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Certain flows denominated as amplifiers are characterised by their global linear stability
while showing large linear amplifications to sustained perturbations. As the forcing ampli-
tude increases, a strong saturation of the response appears when compared to the linear
prediction. However, a predictive model that describes the saturation of the response to
higher amplitudes of forcing in stable laminar flows is still missing.

While an asymptotic analysis based on the weakly nonlinear theory shows qualitative
agreement only for very small forcing amplitudes, the linear response to harmonic forcing
around the DNS mean flow presents a good prediction of the saturation also at higher
forcing amplitudes. These results suggest that the saturation process is governed by the
Reynolds stress and thus motivate the introduction of a simple self-consistent model.

The model consists of a decomposition of the full nonlinear Navier-Stokes equations
in a mean flow equation together with a linear perturbation equation around the mean
flow, which are coupled through the Reynolds stress. The full fluctuating response and
the resulting Reynolds stress are approximated by the first harmonic calculated from the
linear response to the forcing around the aforementioned mean flow. This closed set of
coupled equations is solved in an iterative manner as partial nonlinearity is still preserved
in the mean flow equation despite the assumed simplifications.

The results show an accurate prediction of the response energy when compared to
Direct Numerical Simulations (DNS). The approximated coupling is strong enough to
retain the main nonlinear effects of the saturation process. Hence, a simple physical
picture is formalised, wherein the response modifies the mean flow through the Reynolds
stress in such a way that the correct response energy is attained.
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1. Introduction

Over the years linear stability theory has been the most classical approach applied to
understand and describe bifurcations, instability and eventually transition to turbulence
in fluid dynamics (Schmid & Henningson (2001)). It predicts the asymptotic long term
response to small initial perturbations and yields a successful estimation of the critical
control parameter where the first bifurcation occurs in many flows (Drazin & Reid
(2004)), e.g. Rayleigh-Benard convection, Taylor-Couette flow between rotating cylinders,
or the flow past a cylinder. Nonetheless, some flows exhibit transitions well below the
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critical Reynolds number Re., predicted by the linear stability analysis: parallel flows
e.g. Couette and Hagen-Poiseuille (Schmid & Henningson (2001)), as well as non-parallel
configurations like jets (Garnaud et al. (2013)) or the flow above a backward-facing
step (Barkley et al. (2002)), among many others.

In the famous Reynolds pipe flow experiment (1883) and other examples, the critical
Reynolds number of the bifurcation and eventual transition to turbulence is strongly
dependent on the level of external noise. This dependence is interpreted by the non-
normality of the Navier-Stokes system of equations, which is thus able to amplify per-
turbations by means of non-modal mechanisms (Trefethen et al. (1993), Chomaz (2005),
Schmid (2007)). The non-normality allows the flow to escape from linearly stable solu-
tions by means of large temporal amplification of initial conditions (transient growth) as
well as strong response to harmonic forcing, characterized by large gains.f

A substantial body of work has therefore been devoted to the understanding of sub-
critical flows. While modal analysis focusing primarily on eigenvalues cannot predict
the bifurcation threshold, other non-modal techniques stemming from classical linear
algebra have shed light on the strong amplification potential of linearly stable flows.
These techniques determine the optimal perturbations that enforce the largest possi-
ble amplification, in other words, the specific perturbation distribution resulting in the
maximal transient growth or harmonic gain. Calculations on transient growth in parallel
flows have been performed among others by Butler & Farrell (1992), Corbett & Bot-
taro (2000) and Schmid (2007) and in non-parallel 2D flows by Akervik et al. (2008) or
Monokrousos et al. (2010); Sipp & Marquet (2012); Alizard et al. (2009) for spatially de-
veloping boundary layers and Blackburn et al. (2008) for the backward-facing step among
others. Optimal harmonic forcing structures that produce the largest amplifications in
response (Farrell & Ioannou (1996), Schmid (2007)) have been for instance studied in
parallel plane Couette applying wave number expansion by Jovanovié¢ & Bamieh (2005).
For several spatially developing open flows Akervik et al. (2008); Alizard et al. (2009);
Sipp & Marquet (2012) have determined the optimal harmonic gain curves, which sys-
tematically displayed a preferred frequency. The harmonic response of the shear layer
shed by the corner of the 2D backward facing step was then determined by Marquet &
Sipp (2010) and later by Boujo & Gallaire (2015) among others.

A related but different approach is the study of the response to white noise, as was
introduced for parallel flows by Farrell & Ioannou (1993). For non-parallel flows Dergham
et al. (2013) present a low dimensional model to approximate the linear response of
white noise for the 2D backward-facing step, while Boujo & Gallaire (2015) study the
sensitivity and control of the response amplification under stochastic forcing. Whilst
most of the non-modal studies presented rely on the linearisation around the stable
steady solution of the NSE (Navier-Stokes equations), defined as base flow, an attempt
to describe more precisely the actual physics involved in the strong noise amplification
exhibited in turbulent jets has been pursued by Garnaud et al. (2013), who applied the
optimal gain analysis on a model mean flow for globally stable jets.

All these studies rely on the linear response to perturbations, either intrinsic (insta-
bility) or externally driven (forcing) and are not able to describe saturation processes
or the nonlinear interaction existing between the mean flow and fluctuating coherent
structures, thus driving the need of characterizing the nonlinear effects involved. A well
known description of the physical mechanism that takes place in the saturation of an
supercritical instability close to threshold is presented by the Stuart-Landau amplitude
equation introduced back in the 1960’s (Stuart (1960)). This description arises from an
earlier Stuart’s attempt (Stuart (1958)) to capture the saturation mechanism introducing
the mean flow modification through the Reynolds stress constructed by the most unsta-
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ble eigenmode. With similar nonlinear ideas, a two-dimensional three-velocity-component
(2D/3C) model was proposed recently for turbulence in plane Couette flow (Gayme et al.
(2010)). The model supports a one-way coupling where the mean flow is influenced by
the perturbation field, but not vice versa. Other models where a two way coupling is
applied are for example the Farrell and Ioannou proposed Stochastic Structural Stability
Theory (SSST) (Farrell & Ioannou (2003)). It consists in writing the linear response to
white noise forcing in the form of a Lyapunov equation, and coupling it to the ensemble
average mean flow by means of the Reynolds stress. The theory is able to describe the
appearance of large coherent fluctuating structures in turbulent atmospheric flows (Far-
rell & Toannou (2003)), as well as in the 3D Couette flow (Farrell & Toannou (2012)), all
of them being linearly stable. Other models with a linear perturbation equation coupled
to the mean flow have been proposed to describe the coherent structures appearing in
the transition to turbulence for parallel shear flow, as in Beaume et al. (2015) or the
Restricted Nonlinear (RNL) model introduced in Thomas et al. (2014).

In the spirit of these studies, where a closed coupling is present between a linear
perturbation equation and the mean flow, we propose herein a model that describes the
nonlinear saturation of the response to sustained harmonic forcing for laminar stable
flows. The response to forcing in unstable unsteady flows is not included in the present
study as it implies a more involved approach accounting jointly for the unstable terms
together with the response to the forcing, as described in Lu & Papadakis (2011). The
introduced model relates to that recently proposed for unstable laminar flows, in Mantic¢-
Lugo et al. (2014, 2015) and applied to the nonlinear saturation in the cylinder flow. The
model is specifically applied to the well known backward-facing step case study in 2D
at Re = 500. It is globally stable since the first bifurcation is a 3D global instability at
Ree, ~ 748 (Barkley et al. (2002) and Lanzerstorfer & Kuhlmann (2012)). First, a weakly
nonlinear asymptotic expansion is developed around the stable base flow, showing the
Reynolds stress as the key nonlinear term in the saturation process. Its range of validity
is however seen to be limited to very small forcing amplitudes. In contrast, the linear
response around the DNS mean flow captures very well the nonlinear saturation at larger
forcing amplitude. However, in this approach the equations are decoupled and solved a
posteriori. This motivates the introduction of the self-consistent model, which is solved a
priori and where the mean flow is strongly coupled with the linear response to harmonic
forcing by means of the Reynolds stress and the higher harmonic generation is neglected.
The model presents an accurate prediction of the saturation as much as of the structure
of the response and mean flow. It highlights the importance of the Reynolds stress in the
nonlinear saturation process, similarly to the unstable cylinder flow, as already discussed
by Barkley (2006); Mittal (2008); Turton et al. (2015) among others.

The paper is organized as follows. In section 2 the flow configuration is described
and the numerical method is explained. Secion 3 presents the classical linear response
calculation and reveals the difference with the harmonically forced DNS results. Section 4
presents the linear response around the mean flow that motivates the self-consistent
model described in section 5. Finally the results of the model are compared to the exact
DNS in section 5.2 and the conclusions are summarized in section 6.

2. Problem formulation
2.1. Flow geometry and governing equations

The case study selected is the 2D incompressible laminar flow around the backward facing
step. The configuration is sketched in Fig. 1. It consists of an inlet channel of height h
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FIGURE 1. Sketch of the flow configuration superimposed onto the velocity field in the
z-direction of the base flow for the backward facing step at Re=500.

and length L; = 5h followed by a step of height h entailing a sudden expansion of height
H where H = 2h hence the expansion ratio is ' = h/H = 0.5 as depicted in Fig. 1. The
Reynolds number is defined as Re = hUs /v, where h is the inlet channel height, U,
the centerline (maximum) velocity of the plane Poiseuille inlet boundary condition and
v the kinematic viscosity. The non-dimensionalized frequency defined by the Strouhal
number is given by St = fh/(Us) = w/(27). Throughout the article, all the variables
are non-dimensional using length h, density po, and velocity Uy, as reference scales.
The flow is governed by the forced 2D incompressible Navier-Stokes equations (NSE),

Ou+ AN (u)=f (2.1)

where
N (u) = (u-V)u+ Vp— Re ' Au, (2.2)
corresponds to the advective, pressure gradient and diffusive terms. In the entire study
the pressure field p is such that velocity fields are divergence free V - u = 0 following the

incompressibility condition. The term f represents a harmonic body forcing of the form
f(z,t) = fi(x)e™? + cc. with a given fixed frequency St = w/(2m).

2.2. Linear transfer function

The steady solution of NSE
N (Up) =0, (2.3)

is called the base flow Up and is linearly stable for the 2D backward-facing step with
expansion ratio I' = 0.5 at the chosen Re = 500, with its first unstable mode appearing
in 3D for Re.. ~ 748 (Barkley et al. (2002) and Lanzerstorfer & Kuhlmann (2012)).
The classical approach is to study the linear response to harmonic forcing around this
stable base flow. Fig. 1 shows the outline of the base flow of the backward-facing step at
Re=500.

The exact nonlinear response can be approximated by the linear response, assuming a
small amplitude of the harmonic forcing,

Oy g + Lus (uyp)] = f, (2.4)

where higher order nonlinear terms are neglected as a first approximation, and the general
operator %7 (u’) is the corresponding operator for the NSE linearized around any U, i.e.

L) = U -V)u' + (u' - V)U +Vp' — Re ' Au/. (2.5)

Furthermore, since the forcing is harmonic, the corresponding response u’'(x, t) will also
be harmonic v/ (x,t) ~ u) z(x,t) = ui1p(x)e™! + cc. and oscillate purely at the forcing
frequency, due to the linearity of the operator (2.4).

The linear equation (2.4) can be rewritten formally as u,p = Z(w) fi where Z(w) =
(iw + L)~ ! is the resolvent operator. The amplitude of the response in general can be
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measured as the square root of the kinetic energy of the purely time dependent fluctuation

averaged over one period T,
1 T
R= —/ / u/2ddt. (2.6)
T Jy Ja

Consequently, the amplitude of the linear response u} 5z corresponds to the L? norm

1 T
_ 7/ /ungdetzx/ﬁuulBu 2.7)
T 0 Q

as it is sinusoidal in time, defining the L? norm as determined by the Hermitian inner
product (alb) = [,@-bdQ = [, a” - bdQ, for complex fields in the domain 2. In the
same fashion, the forcing amplitude is calculated as the L? norm of the harmonic forcing

_ \/11”/0 /Qf2dﬂdt=\/§||f1||- (2.8)

A natural way of measuring the amplification is the gain,
G(w) = R/A, (2.9)

which is defined as the ratio between the amplitude of the response to the amplitude of
the input. Subsequently, for the linear case of harmonic forcing it reads

G(w) = [lwrsll/II I (2.10)

In particular, it is relevant to determine the largest energy amplification possible at a
given frequency, or in other words the optimal gain Gp:(w) which is associated to the
optimal forcing fop¢.

lwisll _ [[%(w) foptl
1£1] ([ Foptl

Introducing the adjoint of the resolvent operator, the gain can be rewritten as a
Rayleigh quotient of the resolvent operator and the forcing,

(Zf112f1) _ (Z"Zfi1lf1)
(fulf1) (frlfr)

Subsequently, the optimal gain and forcing correspond to the leading eigenvalue Ay = G?
and eigenvector f1 of the symmetric eigenvalue problem %Y % fk = A\ fk The under-
taken procedure to obtain the optimal gain is described in more details in Garnaud et al.
(2013) and Boujo & Gallaire (2015). Thus, we obtain for each forcing frequency an op-
timal forcing spatial distribution with its associated gain. A comparison of the optimal
gains at different frequencies enables to obtain the overall optimal gain G, with its
corresponding forcing f,,;. Notice that this optimization is achieved only for the linear
equation, and not for the full nonlinear Gain of the DNS.

Gopt(w) = max (2.11)

G*(w) = (2.12)

2.3. Numerical methods

The linear and nonlinear Navier-Stokes equations are solved applying the Finite Element
Method representing the spatial discretization of the flow fields (ug,uy,p) by Taylor-
Hood (P2,P2,P1) elements. The software FreeFEM-++ is used to generate the domain
Q triangulation and to build all the required operators. The linear operators are solved
by a Sparse solver implemented directly in FreeFEM++ while the singular value de-
composition is solved in Matlab. The nonlinear systems as the steady state solutions
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|Mesh Li  apr 15 Tir

Barkley ef al. (2002)| - 1 10.87 871 17.49

M2 1 109 87 175
M1 5 10.8 8.6 174
M3 10 10.8 8.6 174

present

TABLE 1. Comparison of the recirculation bubble position for different domain geometry,
variation of inlet length L,.

Mesh L; Lo | Gopt |Difference % || Mesh Li Lo | Gopt |Difference %

M4 5 40| 7089 5% M2 1 50| 7030 6%
M1 5 507453 - M1 5 507453 -
M5 5 60| 7464 0.1% M3 10 50| 7493 0.5%

TABLE 2. Comparison of the linear optimal gain at St = 0.075 for different domain geometry.

are solved by the iterative Newton-Rapson method. The time integration of the DNS
(Direct Numerical Simulation) of NSE is calculated applying a time scheme based on
Characteristics-Galerkin method as described in Benitez & Bermudez (2011).

The computational domain under consideration is defined in Cartesian coordinates
with the origin at the step edge. The nominal domain spans from = = —5h to = = 50h
with an inlet y = (0, k) and an outlet y = (—h, h) as depicted in Fig. 1 being the same
size as in Boujo & Gallaire (2015). A 2D plane Poiseuille profile is imposed as the inlet

Dirichlet boundary condition xz; = —h. No-slip conditions are imposed at the upper y = h
and lower boundary y = —h and outflow boundary condition is imposed at the outlet
z, = 50h.

The size of the domain was chosen after thorough validation. The length of the domain
is selected such that the base flow outlet profile returns to the fully developed Poiseuille
profile, presenting an relative error between the base flow and the parabolic profile of less
than 1% in L? and L., norm. The influence of the entrance length on the recirculation
bubble is summarized in Tab. 1 and compared to Barkley et al. (2002), to insure that the
chosen length is large enough and the solutions obtained are general and independent of
further increase in domain size. In addition, the length of the recirculation bubble shows
an excellent match for the whole range of Reynolds number compared to Barkley et al.
(2002) and Blackburn et al. (2008).

The nominal domain and mesh M1 is of 33814 cells and 155691 DoF (degrees of
freedom) obtaining a gain of 7453, which compares quantitatively well to the optimal
Gopt = 7480 computed by Marquet & Sipp (2010) ensuring the quality of the methodol-
ogy and mesh used. Furthermore, mesh independence is verified by doubling the number
of cells by a uniform refinement obtaining M6 with 338247 DoF and 73982 cells, which
provides a gain of 7456, thus a relative variation of less than 0.05%.

First and second order methods Benitez & Bermudez (2011) are compared for the time
integration scheme of the DNS in Tab. 3. The second order method is chosen as it presents
a much more robust results in terms of gain when compared to the first order in spite of
a small increase in the computational time. The DNS time step is chosen by achieving
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Order | 0t = 0.005 6t =0.02 5t =0.04 6t =0.05 6t =0.1
Gain 1st Order 1622 1563 1492 1456 1276
Gain 2nd Order 1643 1642 1653 1663 -

TABLE 3. Nonlinear saturated gain G of the DNS for different time step §t. The nonlinear
solution is forced by the optimal harmonic forcing of amplitude A = 4 -10~* for Re=500. The
selected time scheme is second order and the time step is 6t = 0.02 marked in black.
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FIGURE 2. (a) Linear optimal forcing in the z-direction and (b) linear optimal response in the
z-direction at overall optimal frequency St = 0.075. (c) Linear Gain optimal at each forcing
frequency St comparison to Marquet & Sipp (2010). All results at Re=500

time step independent results in terms of nonlinear gain as summarized in Tab. 3. The
selected time step 6t = 0.02 is deemed to be small enough as a trade off between accuracy
and computational time since it is located in the time step independent region.

3. Linear and non-linear response to harmonic forcing

Applying the linear formulation described in Section 2.2 to the 2D backward facing
step flow, the optimal forcing and response are calculated. The associated optimal gain
obtained around the base flow is very large, with an overall optimal gain of G, = 4780
at Re = 500, obtained for a non-dimensional frequency of St = 0.075, the same as that
reported by Marquet & Sipp (2010) and Boujo & Gallaire (2015). This optimal forcing
at St = 0.075 will be used throughout the paper, and unless stated otherwise fi = fopt,
although the methodology is independent of the shape and frequency of the forcing and
any body or boundary harmonic forcing could be used.

The large optimal gain implies that linear prediction has a small region of validity since
the nonlinear effects enter at small forcing amplitudes A as illustrated in Fig. 3(a), where
the nonlinear gain decreases rapidly with an increase of the forcing amplitude. This effect
is exacerbated because the chosen forcing is optimal f; = f,,: for the sake of generality
and presents a complex structure (Fig. 2) that can be attained only numerically. There-
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FIGURE 3. (a) Gain and (b) response of the linear prediction around the base flow compared to
the nonlinear saturated DNS for the optimal forcing at St = 0.075 and Re = 500. The insets
of (a) show the Reynolds stress divergence in the z-direction and the insets of (b) show the
response or, in other words, the pure fluctuating velocity u’ in y-direction.

fore, in any real experiment the forcing would project poorly on the optimal yielding a
much weaker linear gain and thus requiring larger forcing amplitude A to achieve such
nonlinear saturation. However, the procedure presented in this paper is general and can
be applied to any forcing structure, including body or boundary forcing.

The same saturation process is represented differently through the response amplitude
in Fig. 3(b) defined as the square root of the energy of the fluctuation. Note how the
strong saturation of the DNS response for large forcing amplitudes A entails a discrep-
ancy of orders of magnitude as compared to the linear response. The insets in Fig. 3(b)
show snapshots of the fluctuating velocity at different forcing amplitudes. The energy
maximum of the response experiences a clear migration upstream during the saturation
process reducing the mean recirculation bubble. A similar tendency has been previously
encountered in the cylinder flow and described by Zielinska et al. (1997). This migra-
tion is enforced by the modification of the base flow into the mean flow due to the
forcing of the Reynolds stress as described by Barkley (2006) and thoroughly examined
in Manti¢-Lugo et al. (2014). Fig. 3(a) illustrates how the Reynolds stress forcing also
moves upstream with an increase in harmonic forcing amplitude A along with the mod-
ifications of the response that creates it. In other words, increasingly stronger harmonic
forcing entail stronger response which in turn creates stronger Reynolds stresses that
modify the mean flow and yield saturation which reduces the response in comparison to
its linear prediction.
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4. Linear response around mean flow

As a starting point, we introduce an asymptotic expansion in an attempt to capture the
mechanism that governs the saturation of the response where the classical linear approach
fails (Fig. 3). The asymptotic expansion is carried around the base flow Up plus the per-
turbation being the harmonic fluctuation at different orders u = 7% [ 37> ; " uy, e,
with a small parameter ¢ = A corresponding to the amplitude of the forcing. The expan-
sion is stopped at third order € and the influence of the different terms in the weakly
nonlinear gain is analysed. More details are kept in the Appendix A for the sake of clarity.

The results agree with the DNS close to the threshold as seen in Fig. 4 and suggest
that qualitatively the nonlinear saturation process is dominated by the Reynolds stress
modification and not by the higher harmonics interaction. This analysis highlights the
importance of the mean flow as in many cases reported in the literature, where linear sta-
bility analysis applied to the mean flows predicted the accurate frequency and structure
of the fluctuations, e.g. the cylinder flow (Barkley (2006)). However, the asymptotic anal-
ysis does not provide a quantitative prediction since the region of validity is extremely
limited.

Subsequently a natural step is to address the linear response around the mean flow far
from threshold. We introduce the Reynolds decomposition u(x,t) = U(x) + u'(x,t) =
Ugp(x)+ AU (x) + o' (x, t). The instantaneous flow is expressed as a mean flow U = (u)
plus a pure fluctuation u’ verifying (u') = 0, where () denotes time-averaging and AU
corresponds to the base flow modification. Substituting the Reynolds decomposition in
the full NSE we obtain a set of two coupled equations.

N (U) =—{((u-V)u') (4.1a)
ou'+ L) =—( -Vu' + (v - V)u') + f (4.1b

The mean flow U arises as a result of the steady mean flow equation (4.1a) while the
perturbation or forced response equation (4.1b) governs the time dependent field w’.
Through this decomposition it is possible to easily isolate two significant nonlinear terms
of the fluctuation interacting with itself. First, the right hand side (RHS) of (4.1a), which
corresponds to the Reynolds stress forcing ((u’ - V)u'), a mean momentum addition on
U due to the nonlinear interaction of the time dependent fluctuation w’. Second, the
nonlinear RHS of (4.1b), (u'- V)u' — ((u - V)u'), it represents the time dependent, zero
mean, momentum addition from the nonlinear interactions of different harmonics in u’'.
Note that the coupled equations are exact as no simplification was made at this stage,
and the time dependent perturbation u’ does not have to be small compared to the mean
U.

The equation (4.1b) is linearised neglecting the interaction of the higher harmonics
gathered in its RHS, yielding

[atull + ZUDNS (ull)] =f (42)

a linear equation equivalent to (2.4) around the mean flow Upyg extracted from DNS,
instead of the base flow Up. At each forcing amplitude A the mean flow has to be
calculated since the Reynolds stress forcing term RHS of (4.1a) changes in structure and
amplitude. The solution to (4.2) corresponds to a single harmonic response oscillating at
the forcing frequency w.

The linear response to harmonic forcing around the mean flow provides a very good
prediction of the nonlinear gain as shown in Fig. 4. This results are in line with the results
of stability analyses around mean flows performed in the literature (Barkley (2006) among
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FIGURE 4. Gain saturation as function of the forcing amplitude A for DNS (triangles) compared
to the asymptotic solution (solid line) and linear response uipns around the saturated mean
flow from DNS (squares). Forcing with optimal structure at frequency St = 0.075 and Re=500.

others) since (4.2) corresponds to the forcing counterpart of an eigenvalue problem in
stability analyses.

Extracting the different harmonics of the nonlinear DNS response w/(x,t) by Fourier
series, we have indeed obtained an energy of the second harmonic less than 3% of the
fundamental frequency for a forcing amplitude A = 0.01. Therefore, the fluctuating
response signal u'(z,t) is dominated by the first harmonic even for a strongly saturated
DNS and as recently interpreted in Turton et al. (2015) for an unstable flow, quasi-
monochromatic flows seem to be well predicted by a linearisation around their temporal
mean.

In a similar spirit, the first harmonic approximation of a nonlinear response has been
recently used for the description of combustion instabilities, where Noiray et al. (2008)
have applied the concept of describing function (i.e. a nonlinear extension of the linear
transfer function) to flames.

5. Self-consistent model.

The linear response around the mean flow might appear as somewhat inconsistent,
since it appears from a decoupled system of equations, where the Reynolds stress is
computed from the full nonlinear fluctuation that is obtained a posteriori from DNS
or experiments (4.1a), and does not correspond to the linear fluctuation from (4.2).
Notice that also the weakly nonlinear solution (Appendix A) arises from only partially
coupled equations up to a third order, which are solved one after the other, sequentially,
thus suggesting an explanation for its limitation to small forcing amplitude A = €. These
limitations are overcome in the present semi-linear model by coupling the nonlinear mean
flow and the linear perturbation equation. The model consists of the full instantaneous
response approximated by a single harmonic u(x,t) = U (z)+u/(x,t) ~ U (x)+u) (z, t),
for w} (x,t) = ui(x)e“! + cc., coupled to the mean flow equation by the Reynolds stress
forcing. In addition, the mean flow is obtained a priori and it is not extracted from
DNS or experimental values but given from (4.1a) with the fluctuation from the linear
response around the aforementioned mean flow, forming a closed system of interactions.
The coupled equations of the self-consistent model for harmonically forced flows can be
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written as

JV(U) = —2%((’(_1,1 . V)ul) , (5.10,)
iwu1 + XU(ul) = fl; (51b)

where the amplitude of the response is dictated linearly by the imposed forcing through
the mean flow resolvent operator Z(w) = (iw + Z)~! and ultimately the gain. The
fluctuation velocity fields u; are divergence free as well as the mean flow U and the
overline (.) means complex conjugate.

Conceptually the model is the forced counterpart for amplifiers of the self-consistent
model presented recently for oscillators (Manti¢-Lugo et al. (2014, 2015)) where the linear
equation corresponded to an eigenvalue problem and the amplitude was dictated by the
marginality criterion of the system. Similarly, in the model introduced by Beaume et al.
(2015), the fluctuations are equally treated linearly corresponding to a eigenvalue prob-
lem with the amplitude of the fluctuation enforced by the marginal stability criterion.
Nonetheless, in this case the flow is asymptotically stable: the turbulent planar Couette
flow. The herein proposed self-consistent model also relates closely to the SSST theory
(Farrell & Ioannou (2012)) and the RNL model (Thomas et al. (2014)), all for turbulent
flows, where the linear response to white noise forcing is coupled to the mean flow modifi-
cation through the Reynolds stress. However, in the present case the forcing is harmonic
and not uncorrelated like the white noise in SSST, thus the linear response to forcing can
be used and the Lyapunov equation is not required. Furthermore, the semi-linear model
assumes a steady saturated mean flow while the SSST theory is characterized by a slowly
varying ensemble averaged mean flow. The self-consistent model as described in (5.1) is
expected to work for stable laminar flows with a quasi-monochromatic response to forcing
while the model introduced recently in Manti¢-Lugo et al. (2014, 2015) is proposed for
unstable laminar flows with quasi-monochromatic instability (Turton et al. (2015)). It
presents a simplified and more transparent system than the DNS since the different terms
are isolated, while still capturing the saturation process for stable or unstable laminar
flows.

5.1. Model solution

The coupled equations (5.1) of the self-consistent model must be solved iteratively for a
given target amplitude of the harmonic forcing Af. There are two options, both starting
the iterative process from the steady flow base flow Up with its corresponding linear
response u)g (A2).

5.1.1. Amplitude stepping

The system (5.1) is solved for a forcing amplitude goal Ay by subdividing it into in-
termediate amplitude steps 0 < A* < Ay and coupling the nonlinear system at each
amplitude step using a fixed point method. The same methodology was applied to the
cylinder flow in Manti¢-Lugo et al. (2014, 2015). The stepping is required due to the
substantial variation of the spatial structure between the initial base flow Upg and the
corresponding final mean flow U, as clearly illustrated in Fig. 3 and caused by the recir-
culation region variation. For a mean flow guess U,E") (starting with the base flow) the
linear forced response ugz) is calculated. The response u&") is then used to construct the
Reynolds stress forcing in (5.1a) to obtain an updated mean flow U,, calculated nonlin-
early using the Newton-Rapson method. This mean flow update U, serves to generate a
new guess Uénﬂ) =~U,+ (1 - 'y)Ué") using a relaxation factor 0 < v < 1 to ensure

convergence. Finally, the new guess Ug("+1) is coupled back to the linear forcing equa-
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tion (5.1b) to obtain the new response ui’fl), closing the loop. The convergence is very

fast for small forcing amplitudes but the computational time increases substantially for
larger amplitudes, reaching a maximum forcing amplitude that can be achieved Mantic-
Lugo et al. (2014, 2015).

5.1.2. Pseudo time relaxation

The steady mean flow equation is modified to a pseudo time 7 dependent equation,
which represents the variation of the instantaneous mean flow from base flow Ug to
the saturated mean flow U. The amplitude of the forcing is a smooth ramp function of
time A(7) that goes from 0 to the target forcing amplitude Ay, staying at Ay until the
variations in the flow fields are negligible. At each pseudo time step k of the instantaneous
mean flow U* the linear forcing equation is solved and the new linearly forced response
u? is updated into the Reynolds stress for the next time step. The time integration is

performed by a semi-implicit backward Euler method, summarized as

Ulc+1 _ Uk
liw + ZLyr|uy = A(T) f11, (5.2b)

where k+1 represents the solution for the next step. We remind that all the velocity fields
are divergence free to satisfy continuity. Notice how the standard nonlinear equation for
k+1 is approximated by its linear counterpart and a nonlinear term of the previous time
step k is subtracted to retrieve exactly the nonlinear mean flow equation (4.1a) when
the steady mean flow at the saturation is reached Uy = Uy, 1, hence Ly (UF+Y) — (U* -
V)UF = ¥ (U*).

This methodology is similar to the amplitude stepping previously described, but reduc-
ing the amplitude step between iterations to a very small value 6 A and adding an extra
dynamical term (U*+! —U*)/é7. The advantages of this method are two-fold. First, the
nonlinear equation of the mean flow is replaced by a linear system requiring, however, a
reduction in the amplitude step. Second, the mean flow is not locked to a steady solution
for each amplitude Ay, since the role of the previous relaxation factor - is substituted by
a pseudo time step that allows for physical advection of disturbances and thus stabilizing
the convergence until a purely steady solution is attained. Independently of the target
forcing amplitude Ay, there a minimum of iterations is required thus making the method
not suitable for small amplitudes. The pseudo time method should not be confused with
a DNS, instead it is part of possible iterative methods that could be used to obtain a
steady solution to the present nonlinear system (5.1).

5.2. Results: Gain saturation and mean flow distortion

The self-consistent model predicts accurately the response and gain of the exact DNS
capturing the strong nonlinear effects of the saturation as depicted in Fig. 5. The coupling
between the mean flow and response equation inherent to the semi-linear model overcomes
the limitations of the weakly nonlinear theory. The linear response (4.2) around the
saturated DNS mean flow Upyg at each forcing amplitude A as already presented in
Section 4 in Fig. 4 is also compared to the self-consistent model in Fig. 5 for larger forcing
amplitudes. It overpredicts the saturation (Fig. 5(b)), providing a poorer estimation of
the gain and response amplitude when compared to the present semi-linear model. This
discrepancy could be in large part because the linear response is calculated a posteriori
and decoupled from the mean flow equation, suggesting that the coupling between the
mean flow and perturbation equation present in the self-consistent model and also in the
exact DNS is relevant. Fig. 5 confirms the picture of the proposed self-consistent model
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FIGURE 6. Comparison of the response structure in the z and y direction for the self-consistent
model u; (a,d), snapshot of the DNS «’ (b,e), and linear response around the DNS mean flow
uipns (c,f). High saturation level with a forcing amplitude A = 0.01, frequency St = 0.075 and
Re=500.

in which the Reynolds stress plays the main role in the saturation process while higher
harmonic interactions are negligible.

The spatial distribution of the saturated response calculated by the self-consistent
model accurately predicts the full nonlinear DNS as presented in Fig. 6 for a forcing
A = 0.01. The wavelength and the position of the largest amplification of the self-
consistent response match the exact DNS solution for both u;, and u; fluctuations. The
linear response around the DNS mean flow also resembles the full DNS structure, despite
its less accurate approximation of the saturated Gain (Fig. 5(b)). It should be noted that
the discrepancies are minimal when compared to the structure of the linear response
around the base flow as illustrated in Fig. 3.

As illustrated above in Fig. 3, the Reynolds stress varies strongly with the forcing
amplitude, however, thanks to the coupling present in the semi-linear model, the structure
of the Reynolds stress divergence of the DNS and self-consistent model compare very
closely as depicted in Fig. 7. In this case, the Reynolds stress divergence calculated from
the linear prediction around the mean flow differs substantially from the exact DNS
solution. The Reynolds stress forcing is crucial to obtain the accurate mean flow with
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FIGURE 8. Position of the recirculation bubbles, (a) bottom and (b) top, as a function of the
forcing amplitude A for the DNS and self-consistent model for the optimal forcing frequency
St = 0.075 and Re=>500.

the correct recirculation region and thus, through a proper coupling, the corresponding
response.

A more quantitative comparison between the self-consistent model and DNS mean flow
is summarized in Fig. 8, where the positions of the recirculation regions are depicted as
a function of the forcing amplitude. The self-consistent model approximates precisely
the exact recirculation bubbles of the nonlinear DNS. This results from the accurate
calculation of the Reynolds stress by the self-consistent model which provides the correct
mean flow. At high forcing the saturation is very strong and higher order nonlinear
effects which are neglected in the semi-linear model start playing an more important
role, explaining the slight divergence between the self-consistent model results and the
DNS. Nevertheless, the self-consistent model captures even the non-monotonous trend
of the recirculation bubble position present in the exact DNS solutions, which would be
missed by a linear prediction around the base flow.

The frequency dependence of the saturation process of the gain starting from the linear
prediction to a forcing amplitude A = 0.001 is presented in Fig. 9. The comparison of the
self-consistent saturated gain and the DNS for A = 0.001 in Fig. 9 shows a very accurate
prediction at all frequencies, with only a slight shift in the optimal frequency. More
generally, Fig. 9 demonstrates that the most responsive frequency does not change much
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FIGURE 9. Gain saturation as function of frequency for several forcing amplitudes A. The DNS
results are compared to the self-consistent and linear response around the base flow, from liter-
ature. The forcing applied has its optimal structure at each frequency and the Re=500.

when nonlinear effects are included, as pointed out by the preliminary results of Marquet
et al. (2010) using random noise forced DNS.

6. Discussion and conclusions

A study of the saturation dynamics of the response to harmonic forcing is performed for
the stable laminar flow over a backard-facing step. An asymptotic expansion around the
stable base flow suggests that, at least for very small forcing amplitudes, the saturation
dynamics is driven by the mean flow modification enforced by the Reynolds stress and
not by the higher harmonic interaction. This is confirmed at larger forcing amplitudes,
as the linear response to harmonic forcing around the mean flow extracted from DNS
shows a good prediction of the response amplitude and structure.

Motivated by the results of the linear response around the DNS mean flow, a self-
consistent model (SC) is introduced where the mean flow equation is coupled to the linear
response through the Reynolds stress. The coupled equations are solved by an iterative
method. The linear response, around its corresponding coupled mean flow, approximates
accurately the fully nonlinear response of the exact DNS simulations in terms of gain and
structure. Contrary to the weakly nonlinear theory, the self-consistent model solution
is not restricted to a small amplitude of the harmonic forcing. Furthermore, the self-
consistent model calculates the precise Reynolds stress forcing which in turn allows to
obtain the correct mean flow as compared to the exact DNS, predicting an accurate
recirculation bubble shortening related to the saturation mechanism.

The self-consistent model results highlight the Reynolds stress as the driving force for
the response saturation in a forced backward-facing step flow, in the same fashion as
the case of the cylinder wake flow reported in Manti¢-Lugo et al. (2014, 2015), where a
conceptually similar model is applied to the unstable cylinder flow with the saturation
mechanism of the instability dominated by the most unstable eigenmode as suggested
by Stuart (1958). These oscillators and amplifiers share conceptually a similar saturation
mechanism; the growing fluctuation, which can be accurately approximated by the most
unstable eigenmode or the linear response respectively, saturates through the modifica-
tion of the mean flow by the forcing of the Reynolds stress.
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A fundamental aspect of the model is that the full nonlinear response of the DNS is
approximated by a linear fluctuation equation in the same spirit of the models presented
in Farrell & Ioannou (2012); Thomas et al. (2014); Beaume et al. (2015) for asymptoti-
cally stable turbulent flows that present coherent structures and for the laminar unstable
cylinder flow in Manti¢-Lugo et al. (2014, 2015). Furthermore, the full fluctuation is ap-
proximated by only the first harmonic because of the linearity, thus neglecting the higher
frequency generation. Nevertheless, the self-consistent model is still able to approximate
well the nonlinear gain, response and mean flow at different forcing frequencies and am-
plitudes. While reminiscent of the nonlinear transfer function (the so-called describing
function) used to assess the stability of flames in combustion in Noiray et al. (2008),
it should be highlighted that the self-consistent solution is calculated a priori, without
resorting to any DNS or experimental results. The model is not conceived as a substitute
for the exact nonlinear DNS. In contrast, its relevance lies on extracting and isolating the
essential ingredients to provide an accurate description of the physics, and thus clarifying
the different physical mechanisms involved in the saturation process.

It remains to be seen whether the present semi-linear model works for other globally
stable laminar flows excited by harmonic forcing; i.e. jets, etc, providing the response
is quasi-monochromatic. However, it is not expected to work directly for turbulent or
chaotic flows unless a separation of scales is applied and turbulent and coherent Reynolds
stress terms are calculated independently.

Appendix A. Asymptotic expansion around the base flow

Assuming that the harmonically forced flow reaches a stable limit cycle, an asymptotic
expansion is carried around the base flow Ug = Uj in the same fashion as the one
used to obtain the amplitude equation for the cylinder flow described in Sipp & Lebedev
(2007). In the amplitude equation the small parameter e corresponds to the departure
from threshold by the Reynolds number modification. In contrast, in the present case
the Reynolds number is fixed and the selected small parameter € = A is the amplitude
of the normalized forcing f; (Section 2.2).

For the sake of clarity we separate the steady terms U = Z:;o €"up,, and unsteady
terms u' =307 Z;il €"u, neP?t of the asymptotic expansion relating them to mean
flow and fluctuation modifications. We use the following notation for w, ,; the first
subindex p corresponds to the frequency and the second subindex n corresponds to the
order.

A.1. Zeroth order

The zeroth order corresponds to the base flow ug ¢ = Up solution of the steady nonlinear
NS.

JV(UQQ) =0 (A 1)

A.2. First order

The 1st order solution corresponds to the classical linear response eui 1 = uip (Sec-
tion 2.2) or first harmonic with the same frequency as the forcing f; = efi 1 with
amplitude e = A

eliw + Luglui =e€fia. (A2)

Note that there is no mean flow contribution at first order, ug; = 0.
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A.3. Second order

The 2nd order has two terms, one steady and one unsteady. Both terms are forced by
the interaction of the first order response with itself, as

GQXUBUO,Q =2 ((ﬁl,l . V)ul,l + (ul,l . V)ﬁl’l) = —62Fu111 (A 3(1)
62 [220.7 + D%UB]’U,QQ = — 62(11,171 . V)um (A 3b)

where the overline (.) means complex conjugate. The steady term (A 3a) corresponds to
the modification of the base flow to the mean flow due to the steady Reynolds stress
forcing F,,,,. Whilst, the unsteady term (A 3b) corresponds to the second harmonic
u'272 = e2ug 2e2¥! 4 ce. oscillating at double frequency 2w. It appears as a solution of the
linear system slaved by the forcing of the first harmonic interacting with itself .

A.4. Third order

The third order presents two unsteady equations.

63[iw + jUB]ul,S = — 63 ((’UJO’Q . V)ul’l —+ (ul,l . V)UO’Q)
— €l ((’U/272 . v)ﬁl,l + (ﬁl,l . V)UQ,Q) (A 4a)
63[i3w + fUB]U;;’;g = — 63((’&2’2 . V)ul,l + (um . V)UQ’Q) (A4b)

The first equation (A4a) oscillates at the harmonic forcing frequency corresponding
to an adjustment of the first harmonic response. This 3rd order nonlinear adjustment
is enforced by two terms which entail two independent physical meanings. The first
term in  (Ada), —€ (o2 V)ur 1+ (u11-V)ug o), relates to the mean flow modifi-
cation due to the Reynolds stress, in other words, it accounts for the nonlinear inter-
action on the RHS of the mean flow steady equation (4.1a). The second forcing term
—€3 ((ug,2 - V)11 + (@11 - V)ug2) corresponds to the interaction of the first harmonic
up,1e™? with the second ug €%,

The second equation (A 4b) at 3rd order corresponds to the third harmonic oscillating
at three times the forcing frequency 3w. It is slaved by the interactions of the first w and
second harmonic 2w.

A.5. Synthesis
Stopping at the third order our asymptotic expansion can be summarised as
U(z) ~upo(x) + ugo(x) (A5a)
u(x,t) euy (2)e" + Euga(m)e + € (ug 3(z)e™ + uz 3(w)e™’) +cc. (A5b)
The linear equations at each order can be solved one after another to obtain the different

terms. Introducing the expansion in the gain definition of the response, we obtain at
lower order the modified gain

o2 - ||u/|l2 -2 1+i([( 1+ K ) (A6)
s0ra = gz ~ G oz K2 1,3
1
where
w2 ,dQ 2wy 1 - ug 3dS)
Koo = ff|2|f1212|2 =1.2-10" and K; 3 = Jo Hfl 1”2’ =-25-10". (A7)

K5 5 is the Gain correction due to the energy of the second harmonic while, K 3 relates
to energy modification due to the correction of the first harmonic at 3rd order (A 4a). In
Fig. 10 are compared the linear gain GG, the saturation of the fully nonlinear DNS gain
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F1GURE 10. Gain of the response for the optimal forcing at frequency St = 0.075 and Re = 500.
Linear prediction (dash dot line), 3rd order weakly nonlinear correction (squares, 3rd order
weakly nonlinear correction of the first harmonic only at the forcing frequency (circles), 3rd order
weakly nonlinear correction only by second harmonic interaction (x-marks), 3rd order weakly
nonlinear correction only by mean flow modification (pluses) and DNS results (triangles).

Gpns and the weakly nonlinear gain correction at 3rd order G3p,q- As one could expect,
the weakly nonlinear theory predicts well the initial saturation trend for small forcing
amplitudes €, and it starts failing for larger forcing amplitudes. Fig. 10 illustrates how the
influence of the second harmonic is small compared to the first harmonic modification
at 3rd order, since the elimination of its correction factor Ky o does not produce any
change to the saturation curve, |Ks 2| << |K7 3|. We thus neglect the influence of the
second and third harmonic of (A 5b) and restrict our attention to the response at the
same frequency as the forcing (A 4a). We observe that K; 3 < 0, indeed accounts for the
saturation.

As expressed above, the 3rd order adjustment of the response results from two dif-
ferent physical phenomena: the interaction of the second harmonic with the first one
corresponding to w2 - V)11 + (t1,1 - V)ue 2 and the interaction of the first harmonic
with the steady mean flow modification corresponding to (ug2 - V)u1,1 + (u1,1 - V)ug 2.
We can separate them and account independently for their role in the saturation process
due to the linearity of the problem. The 3rd order term forced only by the interaction of
the first harmonic with the second reads

eB[iw + on]“f:Z, = —63 ((u272 . V)ﬁm + (ﬁl’l . V)’LLQ’Q) 5 (A 8)

and the new gain modification factor K- fzg corresponds to

fQ 2’U,1’1 . Uf%dg
1,112

accounting only for the second harmonic interacting with the first. Fig. 10 shows how

the new gain adjusted exclusively by the second harmonic interaction with the first has

a negligible nonlinear effect for the saturation, following mainly the linear prediction.
The 3rd order term forced only by the mean flow modification reads

= —8.7-10" (A9)

2
K3 =

Eliw + L Jul’y = —€ ((woz - V)ury + (ur - V)ug), (A10)
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and thus a new gain modification factor K {032

K(O) . fQ 2'U/1’1 . ugong
b 1,11

can be retrieved accounting solely for the mean flow modification effect. Fig. 10 shows
how the new gain adjusted exclusively by the mean flow modification follows precisely
the curve of the full 3rd order gain, since K {232 << K §0?2 ~ K 3. It therefore appears that
the nonlinear saturation process is captured mainly by the Reynolds stress modification
and not by the second harmonic interaction, raising the importance of the mean flow
in the saturation process in a similar way as for the cylinder flow (Barkley (2006) and

Manti¢-Lugo et al. (2014, 2015)).

= —2.5-10'° (A11)
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