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Critical inclination for A/C transition in inverted falling films

Liquid films flowing down the underside of inclined plates are subject to the

interaction between the hydrodynamic and the Rayleigh-Taylor (R-T) insta-

bilities causing a patterned and wavy topology at the free surface. The R-T

instability results from the denser liquid film being located above a less dense

ambient gas, and deforming into an array of droplets, which eventually drip

if no saturation mechanism arises. Such saturation mechanism can actually

be provided by a fluid motion along the inclined plate. Using a weighted inte-

gral boundary layer model, this study examines the critical inclination angle,

measured from the vertical, that separates regimes of absolute and convective

instability. If the instability is of absolute type, growing perturbations stay

localized in space potentially leading to dripping. If the instability is of convec-

tive type, growing perturbations move downwards the inclined plate, forming

waves and eventually, but not necessarily, droplets. Remarkably, there is a mi-

nimum value of the critical angle below which a regime of absolute instability

cannot exist. This minimum angle decreases with viscosity : it is about 85◦

for water, about 70◦ for silicon oil, and reaches a limiting value for liquid with

a viscosity larger than about 1000 times the one of water. It results that for

any fluid, absolute dripping can only exist for inclination angle (taken from

the vertical) larger than 57.4◦.

Keywords: Falling film, Rayleigh-Taylor, Absolute and Convective Instabi-

lity, Dripping
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I. INTRODUCTION

Falling liquid films on vertical plates or on the upper side of inclined plates are

present in many technical applications involving heat and mass transfer, and as such

they are well studied1–3. Owing to an inherent unstable flow above a critical inclina-

tion angle, falling films are characterized by a wavy and distorted topology exhibiting

different types of vortices in the trough4 and the crest5 of the wave. These instabi-

lities are always of convective type3, such that surface perturbations grow in space

(in flow direction) and not locally in time, which is confirmed by experiments6. For

the inverse case of a film flowing down the bottom side of an inclined plate, the

flow should also be of convective type if the inclination angle is close to the verti-

cal. However, in the limiting case of a horizontal plate, the Rayleigh-Taylor7 (R-T)

instability deforms the surface. The entire system is described by a balance between

destabilizing gravitational forces, and stabilizing surface tension forces. The flow is

thus of absolute type if the inclination angle is sufficiently close to the horizontal,

meaning that perturbations grow locally and are not convected by the flow8. As a

consequence, there should exist a critical (fluid and flow rate specific) angle at which

the instability changes from absolute to convective type. This is what has recently

been demonstrated by Brun et al.9 in the limit of negligible inertia and viscous exten-

sional stress strictly valid for low Reynolds number flows. Extending their study to

large Reynolds number flows is the aim of this work, which will show non-monotonic

absolute/convective transition contrarily to the previous results.

It is well known that the R-T instability in a static and horizontal set-up does

not exhibit a saturation mechanism10, such that either droplet detachment or film

rupture occur within a finite time period11. Saturation of the R-T instability and

consequently a suppression of dripping can be achieved in different ways, such as

applying oscillations in vertical12 or horizontal13 direction, an electric field, or tem-
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perature gradients14–16. In close relation to falling films, Babchin et al.17 have de-

monstrated that an convective flow in horizontal direction (due to a moving plate at

a constant velocity) can result in saturation. This saturation is a result of a non-linear

flow-induced and surface-tension-assisted mechanism.

The formation of the three-dimensional R-T instability in an inverted film flow

was studied by Lin et al.18 using a model based on lubrication approximation with

neglected effects of inertia. Contrarily to the film flow considered in this study, Lin et

al. have a non-wetted plate as an initial condition. Although the main focus of their

study is on the development of finger-like patterns, they also consider a film des-

tabilized by a Rayleigh-Taylor type instability. They identify for low values of the

dimensionless inclination number a propagation front which breaks up into fingers. A

further characteristic of the flow are large droplet-like structures which move down-

wards the plate with a wave speed much faster than the propagation speed of the

fingers.

On conditions that the intensity of the saturation mechanism is not sufficiently

strong, and e.g. in the case of an imposed flow rate, the boundary between the

convective and absolute instability will separate the regime of immediate dripping

(see Fig. 1c), occurring already in the vicinity of the inlet, from the regime where

dripping eventually, but not necessarily, occurs after a sufficiently long inlet length

(see Fig. 1b). In a similar way the absolute/convective (A/C) boundary separates the

regimes of droplet formation in a viscous liquid jet19,20, e.g. droplet formation at the

nozzle exit or downstream jet breakup, both owing to Plateau-Rayleigh instability.

In Section II, a set of low-dimensionality models based on the weighted integral

boundary layer approach will be proposed and hierarchized in terms of their degree

of approximation. In Section III, we will present the methodology to identify the

A/C transition of a falling liquid film on the underside of an inclined plate subject

to R-T instability. A special characteristic of this flow configuration is that both the
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R-T instability and the convective liquid transport along the inclined plate are driven

by gravity. Thus, the cotangent of the inclination angle taken from the horizontal

determines the ratio between the two coupled mechanisms. In Section IV, and after

having shown the differences and specificities of the various models, the influence

of two different conservation conditions, e.g. imposed film thickness and imposed

flow rate on the A/C transition is examined. Further, a minimum critical inclination

angle for convective instability in falling films is presented. In Section Discussions,

we discuss the relevancy of the A/C transition in light of time-dependent simulations

of wavepackets, whereas conclusions are given in Section VI.

II. MODELING

The geometry of an inverted falling film under the field of gravity g is sketched

in Fig. 1(a) where β is the inclination angle from the horizontal and α = β − π/2

is the inclination angle taken from the vertical, the two angles being used in the

paper. The unperturbed flat film thickness is denoted hN , and qN is the specific

volumetric flow rate (flow rate per unit width) at the inlet. For the evolution of the

film flow, the full second-order model obtained by Ruyer-Quil and Manneville21 is

considered, whose derivation is briefly detailed in appendix A. This model consists

in four coupled evolution equations for the local film thickness h(x, t), the local flow

rate q(x, t), and two corrections of the flow rate s1(x, t) and s2(x, t) accounting for

the departure from the parabolic velocity profile due to second-order inertia effects.

The ordering refers to the classical gradient expansion3, such as second-order terms

contain second-order derivatives in space (x). Using hN as the scale for the thickness,

and 3qN as the scale for the flow rate, the dimensionless equations are

∂th = −∂xq , (1a)
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Figure 1: Sketch of an inverted falling film, a situation that is always unstable :

(a) any perturbation around the unperturbed flat film solution will grow in time

and either be convected with the flow (b) or be localized in space (c), in the case of

which dripping already occurs in the vicinity of the inlet in absence of nonlinear

saturation. Note that dripping can eventually, but not necessarily, occur in

convective instability as represented by the dashed droplet. The critical angle αc,

separates the two regimes of instability.
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where δ is the reduced Reynolds number, ζ is the reduced inclination number and

η is the viscous extensional number, whose definitions are given in the next section

(see Eq. 9). The parameter δ > 0 scales for the inertia effect, the parameter ζ < 0 for

the R-T instability mechanism and the parameter η > 0 for the viscous dissipation in

the streamwise direction. As proposed by Ruyer-Quil and Manneville21, an adiabatic

elimination of the fields s1 = s2 = 0 in (1) leads to the following simplified second-

order model :

∂th = −∂xq , (2a)
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It is worth mentioning that the terms in square brackets result from the so-called

extensional viscous stress, well known in models for thin viscous sheets22 for which the

extensional term is 4∂x(h∂x(q/h)), where 4 is the so-called Trouton ratio. The only

differences here stand in the coefficients of each term (apart for the first one), which

account for the integration of a parabolic velocity profile, instead of a uniform velocity

profile in the case of a free-standing film. If these second-order viscous extensional

terms are further neglected, i.e. taking η = 0, (2) reduces to the first-order model,

which therefore corresponds to the two first line of (2). Finally, neglecting also inertia

effects, i.e. for δ = 0, the first-order model reduces, by eliminating q, to a single long-
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Full second-order model (h, q, s1, s2)

Simplified second-order model (h, q)

First-order model (h, q)

Single long-wave equation (h)

s1 = s2 = 0

η = 0

δ = 0

Figure 2: Hierarchy of averaged models with corresponding dependent variables in

parentheses. Each arrow indicates the step to reduce one model to another. The

steps are additive.

wave equation for the film thickness :

∂th = −∂x
[
h3

3 (1 + ∂xxxh− ζ∂xh)
]
. (3)

This equation is identical to the one considered by Duprat et al.23 (except that their

β parameter equals −ζ here), even if another physics is involved since the authors

considered a film flowing along a fibre, where the absolute instability mode arises

due to the Rayleigh-Plateau instability. Equation (3) has also been recently analysed

by Brun et al.9, who have used another scaling that will be explicated below in

Section IVB.

The hierarchy of models that have been introduced above is summarised in Fi-

gure 2. Most of the results below are obtained with the full second-order model since

it has been shown by Ruyer-Quil and Manneville24 to contain all features needed to

fit exact linear properties obtained with the Orr–Sommerfeld equations — i.e. the

perturbation equations directly obtained from the Navier–Stokes equations. Howe-

ver, the differences between the full second-order model and the three other ones will
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be first examined in the Section IV, putting in evidence some important influences of

the various effects considered, such as inertia at first- and second-order, and viscous

extensional stress.

III. METHODOLOGY

With the aim to identify the linear absolute/convective (A/C) transition, the fol-

lowing normal mode perturbations of the dimensionless flat film solution are consi-

dered :

h = 1 + a ei(kx−ωt) , (4a)

q = 1
3 + b ei(kx−ωt) , (4b)

where k = kr+iki and ω = ωr+iωi are complex wavenumber and complex pulsation,

respectively, and a and b are complex amplitudes. For the sake of simplicity, the

procedure is detailed below with the simplified second-order model and then extended

to the other models. Inserting (4) into (2), and linearising for a, b� 1, leads to the

following dispersion relation,

k2
(
−δ7 −

9iηω
2 + 5ζ

6

)
+ k

(
17δω

21 + 5i
2

)
− δω2 + 2iηk3 + 5k4

6 −
5iω
2 = 0 . (5)

Following for instance Charru25, the transition between convective and absolute in-

stability is defined by the marginal mode that is neither amplified nor damped, i.e.

for ωi = 0, and located at a fixed position in space. This mode corresponds to a zero

group velocity defined as V = ∂kω. Considering ω = ω(k) in (5), differentiating the

equation with respect to k, and prescribing ∂kω = 0, leads to

2k
(
−δ7 −

9
2iηω + 5ζ

6

)
+ 17

21δω + 6iηk2 + 10k3

3 + 5i
2 = 0 . (6)

For a given set of parameters (δ, η), the system of complex equations (5-6) can be

solved for the four real variables kr, ki, ωr and ζ. Note that the choice of ζ as a
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variable (instead of δ or η) is arbitrary but convenient. In the case of negligible

viscous extensional effects, i.e. for η = 0, (2) reduces to the first-order model and

the system of equations to be solved for the A/C transition is merely (5-6) in which

η = 0. In the case of δ = η = 0 corresponding to the single long-wave equation (3),

the system (5-6) reduces to

3iω = k4 + k2ζ + 3ik , (7a)

0 = 4k3 + 2kζ + 3i . (7b)

The non-trivial real solution of (7), with kr > 0, is

ζ(0)
c = − 3 32/3

3

√
2
(
17 + 7

√
7
) ≈ −1.507 , k(0)

r = 6

√
153
256 + 117

√
7

512 ≈ 1.03 , (8a)

k
(0)
i = −

3
√

9− 3
√

7
2 22/3 ≈ −0.32, and ω(0)

r = 1
8

3
√

3 6
√

10037 + 3794
√

7 ≈ 0.94 . (8b)

As anticipated, the solution (8) is identical to the one obtained, not only by Brun et

al. for the R-T instability, but also by Duprat et al. (2007) for the Rayleigh-Plateau

instability in falling films.

Solution of (5-6) that includes inertia and viscous extensional effects can now be

tracked by continuation with the software AUTO-07p, using (8) as starting solution.

The same procedure can also be applied to the full second-order model (1) and

the system of equations to be solve in this case for the A/C transition is given in

Appendix B.

The set of parameters (ζ,δ,η) used so far and referred to as the Shkadov scaling,

can be converted to a set of more common parameters, namely (Ct,Re,We), corres-

ponding to the inclination number, the Reynolds number and the Weber number,

respectively. The two sets of parameters are related by the following expressions :

ζ = Ct

We1/3 , δ = 3Re
We1/3 and η = 1

We2/3 , (9)
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whose parameters depend in turn on the physical quantities as follow :

Ct = cotβ , Re = g sinβh3
N

3ν2 and We = γ

ρgh2
N sinβ , (10)

where ν is the kinematic viscosity, γ is the surface tension and ρ is the density of the

liquid. The range 0 < β < π/2, i.e. Ct > 0, corresponds to the situation for which

the hydrostatic force stabilises the flow, while the range π/2 < β < π, i.e. Ct < 0,

corresponds to the situation considered in this paper for which the hydrostatic force

destabilizes the flow through the R-T mechanism.

IV. RESULTS

A. Shkadov scaling

Results for various values of η are plotted in Figure 3. The solid lines correspond

to the transition between absolute instability on the left of the curves and convective

instability of the right of the curves, as calculated with the full second-order model.

The dotted lines are the same transitions calculated with the simplified second-oder

model. The dot-dashed curve corresponds to the first-order model, i.e. the simplified

model with η = 0, which slightly differs from the full second-order model with η = 0

as the latter still accounts for second-order inertia effects.

Bullet points in Figure 3 indicate three particular values of ζ as follow :

— ζA ≈ −1.507 is the solution (8b) obtained in the limit of no inertia and no

viscous extensional effects ;

— ζB ≈ −1.453 is the limiting value below which the film is absolutely unstable

for δ = 0 provided ηB ≥ 0.63 ;

— ζC ≈ −1.22 is the limiting value above which the film cannot be absolutely

unstable, whatever the values of δ and η.
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Figure 3: (top) Convective/absolute transition for various values of η and for the

different models considered in this paper. See details in text for the bullet points.

(bottom) Corresponding values of the wavenumber kr calculated with the full

second-order model.
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The differences between the simplified and the full second-order models are negli-

gible for δ < 1 but increase with δ. As compared to the first-order model, viscous

extensional stresses play an important role in stabilizing the flow by displacing to

lower values of ζ the A/C transition. Similarly, comparing the first-order model with

the single long-wave equation shows a crucial influence of inertia effect, which is non-

monotonous for η < ηB = 0.63, i.e. destabilizing for low δ and stabilizing for large

δ, whereas it is always stabilizing for η > ηB. In other words, the turning points

in some of the curves of Figure 3 indicates the presence of an absolutely unstable

window in a range of δ that depends on ζ and η but can only exist for 0 < η < ηB

and ζB < ζ < ζC.

The bottom plot in Figure 3 shows the values of the wavenumber kr corresponding

to the A/C transition and calculated only with the full second-order model. For

a practical point of view, the dimensional wavelength can be calculated as λr =

2πWe1/3hN/kr, which is in general in the millimetre range.

For an inclined plate with the liquid flowing on its underside, both the driving

force entraining the liquid to flow along the plate, and the hydrostatic destabilising

force are induced by gravity and antagonistically depend on the inclination angle β.

Additionally, the driving force can be measured by two different ways, depending on

the imposed conservation condition, namely (i) the imposed film thickness and (ii)

the imposed flow rate. These conditions are separately examined in the following two

subsections.

B. Imposed film thickness

The case of an imposed film thickness has recently been studied by Brun et al.9,

who poured a layer of liquid on top of a glass plate and then, after a significantly

long resting time, inverted the plate up to a given angle. To be consistent with their
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study, the same set of independent parameters is adopted in this section, namely

α for the plate inclination taken from the vertical (see Fig.1) and the initial flat

film thickness parameter h∗ = hN/`c, where `c =
√
γ/ρg is the capillary length.

Additionally, the Kapitza number is defined as Ka = (`c/`ν)2, where `ν = (ν2/g)1/3 is

the viscous/gravity length, hence Ka = γ/(ρg1/3ν4/3). Using the definitions provided

in (9) and (10), as well as β = α + π/2, yields the following relations,

ζ = −h2/3
∗ (cosα)1/3 tanα , δ = h11/3

∗ (cosα)4/3Ka3/2 and η = h4/3
∗ (cosα)2/3 .

(11)

The limit of no inertia and no viscous extensional stress, as considered by Brun et

al.9, is recovered by rearranging the first relation in (11) and using the solution in

(8) :

tanα(0)
c

√
sinα(0)

c =

∣∣∣ζ(0)
c

∣∣∣3/2

h∗
≈ 1.8495

h∗
. (12)

To account for the effect of inertia, the value of the Kapitza number needs to be spe-

cified. Castor oil, as measured by Brun et al.9, has a capillary length of `c = 1.91mm

and a viscous length of `ν = 4.7mm, with the kinematic viscosity of 0.001m2/s at

20◦C. This yields a Kapitza number of Ka = 0.17, which is in the lower range of

common values for this number.

Figure 4 shows the critical angle for the A/C instability transition versus the

dimensionless thickness h∗ for various values of the Kapitza number. Obviously, and

for any fixed value of h∗, the film is absolutely unstable as the plate inclination

tends to the horizontal, i.e. α → 90◦, while there is always a critical angle αc below

which the system becomes convectively unstable. This critical angle does not vary

monotonically with h∗, which constitutes one of the main finding of this work. For

small values of h∗, i.e. on the left of the curve minimum, αc decreases with increasing

h∗ showing a ‘destabilizing’ effect of the flow, in the sense that the region of absolute

instability is enlarged. For larger values of h∗, i.e. at the right of the curve minimum,

14
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Figure 4: Critical inclination angle αc for convective/absolute transition for

various values of Ka as obtained with the full-second-order model (solid lines). The

black dot indicates the position of the minimum in the case of Ka = 0. The curve

corresponding to Castor oil is in dot-dashed line and the one corresponding to (12)

obtained with the single long-wave equation, i.e. α(0)
c , is in dashed line.

αc increases with h∗, which in turn shows a ‘stabilizing’ effect of the flow, in the sense

that the region of absolute instability is reduced, even though this is less pronounced

for the lowest values of the Kapitza number.

The antagonist role of the flow can be understood for instance by fixing the incli-

nation angle and increasing h∗ from zero. Small thickness triggers small amplitude

waves, which can prevent the absolute instability to occur, whereas larger thickness
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triggers larger amplitude waves, which can reinforce the R-T instability mechanism

and bring the system into the absolute instability region. As the thickness is still in-

creased, the flow dominates the system again and brings it back into the convective

instability region.

Additionally, the critical angle strongly depends on the Kapitza number. Increa-

sing the Kapitza number decreases the region of absolute instability and sharpens

the curves around their minima. These minima are also shifted to lower values of

the film thickness with increasing Kapitza number, especially evident for Ka = 1000,

which is in the order of magnitude of low viscous fluids and/or high surface tension,

like water. Remarkably, in the limit of Ka → 0, this minimum critical angle does

not go below an angle of α = 57.3875◦ ≈ 57.4◦, which is indicated by the black dot

in Fig. 4. This result represents a fundamental difference with the results of Brun et

al.9 in the limit of no-inertia, which does not show any minimum (see dashed line in

Fig.4). In our scaling, and as shown in (11), Ka = 0 indeed corresponds to no inertia

effects since it cancels out the reduced Reynolds number δ. Yet viscous extensional

stress has already a strong influence in this no-inertia limit, as it prevents alone the

flow to be absolutely unstable below the curve minimum (black dot).

The curve corresponding to Castor oil is represented in dot-dashed line in Fig.4,

showing that the film cannot be absolutely unstable for an angle from the vertical

below approximately 58◦, which agrees with the experimental observations of Brun et

al.9. The range of thickness covered by the experiment of Brun et al. is 0.3 ≤ h∗ ≤ 1.2,

in which (12) remains a fair approximation. However, and as already mentioned, for

h∗ > 1.2 inertia and viscous extensional effects become significant, which makes the

approximation (12) unusable in this range.
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C. Imposed flow rate

For a film fed at a constant flow rate qN , the relevant parameter is the Reynolds

number, defined in (10) and equivalently equal to Re = qN/ν. Following the same

procedure as in the previous section, the relations between the parameters become

ζ = − (3Re)2/9 sinα
Ka1/3(cosα)8/9 , δ = (3Re)11/9(cosα)1/9

Ka1/3 and η = (3Re)4/9(cosα)2/9

Ka2/3 .

(13)

The limit of no inertia and no viscous extensional stress corresponds to

(tanα(0)
c )4

√
sinα(0)

c =
∣∣∣ζ(0)
c

∣∣∣9/2 Ka3/2

3Re ≈ 2.1086Ka
3/2

Re
. (14)

Figure 5 shows the critical angle for the A/C instability transition versus the Rey-

nolds number Re for various values of Ka. The branches on the left of the minima

for each curve (see black dots) can fairly be approximated by (14) (not shown) but

again the curve minimum and the right branches are not captured by this approxi-

mation. At high Reynolds numbers, the convective transport dominates the growth

of the R-T instability for which the film flow is convectively unstable. In the high

Reynolds number regime, the Kapitza number (surface tension) has less significant

influence, for which the curves for the various values of Ka more or less converge.

Decreasing the flow rate in this range results also in a reduction of the propagation

speed, owing to the strong correlation between wave velocity and surface velocity.

As a consequence, the convective transport of the R-T instability is low. In order to

remain in the regime of convective instability, the destabilizing component of gravity

g cosα needs to be reduced, decreasing the growth of R-T instability. Thus, the value

of the critical angle reduces with the decrease of the Reynolds number down to the

minimum value of the critical inclination angle. Below this value, surface tension

is the main mechanism of flow stabilization as seen by the significant influence of

Kapitza number.
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Figure 5: Convective/absolute transition for various values of Ka as obtained with

the full-second-order model. The thick solid line for Ka = 1 is to exemplifies that

the convective instability region below the curve is dominated by surface tension on

the left and by inertia on the right, while the region above the curve corresponds to

the absolute instability. These observations apply to all other curves. The black

dots indicate the position of αmin
c for each Ka, the locus of which is continued in

Fig. 6a. The vertical dot-dashed line indicates the transition for turbulence, which

lies outside the range of validity of the present theory.

Based on these observations, and as exemplified in the case of Ka = 1 in Fig. 5

(thick sold line), one can state that the region of convective instability on the left

of the minimum value of the critical angle is dominated by surface tension while the

region of convective instability which lies on the right of this minimum is dominated
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by inertia. The region of absolute instability in between is dominated by the negative

hydrostatic forces responsible for the R-T instability.

We have drawn in Fig. 5 a vertical dot-dashed line that approximately indicates

the transition between laminar and turbulent falling films26, which is approximately

considered to be at Re ≈ 300. Even though we have plotted the A/C transition curve

up to Re = 1000 in order to show that all curves asymptotically tend to α = 90◦,

these curves obviously lay outside the domain of validity of the low-dimensional

models that have been used in this work. This said, and as already mentioned, com-

parisons of linear stability curves between the full second-order model and the Orr-

Sommerfeld equation show excellent agreement for Re = O(100)3,24, which justifies

our computations up to Reynolds numbers of the same order of magnitude.

D. Minimum critical angle

In the previous subsections, Figs. 4 and 5 showed that for each value of the Kapitza

number a minimum critical angle αmin
c is given below which the falling film is always

convectively unstable, independently of the conservation condition (constant flow

rate or constant film thickness). Figure 6a shows the locus of this minimum critical

angle in the entire range of Kapitza numbers. Now, above the minimum critical angle,

the film can either be convectively or absolutely unstable, depending on the flow

parameters, i.e. h∗ or Re. What we have learned from Figs. 5 is that there is a region

of absolute instability that separates a region of convective instability dominated by

surface tension and a region of convective instability dominated by inertia. Plotting

in Fig. 6b and c the position hmin
∗ and Remin, respectively, corresponding to the

minimum critical angle allows to discriminate in the parameter space between the

two regions.

In Fig. 6a, the minimum critical angles are indicated by black dots for castor oil
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Figure 6: Minimum critical angle between absolute and convective instability, in

function of the Kapitza number (a), along which the corresponding values of the

dimensionless film thickness (b) or alternatively the Reynolds number (c). In (c),

thick dotted lines are fitted power trends together with their expressions.

(Ka = 0.17), silicon oil (Ka = 17.8), water at 20◦C (Ka = 3923), and liquid helium at

5K (Ka = 8.6×106). As already pointed out, the most salient feature is that there is

an angle αmin
c

∣∣∣
Ka→0

= 57.3875◦ obtained in the limit of Ka→ 0 corresponding to an

infinitely viscous fluid below which none of the liquid film systems can be absolutely

unstable. For real liquids of finite viscosity, such as for silicon oil, this minimum

critical angle is 69◦, for water it is 84.5◦ and for liquid helium it is 89◦.
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V. DISCUSSION

Our approach for computing the A/C instability transition curves has implicitly

consisted in tracking by continuation the dominant saddle point in the complex

plane (kr, ki), which is the one having the highest growth rate27, namely the one

satisfying the so-called “collision criterion” established by Briggs28. The starting

saddle point for the tracking method was the one obtained analytically in the limit

of no inertia (δ → 0) and no extensional stress (η → 0) and given by (8). The

symmetry properties of the dispersion relation for the single long-wave equation (7a)

ensures the obtained saddle-point to be the only viable candidate. This is no longer

true for the dispersion relations of the simplified and the full second-order models,

i.e. (5) and (B1a), respectively. There are other saddle points and we have therefore

no guarantee that the one found by continuation is effectively the dominant one in

the entire parameter domain explored in this study. Some examples in the literature

indeed show that misleading or subdominant saddle points had to be disregarded29–32.

Instead of looking at the structure of the spatial branches throughout the entire

continuation procedure, which represents a tedious task, we propose here another

method to verify that the A/C transition identified in this paper corresponds to the

dominant saddle point. For that purpose, we compute the system impulse response

using direct numerical simulation. More specifically, we employ Gerris which is an

open-source software that uses the VOF method and adaptive refinement of quadtree

meshes33. The initial state of our computations is a uniform film in a long periodic

domain with a small amplitude sharp gaussian pulse situated at one forth of the

domain length. We adjust the pulse amplitude for each simulation in order to visua-

lize the evolution of the wave packet. Even though we cannot distinguish with this

approach between the linear and the nonlinear impulse response of the flow, these

properties coincide with each other most of the time34, as it is assumed to be the
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case here.

Figure 7(a) compares for a fixed Kapitza number the transition curve obtained

with the full second-order model to the impulse response behaviour of the flow compu-

ted with Gerris. The agreement is convincing especially in the sense that it captures

well the minimum of the A/C transition curve, which is the main difference between

our theory and the one by Brun et al.9. Very close to the curve, it becomes difficult

to conclude on the absolute/convective nature of the response because the edges of

the wavepacket oscillate (see figures 7b and c). These oscillations are simply due to

the way the edges (dashed lines) are constructed, based on the following threshold

criterion : |h − 1| = A, with 5 × 10−3 < A < 5 × 10−2 adjusted for the different in-

clination angles and Reynolds numbers. Notice that the analysis has been restricted

to the range 1 < Re < 60. For Re < 1, the instability growth rate is very low which

means long computational time. On the contrary for Re > 60, the instability growth

rate is very large and numerical noise is rapidly amplified. Note that for Re < 1,

the transition curve obtained with the full second-order model is very close to the

one obtained with the single long-wave equation9, which is a proof by itself that the

dominant saddle-point is well captured in this range.

VI. CONCLUSIONS

This study examined the critical inclination angle for the transition from absolute

to convective instability of falling liquid films flowing on the underside of a plate.

The results are based on the weighted integral boundary layer models which has been

proven by many studies to give reliable results in the laminar regime of falling liquid

films. The transition between the absolute and convective instability is obtained by

tracking the marginal mode that is neither amplified nor damped and located at a

fixed position in space. Tracking the transition for the case of a constant film thi-
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Figure 7: Verification of the current theory using direct numerical simulations of

the impulse response computed with Gerris for Ka = 100 : (a) comparison to the

transition curve obtained with the full second-order model, (b) spatio-temporal

diagram showing an absolute instability behaviour for α = 85 ◦, Re = 10, and (c) a

convective instability behaviour for α = 70 ◦, Re = 10. The dashed lines in (b) and

(c) show the edges of the wavepacket.
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ckness, a strong dependency on Kapitza number has been obtained. Furthermore,

a significant effect of viscous extensional stress has been identified, expecially for a

dimensionless film thickness larger than unity. If the flow rate is imposed as a conser-

vation condition, the stabilizing mechanism of surface tension (dependent on Kapitza

number) becomes apparent for low values of the Reynolds number. Contrarily, for

high Reynolds number, the convective transport (hence inertia effects) dominates

such that surface tension is of minor importance.

The A/C transition has been found by continuation of the most dominant saddle

point from the limit of no inertia and no viscous extensional stress, i.e. by conti-

nuously increasing δ and η from zero. The validity of this approach has been checked

by computing the system impulse response using direct numerical simulation. The

agreement for the A/C transition is convincing over the entire range of relevant

Reynolds numbers.

Finally, a minimum critical angle depending on the Kapitza number has been

identified which is independent from the conservation condition (imposed flow rate

or imposed film thickness). Since the Kapitza number depends on the fluid properties

and on gravity only, each fluid has its own minimum critical angle on earth. This mi-

nimum critical angle decreases with Kapitza number, such that a higher gravitational

force driving the flow is necessary for low Kapitza number fluids. Contrarily, high

Kapitza number fluids such as Water (Ka = 3923 at 20◦C), where surface tension

stabilizes the flow, allow for high inclination angles of approximately 85◦ before the

instability changes from convective to absolute. This might have a practical interest

in architectural applications as a condensed film forming on a ceiling would never be

absolutely unstable if the ceiling is inclined by an angle of about 5◦ from the hori-

zontal. This is the reason why the ceiling of hammams are always slightly inclined.

The determination of the critical angle in falling films evaporators that often have

some section with negative hydrostatic forces could help in enhancing the design of

24



Critical inclination for A/C transition in inverted falling films

these devices and avoid clogging.
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Annexe A: Full second-order model

Following the weighted residuals methodology detailed e.g. in Kalliadasis et al.3,

and using the two-dimensional system of reference as defined in Fig. 1(a), the stream-

wise velocity field is projected onto the following polynomials :

F0 = ȳ − 1
2 ȳ

2 , (A1a)

F1 = ȳ − 17
6 ȳ

2 + 7
3 ȳ

3 − 7
12 ȳ

4 , (A1b)

F2 = ȳ − 13
2 ȳ

2 + 57
4 ȳ

3 − 111
8 ȳ4 + 99

16 ȳ
5 − 33

32 ȳ
6 . (A1c)

The streamwise velocity distribution thus reads

u = 3
h

(q − s1 − s2) g0(ȳ) + 45s1

h
g1(ȳ) + 210s2

h
g2(ȳ) , (A2)

where ȳ = y/h and the flow rate q(x, t) =
∫ h(x)

0 u(x, y, t) dy appears with two correc-

tions, namely s1 and s2.

Applying the Galerkin method, which consists of integrating the classical boundary-

layer equations across the film, substituting the projections (A2) into the integrated

equations, taking the test functions (A1) as weight functions, and using the no-slip
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boundary condition at the wall and the stress-free condition at the interface yield the

full second-order model given in (1). Note that (1b) is different than the equation for

q given in Ruyer-Quil and Manneville21 because the terms δ∂ts1 and δ∂ts2 have not

been substituted here by (1c) and (1d), respectively, in order to enable the straight-

forward adiabatic elimination of s1 and s2 leading to the simplified second-order

model.

Annexe B: System of equations for the A/C transition with the full

second-order model

0 = 3iω + 18δω2

13 − 10
143iδ

2ω3 − 4δ3ω4

6435 + k

(
4δ3ω3

5005 + 98iδ2ω2

1287 − 174δω
143 − 3i

)

+k2
(
−2027iδ2ηω3

720720 + ω

(
−2936iδ2

117117 + 4iδζ
65 + 27iη

5

)

+ ω2
(
− 68δ3

195195 + 3δ2ζ

5005 + 1077δη
3640

)
+ 166δ

715 − ζ
)

+k3
(

3439iδ2ηω2

1310400 + 152iδ2

65065 + ω

(
368δ3

6441435 −
16δ2ζ

45045 −
2441δη
12012

)
− 304iδζ

15015 −
12iη

5

)

+k4
(
− 16δ3

6441435 + ω

(
4iδ
65 −

4591iδ2η

5855850

)
+ 3δ2ω2

5005 + 148δ2ζ

2927925 + 10331δη
320320 − 1

)

+k5
(

197iδ2η

2602600 −
16δ2ω

45045 −
304iδ
15015

)
+ k6 148δ2

2927925 , (B1a)

0 = −3i− 174δω
143 + 98iδ2ω2

1287 + 4δ3ω3

5005 + k

(
−2027iδ2ηω3

360360 + 2ω
(
−2936iδ2

117117 + 4iδζ
65 + 27iη

5

)

+2ω2
(
− 68δ3

195195 + 3δ2ζ

5005 + 1077δη
3640

)
+ 332δ

715 − 2ζ
)

+k2
(

3439iδ2ηω2

436800 + 456iδ2

65065 + 3ω
(

368δ3

6441435 −
16δ2ζ

45045 −
2441δη
12012

)
− 304iδζ

5005 −
36iη

5

)

+k3
(
− 64δ3

6441435 + 4ω
(

4iδ
65 −

4591iδ2η

5855850

)
+ 12δ2ω2

5005 + 592δ2ζ

2927925 + 10331δη
80080 − 4

)
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+k4
(

197iδ2η

520520 −
16δ2ω

9009 −
304iδ
3003

)
+ k5 296δ2

975975 (B1b)
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