat pump and (b) a cogeneration unit
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thus, accounting for the different thermal transients of the building envelope and
air [15]. However, since the main focus of this study is on analysing the lumped
thermal capacity of the dwelling over daily and seasonal variations rather than
a detailed analysis of the temperature response on a short time-scale, the first
1R1C order model is applied. Finally, the supply and return temperatures of
the hydronic space heating system (i.e. T supply

build and T return
build respectively) are

defined regarding the building type and construction year as presented in [17]:

Tsupply
build,k = ksupply1 − ksupply2 (T ref

build −Tout,k) (4)

Treturn
build,k = kreturn1 − kreturn2 (T ref

build −Tout,k) (5)

3.2. Thermal storage

The thermal energy storage model is based on the formulation introduced
by [19] and further developed by [20]; the hot water tank is discretized into nl

virtual storages layers with fixed temperatures, regarding the storage operating
range. The water can be shifted between the different temperature layers (l)
through heat exchange with an external unit. Therefore, considering a constant
cp value, a heat supply Q̇h

l to the virtual tank layer l is represented as a hot
stream flowing from Tl to Tl−1, the mass flow ṁh

l being the extensive control
variable (Eq. 15a). Respectively, a heat delivery Q̇c

l is expressed as a cold
stream entering Tl from the lower temperature level Tl−1, of mass flow ṁc

l (Eq.
15b).

In order to account for tank heat losses Q̇loss
l , the thermal load is modelled as

a mass flow ṁloss
l from Tl to Tl−1. Thus, Equation 15c relates the losses of each

layer l to the difference of the respective temperature Tl and the ambient tank
conditions Tb, the virtual storage wall surface Al (Eq. 15d) and the tank specific
heat transfer coefficient Uu. In regard to the latter definition, the first storage
layer temperature T1 is considered to be at the surrounding temperature Tb to
avoid losses at the bottom layer. Additionally, Equation 6e limits the virtual
tank mass to the fixed maximum value while Equation 6f defines the total
volume in function of the height-to-diameter ratio πHD and the tank diameter
dd, the design parameter of the thermal storage unit.

For [u = hs, dhw, l ∈ [2, nl], k ∈ [1, nk]]:

Q̇c
u,l,k = ṁc

u,l,kcp(Tl − Tl−1) (6a)

Q̇h
u,l,k = ṁh

u,l,kcp(Tl − Tl−1) (6b)

Q̇loss
u,l,k = ṁloss

u,l,kcp(Tl − Tl−1) = Au,l,kUu(Tl − Tb) (6c)

For [u = sh, l ∈ [1, nl], k ∈ [1, nt]]:

Au,l,k =
mu,l,k

ρ(ddu/4)
(6d)

∑
l
mu,l,k = mmax

u =
πHDπρwat(ddu)

3

4
(6e)

∑
l
Au,l,k = πHDπ(ddu)

2 (6f)
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The mass balance for the different temperature layers l, at each time step k are
thus expressed as follows:

For [u = hs, l ∈ [2, nl − 1], k ∈ [1, nk − 1]]:

mu,l,k+1 = mu,l,k +
[
(ṁc

u,l,k + ṁh
u,l+1,k + ṁloss

u,l+1,k)

− (ṁc
u,l+1,k + ṁh

u,l,k + ṁloss
u,l,k)

]
dk (7a)

mu,1,k+1 = mu,1,k + (ṁh
u,2,k + ṁloss

u,2,k − ṁc
u,2,k)dk (7b)

mu,n,k+1 = mu,n,k + (ṁc
u,n−1,k + ṁloss

u,n,k − ṁh
u,n,k)dk (7c)

Here, in the case of Equation 7b, the bottom layer mass in the next time step
k + 1 is computed from the actual state k to which the mass flow related to
the (i) heat losses and (ii) the heat discharge (i.e. hot stream) of next upper
layer (i.e. l = 2) are added while the mass flow corresponding to a (iii) heat
charge (i.e. cold stream) is subtracted. The corresponding mass transfer rates
are represented in Figure 2 through (i) red, (ii) green and (iii) blue arrows
respectively, between l = 1 and l = 2. Regarding the different delivery types
(i.e. mass/heat) related to the thermal services, additional elements need to be
included. Indeed, Figure 2 presents both tank configurations considered in this
study, with respect to their application: (a) SH and (b) DHW. In (b), the mass
flows related to the cold, fresh water inlet ṁwatfresh,k and DHW outlet ṁwat,l,k

for each temperature layer l, need to be included in the mass balance expression
of Equations 7a-7c. Moreover, since no heat delivery is occurring for this tank
configuration, the DHW mass balance is defined as follows:

For [u = dhw, l ∈ [2, nl − 1], k ∈ [1, nt − 1]]:

mu,l,k+1 = mu,l,k +
[
(ṁc

u,l,k + ṁloss
u,l+1,k)−

(ṁc
u,l+1,k + ṁwat,n,k + ṁloss

u,l,k)
]
dk (8a)

mu,1,k+1 = mu,1,k + (ṁwatfresh,k + ṁloss
u,2,k − ṁc

u,2,k)dk (8b)

mu,n,k+1 = mu,n,k + (ṁc
u,n−1,k + ṁloss

u,n,k − ṁwat,n,k)dk (8c)

Additionally, since the DHW distribution network requires a minimum supply
temperature Tmin

dhw = Tj , no water delivery is performed below this threshold
(Eq. 9a) Finally, an electrical backup heater is implemented into each vessel
type to provide additional heating capacity during peak consumption hours (Eq.
9b).

For [u = {hs, dhw}, ∀k]:
ṁwat,l,k = 0 l ∈ [1, j] (9a)

Q̇c
u,l,k + ηuĖ

+
u,l,k = ṁc

u,l,kcp(Tl − Tl−1) l ∈ [2, nl] (9b)
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(a) (b)

ṁ+
wat

ṁ−
wat

Ė+
dhw

Q̇c
dhw,T

Ė+
hs

Q̇c
hs,T

Q̇h
hs,T

Tl

l ∈ [1, n]1

n

...

Figure 2: (a) DHW and (b) SH storage tank models

3.3. Electrical storage

The electrical storage unit considered in this study is composed of Li-Ion bat-
tery stack which are increasingly targeting the household market segment. The
model relies on a simple linear formulation proposed by [21]:

For [u = bat]:

Eu,k+1 = αuEu,k+1 + (ηu,chĖ
+
u,k − 1

ηu,dis
Ė−

u,k)dt k ∈ [2, nk] (10a)

γmin
u Esize,d

u ≤ Eu,k ≤ γmax
u Esize,d

u ∀k (10b)

where the parameters ηdis and ηch represent the dis- and charging efficiencies
respectively, while α is the self-discharging ratio of the storage system. In order
to neglect the premature deterioration of the stack due to deep discharging
cycles and thus, avoid non-linearities, the state of charge (SoC) should remain
between 20 and 80 % of the battery rated capacity Esize,d

bat (Eq. 10b) [22], the
design variable of the electrical unit. Similarly, as discussed by the authors of
[21], charging/discharging efficiencies are in general state-dependant variables
η(Ebat); however in this study, the aforementioned values are assumed constant
to achieve a linear control model.

3.4. Heat pump

Air-source, variable speed heat pumps are a flexible and highly efficient mean to
provide heat for low temperature applications, such as SH and DHW prepara-
tion. Equation 11a defines the HP performances on the basis of the theoretical
coefficient of performance (COPideal) and an efficiency factor ηηηu,l,k to reflect
the real system COP [17]. Indeed, the latter parameter significantly varies with
heat source/sink temperature fluctuations and hence, has been approximated
by a piecewise linear function (Eq. 11b) consisting of ni = 9 intervals. The
different coefficients (ail,b

i
l) were fitted from data of 32 air-water heat pump

models commercially available. Additionally, in order to optimize the unit out-
put conditions with respect to the different temperature levels of the thermal
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service requirements, the generated heat Q̇−
u,l,k at each time step k is further

discretized into nl outlet temperature levels l. Finally, Equation 11c constrains
the the variable speed HP to operate in the upper load range, hence avoiding
strong losses due to low compressor speed.

For [u = hp, l ∈ [1, nl], k ∈ [1, nk]]:

.Q̇−
u,l,k = ηηηu,l,kCOPideal

u,l,k Ė
+
u,l,k (11a)

ηηηu,l,k = ail + bi
lTout,k Tout,k ∈ [Tmin

i , Tmax
i ] (11b)

γuĖ
size,d
u ≤

n∑

l=1

Ė+
u,l,k ≤ Ėsize,d

u (11c)

(a) Second law efficiency (b) Maximal power input

Figure 3: Piecewise efficiency and power rating approximation

3.5. CHP engine

The CHP unit considered in this study consists of a NG-powered Stirling cy-
cle, commercially available for residential application [14]. The control-oriented
model implements a minimum part-load threshold in order to avoid significant
efficiency variations occurring at lower power outputs. Equations 12a-12d state
the system performances applying a single piece, linear efficiency function and
thus, steering the regulator towards the upper set point range.

For [u = cg, k ∈ [1, nk]]:

Q̇−
u,k = Q̇min

u + ηheatu ṁpw
u,NG,k (12a)

Ė−
u,k = Ėmin

u + ηelecu ṁpw
u,NG,k (12b)

ṁ+
u,NG,k = ṁmin

u + ṁpw
u,NG,k (12c)

γuĖ
size,d
u ≤ Ė−

u,k ≤ Ėsize,d
u (12d)

Finally, the system is constrained to operate for a minimum time to avoid the
premature deterioration of the CHP engine, mainly related to high cycling rates.
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The resulting block continuity is expressed as follows:

For [u = cg]:

σσσu,1 = yu,1 (13a)

σσσu,k ≤ 1− yu,k−1,σσσu,k ≤ yu,k,σσσu,k ≥ yu,k + (1− yu,k−1)− 1 (13b)

min(k+βu−1,nt)∑

j=k

yu,j − βu ≤ −(1− σσσu,k) (13c)

where yu,k is a binary variable indicating the unit status (on/off), σσσu,k repre-
sents the CHP system sequence start while βu is the minimum operating time.

3.6. Photovoltaic system

As presented by [23, 24], a simple and accurate linear model is applied for the
photovoltaic (PV) system. The electrical power generation of the PV system
Ė−

pv,k is therefore defined using the panel efficiency ηηηpv,k, the incident solar radi-

ance I+k and the total panel surface Ad
pv, the unit design variable (Eq. 14a). Fur-

thermore, Equations 14b and 14c define the temperature-dependant efficiency
as function of the system technical specifications2 and the outer temperature
Tout,k.

For [u = pv, k ∈ [1, nk]]:

Ė−
u,k = Ad

uηηηu,kI
+
k (14a)

ηηηu,k = ηu,ref − πu(Tu,k − Tu,ref ) (14b)

Tu,k =
UuTout,k

Uu − πuI
+
k

−
I+k (fu − ηu,ref − πuTu,ref )

Uu − πuI
+
k

(14c)

3.7. Thermal solar collector

Similarly to the model presented in the previous section, the generated heat
of the thermal solar collector is determined by applying the panel efficiency
ηηηts,l,k, the incident angle modifier βIAM , the incident solar radiance I+k and the
multiplication factor fts,l,k (Eq. 15a); the latter positive value is bounded by
the total panel surface Ad

ts, the unit design variable (Eq. 15d). In order to
integrate the unit output in regard to the different temperature levels of the
thermal service demands, the outgoing heat Q̇−

ts,l,k is discretized into nl inlet
and outlet temperature intervals l. Based on the model defined by [25], the
system efficiency is defined through the means of the logarithmic mean panel

2i.e. the thermal transmission coefficient Upv , the temperature coefficient of efficiency πu,
the solar inlet fraction fpv and the reference efficiency and temperature (ηpv,ref , Tpv,ref )
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temperature (15b) and measured constant parameters (15c).

For [u = ts, l ∈ [1, nl], k ∈ [1, nk]]:

Q̇−
u,l,k = βIAM fu,l,kηηηu,l,kI

+
k (15a)

ηηηu,l,k = ηu,0 − au,0
Tlm −Tout,k

I+k
− au,1

(Tlm −Tout,k)2

I+k
(15b)

Tlm =
Tl+1 − Tl

ln(Tl+1/Tl)
(15c)

nl∑

l=1

fu,l,k ≤ Ad
u (15d)

3.8. Mass and energy balances

In order to link the different DER systems to the different service requirements,
the building total energy and mass balances are finally defined. Therefore, the
utilities (i.e. electricity & natural gas) energy and mass balances can be written
as follows:
∑

u
Ė+

u,k −
∑

u
Ė−

u,k + Ė+
build,k = Ė+

grid,k u ∈ H, k ∈ [1, nk] (16)
∑

u
ṁ+

NG,u,k = ṁ+
NG,grid,k u ∈ H, k ∈ [1, nk] (17)

where Ė+
grid and ṁ+

NG,grid represent the net electricity and natural gas imports
from the local distribution grid respectively. Regarding the different temper-
ature levels corresponding to the thermal service demands and the respective
DER system outputs, heat cascading is performed to optimally selected the unit
operating set points [8, 17, 20]. The method consists of splitting the aggregated
heat load of the cold Q̇c and hot Q̇h streams (i.e. streams to be heated and
cooled respectively) into several temperature intervals nl and computing the
residual heat Ṙl cascaded down to the next lower interval l−1 as defined in Eq.
18.

For [u ∈ H, k ∈ [1, nk]]:
nl,h∑

i=1

Q̇h
u,i,k −

nl,c∑

j=1

Q̇c
u,j,k + Ṙl+1 − Ṙl = 0 l ∈ [1, nl]

Ṙl ≥ 0 l ∈ [2, nl]

Ṙ1 = Ṙnl+1 = 0

(18)

Finally, the mass balance regarding the DHW requirements is expressed in Eq.
19, j being the temperature index which corresponds to the minimum supply
temperature of the latter service (i.e. 323 [K]).

n∑

l=j

ṁ−
wat,l,k = ṁ+

dhw,k k ∈ [1, nk] (19)
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3.9. Cyclic conditions

The cyclic constraints impose that the SoC conditions of the different storage
units at the first time step k are equal to the conditions of the succeeding
day time step k + n. The latter formulation avoids strong self-discharge losses
resulting from long-term storage, hence improving the system efficiency and
operating costs [14]. Moreover, since large-scale storage units require substantial
investments, space and complex management systems, residential buildings are
not suited to perform seasonal storage. Equations 20a and 20b determine the
cyclic constraints for the electrical and thermal storage units respectively, j
representing the minimum supply temperature level of the heat tanks.

Ebat,k = Ebat,k+n k ∈ [1, nk] (20a)
n∑

l=1

Qu,l,k =
n∑

l=1

Qu,l,k+n u ∈ [hs, dhw], k ∈ [1, nk] (20b)

4. Methodology

The proposed sizing algorithm relies on a hybrid resolution method, thus de-
coupling the problem into two layers (Figure 4). The upper layer (master) uses
an evolutionary MOO to solve the optimal design problem while the lower layer
(slave) solves the optimal control (i.e. though MPC) strategy, relying on a MILP
formulation. The choice of applying a decoupled, heuristic-based optimization
approach over a deterministic method can be summarized as follows:

1. Evolutionary algorithms screen the whole search space, hence providing more
information to analyse the trade-off between conflicting objectives.

2. The latter methodology is a robust approach which features the capability of
dealing with non-linearities, particularly regarding the objectives, and high-
lighting the location of discontinuities.

3. Since the target is to provide decision support for an engineering issue, the
latter approach enables the selection of a final solution among a set of optimal
combinations by considering different criteria (e.g. financial) [19].

During the design process, the optimal control is assumed to achieve a perfect
realization (i.e. no prediction errors) and hence, the lower optimization layer
solely solves a single operation strategy per horizon period nk at k = 1.
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Slave problem

MPC

Building DER units
MILP
modelMaster
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Figure 4: Design algorithm

4.1. Data clustering

Regarding the computational complexity related to the resolution of the afore-
mentioned optimization problem, data clustering has been performed. Indeed,
input data of urban DER design procedures is commonly defined through the
means of a typical reference year, assumed constant over the entire energy sys-
tems lifetime (≃ 25 years) [20]. However, since the latter number of operating
periods remains significant, the annual data set is further decreased. For this
purpose, a k-medoid clustering method has thus been implemented; the deter-
ministic approach identifies the different cluster centres based on the smallest
sum of distances within the cluster [26]. The cluster size is selected based on
specific performance indicators presented by the author of [20]:

• Silhouette coefficient s

• Mean squared and absolute error (MSE-MAE)

• Percentage errors (PE)

• Relative per dimension total and peak errors

In order to limit the number of data dimensions and hence generate consistent
cluster results, solely two input parameters have been considered during the
clustering process: (i) the ambient temperature Tout and (ii) the global solar
irradiation İ+. The remaining consumption (electricity, domestic hot water)
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and tariff (electricity, natural gas) data is then defined a posteriori through the
means of the computed cluster centres.
As presented in Table 1, all performance indicators improve with the increasing
of cluster numbers k. It is observed that the silhouette coefficient which defines
the cohesion of structure rapidly decreases below the limit of 0.5 while remaining
above the inconsistency threshold of 0.25 [26]. Nevertheless, as discussed by [20],
the aforementioned values have been proposed for bi-dimensional data set while
the considered case solves a 48-dimensional (2 parameters of 24 hours) problem.
The analysis of dimension relative errors reveals that peak errors are a critical
selection criteria; the k-medoids method indeed selects the best day out of the
cluster with respect to the global performance although it might not represent
well a specific dimension. With regard to these results, the cluster size np = 18
appears to provide the best trade-off between the different quality factors and
the resulting input data set.

Table 1: Clusters performance indicators

Global Indicators Temperature Solar radiance

k s MSE MAE PE
Max err. Err. Max err. Err.

[%] [%] [%] [%]

2 0.66 0.49 0.47 -0.01 44.68 3.82 60.17 -2
3 0.54 0.29 0.32 -0.03 36.78 -3.30 59.96 -2.63
4 0.48 0.24 0.27 -0.02 36.78 0.55 56.2 -1.74
5 0.47 0.14 0.16 -0.04 34.04 -0.03 56.41 -4.24
15 0.33 0.02 0.03 -0.03 22.49 -0.02 49.00 -3.06
16 0.31 0.02 0.03 -0.03 22.49 -0.08 49.00 -2.76
17 0.33 0.03 0.04 -0.03 20.06 0.15 42.23 -3.14

18 0.33 0.05 0.07 -0.02 20.06 -0.41 41.92 -2.29

19 0.30 0.06 0.07 -0.03 20.06 -0.21 42.23 -3.03
20 0.29 0.06 0.07 -0.02 20.06 -0.08 42.23 -2.31

This choice is indeed validated through two specific approaches:

• The graphical representation of Figure 5 and Figure 6 revealing the load
curve of both the typical annual data and the cluster values for each input
parameter. As discussed previously, the solar irradiation and tempera-
ture extreme values are less represented; however, regarding there low
frequency of a few hours per annum, the latter can be neglected without
inducing any substantial quality losses.

• Indeed, Table 2 details the relative load differences between the MPC
operation over the entire annual data set and the selected periods weighted
by there respective frequency, considering a perfect realization for different
DER system configurations. The results vary from 0.08 to 3.89 % which
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remains within the global and dimensional indicator value range of Table
1 and thus, provide a strong numerical validation of the cluster selection.

Table 2: Numerical cluster selection validation

System† Load Errors
PV El. st. Imp. Exp. Prod. Cons.
[m2] [kWh] [%] [%] [%] [%]

0 3 2.48 - - 2.26
50 3 1.74 0.74 2.26 2.87
100 5 0.74 0.26 3.49 3.89
200 7 0.08 1.87 2.26 1.75
†Fixed thermal storage of 23 kWhth and HP of 3 kWel
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Figure 5: Annual load curves of the temperature profile
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Figure 6: Annual load curves of the global solar irradiation profile

4.2. Objectives

From the building perspective, cost-based demand response is applied and thus,
the local MPC controller minimizes the operating expenses in addition to the
comfort penalty cost [14]. The perceived penalty is linearly proportional to the
temperature difference between the comfort range [Tmin, Tmax] and the indoor
temperature T , multiplied by the weighting factor M to prioritize comfort. The
energy system operating cost are expressed as the sum of the NG consumption
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of the cogeneration unit (case b) combined to the expenses of the electricity
imports and subtracted by the power export revenues. In order to promote self-
consumption, the feed-in tariff c−el,i is set below the standard day-night tariff

c+el,i applied in this study.

Obja =

np∑

j=1

OPEXj (21a)

=

np∑

j=1

(
k+nk∑

i=k

c+el,i,jĖ
+
grid,i,j − c−el,i,jĖ

−
grid,i,j + c+ng,i,jṁ

+
NG,grid,i,j)

+

np∑

j=1

k+nk∑

i=k

(pinf,i,j + psup,i,j)

pinf,i,j ≥ M(Tmin −Ti,j), pinf,i,j ≥ 0 ∀i, j (21b)

psup,i,j ≥ M(Ti,j − Tmax), psup,i,j ≥ 0 ∀i, j (21c)

In the master problem layer, the first objective is minimizing the total capital
expenses (Eq. 22) while the second indicators is maximizing the self-sufficiency
(SS) ratio (Eq. 23) as load matching metric [27]. The latter performance index
defines the share of generated power used over the total building electricity
consumption where F1×nk represents the annual cluster frequency vector. The
evolutionary algorithm is selecting the values of the nd decision variables based
on the operating strategy defined by the slave problem (i.e MPC). The latter
variable set {xd

j} consists of the different DER systems sizes and capacities
presented in the previous modelling sections.

Objb,1 =
nu∑

j=1

CAPEXj =
nu∑

j=1

a+ bxd
j (22)

Objb,2 = SS =

np∑
i=1

Fi(E
+
prod,i −E−

grid,i)

np∑
i=1

Fi(E
+
grid,i −E−

grid,i +E+
prod,i)

(23)

5. Results and discussion

In this section, the optimal energy system sizing framework is implemented to
define the optimal energy systems sizes and control strategies of different Swiss
residential buildings, with a nominal occupancy of 4 people. The effective build-
ing surface is fixed to 160 m2 for single family houses which corresponds to living
area of 40 m2/person. For this study, a standard hourly profile of domestic hot
water m+

dhw (i.e. in average 200 l/day) and the electricity consumption E+
build

(i.e. in average 8.3 kWh/day), have been used and post-processed regarding the
clusters definition presented in the previous section.
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Table 3: Cost function values

Unit
Param. Capital cost Bounds [u]†

[u]† a [CHF] b [CHF/u]† Ref. Min Max

HP Ė [kW] 5680 1240 [28] 1.5 5
CHP Ė [kW] 0 3800 [29] 1 5
PV A [m2] 0 750 [23] 0 160
TS A [m2] 0 540 [23] 0 160
SH HS d [m] 0 985 [20] 0 1
DHW HS d [m] 0 2300 [20] 0.4 1
BAT E [kWh] 0 546 [30] 0 10
†Regarding the design parameter unit

The parameter values and cost functions of the different DER system types
analysed are exposed in Table 4 and 3 respectively. For all building types inves-
tigated, the comfort boundaries presented in Equation 21b-21c are determined
as following:

Tmin(t) =

{
16 [◦C], 11 p.m. ≤ t ≤ 7 a.m.

20 [◦C], otherwise

Tmax = 22 [◦C]

Figure 7 presents the Pareto front of a single family house (SFH) simulation,
constructed in the period ≤ 1920 and equipped with an air-source heat pumps
(a). As shown, the second design objective, i.e. the self-sufficiency factor (SS),
first rapidly increases with the PV array size, before constantly declining while
operating expenses continue to decrease. Indeed, regarding the considered prob-
lem definition, the SoC of the different storage units are imposed to return to
their nominal state at the end of each day (i.e. cyclic condition); thus power
imports from the local distribution grid are still required to satisfy the electric-
ity demand during the first morning hours since the maximal storage capacity
is limited (Table 3). Figure 7 details an additional front representing the self-
consumption factor (SC); the latter metric defines the ratio between the used
and total generated energy (25). For small PV array sizes, the SC indicator is
close to the maximal value since the generated power is directly used on site
while for larger system sizes electricity exports to the distribution grid remain
mandatory due to the reasons stated previously.

SC =

np∑
i=1

Fi(E
+
prod,i −E−

grid,i)

np∑
i=1

Fi(E
+
prod,i)

(25)
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Table 4: Parameter values used in the case study

Param. Value Param. Value

Abuild 10 [m2] c+el/ng 0.23/0.08 [CHF/kWh]

Cbuild 0.11 [MJ/m2] c−el/ng 0.1/0.05 [CHF/kWh]

T ref
build 263 [K] nk 25 [hr]

M 0.4 [CHF/hr·K] ∆k 1 [hr]
Uhs/dhw 2 [W/m2·K] βcg 4 [hr]

πHDhs/dhw
3 [-] ηel/thcg 0.29/0.68 [-]

Tlhs 333-293 (∆Tl = 10) [K] γmin/max
cg 0.5/1 [-]

Tldhw 343-283 (∆Tl = 20) [K] γmin/max
hp 0.25/1 [-]

αbat 0.99992 [-] βts 0.8 [-]
ηbat,ch/dis 0.9 [-] ηts,0 0.83 [-]

γmin/max
bat 0.2/0.8 [-] ats,0/1 3.7/0.009 [-]

Tpv,ref 298 [K] fpv 0.9 [-]
ηpv,ref 0.14 [-] πpv 0.001 [-]

Figure 7: Pareto front of (i) the SF and RER system size in colour plot and (ii) the GM in
black

In order to improve the analysis of the consumer benefits of investing in the
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RER based energy system size with respect to the grid impact, a grid interac-
tion metric, the generation multiple (GM) [27] is introduced, defining the ratio
between the imported and exported peak powers over the integration period
(Eq. 26). The difference between the aforementioned SS factor and the GM,
weighted by the respective factors w1 and w2 (Eq. 27), is finally considered.
Indeed, since low power generation from small PV arrays strongly improves the
SF while slightly affecting the GM, the represented plot first increases until
reaching its peak 8.17 [m2] (for w1,w2 = 1). Following this point, the difference
highly decreases, therefore translating the stronger growth of the GM over the
SF with additional investments in the specific RER system. Indeed, in this case,
both the distribution grid operator (i) and the consumer (ii) benefits are worsen
due to stronger peak power requests (i) and larger annual electricity curtailment
losses (ii). The optimum of the presented benefit factor (BF) hence reflects the
DER system size corresponding to the maximal economical benefits in view of
the consumer interest while engendering grid-friendly operation regarding the
limited GM value.

GM =
maxk Ė

−
grid,k

maxk Ė
+
grid,k

(26)

BF = w1SS− w2GM (27)

Regrading the energy system configurations considered in this study, Figure 8
represents the additional Pareto fronts of the SS objective for the same building
type used during the previous simulation. In the case of (b), the plotted curve
begins at the SS value of 0.39 [-] since the CHP engine already contributes
for a substantial share of the total power consumption, mainly during heating
season. Similar to configuration (a), the SS significantly increases for small
system investments before reaching the maximal value of 1 [-]. The third front
reflects the case for which all heating requirements (SH and DHW) are provided
through the means of flexible electric heaters (resistors) considering a constant
first law efficiency η of 0.9 [-]. The SS corresponding to the BF peak value are
identified through dotted lines (opt) while the respective DER design parameters
are reported in Table 9.
The comparison shows that the defined optimal DER system size strongly de-
pends on the conversion unit applied; in case of (b), the SS grows strongly for
small investment expenses, mainly related to the CHP and storage capacity
increase. The use of PV and CHP systems is indeed a highly attractive com-
bination regarding their specific generation season and hence, solely DER with
moderate capacities are necessary to reach the BF maximum. When using stan-
dard electric heaters, the optimal unit sizes are exceeding the presented values
of configuration (a), mainly related to the low efficiency of the considered heat-
ing system. Indeed, during the heating period, the generated power is directly
consumed for the different service requirements and thus, large thermal storage
capacities are not necessary.
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Figure 8: Self-sufficiency Pareto front of different energy system configurations (top: CHP,
centre: HP, bottom: EL

To compare the proposed configurations to a typical design criterion used in
literature, i.e. total self-sufficiency [3, 9, 31], Table 9 enumerates the optimal
DER system sizes related to the selected points of Figure 8: a zero-energy build-
ing, assuming a perfect (a), 80% (b) and 55% (c) seasonal storage round-trip
efficiencies3. As expected, when applying electric conversion units, the DER
unit sizes corresponding to the different total self-sufficiency assumptions are
located well above the benefit factor optimum introduced previously. However,
in the case of (b), the zero-energy building metric is achieved without any RER
regarding the strong SH and DHW requirements and thus, the resulting high
power generation. While the self-sufficient building concept is generally viewed
as an economically and environmentally sustainable solution, the latter zero-
energy criterion has a substantial impact on the local distribution grid. Figure
10 presents the daily export and generation load curves for both design configu-
rations opt and a for configuration (a); indeed, electricity exports highly diverge
for both cases, feed-in peak differences are reaching over 6 [kW] over noon (GM
> 1). Hence, from a power network perspective, self-sufficiency design criteria
are rendering conventional grid operation extremely critical and even impossible
on a large scale without any extensive overhauling. In case of electric heaters,
the energy system sizes required to achieve the total self-sufficiency (b,c) objec-

3Excess electricity generation, mainly related to seasonal variations, is exported and stored
by the power network
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tives exceed the considered design variable upper limit Ad
pv of 160 [m2] (Table

3), thus showing the unsustainable of using the latter types of conversion units.

Figure 9: DER system size comparison

DER [u]
HP CHP EL

opt† a b c opt a opt a

PV 8.17 83.45 95.81 116.18 0 2.98 14.09 160
TS 0.04 0.01 0 0.17 0 0.09 0.02 0.05
BAT 1.11 9.58 9.4 10 1.54 1.39 8.64 0
Unit 1.85 2.94 3.13 4.5 2.55 2.25 - -
DHW 0.42 0.53 0.4 0.62 0.49 0.57 0.42 0.42
SH 0.34 0.99 1 1 0.65 0.46 0.15 1
†BF optimum

(a) System configuration of point a (b) System configuration of point opt

Figure 10: Daily (30th June) load curves for different system configurations of a SFH equipped
with an air-water HP (self-consumption represented by shaded area)

Finally, Table 5 presents the specific DER system sizes when considering dif-
ferent building construction periods. Regarding the results shown, following
remarks can be noticed:

• In the case of using aHP, the heating unit capacity is slightly varying with
the building age. Nevertheless, while the heat storage system substantially
decreases for insulated dwellings, the battery stack size increases. This
observation might be explained by a primary demand shift from thermal
to electric power related to the improvement of the building heat losses.
Since the BF indicator is based on the peak electricity export value which
occur during summer time, i.e. when electricity consumption is similar for
all dwelling types, the optimal PV array sizes remain low (≤ 0.97 [kWp]).

• When applying a CHP, the trend is less pronounced; however, the con-
version unit capacity grows along with the building heat transmission
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coefficient and thus, with the SH requirements. The latter increase en-
genders an expansion of the storage system sizes in order to recover the
excess power/heat generated short demand periods (i.e. due to the mini-
mum running time constraint). Since the CHP unit is already providing
an large share of the total electricity demand, the average optimum RER
energy based system size is null; the building construction year appears
to have no significant impact on the PV capacity.

Table 5: DER system sizes at the BF optimum

Year
Component [u] SS/ U

PV TS BAT HP/CG DHW SH SC[-] [kW/K]

a < 1920 8.17 0.04 1.11 1.85 0.42 0.34 0.11/1 0.29
a 1920-80 10.03 0.02 0.91 2.12 0.45 0.63 0.12/0.99 0.32
a 1980-05 6.11 0.02 1.28 1.5 0.47 0.014 0.09/1 0.24
b < 1920 0 0 1.54 2.55 0.49 0.65 0.99/1 0.29
b 1920-80 0 0 1.88 2.91 0.48 0.69 0.99/1 0.32
b 1980-05 0.02 0 1.65 2.09 0.4 0.44 0.98/0.99 0.24
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6. Conclusion

In this paper, the design and control problem of building energy systems has
been addressed. For this purpose, a two-level optimization framework has been
developed; while the lower layer defines the cost-optimal operation strategy, a
heuristic based optimization algorithm identifies the DER configuration values.
The system operation relies on a model predictive control formulation for which,
control-oriented models of the different energy systems have been defined, using
a mixed integer linear programming (MILP) formulation.
The following case studies presented optimal conventional and renewable energy
systems configurations for typical buildings with different construction years.
The distributed energy systems included in the simulation are batteries, space
heating and domestic hot water storage tanks, photovoltaic arrays, thermal col-
lectors, cogeneration engines and air-source heat pumps. The results provided
different optimal trade-off unit configurations with respect to the total invest-
ment cost and the defined self-sufficiency indicator. In addition, a novel sizing
criterion was introduced to define the optimal energy system sizes with regard
to the consumer interests while steering towards a grid-friendly operation. The
investigations exhibited that proper sizing of both the conversion and storage
units strongly affected the impact of RER in residential buildings and the dis-
tribution network.
Despite the fact that this study solely considered typical Swiss residential
dwellings, the presented framework is also applicable for different building affec-
tations and usage, with individual consumption profiles. Future work includes
an extension and additional analysis of this parameter set.
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[6] R. P. Menon, M. Paolone, F. Maréchal, Study of optimal design of polygen-
eration systems in optimal control strategies, Energy 55 (2013) 134–141.
doi:doi:10.1016/j.energy.2013.03.070.

[7] D. Steen, M. Stadler, G. Cardoso, M. Groissbck, N. DeForest, C. Marnay,
Modeling of thermal storage systems in milp distributed energy resource
models, Applied Energy 137 (2015) 782–792. doi:http://dx.doi.org/
10.1016/j.apenergy.2014.07.036.
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