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Abstract
Any device exposed to ambient conditions will be prone to oxidation. This may be of particular
importance for semiconductor nanowires because of the high surface-to-volume ratio and only
little is known about the consequences of oxidation for these systems. Here, we study the
properties of indium arsenide nanowires which were locally oxidized using a focused laser beam.
Polarization dependent micro-Raman measurements confirmed the presence of crystalline
arsenic, and transmission electron microscopy diffraction showed the presence of indium oxide.
The surface dependence of the oxidation was investigated in branched nanowires grown along
the [ ]0001 and [ ¯ ]0110 wurtzite crystal directions exhibiting different surface facets. The oxidation
did not occur at the [ ¯ ]0110 direction. The origin of this selectivity is discussed in terms transition
state kinetics of the free surfaces of the different crystal families of the facets and numerical
simulations of the laser induced heating.

Keywords: nanowires, oxidation, Raman, TEM

1. Introduction

Sparked by developments in crystal growth, semiconductor
nanowires (NWs) have for the past decade been the focus of
intense research in areas ranging from chemical and biolo-
gical sensing [1], optical devices and solar cells [2–4], next
generation electronics [5], and quantum devices [6, 7]. It is
common for all applications of nanowires that devices will at
some point be exposed to oxygen, and some degree of surface

oxidation is inevitable. Because of the high surface-to-volume
ratio of the nanowire geometry even small amounts of oxi-
dation may have a large impact on the properties of the
nanowires; effects that may be crucial for real application of
nanowires where devices experience harsh environments and
elevated temperatures. Investigating the fundamental oxida-
tion process of the nanowires is therefore highly relevant. To
this end, locally accelerating the reaction by focused laser
irradiation has been demonstrated and can be combined with
micro-Raman spectroscopy to provide information about the
vibrational modes of individual semiconductor nanowires [8–

Nanotechnology

Nanotechnology 27 (2016) 305704 (8pp) doi:10.1088/0957-4484/27/30/305704

5 Author to whom any correspondence should be addressed.

0957-4484/16/305704+08$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:tsand@fys.ku.dk
http://dx.doi.org/10.1088/0957-4484/27/30/305704
http://crossmark.crossref.org/dialog/?doi=10.1088/0957-4484/27/30/305704&domain=pdf&date_stamp=2016-06-20
http://crossmark.crossref.org/dialog/?doi=10.1088/0957-4484/27/30/305704&domain=pdf&date_stamp=2016-06-20


11] and also conveying information about the elemental
composition [12, 13], crystal properties [14], and defects [15]
as well as free carrier densities and mobilities [16]. Also, at
high intensities, focused laser irradiation has been shown to
enable controlled local cutting or chemical modification of
InAs and GaAs nanowires by local oxidation and formation
of crystalline arsenic [17–21] and enables welding of metal
nanowires [22]. This opens the possibility for using focused
laser beams for simultaneous micro-Raman characterization
and engineering new functionality into nanowire devices. So
far, laser modified semiconductor nanowires have been
characterized through their Raman spectrum and by atomic
force microscopy, scanning electron microscopy and photo-
luminescence, however, the morphologies and crystal struc-
tures have not been studied. Here we show that 50 nm thick
silicon nitride membranes can be used as an optimal substrate
for correlating micro-Raman spectroscopy and transmission
electron microscopy (TEM) imaging and we use this platform
for analyzing the change in NW morphology and composition
due to irradiation activated oxidation of InAs NWs. The
results clearly show an amorphous NW surface coating and
the presence of both crystalline arsenic and polycrystalline
indium oxide thus providing support for previously proposed
reaction schemes. The core of the NW remains intact as seen
both from TEM and the Raman spectra. The polarization
dependence of the Raman spectrum from the oxidized InAs
NWs exhibits a strong enhancement of the Raman signal
attributed to arsenic for parallel polarization in analogy to the
antenna effect of pristine NWs [23]. Finally, using a unique
branched NW structure we are able to compare directly two
different surface facets. We show that the ability to locally
induce modifications by laser irradiation depends strongly on
the crystal orientation of the facets which can be controlled by
changing the crystal direction of the NW growth.

2. Methods

The InAs NWs used in this work were grown by molecular
beam epitaxy via the vapor–liquid–solid mechanism using
gold particles randomly dispersed on planar substrates of
(111)B InAs as growth catalysts. The NWs grew in the
wurtzite crystal structure and two types of NWs have been
investigated. The first type corresponds to standard InAs NWs
with the [ ]0001 crystal direction along the NW axis for details
see [24]. These wires were grown using an As/In flux ratio of
20 and a corresponding planar growth rate of 0.7 μm h−1 with
a substrate temperature of T=435 °C. The NWs are ∼7 μm
long, have hexagonal cross-sections and tapered morpholo-
gies with diameters ranging from 40 nm at the tip to 130 nm at
the base. The NWs contain occasional random stacking-faults
as seen in figure 1(b). To study the effect of crystal orientation
and faceting, branched InAs NWs were grown with a V/III
ratio of 40 and corresponding planar growth rate of
0.35 μm h−1 with a substrate temperature of T=425 °C, in a
two-step method: first, a conventional [ ]0001 stem was grown
and secondly, triggered by introducing a short Ga flux pulse,
the catalyst gold droplet moved from the top to a side facet of

the NW. A continuation of the growth resulted in axial growth
of a branch along the [ ¯ ]0110 crystal directions perpendicular
to the [ ]0001 see [25] for details. Typical growths have hex-
agonal [ ]0001 stems of lengths ∼1 μm and diameters of
120 nm, and ∼2 μm long [ ¯ ]0110 branches with diameters of
100 nm and trapezoidal cross-sections.

Samples were prepared for Raman and TEM measure-
ments by ultrasonically suspending NWs from the growth
substrate in isopropanol and depositing them either on sub-
strates of 50 nm thick Si3N4 membranes6 allowing a combi-
nation of TEM and Raman analysis, or on Si substrates with a
500 nm silicon oxide cap with or without chemically etched
micro-trenches [21]. Figure 1(a) schematically shows the
setup and introduces the coordinate system used in the
following.

Raman spectra from individual InAs NWs were collected
in a back-scattering geometry and two different home built
setups were used. One used a 514.5 nm argon-ion laser (CVI
Melles-Griot 35MAP431-200) and a power density of
450 kW cm−2, focused in an inverted confocal microscope by
a 100×, 1.3 NA oil immersion objective into a diffraction
limited spot. A piezo-scanning stage (Physik Instrument
P5173CL) allowed xy-positioning and scanning, and Raman
spectra were collected using a Princeton Instruments SPEC-

Figure 1. (a) Schematic illustration of the setup and the definition of
the coordinate system. (b) TEM image of an InAs NW on a 50 nm
thick Si3N4 membrane. The NW is grown in the [0001] wurtzite
crystal direction and arrows indicate occasional stacking faults. (c)
Typical Raman spectra of pristine InAs NWs on Si substrate [21]
(top curve), and oxidized InAs NW on a Si3N4 membrane (bottom
curve). Spectra are off-set for clarity. (d) Power dependence of the
ratio of the arsenic LO and InAs TO Raman peaks for a NW
suspended over a 1 μm, 100 nm deep trench etched in silicon oxide.
The arsenic peaks irreversibly appear at a threshold power of
120 kW cm−2 indicating the activation of the oxidation reaction.

6 PELCO®, 21509-10, silicon nitride support film, 50 nm with 9 each
0.1×0.1 mm windows.
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10:100B/LN_eXcelon CCD detector and a SP 2356
spectrometer with 1200 g mm−1 grating blazed at 500 nm.
The polarization of the incident excitation was controlled by a
motorized λ/2 plate in the laser path before the microscope,
and a linear polarizer in front of the spectrometer to select the
polarization of the collected Raman scattered photons. The
accumulation time of the spectra was 60 s. In the second
Raman setup, used for the measurements in figure 1(d), an
Ar–Kr+ laser at 520.8 nm was focused on the NW by a
microscope objective with numerical aperture NA=0.75.
The scattered light was analyzed by a TriVista triple
spectrometer and detected by a CCD detector. The oxidation
effect was instantly induced by the Raman laser at power
density 450 kW cm−2.

3. Results and discussion

Figure 1(b) shows an example of a TEM image of the NWs
showing high crystal quality and occasional stacking faults,
and figure 1(c) shows typical Raman spectra for the two cases
of a pristine InAs NW on Si substrate [21] and an oxidized
InAs NW on a TEM membrane. The spectra of the non-
oxidized NW is identical to bulk InAs and contain one main
peak at ∼216 cm−1 assigned to the InAs transverse optical
(TO) phonon mode and a weak side-peak at 237 cm−1

assigned to the longitudinal optical (LO) mode. According to
the Raman selection rules of the WZ crystal structure only the
TO mode is allowed in this polarization configuration [26],
however, the LO mode may appear due to crystal stacking
faults in the NW [15]. As seen in the lowermost curve of
figure 1(c) the oxidized NW shows a drastically different
spectrum containing two high intensity peaks at 203 and
250 cm−1 which do not match any phonon energies of the
InAs structure but rather the Eg(TO) mode at 198 cm−1 and
A1g(LO) mode at 257 cm−1 of crystalline arsenic [27] which
can form at the surfaces of InAs as a result of the reaction
As2O3+2InAs→In2O3+4As as proposed in [28]. We
note that the Raman peaks of indium oxide [29], at 231 and
304 cm−1, are absent in the spectrum consistent with previous
investigations [19, 20, 30]. The oxidation reaction accelerates
with increased temperature, and we attribute the appearance
of the arsenic spectra as the result of laser induced heating
[30, 31], possibly combined with photo-oxidation [28]. The
activation of the oxidation reaction can be followed by the
power dependence of the relative intensities of the fitted
arsenic and InAs Raman peaks presented in figure 1(d)
measured, using 520.8 nm laser excitation and 15 min inte-
gration time per spectrum, of a NW suspended over a 150 nm
deep and 2 μm wide trench [21]. Initially, at the lowest
powers, the arsenic peaks are absent, but then irreversibly
appear after applying illuminating powers above
120 kW cm−2.

The morphology and crystalline properties of the oxi-
dized NWs can be assessed through TEM and polarized

Raman spectroscopy and may provide valuable information
about the expected performance of NW devices having been
exposed to severe treatment. Figures 2(b) and (c) show TEM
images of a NW before and after irradiation. Initially, the NW
has a uniform morphology but after the irradiation, the wire
surface is covered by a low contrast coating and decorated by
5–10 nm grains of higher contrast. Figures 2(d) and (e) pre-
sent a high-resolution TEM image and corresponding dif-
fraction pattern for a different oxidized NW (see figure 3).
The crystal planes of the NW are visible in the TEM image
and the corresponding wurtzite InAs diffraction pattern in
figure 2(e), confirms that a significant part of the crystalline
wires remains intact. In addition, however, distinct ring-
shaped patterns appear in the diffraction pattern at positions
consistent with the (222), (400) and (440) high intensity
crystal planes of poly-crystalline In2O3. The presence of
indium oxide has not previously been directly observed for
irradiated NWs but is indeed the expected product of the
reaction proposed in [28]. Interestingly, while the presence of
crystalline arsenic is confirmed by the Raman spectra, the
corresponding diffraction pattern is not observed in
figure 2(e). This suggests that unlike the poly-crystalline
In2O3, the arsenic appears as in [30] with a well-defined
crystal orientation not allowing the diffraction in this part-
icular orientation. The crystallinity of the arsenic may be
further investigated through the polarization dependence of
the Raman spectra as shown in figure 2(a). The spectrum with

( ) ¯z xx z polarization configuration is identical to those in
figure 1 and contains, in addition to the InAs A1(TO) mode at
∼220 cm−1, the two arsenic peaks at ∼203 and ∼255 cm−1, as
expected from the wurtzite InAs and arsenic selection rules
[26, 27]. Interestingly, no trace of the arsenic modes appears
for the ( ) ¯z yy z and ( ) ¯z yx z configurations, but appears again
for the ( ) ¯z xy z configuration. This is surprising, as the totally
symmetric arsenic A1g(LO) mode should, according to the
selection rules, appear for parallel polarization
( ( ) ¯ ( ) ¯)z xx z z yy zand and not for crossed polarization
( ( ) ¯ ( ) ¯)z xy z z yx zand and the arsenic TO mode should appear
in all cases [27]. This expected polarization dependence was
previously observed for oxidation induced on planar surfaces
[30]. More detailed study is required in order to verify the
origin of the observed effect. Due to the violation of the
selection rules we could not conclude about the crystal
orientation of the formed crystalline arsenic layer. These
results, TEM and Raman, have been observed on all 10
measured NWs.

As confirmed by the morphology of the oxidized NWs in
figure 2, the oxidation reaction occurs at the surface of the
NW where oxygen is present. Thus, engineering and pro-
tecting the surface may be a way of controlling the reactions
and it is therefore interesting to investigate the effect of oxi-
dation on NWs with different surface facets. Figure 3 com-
pares a NW grown in the conventional [ ]0001 direction
(having { ¯ }0110 surface facets) to a wire grown in the
perpendicular [ ¯ ]0110 direction (having { } { ¯ }0001 1120 sur-
face facets). A schematic of the branched NW geometry is

3
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Figure 2. (a) Polarization dependent Raman spectra of InAs NW on Si3N4 membrane. Spectra are fitted using a Lorentzian line shape and the
InAs modes are observed at 220 cm−1 (A1), at 216 cm

−1 (E1), and 243 cm−1(LO), whereas the arsenic modes are Eg(TO) at ∼200 cm−1 and
the A1g(LO) at ∼253 cm−1. (b), (c) TEM images of the measured NW bottom end, recorded before and after Raman measurements,
respectively. (d) and (e) are TEM image and selected area diffraction of a different NW. The arrows in (e) indicate diffraction rings
corresponding to poly-crystalline In2O3.

Figure 3. (a) A schematic illustrating the geometry of the branched NW structure. (b) Raman spectra at the [ ¯ ]0110 and [ ]0001 segments with
the indicated polarization configurations. (c) and (d) TEM images of the NW measured in (b) before and after irradiation, respectively. Green
and red circles indicate position of the spectra in (b). (e), (f) High resolution TEM images and selected area diffraction of the regions
indicated in (d). The scale bar in the inserts is 100 nm.
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presented in figure 3(a) and a typical structure is shown in the
TEM image in figure 3(c) prior to the laser exposure. The
[ ]0001 stem and the [ ¯ ]0110 branch are identified by the
morphology of the structure and the position of the gold
catalyst particle at the end of the branch.

Figure 3(b) shows Raman spectra measured at the stem
and branch for both parallel and perpendicular polarizations
as indicated. As in figure 2, the arsenic peaks are observed for
the [ ]0001 stem and only for parallel polarization, however,
interestingly these peaks are entirely absent in the [ ¯ ]0110
branch. The TEM and diffraction pattern of the [ ]0001 stem
are presented in figures 2(d) and (e) clearly showing oxida-
tion, while the corresponding measurements for the branch in
figures 3(e) and (f) show no change of the NW morphology
and contain no In2O3 signal in the diffraction pattern and thus
confirm that the [ ¯ ]0110 NW remained unaffected by the
irradiation. This striking dependence on growth direction,
which was observed in all five measured NWs, may be related
to the dependence of the stabilities of the surface facets, or
may be an effect of the different geometric cross sections of
the structure possibly modifying the light absorption and heat
dissipation. In the following we address these possibilities
individually7.

The oxidation process consists of several parallel reaction
schemes, where each scheme typically includes two sequen-
tial reactions [19, 28]. Let us first consider the oxidation
reaction kinetics of InAs surfaces in general terms, valid for
all possible reactions including InAs. Instead of identifying a
specific rate limiting reaction, we thus consider the irrever-
sible transition rates Gox of a general oxidation reaction of
InAs, which can be written as [32]:

( )
d dm

G µ -
å - å⎡

⎣
⎢⎢

⎤
⎦
⎥⎥c c

h

k T
exp . 1A

A
A B B
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B

ox
oxide InAs

,

Here cInAs and coxide are the interfacial concentrations, and
d g» -h UA A

j
A is the activation energy which is the energy

required to dissociate an atom at the interface j of phase A
with respect to a reference state. UA is the bulk cohesive
energy, g j

A is the interface energy excess per surface atom
contributing with dangling bonds and represents a relative
measure of the surface stability. dmB

A is the relative chemical
potential (i.e. the thermodynamic driving force for the
reaction) of element B (As, O or In) in phase A (such as:
As2O3, InAs, In2O3, InAsO4) relative to the reference state
and is defined as:

( )dm dm g
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= +
¶

¶
+

¶

¶

A

n
A
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B
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j

B
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B
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where the first term relates to the bulk free energy (which we
are not interested in here because it is the same for both types
of wires) and the other two terms relate to the excess free
energy associated with the interfaces. Aj is the area of the
interface j, and nB is the number of atoms B in the phase A.

Because the oxides are poly-crystalline with a dominant
crystal direction, and because the reaction schemes are the
same on the kink and on the stem, the only difference in the
exponential of equation (1) is either g j

InAs (in the activation

energy )dhA or the size dependent part of the chemical

potentials g ¶

¶j
A

n
InAs j

B
which is negligible due to the scale of the

NWs. The third term in equation (2) is also negligible
assuming the same response to change in surface energy at
the two directions. This means that the difference seen in the
oxidation rates is solely a kinetic effect ( )dhA rather than
driven by thermodynamic driving forces ( )dm .B

A At thermal
equilibrium, the differences in transition rates of the two types
of facets are caused by differences in surface stabilities, with a

reaction rate ratio given by ¯ ¯
¯ ¯G G µ

g g-⎡
⎣⎢

⎤
⎦⎥exp

K T0110
ox

1120
ox

B

0110
InAs

1120
InAs

using equation (1). However, implementing reported values
for surface energies in the literature [33], which is a measure
of g ,j

A do not show any significant differences between the

stability of { ¯ }0110 facets of the stem and the { ¯ }1120 facets of
the kink.

Alternatively, differences in absorption efficiency or in
thermal dissipation could be a consequence of the differences
in geometry of the two types of NWs and thereby explain the
observed selectivity. To investigate the possible differences in
temperature, we simulated light absorption for the two geo-
metries using the finite-difference time-domain package
MEEP [34] treating the incident light as a plane wave
polarized along the NW axis. For the absorption efficiency,
we calculated the flux inside a box around the NW given by a
top plane wave incoming onto it [35] with reference to a
simulation performed without the NW. The flux through the
projected area of the NW on the bottom face of the box was
calculated. The simulated internal field distributions are
shown in figures 4(a) and (b) and the resulting values of the
absorption efficiency were 165% and 157% for the [ ¯ ]0110 and
[ ]0001 NWs, respectively, which does not explain the
observed differences in oxidation.

While the main source of heat dissipation from nanos-
tructures at these temperatures are through radiation, temp-
erature differences of the two types of NWs may also be
related to different areas for dissipating heat through the
substrate. To investigate the magnitude of this effect, the
temperature profiles of the irradiated NWs on a 50 nm thick
Si3N5 substrate were simulated using COMSOL Multiphysics
as shown in figures 4(c)–(f) for various position of the
effective heat source and areas of nanowire–substrate inter-
face8. Because the [ ¯ ]0110 NW always originates from a facet
of the [ ]0001 NW in the branched structure, the orientation of
the [ ]0001 segment on the substrate is most likely as in
figure 4(c) while it will be as figure 4(f) for non-branched
NW. In both cases we observe oxidation of the [ ]0001 NW.
The conclusion from the simulations is that for the same
position of the power source, as in figures 4(d)–(f), the
temperature of the NW surface decreases when increasing the

7 Elementary Ga is present on the stem due to the initiation of the kink
during growth. This could have a catalyzing effect on the oxidation process,
but was neglected since the same effect was observed on pure [0001] InAs
nanowires.

8 The relatively low temperature scale (<350 C oxidation threshold) which
is a consequence of the substrtae effect on the simulations and since it is used
for comparison can still be considered.
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contact area, however, the 15 °C lower temperature at the
[ ¯ ]0110 NW compared to the stem is insufficient to explain the
selectivity in oxidation. In the simulations, the thermal con-
ductivities were assumed identical in the two directions in
order to show the effects of the different NW geometries. For
ZB NW, however, numerical studies by Zhou et al [36] show
that the thermal conductivity along [110] direction is ∼3 times
larger than along the [111] or [100] direction. Similar calc-
ulation for the WZ phase does not exist, however, exper-
imental studies show that for the [111]/[0001] directions, the
WZ and ZB crystal phases have similar thermal conductivities
[37]. Thus a possible explanation of the observed selectivity
is an enhanced thermal conductivity along the branch direc-
tions leading to a lower temperature.

4. Conclusions

In conclusion, we have studied the surface oxidation process
of InAs NWs by combining polarized micro-Raman
spectroscopy and TEM on individual InAs NWs, having been
irradiated by a high power laser to promote oxidation. By
TEM diffraction we show directly for the first time the pre-
sence of indium oxide, and the Raman spectra confirm the
presence of crystalline arsenic on the wire-oxide interface.
The TEM analysis confirmed that the oxidation process
occurs at the NW surface and that the InAs crystal remained
in the NW core. Thus the oxide may provide a protecting self-

passivation for NW devices functioning at highly oxidizing
environments, and conversely, irradiation by a focused laser
beam may provide a tool for locally effective thinning of
NWs thereby inducing local regions with modified properties
such as electrical barriers in electrical devices or increased
sensitivity to the immediate chemical environment. Finally,
we studied the dependence of the laser induced modification
on the crystal direction of the InAs NW finding that NWs
grown along unconventional directions ¯0110 are more robust
towards high power laser irradiation. The results show that the
oxidation efficiency is strongly dependent on the NW crystal
structure and morphology. This observation was discussed in
terms of transition state kinetics of NW facets and simulation
of the role of NW geometry for light absorption efficiency and
heat dissipation. The simulations were not conclusive
regarding the origin of the observed oxidation selectivity
which we finally attributed to the anisotropy of the thermal
conductivity along the NW. However the results suggest that
engineering the substrate–nanowire interactions may provide
a route for locally controlling the oxidation reactions on the
surface of the NWs.
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