
Incremental View Maintenance for Collection Programming∗

Christoph Koch
EPFL

christoph.koch@epfl.ch

Daniel Lupei
∗

EPFL
daniel.lupei@epfl.ch

Val Tannen
University of Pennsylvania

val@cis.upenn.edu

ABSTRACT

In the context of incremental view maintenance (IVM), delta
query derivation is an essential technique for speeding up the
processing of large, dynamic datasets. The goal is to gen-
erate delta queries that, given a small change in the input,
can update the materialized view more efficiently than via
recomputation.
In this work we propose the first solution for the effi-

cient incrementalization of positive nested relational calcu-
lus (NRC+) on bags (with integer multiplicities). More pre-
cisely, we model the cost of NRC+ operators and classify
queries as efficiently incrementalizable if their delta has a
strictly lower cost than full re-evaluation. Then, we identify
IncNRC+, a large fragment of NRC+ that is efficiently incre-
mentalizable and we provide a semantics-preserving transla-
tion that takes any NRC+ query to a collection of IncNRC+

queries. Furthermore, we prove that incremental mainte-
nance for NRC+ is within the complexity class NC0 and we
showcase how recursive IVM, a technique that has provided
significant speedups over traditional IVM in the case of flat
queries [25], can also be applied to IncNRC+ .

1. INTRODUCTION
Large-scale collection processing in frameworks such as

Spark [41] or LINQ [33] can greatly benefit from incremental
maintenance in order to minimize query latency in the face of
updates. These frameworks provide collection abstractions
equivalent to nested relational operators that are embarrass-
ingly parallelizable. Also, they can be aggressively optimized
using powerful algebraic laws. Language-integrated query-
ing makes use of this algebraic framework to turn declarative
collection processing queries into efficient nested calculus ex-
pressions.
Incremental view maintenance (IVM) by static query rewrit-

ing (a.k.a. delta query derivation) has proven to be a highly

This work was supported by ERC grant 279804 and NSF
grants IIS-1217798 and IIS-1302212.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’16, June 26-July 01, 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-4191-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2902251.2902286

useful and, for instance in the context of data warehouse
loading, an indispensable feature of many commercial data
management systems. With delta processing, the results
of a query are incrementally maintained by a delta query
that, given the original input and an incremental update,
computes the corresponding change of the output. Query
execution can thus be staged into an offline phase for run-
ning the query over an initial database and materializing the
result, followed by an online phase in which the delta query
is evaluated and its result applied to the materialized view
upon receiving updates. This execution model means that
one can do as much as possible once and for all before any
updates are first seen, rather than process the entire input
every time data changes.

Delta processing is worthwhile only if delta query eval-
uation is much cheaper than full re-computation. In many
cases deltas are actually asymptotically faster – for instance,
filtering the input based on some predicate takes linear time,
whereas the corresponding delta query does not need to ac-
cess the database but only considers the incremental update,
and thus runs in time proportional to the size of the update
(in practice, usually constant time).

The benefits of incremental maintenance can be ampli-
fied if one applies it recursively [24] – the evaluation of
delta queries themselves can be sped up by materializing
and incrementally maintaining their results using second-
order delta-queries (deltas of the delta queries). One can
build a hierarchy of delta queries, where the deltas at each
level are used to maintain the materialization of deltas above
them, all the way up to the original query. This approach of
higher-order delta derivation (a.k.a. recursive IVM) admits
a complexity-theoretic separation between re-evaluation and
incremental maintenance of positive relational queries with
aggregates (RA+Σ) [24], and outperforms classical IVM by
many orders of magnitude [25]. Unfortunately, the tech-
niques described above target only flat relational queries and
as such cannot be used to enable incremental maintenance
for collection processing engines.

In this work we address the problem of delta processing for
positive nested-relational calculus on bags (NRC+). Specifi-
cally, we consider deltas for updates that are applied to the
input relations via a generalized bag union ⊎ (which sums
up multiplicities), where tuples have integer multiplicities in
order to support both insertions and deletions. We formally
define what it means for a nested update to be incremental
and a NRC+ query to be efficiently incrementalizable, and
we propose the first solution for the efficient incremental
maintenance of NRC+ queries.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148022587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2902251.2902286

We say that a query is efficiently incrementalizable if its
delta has a lower cost than recomputation. We define cost
domains equipped with partial orders for every nested type
in NRC+ and determine cost functions for the constructs
of NRC+ based on their semantics and a lazy evaluation
strategy. The cost domains that we use attach a cardinality
estimate to each nesting level of a bag, where the cardinality
of a nesting level is defined as the maximum cardinality of
all the bags with the same nesting level. For example, to
the nested bag {{a},{b},{c, d}} we associate a cost value
of 3{2}, since the top bag has 3 elements and the inner
bags have a maximum cardinality of 2. This choice of cost
domains was motivated by the fact that data may be dis-
tributed unevenly across the nesting levels of a bag, while
one can write queries that operate just on a particular nested
level of the input. Even though our cost model makes sev-
eral conservative approximations, it is still precise enough
to separate incremental maintenance from re-evaluation for
a large fragment of NRC+.
We efficiently incrementalize NRC+ in two steps. We first

establish IncNRC+, the largest fragment for which we can
derive efficient deltas. Then, for queries in NRC+ ∖ IncNRC+,
we provide a semantics preserving translation into a collec-
tion of IncNRC+ queries on a differently represented database.
For IncNRC+ we leverage the fact that our delta transfor-

mation is closed (i.e. maps to the same query language) and
illustrate how to further optimize delta processing using re-
cursive IVM: if the delta of an IncNRC+ query still depends
on the database, it follows that it can be partially evalu-
ated and efficiently maintained using a higher-order delta.
We show that for any IncNRC+ query there are only a fi-
nite number of higher-order delta derivations possible before
the resulting expressions no longer depend on the database
(but are purely functions of the update), and thus no longer
require maintenance.
The only queries that fall outside IncNRC+ are those that

use the singleton bag constructor sng(e), where e depends
on the database. This is supported by the intuition that
in NRC+ we do not have an efficient way to modify sng(e)
into sng(e ⊎∆e), without first removing sng(e) from the
view and then adding sng(e ⊎ ∆e), which amounts to re-
computation. The challenge of efficiently applying updates
to inner bags, a.k.a. deep updates, does not lie in designing
an operator that navigates the structure of a nested object
and applies the update to the right inner bag, but doing so
while providing useful re-writing rules wrt. the other lan-
guage constructs, which can be used to derive efficient delta
queries. Previous approaches to incremental maintenance of
nested views have either ignored the issue of deep updates
[15], handled it by triggering recomputation of nested bags
[32] or defaulted to change propagation [34, 22].
We address the problem of efficiently incrementalizing

sng(e) with shredding, a semantics-preserving transforma-
tion that replaces the inner bag introduced by sng(e) with
a label l and separately maintains the mapping between l

and its defining query e. Therefore, deep updates can be ap-
plied by simply modifying the label definition correspond-
ing to the inner bag being updated. As such, the problem
of incrementalizing NRC+ queries is reduced to that of in-
crementalizing the collection of IncNRC+ queries resulting
from the shredding transformation. Furthermore, based on
this reduction we also show that, analogous to the flat rela-
tional case [24], incremental processing of NRC+ queries is

in a strictly lower complexity class than re-evaluation (NC0

vs. TC0).
The idea of encoding inner bags by fresh indices/labels

and then keeping track of the mapping between the labels
and the contents of those bags has been studied before in the
literature in various contexts [9, 23, 10, 28, 38, 18]. How-
ever we are, to the best of our knowledge, the first to pro-
pose a generic and compositional shredding transformation
for solving the problem of efficient IVM for NRC+ queries.
The compositional nature of our solution is essential for ap-
plications where nested data is exchanged between several
layers of the system.

We summarize our contributions as follows:

● We define the notions of incremental nested update
and efficient incrementalization of nested queries, based
on cost domains and a cost interpretation over NRC+’s
constructs.

● We provide the first solution for the efficient incremen-
talization of positive nested-relational calculus (NRC+).

● We show how delta processing of nested queries can be
further optimized using recursive IVM [24].

● We show that incremental evaluation is in a strictly
lower complexity class than re-computation (NC0 vs.
TC0).

The rest of the paper is organized as follows. We first
introduce our approach for the incrementalization of NRC+

queries on a motivating example and formally define the
variant of positive nested relational calculus that we use.
The efficient delta processing of a large fragment of NRC+

is discussed in Section 4 and in Section 5 we show how the
full NRC+ can be efficiently maintained. Finally, in Sec-
tion 6 we review the related literature. Some of the proofs
have been ommited for space reasons but can be found in
the long version of this paper [26], along with additional
examples/discussions.

2. MOTIVATING EXAMPLE
We follow the classical approach to incremental query

evaluation, which is based on applying certain syntactic trans-
formations called“delta rules” to the query expressions of in-
terest (in [26] we revisit how delta processing works for the
flat relational case). In the following, we give some intuition
for the difficulties that arise in finding a delta rules approach
to the problem of incremental computation on nested bag
relations.

Notation. For a query Q and relation R, we denote by
Q[R] the fact that Q is defined in terms of input R. We will
sometimes simply write Q, if R is obvious from the context.

Example 1. We consider the query related that com-
putes for every movie in relation M(name, gen, dir) a set
of related movies which are either in the same genre gen or
share the same artistic director dir. We define related in
Spark1:
case class Movie(name: String, gen: String, dir: String)
val M: RDD[Movie] = ...
val related = for(m <- M) yield (m.name, relB(m))
def relB(m: Movie) =

for(m2 <- M if isRelated(m,m2)) yield m2.name
def isRelated(m: Movie, m2: Movie) =

m.name != m2.name && (m.gen==m2.gen || m.dir==m2.dir)

1To improve the presentation we omitted Spark’s boilerplate
code.

where RDD is Spark’s collection type for distributed datasets,
relB(m) computes the names of all the movies related to
m and isRelated tests if two different movies are related
by genre or director. We evaluate related on an example
instance.
M related[M]
name gen dir

Drive Drama Refn
Skyfall Action Mendes
Rush Action Howard

name {name}
Drive {}
Skyfall {Rush}
Rush {Skyfall}

Now consider the outcome of updating M with ∆M via
bag union ⊎, where ∆M is a relation with the same schema
as M and contains a single tuple ⟨Jarhead,Drama,Mendes⟩.

M ⊎∆M related[M ⊎∆M]
name gen dir

Drive Drama Refn
Skyfall Action Mendes
Rush Action Howard
Jarhead Drama Mendes

name {name}
Drive {Jarhead}
Skyfall {Rush, Jarhead}
Rush {Skyfall }
Jarhead {Drive, Skyfall}

To incrementally update the result of related we design
a set of delta rules that, when applied to the definition of
related[M], give us an expression δ(related)[M,∆M] s.t.:

related[M ⊎∆M] = related[M] ⊎ δ(related)[M,∆M].

For our example, in order to modify related[M] into
related[M ⊎ ∆M], without completely replacing the ex-
isting tuples2, one would have to add the movie Jarhead
to the inner bag of related movies for Drive (same genre)
and Skyfall (same director). However, our target language
of Nested Relational Calculus (NRC) [6, 27, 11, 12] (with
bag semantics, where tuples have integer multiplicities in or-
der to support both insertions and deletions [29, 24]) is not
equipped with the necessary constructs for expressing this
kind of changes, and efficiently processing such ‘deep’ up-
dates represents the main challenge in incrementally main-
taining nested queries. Although update operations able
to perform deep changes have been proposed in the litera-
ture [30], they lack the necessary re-write rules needed for
a closed delta transformation, which is a prerequisite for re-
cursive IVM.
In order to make inner bags accessible by ‘deep’ up-

dates, we must first devise a naming scheme to address
them. We have two options: i) we can either associate
a label to each tuple in a bag and then identify an inner
bag based on this label and the index of the tuple com-
ponent that contains the bag, or ii) we can associate a
label to each inner bag, and separately maintain a map-
ping between the label and the corresponding inner bag. In
other words, labels can either identify the position of an
inner bag within the nested value or serve as an alias for
the contents of the inner bag. For example, given a value
X = {⟨a,{x1, x2}⟩, ⟨b,{x3}⟩}, the first alternative decorates
it with labels as follows: {l1 ↦ ⟨a,{x1, x2}⟩, l2 ↦ ⟨b,{x3}⟩},
and then addresses the inner bags by l1.2 and l2.2. By
contrast, the second approach creates the mappings l1 ↦
{x1, x2} and l2 ↦ {x3}, and then represents the original
value as the flat bag XF

= {⟨a, l1⟩, ⟨b, l2⟩}.
Even though both schemes faithfully represent the original

nested value, we prefer the second one, a.k.a. shredding [9,

2Maintaining the result of related by completely replacing
the affected tuples defeats the goal of making incremental
computation more efficient than full re-evaluation, as these
tuples could be arbitrarily large.

18], as it offers a couple of advantages. Firstly, it makes
the contents of the inner bags conveniently accessible to up-
dates via regular bag addition, without the need to introduce
a custom update operation3. Secondly, since inner bags are
represented by labels it also avoids duplicating their con-
tents. For example, when computing the Cartesian product
of X with some bag Y, one would normally create a copy of
the tuples inX, along with their inner bags, for each element
of Y . Moreover, any update of an inner bag from X would
also have to be applied to every instance of that bag appear-
ing in the output of X ×Y . By contrast, the second scheme
computes the Cartesian product only between XF and Y ,
while the mappings between labels and the contents of the
inner bags remain untouched. Therefore, any update to an
inner bag of X can be efficiently applied just by updating
its corresponding mapping.

For operating over nested values represented in shred-
ded form, we propose a semantics-preserving transformation
that rewrites a query with nested output Q[R] into a query
QF returning the flat representation of the result, and a se-
ries of queries QΓ, computing the contents of its inner bags.

2.1 Incrementalizing related

We showcase our approach on the motivating ex-
ample by first expressing it in NRC. The main con-
structs that we use are: i) the for-comprehension
for x in Q1 where p(x) union Q2(x), which iterates over
all the elements x from the output of query Q1 that sat-
isfy predicate p(x) and unions together the results of each
Q2(x), and ii) the singleton constructor sng(e), which cre-
ates a bag with the result of e as its only element.

related ≡ for m in M union sng(⟨m.name,relB(m)⟩)

relB(m) ≡ for m2 in M where isRelated(m,m2)

union sng(m2.name).
Next, we investigate the incrementalization of the constructs
used by the related query in order to identify which one of
them can lead to the problem of deep updates. The delta
rule of the for construct is a natural generalization of the
rule for Cartesian product in relational algebra4:
δ(for x in Q1union Q2) = for x in δ(Q1)union Q2 (1)

⊎ for x in Q1 union δ(Q2)

⊎ for x in δ(Q1)union δ(Q2)
assuming we can derive corresponding deltas for Q1 and Q2.

If the where clause is also present, the same rule applies
because we only consider the positive fragment of nested
bag languages, for which predicates are not allowed to test
expressions of bag type (the reasoning behind this decision
is detailed in Appendix A). Therefore the predicates in the
where clause can only be boolean combinations of com-
parisons involving base type expressions and these are not
affected by updates of the database.

The difficulty arises when we try to design a delta rule
for singleton, specifically, how to deal with sng(e) when
e depends on some database relation. There is plainly no
way in our calculus to express the change from sng(M) to
sng(M⊎∆M) in an efficient manner, i.e., one that is propor-
tional to the size of ∆M and not the size of the output. This
3The authors investigated this alternative and found it par-
ticularly challenging due to the complex ways in which this
custom operation would interact with the existing constructs
of the language.
4δ(e1×e2) = δ(e1)×e2 ⊎ e1×δ(e2) ⊎ δ(e1)×δ(e2)

is the same problem that we saw with the related example
above. In Section 4 we will show that sng(e) is the only
construct in our calculus whose efficient incrementalization
relies on ‘deep’ updates.

2.2 Maintaining inner bags
In order to facilitate the maintenance of the bags produced

by relB(m), we associate to each one of them a label, and
we store separately a mapping between the label and its
bag. Then, for implementing updates to a nested bag, we
can simply modify the definition of its associated label via
bag union. We note that this strategy can be applied for
enacting ‘deep’ changes to both nested materialized views
as well as nested relations in the database.
Since the bags created by relB(m) clearly depend on the

variable m bound by the for construct, we also incorporate
the values that m takes in the labels that replace them.
The simplest way of doing so is to use labels that are pairs
of indices and values, where the index uniquely identifies the
inner query being replaced. In our running example, as we
have just a single inner query, we only need one index ι.
The shredding of related yields two queries, relatedF

producing a flat version of related with its inner bags re-
placed by labels, and related

Γ that computes the value of
a nested bag given a label parameter ℓ of the form ⟨ι,m⟩

related
F
≡ for m in M union sng(⟨m.name, ⟨ι,m⟩⟩)

related
Γ(ℓ) ≡ for m2 in M where isRelated(ℓ.2,m2)

union sng(m2.name)

The output of these queries on our running example is:

related
F [M] related

Γ[M]
name ℓ

Drive ⟨ι, ⟨Drive,..⟩⟩
Skyfall ⟨ι, ⟨Skyfall,..⟩⟩
Rush ⟨ι, ⟨Rush,..⟩⟩

ℓ ↦ {name}
⟨ι, ⟨Drive,..⟩⟩ ↦ {}
⟨ι, ⟨Skyfall,..⟩⟩ ↦ {Rush}
⟨ι, ⟨Rush,..⟩⟩ ↦ {Skyfall}

Although in our example the generated queries are com-
pletely flat, this need not always be the case. In particular,
in order to avoid expensive pre-/post-processing steps, one
should perform shredding only down to the nesting level that
is affected by the changes in the input.
Upon shredding, the strategy for incrementally maintain-

ing related is to materialize and incrementally maintain
related

F and related
Γ, and then recover related from the

results based on the following equivalence:

related = for r in related
F
union

sng(⟨r.1, relatedΓ(r.2)⟩),
which holds since the values that m takes are incorporated
in the labels ℓ, and related

Γ(ℓ) is essentially a rewriting of
the subquery relB(m).
We remark that, while being able to reconstruct related

from related
F and related

Γ is important for proving the
correctness of our transformation (see Section 5.3), it is not
essential for representing the final result since the labels that
appear in related

F can simply be seen as references to the
inner bags. We also note that even though related

Γ is pa-
rameterized by ℓ, one can use standard domain maintenance
techniques to materialize it since the relevant values of ℓ are
ultimately those found in the tuples of relatedF . Finally,
in this example the labels are in bijection with the values
over which m ranges, and hence, one could use those val-
ues themselves as labels. In general however we may have

several nested subqueries that depend on the same variable
m.

In the process of shredding queries we replace every sub-
query of a singleton construct that depends on the database
with a label that does not. This is the case with the sub-
query relB(m) in related, and we have a very simple delta
rule for expressions that do not depend on the input bags:
δ(sng(⟨m.name, ⟨ι,m⟩⟩)) = δ(sng(m2.name)) = ∅. There-
fore, applying delta rules such as (1) gives us:

δ(relatedF) = for m in ∆M union sng(⟨m.name, ⟨ι,m⟩⟩)

δ(relatedΓ)(ℓ) = for m2 in ∆M where isRelated(ℓ.2,m2)

union sng(m2.name)

We shall prove in Section 4 that, for the class of queries
to which related

F and related
Γ belong, the delta rules do

indeed produce a proper update. We remark that since the
domain of relatedΓ is determined by the labels in related

F ,
it may be extended by the δ(relatedF) update. Thus, when
updating the materialization of relatedΓ with the change
produced by δ(relatedΓ), one must also check whether each
label in its domain has an associated definition, and if not
initialize it accordingly.

Cost analysis. In the following we show that main-
taining related incrementally is more efficient than its re-
evaluation (for the general case see Section 4.2). Let us
assume that M and ∆M have n and d tuples, respectively,
including repetitions. From the expressions above it follows
that the costs of computing the original queries (relatedF

and related
Γ(ℓ)) is proportional to the input, while their

deltas cost O(d).
As previously noted, related[M ⊎∆M] can be recovered

from:
for r in related

F [M ⊎∆M] union

sng(⟨r.1, relatedΓ[M ⊎∆M](r.2)⟩),

and by the properties of delta queries and one of the general
equivalence laws of the NRC [6], this becomes V ⊎W where

V = for r in related
F [M] union (2)

sng(⟨r.1, relatedΓ[M](r.2) ⊎ δ(relatedΓ)(r.2)⟩)

W = for r in δ(relatedF) union (3)

sng(⟨r.1, relatedΓ[M ⊎∆M](r.2)⟩)

Even counting repetitions, we have O(n) tuples in the ma-
terialization of relatedF [M] while the result of computing
δ(relatedF) has O(d) tuples. From (2) the cost of comput-
ing V is O(nd) and from (3) the cost of computing W is
O(d(n + d)), where we assumed that unioning two already
materialized bags takes time proportional to the smaller one,
and looking up the definition of a label takes constant (amor-
tized) time. Thus, the incremental computation of related
costs O(nd + d2). For the costs of maintaining related

F

and related
Γ we have O(d) and O(d(n + d)), respectively,

considering that initializing the new labels introduced by
δ(relatedF) takes O(dn) and then updating all the defi-
nitions in related

Γ takes O((n + d)d) (which includes the
cost of rehashing the labels in related

Γ as may be required
due to its increase in size). It follows that the overall cost
of IVM is O(nd + d2) and when n ≫ d, performing IVM is
clearly much better than recomputing related[M ⊎ ∆M]
which costs Ω((n+d)2) (in the step-counting model we have
been using).

In the next sections we develop our approach in detail.

3. CALCULUS
We describe the version of the positive nested relational

calculus (NRC+) on bags that we use. Its types are:

A,B,C ∶= 1 ∣ Base ∣ A ×B ∣ Bag(C),

where Base is the type of the database domain and 1 de-
notes the “unit” type (a.k.a. the type of the 0-ary tuple
⟨⟩). We also use TBase to denote nested tuple types with
components of only Base type.
In order to capture all updates, i.e., both insertions and

deletions, we use a generalized notion of bag where elements
have (possibly negative) integer multiplicities and bag addi-
tion ⊎ sums multiplicities as integers. In addition, for every
bag type we have an empty bag constructor ∅, as well as
construct ⊖(e) that negates the multiplicities of all the el-
ements produced by e. We remark that, semantically, bag
types along with empty bag ∅, bag addition ⊎ and bag mi-
nus ⊖ exhibit the structure of a commutative group. This
implies that given any two query results Qold and Qnew,
there will always exist a value ∆Q s.t. Qnew = Qold ⊎∆Q.
This rich algebraic structure that bags exhibit is also the
reason why we use a calculus with bag, as opposed to set
semantics.
Typed calculus expressions Γ;Π ⊢ e ∶ Bag(B)

have two sets of type assignments to variables Γ =

X1∶Bag(C1),⋯,Xm∶Bag(Cm) and Π = x1∶A1,⋯, xn∶An, in
order to distinguish between variables Xi defined via let

bindings and which reference top level bags, and variables
xi which are introduced within for comprehensions and bind
the inner elements of a bag. We maintain this distinction
since in the process of shredding we will use the latter set
to generate unique labels, identifying shredded bags (sec-
tion 5.1).
The typing rules and semantics of NRC+ are given in Fig-

ure 1, where R ranges over the relations in the database,
X and x range over the variables in the contexts Γ and Π,
respectively, let binds the result of e1 to R and uses it in
the evaluation of e2, × performs Cartesian product of bags,
for iteratively evaluates e2 with x bound to every element of
e1 and then unions together all the resulting bags, flatten
turns a bag of bags into just one bag by unioning the inner
bags, sng places its input into a singleton bag and p stands
for any predicate over tuples of primitive values. Compared
to the standard formulation given in [6] we use a calculus
version that is “delta-friendly” in that all expressions have
bag type and more importantly most of its constructs are ei-
ther linear or distributive wrt. to bag union, with the notable
exception of sng(e). Therefore we have a bag (Cartesian)
product construct instead of a pairing construct, we have a
separate flattening construct, and we control carefully how
singletons are constructed (note that we have four rules for
singletons but they do not “overlap”). Finally, γ and ε are
assignments of values to variables, and we denote their ex-
tension with a new assignment by γ[X ∶= v] and ε[x ∶= v],
respectively. Throughout the presentation, we will omit such
value assignments whenever they are not explicitly needed
for resolving variable names.
Booleans are simulated by Bag(1), with the singleton

bag sng(⟨⟩) denoting true and the empty bag ∅ denoting
false. Consequently, the return type of predicates p(x) is
also Bag(1). The “positivity” of the calculus is captured by
the restriction put on (comparison) predicates p(x) to only
act on tuples of basic values since comparisons involving

Sch(R)=B

R ∶ Bag(B)

Γ;Π ⊢ e1∶ Bag(C) Γ,X ∶Bag(C);Π ⊢ e2∶ Bag(B)

Γ;Π ⊢ let X ∶= e1 in e2 ∶ Bag(B)

Γ,X ∶Bag(C);Π ⊢X ∶ Bag(C) Γ;Π, x ∶TBase ⊢ p(x) ∶ Bag(1)

Γ;Π, x∶A ⊢ sng(x) ∶ Bag(A) sng(⟨⟩) ∶ Bag(1) ∅ ∶ Bag(B)

i = 1,2

Γ;Π, x∶A1×A2 ⊢ sng(πi(x)) ∶ Bag(Ai)

e ∶ Bag(B)

sng(e) ∶ Bag(Bag(B))

Γ;Π ⊢ e1 ∶ Bag(A) Γ;Π, x∶A ⊢ e2 ∶ Bag(B)

Γ;Π ⊢ for x in e1 union e2 ∶ Bag(B)

e1,2 ∶ Bag(B)

e1 ⊎ e2 ∶ Bag(B)

ei ∶ Bag(Bi), i = 1,2

e1 × e2 ∶ Bag(B1×B2)

e ∶ Bag(Bag(B))

flatten(e) ∶ Bag(B)

e ∶ Bag(B)

⊖(e) ∶ Bag(B)

[[R]] = R [[let X ∶= e1 in e2]]γ;ε = [[e2]]γ[X∶=[[e1]]γ;ε];ε

[[X]]γ;ε = γ(X) [[p(x)]]γ;ε = if p(ε(x)) then {⟨⟩} else {}

[[sng(x)]]γ;ε = {ε(x)} [[sng(πi(x))]]γ;ε = {πi(ε(x))}

[[sng(e)]] = {[[e]]} [[flatten(e)]] =⊎v∈[[e]]
v

[[for x in e1 union e2]]γ;ε =⊎v∈[[e1]]γ;ε
[[e2]]γ;ε[x∶=v]

[[e1 × e2]] =⊎v1∈[[e1]]
⊎v2∈[[e2]]

{⟨v1, v2⟩} [[sng(⟨⟩)]] = {⟨⟩}

[[∅]] = {} [[e1 ⊎ e2]] = [[e1]] ⊎ [[e2]] [[⊖(e)]] = ⊖([[e]])

Figure 1: Typing rules and semantics for NRC+.

bags can be used to simulate negation [6](see Appendix A
for a discussion about the challenges posed by negation wrt.
efficient maintenance within our framework).

Example 2. Filtering an input bag R according to some
predicate p can be defined in NRC+ as:

filterp[R] = for x in R where p(x) union sng(x)

considering that the for construct with where clause (also
used in Section 2) can be expressed as follows:

for x in e1 where p(x) union e2 =

for x in e1 union for in p(x) union e2,

where we ignore the variable binding the contents of the bag
returned by predicate p since its only possible value is ⟨⟩.

For a variable X we say that an expression e is X-
dependent if X appears as a free variable in e, and X-
independent otherwise. Also, among NRC+ expressions we
distinguish between those that are input-independent, i.e.
are R-independent for all relations R in the database, and
those that are input-dependent. We define IncNRC+ as the
fragment of NRC+ that uses a syntactically restricted single-
ton construct sng∗(e), where e must be input-independent.
While this prevents IncNRC+ queries from adding nesting
levels to their inputs5, it does provide the useful guarantee
that their deltas do not require deep updates. We take ad-
vantage of this fact in the next section, when we discuss the
efficient delta-processing of IncNRC+. For the incremental-
ization of the full NRC+, we provide a shredding transfor-
mation taking any NRC+ query into a series of IncNRC+

queries (see Section 5).

5We note that the query from Section 2 does not belong to
IncNRC+ .

δR(R) =∆R δR(X) = ∅ δR(p(x)) = ∅ δR(∅) = ∅

δR(let X ∶= e1 in e2) = let X ∶= e1, ∆X ∶= δR(e1) in

δR(e2) ⊎ δX(e2) ⊎ δR(δX(e2))

δR(sng(x)) = ∅ δR(sng(πi(x))) = ∅ δR(sng(⟨⟩)) = ∅

δR(sng
∗(e)) = ∅ δR(flatten(e)) = flatten(δR(e))

δR(for x in e1 union e2) = for x in δR(e1) union e2

⊎ for x in e1 union δR(e2)

⊎ for x in δR(e1) union δR(e2)

δR(e1 × e2) = δR(e1) × e2 ⊎ e1 × δR(e2) ⊎ δR(e1) × δR(e2)

δR(e1 ⊎ e2) = δR(e1) ⊎ δR(e2) δR(⊖(e)) = ⊖(δR(e))

Figure 2: Delta rules for the constructs of IncNRC+

4. INCREMENTALIZING IncNRC+

In the following we show that any query in IncNRC+ ad-
mits a delta expression with a lower cost estimate than
re-evaluation. Since the derived deltas are also IncNRC+

queries, their evaluation can be optimized in the same way
as the original query, i.e. materialize and maintain them via
delta-processing. We call the resulting expressions higher-
order deltas. As each derivation produces ‘simpler’ queries,
we show that the entire process has a finite number of steps
and the final one is reached when the generated delta no
longer depends on the database. Thus the maintenance of
nested queries can be further optimized using the technique
of recursive IVM, which has delivered important speedups
for the flat relational case [25].
To simplify the presentation, we consider a database where

a single relationR is being updated. Nonetheless, the discus-
sion and the results carry over in a straightforward manner
when updates are applied to several relations.
The delta rules for the constructs of IncNRC+ wrt. the

update of bag R are given in Figure 2, where ∆R is a bag
containing the elements to be added/removed from R (with
positive/negative multiplicity for insertions/deletions) and
we use let X ∶= e1, Y ∶= e2 in e as a shorthand for let X ∶=

e1 in (let Y ∶= e2 in e). The delta of constructs that do
not depend on R is the empty bag, while the rules for the
other constructs are a direct consequence of their linear or
distributive behavior wrt. bag union. We show that indeed,
the derived delta queries δR(h)[R,∆R] produce a correct
update for the return value of h ∶

Proposition 4.1. Given an IncNRC+ expression h[R] ∶
Bag(B) with input R ∶ Bag(A) and update ∆R ∶ Bag(A),
then:

h[R ⊎∆R] = h[R] ⊎ δR(h)[R,∆R].
Proof. (sketch) The proof follows via structural induc-

tion on h and from the semantics of IncNRC+ constructs
(extended proof in [26]).

Lemma 1. The delta of an input-independent IncNRC+

expression h is the empty bag, δR(h) = ∅.

The lemma above is useful for deriving in a single step the
delta of input-independent subexpressions (as in Example 3),
but it also plays an important role in showing that deltas
are cheaper than the original queries (Theorem 4) and in the
discussion of higher-order incrementalization (Section 4.1).

Notation. We sometimes write δ(h) instead of δR(h) if
the updated bag R can be easily inferred from the context.

Example 3. Taking the delta of the IncNRC+ query pre-
sented in Example 2 results in:

δR(filterp) = for x in ∆R where p(x) union sng(x),

since δR(for in p(x) union sng(x)) = ∅ (from Lemma 1)
and for x in e union ∅ = ∅. As expected the delta query of
filterp amounts to filtering the update: filterp[∆R].

4.1 Higher-order delta derivation
The technique of higher-order delta derivation stems from

the intuition that if the evaluation of a query can be sped up
by re-using a previous result and evaluating a cheaper delta,
then the same must be true for the delta query itself. This
has brought about an important leap forward in the incre-
mental maintenance of flat queries [25], and in the following
we show that our approach to delta-processing enables recur-
sive IVM for NRC+ as well (since we derive ‘simpler’ deltas
expressed in the same language as the original query).

The delta queries δ(h)[R,∆R] we generate may depend
on both the update ∆R as well as the initial bag R. Con-
sidering that typically the updates are much smaller than
the original bags and thus the cost of evaluating δ(h) is
most likely dominated by the subexpressions that depend
on R, it is beneficial to partially evaluate δ(h)[R,∆R] of-
fline wrt. those subexpressions that depend only on R. Once
∆R becomes available, one can use the partially evaluated
expression of δ(h) to quickly compute the final update for
h[R].

However, since the underlying bag R is continuously be-
ing updated, in order to keep using this strategy we must
be able to efficiently maintain the partial evaluation of
δ(h). Fortunately, δ(h)[R,∆R] is an IncNRC+ expression
just like h, and thus we can incrementally maintain its
partial evaluation wrt. R based on its second-order delta
δ2(h)[R,∆R,∆′R], as in

δ(h)[R ⊎∆′R,∆R] = δ(h)[R,∆R] ⊎ δ2(h)[R,∆R,∆′R],
where ∆′R binds the update applied to R in δ(h)[R,∆R].

The same strategy can be applied to δ2(h), leading to a se-

ries δk(h)[R,∆R,⋯,∆(k−1)R] of partially evaluated higher-
order deltas. Each is used to incrementally maintain the
preceding delta δk−1(h), all the way up to the original query
h.

Example 4. Given bag R ∶ Bag(Bag(A)) let us consider
the first and second order deltas of query h

h[R] = flatten(R)×flatten(R)

δ(h)[R,∆R] = flatten(R)×flatten(∆R)

⊎ flatten(∆R)×(flatten(R)⊎flatten(∆R))

δ
2(h)[∆R,∆′R] = flatten(∆′R)×flatten(∆R)

⊎ flatten(∆R)×flatten(∆′R).

In the initial stage of delta-processing, besides materializ-
ing h[R] as H0, we also partially evaluate δ(h) wrt. R as
H1[∆R]. Then, for each update U , we maintain H0 and
H1[∆R] using:

H0 =H0 ⊎H1[U] H1[∆R] =H1[∆R] ⊎ δ2(h)[∆R,U].
We note that one can apply updates over partially evalu-
ated expressions like H1[∆R] due to the rich algebraic struc-
ture of the calculus (bags with addition and Cartesian prod-
uct form a semiring) which makes it possible to factorize

H1[∆R]⊎ δ2(h)[∆R,U] into subexpressions that depend on
∆R, and subexpressions that do not. Nonetheless, the pro-
cess of compiling these expressions into highly optimized trig-
ger programs is outside the scope of this work.
Finally, we remark that in the traditional IVM approach,

the value of flatten(R) which depends on the entire input
R is recomputed for each evaluation of δ(h)[R,U], whereas
with recursive IVM we evaluate it only once during the ini-
tialization phase.

Since we can always derive an extra delta query, this pro-
cess could in principle generate an infinite series of deltas and
thus render the approach of recursive IVM inapplicable. By
contrast, we say that a query is recursively incrementalizable
if there exists a k such that δk(h) no longer depends on the
input (and therefore there is no reason to continue the recur-
sion and to derive a delta for it). In our previous example,
this happened for k = 2. In the following we will show that
any IncNRC+ query is recursively incrementalizable.
In order to determine the minimum k for which δk(h)

is input-independent we associate to every IncNRC+ expres-
sion a degree degφ(h) ∶ N as follows: degφ(R) = 1, degφ(X) =
φ(X), degφ(h) = 0 for h ∈ {∆R,∅, p, sng(x), sng(πi(x)),
sng∗(e), sng(⟨⟩)} and:

degφ(e1 ⊎ e2) =max(degφ(e1),degφ(e2))

degφ(for x in e1 union e2) = degφ(e1) + degφ(e2)

degφ(e1 × e2) = degφ(e1) + degφ(e2)

degφ(flatten(e)) = degφ(⊖(e)) = degφ(e)

degφ(let X ∶= e1 in e2) = degφ[X∶=degφ(e1)](e2),

where φ associates a degree to each free variable X, corre-
sponding to the degree of its defining expression.
We remark that the expressions h that have degree 0 are

exactly those which are input-independent. Therefore, deter-
mining the minimum k s.t. δk(h) is input-independentmeans
finding the minimum k s.t. deg(δk(h)) = 0, where δ0(h) = h.
In order to show that this k is in fact the degree of h, we give
the following theorem, relating the degree of an expression
to the degree of its delta.

Theorem 2. Given an input-dependent IncNRC+ expres-
sion h[R] then deg(δ(h)) = deg(h) − 1.

Proof. (sketch) The proof follows by induction on the
structure of h and from the definition of δ(⋅) and deg(⋅)
(extended proof in [26]).

Theorem 2 captures the fact that the delta of a IncNRC+

query is ‘simpler’ than the original query and we can infer
from it that deg(δk(h)) = deg(h) − k. It then follows that
deg(h) is the minimum k s.t. deg(δk(h))=0, i.e. the mini-
mum k s.t. δk(h) is input-independent.
We conclude that with recursive IVM one can avoid com-

puting over the entire database during delta-processing by
initially materializing the given query and its deltas up to
δmax(0,deg(h)−1)(h), since those are the only ones that are
input-dependent. Then, maintaining each such materialized
Hi ∶= δ

i(h) is simply a matter of partially evaluating δi+1(h)
wrt. the update and applying it to Hi. Moreover, the ability
to derive higher order deltas and materialize them wrt. the
database is the key result that enables the TC0 vs. NC0 com-
plexity separation between nonincremental and incremental
evaluation (Theorem 9).

4.2 Cost transformation
Considering that delta processing is worthwhile only if the

size of the change is smaller than the original input, in this
section we discuss what does it mean in the nested data
model for an update to be incremental. Then, we provide a
cost interpretation to every IncNRC+ expression that given
the size of its input estimates the cost of generating the
output. Finally, we prove that for incremental updates the
derived delta query is indeed cost-effective wrt. the original
query.

While for the flat relational case incrementality can be
simply defined in terms of the cardinality of the input bag
wrt. the cardinality of the update, this is clearly not an
appropriate measure when working with nested values, since
an update of small cardinality could have arbitrarily large
inner bags. In order to adequately capture and compare
the size of nested values we associate to every type A of
our calculus a cost domain A○ equipped with a partial order
and minimum values. The definition of A○ is designed to
preserve the distribution of cost across the nested structure
of A in order to accurately reflect the size of nested values
and how they impact the processing of queries operating at
different nesting levels. Thus, for every type in IncNRC+ we
have:

Base
○
= 1○ (A1×A2)

○
= A

○
1 ×A

○
2 Bag(A)○ = N+{A○},

where 1○ has only the constant cost 1, we individually track
the cost of each component in a tuple, and N

+{A○} repre-
sents the cost of bags as the pairing between their cardi-
nality and the least upper-bound cost of their elements6.
Additionally, we define a family of functions sizeA ∶ A→ A○,

that associate to any value a ∶ A a cost proportional to its
size:

sizeBase(x) = 1

sizeA1×A2
(⟨x1, x2⟩) = ⟨sizeA1

(x1), sizeA2
(x2)⟩

sizeBag(C)(X) = ∣X ∣{ sup
xi∈X

sizeC(xi)},

where the supremum function is defined based on the fol-
lowing type-indexed partial ordering relation ≺A:

x ≺Base y = false

⟨x1, x2⟩ ≺A1×A2
⟨y1, y2⟩ = x1 ≺A1

y1 and x2 ≺A2
y2

n{x} ≺Bag(C) m{y} = n <m and x ⪯C y.

Finally, the x ⪯A y ordering is defined analogously to ≺A
by making all the comparisons above non-strict, with the
exception of Base values for which we have x ⪯Base y = true.
We denote by 1A the bottom element of (A○,≺A).

We can now say that an update ∆R for a nested bag R is
incremental if size(∆R) ≺ size(R).

Example 5. The size of bagR∶Bag(String×Bag(String)),
R = {⟨Comedy,{Carnage}⟩, ⟨Animation,{Up,Shrek,Cars}⟩}
is estimated as size(R) ∶ N+{1○ ×N+{1○}} = 2{⟨1,3{1}⟩}.

Notation. Whenever the cardinality estimation of a bag
is 1, we simply write {c} as opposed to 1{c}, where c is the
cost estimation for its elements.

Given an IncNRC+ expression e ∶ Bag(B), we derive its
cost C[[e]] ∶ N+{B○} based on the transformation in Figure 3,
where γ○ and ε○ are cost assignments to variables. The gen-
erated costs have two components: one that computes an
upper bound for the cardinality of the output bag, denoted

6We use N
+{A○} instead of N+ × A○ to distinguish it from

the cost domain of tuples.

C[[R]] = size(R) C[[sng(x)]]γ○;ε○ = {ε
○(x)}

C[[X]]γ○;ε○ = γ
○(X) C[[sng(πi(x))]]γ○;ε○ = {πi(ε

○(x))}

C[[p(x)]] = 1Bag(1) C[[sng(⟨⟩)]] = 1Bag(1)

C[[∅]] = 1Bag(B) C[[sng∗(e)]] = {C[[e]]}

C[[⊖(e)]] = C[[e]] C[[e1 ⊎ e2]] = sup(C[[e1]],C[[e2]])

C[[let X ∶= e1 in e2]]γ○;ε○ = C[[e2]]γ○[X∶=C[[e1]]γ○;ε○];ε○

C[[e1 × e2]] = Co[[e1]] ⋅ Co[[e2]]{⟨Ci[[e1]],Ci[[e2]]⟩}

C[[flatten(e)]] = Co[[e]] ⋅ Coi[[e]]{Cii[[e]]}

C[[for x in e1 union e2]] =

Co[[e1]]γ○;ε○ ⋅Co[[e2]]γ○;ε○[x∶=Ci[[e1]]]{Ci[[e2]]γ○;ε○[x∶=Ci[[e1]]]}

Figure 3: The cost transformation C[[f]]=Co[[f]]{Ci[[f]]} ∶
N
+{B○} over the constructs of IncNRC+ .

by Co[[e]] ∶ N+, and another returning the upper bound for
the size of its elements Ci[[e]] ∶ B○. If B is itself a bag type
Bag(C), we also denote the two components of Ci[[e]] by
Coi[[e]] ∶ N+ and Cii[[e]] ∶ C○.
The cost transformation follows the natural semantics of

the constructs in IncNRC+. For example, in the case of
for x in e1 union e2, the cardinality of the output is es-
timated as the product of the cardinalities of the bags re-
turned by e1 and e2, while the elements in the output have
the same cost as the elements returned by e2. We note that
in computing the cost of e2 we assigned to x the estimated
cost for the elements of e1.
Finally, we leverage the estimated cost of an expression to

obtain an upper bound on its running time:

Lemma 3. An IncNRC+ expression h ∶Bag(B) can be eval-
uated in Ω(tcostBag(B)(C[[h]])), where tcostA ∶A

○
→N is de-

fined as:

tcostBase(c) = 1 tcostBag(C)(n{c}) = n ⋅ tcostC(c)

tcostA1×A2
(⟨c1, c2⟩) = tcostA1

(c1) + tcostA2
(c2).

Proof. (Sketch) In order to show that h can be
computed within Ω(tcostBag(B)(C[[h]])) = Ω(Co[[h]] ⋅
tcostB(Ci[[h]])) we assume that all let-bound variables have
been replaced by their definition and we proceed in two
steps. At first we compute a lazy version of the result
hL
= [[h]]L, which instead of inner bags produces lazy bags

βe,ε, i.e. closures containing the expression e that would
have generated the inner bag, along with ε, the value as-
signment for e’s free variables at the time of the evalua-
tion. The lazy evaluation strategy [[⋅]]L operates similar
to the standard interpretation [[⋅]], except for the singleton
construct [[sng(e)]]Lε = βe,ε and for interpreting lazy val-
ues [[βe,ε]]Lε′ = [[e]]

L
ε , for which we replace the current value

assignment ε′ with the one stored in the closure. Consider-
ing that producing each element of hL takes constant time
(since building tuples and closures takes constant time), it
follows that this step can be done in time proportional to
the cardinality of the output O(Co[[h]]).
In the second step we expand the lazy values appearing

in each element of hL in order to obtain the final value of h.
To do so we use the following expansion function:

expBase(x)=x, expA1×A2
(⟨x1, x2⟩)=⟨expA1

(x1), expA2
(x2)⟩

expBag(C)(βe,ε) = for y in [[e]]Lε union sng(expC(y)).

We remark that, by postponing the materialization of in-
ner bags until after the entire top level bag has been evalu-
ated, we avoid computing the contents of nested bags that
might get projected away in a later stage of the computation
(as might be the case for an eager evaluation strategy).

Our result then follows from the fact that expanding each
element x ∶ B from hL takes at most tcostB(Ci[[h]]), which
can be easily shown through induction over the structure of
B and considering that Ci[[h]] represents on upper bound
for the size of the elements in the output bag.

Example 6. If we apply the cost transformation to the
related[M] query in section 2.1 we get cost estimate:

C[[related[M]]] = ∣M ∣{⟨1, ∣M ∣{1}⟩},

and an upper bound for its running time as Ω(∣M ∣(1+ ∣M ∣)),
which fits within the expected execution time for this query.

We can now give the main result of this section showing
that for incremental updates delta-processing is more cost-
effective than recomputation.

Theorem 4. IncNRC+ is efficiently incrementalizable, i.e.
for any input-dependent IncNRC+ query h[R] and incre-
mental update ∆R, then:

tcost(C[[δ(h)]]) < tcost(C[[h]]).

Proof. (sketch) We first show by induction on the struc-
ture of h and using the cost semantics of IncNRC+ con-
structs that C[[δ(h)]] ≺ C[[h]]. Then the result follows im-
mediately from the definition of tcostA(⋅) and ≺A (extended
proof in [26]).

It can be easily seen that filterp[R] is efficiently incremen-
talizable since its delta is filterp[∆R] and C[[filterp[R]]] =
C[[R]], therefore C[[∆R]] ≺ C[[R]] implies C[[filterp[∆R]]] ≺
C[[filterp[R]]].

5. INCREMENTALIZING NRC+

We now turn to the problem of efficiently incrementaliz-
ing NRC+ queries that make use of the unrestricted singleton
construct. As showcased in Section 2, an efficient delta rule
for sng(e) requires deep updates which are not readily ex-
pressible in NRC+. Moreover, deep updates are necessary
not only for maintaining the output of a NRC+ query, but
also for applying local changes to the inner bags of the input.
To address both problems we propose a shredding transfor-
mation that translates any NRC+ query into a collection of
efficiently incrementalizable expressions whose deltas can be
applied via regular bag union. Furthermore, we show that
our translation generates queries semantically equivalent to
the original query, thus providing the first solution for the
efficient delta-processing of NRC+.

5.1 The shredding transformation
The essence of the shredding transformation is the re-

placement of inner bags by labels while separately storing
their definitions in label dictionaries. Accordingly, we in-
ductively map every type A of NRC+ to a label-based/flat
representation AF along with a context component AΓ for
the corresponding label dictionaries:

Base
F
= Base Base

Γ
= 1

(A1×A2)
F
= A

F
1 ×A

F
2 (A1×A2)

Γ
= A

Γ
1×A

Γ
2

Bag(C)F = L Bag(C)Γ = (L↦Bag(CF)) ×CΓ

For instance, the flat representation of a bag of typeBag(C)
is a label l ∶ L, whereas its context includes a label dictionary
L↦Bag(CF), mapping l to the flattened contents of the bag.
The shredding transformation takes any NRC+ expression

h[R] ∶ Bag(B) to:

shF (h)[RF
,R

Γ] ∶ Bag(BF) and shΓ(h)[RF
,R

Γ] ∶ BΓ
,

where shF (h) computes the flat representation of the out-
put bag, while the set of queries in shΓ(h) define the con-
text, i.e. the dictionaries corresponding to the labels intro-
duced by shF (h). We note that the shredded expressions
depend on the shredded input bag RF

= shF (R), RΓ
=

shΓ(R)7, and that they make use of several new constructs
for working with labels: the label constructor inL, the dictio-
nary constructor [l ↦ e], and the label union of dictionaries
∪. We denote by NRC+l and IncNRC+l , the extension with
these constructs of NRC+ and IncNRC+, respectively, but
we postpone their formal definition until the following sec-
tion. Next, we discuss some of the more interesting cases
of the shredding transformation, for the full definition see
Appendix B.1.
Notation. We often shorthand shF (h) and shΓ(h) as hF

and hΓ, respectively. We will also abuse the notation Π/ε
representing the type/value assignment for the free variables
of an expression introduced by for constructs, to also denote
a tuple type/value with one component for each such free
variable.
For the unrestricted singleton construct sng(e) we tag

each of its occurrences in an expression with a unique static
index ι. Given the shredding of e, eF ∶ Bag(BF), eΓ ∶ BΓ, we
transform sngι(e) as follows: we first replace the inner bag
eF in its output with a label ⟨ι, ε⟩ using the label constructor
inLι,Π, where ε ∶ Π represents the value assignment for all the
free variables in eF . Since eF operates only over shredded
bags, it follows that ε is a tuple of either primitive values
or labels. Then we extend the context eΓ with a dictionary
[(ι,Π)↦ eF] mapping labels ⟨ι, ε⟩ to their definition eF :

shF (sngι(e)) ∶ Bag(L) = inLι,Π(ε)

shΓ(sngι(e)) ∶ L↦Bag(BF) ×BΓ
= ⟨[(ι,Π)↦ e

F], eΓ⟩.

We incorporate the value assignment ε within labels as it al-
lows us to discuss the creation of labels independently from
their defining dictionary. Also, since the value assignment
ε uniquely determines the definition of a label ⟨ι, ε⟩, this
also ensures that we do not generate redundant label defini-
tions. Although other alternatives can be found in the litera-
ture [9], we do not explore this issue further since our results
hold independently from a particular indexing scheme.
For the shredding of flatten(e), e ∶ Bag(Bag(B)), we

simply expand the labels returned by eF ∶Bag(L), based on
the corresponding definitions stored in the first component
of the context eΓ ∶ L↦Bag(BF) ×BΓ:

shF (flatten(e)) ∶ Bag(BF) = for l in e
F
union e

Γ1(l),

where eΓ1/eΓ2 denotes the first/second component of eΓ.
Finally, for adding two queries in shredded form via ⊎, we

add their flat components, but we label union their contexts,
i.e. their label dictionaries:

shF (e1 ⊎ e2) = e
F
1 ⊎ e

F
2 shΓ(e1 ⊎ e2) = e

Γ
1 ∪ e

Γ
2 .

7We consider a full shredding of the input/output down to
flat relations, although the transformation can be easily fine-
tuned in order to expose only those inner bags that require
updates.

To complete the shredding transformation we also induc-
tively define sFA ∶ A → Bag(AF) and sΓA ∶ A

Γ, for shredding
input bags R ∶ Bag(A), as well as uA[aΓ] ∶ AF

→ Bag(A)
for converting them back to nested form, as in:

R
F
= for r in R union sFA(r) R

Γ
= sΓA

R = for r
F

in R
F
union uA[R

Γ](rF).
Shredding primitive values leaves them unchanged and pro-
duces no dictionary (BaseΓ = 1), while tuples get shredded
and nested back component-wise. For shredding inner bag
values we rely on an association between every bag value v in
the database and a label l, as given via mappings DC ,D

−1
C :

DC ∶ Bag(C)→Bag(L) DC(v) = {l}

D
−1
C ∶ L↦Bag(C) D

−1
C (l) = v.

The shredding context for these labels is then obtained by
mapping each label l from the dictionary D−1C to a shred-
ded version of its original value v. The full details for the
definition of sF , sΓ and u can be found in Appendix B.1.

5.2 Working with labels
In the following we detail the semantics of IncNRC+l ’s

constructs for operating on dictionaries and we show that
IncNRC+l is indeed efficiently incrementalizable.

Given an expression e ∶ Bag(B) with a value assignment
for its free variables ε ∶ Π, we define a label dictionary
[(ι,Π) ↦ e] ∶ L ↦ Bag(B), i.e. a mapping between labels
l = ⟨ι, ε⟩ and bag values e ∶Bag(B), as:

[(ι,Π)↦ e](⟨ι′, ε⟩) = if (ι == ι′) ρε(e) else {}
where ρε(e) replaces each free variable from e with its cor-
responding projection from ε. A priori, such dictionaries
have infinite domain, i.e. they produce a bag for each possi-
ble value assignment ε. However, when materializing them
as part of a shredding context we need only compute the
definitions of the labels produced by the flat version of the
query.

Example 7. Given relB(m)∶Bag(String), the query
from the motivating example in section 2, dictionary
d = [(ι,Movie)↦ relB(m)] of type L↦Bag(String) builds
a mapping between labels l = ⟨ι,m⟩ and the bag of related
movies computed by relB(m), where l need only range over
the labels produced by related

F .
Notation. We will often abuse notation and use l to refer

to both the kind of a label (ι,Π), as well as an instance of
a label ⟨ι, ε⟩.

In order to distinguish between an empty definition, [] =
∅, and a definition that maps its label to the empty bag,
[l ↦ ∅], we attach support sets to label definitions such
that supp([]) = ∅ and supp([l ↦ e]) = {l}.

For combining dictionaries of labels, i.e. d = [l1 ↦
e1,⋯, ln ↦ en] ∶ L ↦ Bag(B), with supp(d) = {l1,⋯, ln}, we
define the addition of dictionaries (d1 ⊎d2)(l) = d1(l)⊎d2(l)
as well as the label union of dictionaries d1 ∪ d2, where
d1, d2 ∶ L ↦ Bag(B), supp(d1 ∪ d2) = supp(d1) ∪ supp(d2)
and:

(d1 ∪ d2)(l) = d1(l), if l ∈ supp(d1)∖ supp(d2)

(d1 ∪ d2)(l) = d2(l), if l ∈ supp(d2)∖ supp(d1)

(d1 ∪ d2)(l) = d1(l), if l ∈ supp(d1)∩ supp(d2) & d1(l)=d2(l)

(d1 ∪ d2)(l) = error, if l ∈ supp(d1)∩ supp(d2) & d1(l)≠d2(l)

We ensure the well definedness of the label union opera-
tion by requiring that the definitions of labels found in both

input dictionaries must agree, i.e. for any l ∈ supp(d1) ∩
supp(d2) we must have d1(l) = d2(l). If this condition is
not met the evaluation of ∪ will result in an error. We re-
mark that ∪ cannot modify a label definition, only ⊎ can (for
an example contrasting their semantics see Appendix B.2).
Moreover, we formalize the notion of consistent shredded
values, i.e. values that do not contain undefined labels or def-
initions that conflict and we show that shredding produces
consistent values and that given consistent inputs, shredded
NRC+ expressions also produce consistent outputs [26].
Finally, we introduce the delta rules and the degree and

cost interpretations for the new label-related constructs:

δ([l ↦ e]) = [l ↦ δ(e)] δ(inLl) = ∅ δ(e1∪e2)= δ(e1)∪ δ(e2)

deg([l ↦ e]) = deg(e) deg(inLl) = 0

deg(e1 ∪ e2) =max(deg(e1),deg(e2))

C[[[l ↦ e](l′)]] = C[[e]] C[[inLl(a)]] = {1}

C[[(e1∪e2)(l)]] = sup(C[[e1(l)]],C[[e2(l)]]),

where the cost domains for labels is 1○. Based on these
definitions we prove the following result:

Theorem 5. IncNRC+l is recursively and efficiently in-
crementalizable, i.e. given any input-dependent IncNRC+l
query h[R], and incremental update ∆R then:

h[R ⊎∆R] = h[R] ⊎ δ(h)[R,∆R], deg(δ(h)) = deg(h) − 1

and tcost(C[[δ(h)]]) < tcost(C[[h]]).

Theorem 5 implies that we can efficiently incrementalize
any NRC+ query by incrementalizing the IncNRC+l queries
resulting from its shredding. The output of these queries
faithfully represents the expected nested value as we demon-
strate in section 5.3.

5.3 Correctness
In order to prove the correctness of the shredding transfor-

mation, we show that for any NRC+ query h[R] ∶ Bag(B),
shredding the input bag R ∶ Bag(A), evaluating hF , hΓ,
and converting the output back to nested form produces
the same result as h[R], that is:

h[R] = let RF
∶= for r in R union sF (r), RΓ

∶= sΓ in

for x
F

in h
F
union u[hΓ](xF), (4)

where sF (r) shreds each tuple in R to its flat representa-
tion, sΓ returns the dictionaries corresponding to the labels
generated by sF (r), and u[hΓ](xF) places each tuple from
hF back in nested form using the dictionaries in hΓ.
We proceed with the proof in two steps. We first show that

shredding a value and then nesting the result returns back
the original value (Lemma 6). Then, we show that apply-
ing the shredded version of a function over a shredded value
and then nesting the result is equivalent to first nesting the
input and then applying the original function (Lemma 7).
The main result then follows immediately (Theorem 8). The
proofs of the following lemmas rely on induction over the
structure of the types or expressions involved, and are omit-
ted for space reasons (they can be found in [26]).

Lemma 6. The nesting function u is left inverse wrt. the
shredding functions sF , sΓ, i.e. for nested value a ∶ A we have
for aF in sFA(a) union uA[sΓA](a

F) = sng(a).

Lemma 7. For any NRC+ query h[R] ∶Bag(B) and con-
sistent shredded bag RF ,RΓ:

let R ∶= (for r
F

in R
F
union u[RΓ](rF)) in h[R]

= for x
F

in h
F
union u[hΓ](xF).

Theorem 8. For any NRC+ query property (4) holds.

Proof. The result follows from Lemma 7, if we consider
the shredding of R as input, and then apply Lemma 6.

5.4 Complexity class separation
In terms of data complexity, NRC belongs to TC0 [39, 23],

the class of languages recognizable by LOGSPACE-uniform
families of circuits of polynomial size and constant depth
using and-, or- and majority-gates of unbounded fan-in. The
positive fragment of NRC is in the same complexity class
since just the flatten operation on bag semantics requires the
power to compute the sum of integers, which is in TC0. In
the following, we show that incrementalizing NRC+ queries
in shredded form fits within the strictly lower complexity
class of NC0, which is a better model for real hardware since,
in contrast to TC0, it uses only gates with bounded fan-
in. To obtain this result we require that multiplicities are
represented by fixed size integers of k bits, and thus their
value is computed modulo 2k.

Assume that, for the following circuit complexity proof,
shredded values are available as a bit sequence, with k bits
(representing a multiplicity modulo 2k) for each possible tu-
ple constructible from the active domain of the shredded
views and their schema, in some canonical ordering. For
k = 1, this is the standard representation for circuit com-
plexity proofs for relational queries with set semantics. Note
that the active domain of a shredded view consists of the
active domain of the nested value it is constructed from,
the delimiters “⟨”,“⟩”,“,”,“{”,“}”, as well as an additional
linearly-sized label set. We consider this the natural bit se-
quence representation of shredded values.

It may be worth pointing out that shredding only creates
polynomial blow-up compared to a string representation of a
complex value (e.g. in XML or JSON). This further justifies
our representation. Generalizing the classical bit representa-
tion of relational databases (which has polynomial blow-up)
to non-first normal form relations (with, for the simplest
possible type {⟨{Base}⟩}, one bit for every possible subset
of the active domain) has exponential blow-up.

Theorem 9. Materialized views of NRC+ queries with
multiplicities modulo 2k in shredded form are incrementally
maintainable in NC0 wrt. constant size updates.

Proof. We will refer to the database and the update by
d and ∆d, respectively. By Theorem 8, every NRC+ query
can be simulated by a fixed number of IncNRC+ queries on
the shredding of the input. By Proposition 4.1, for every
IncNRC+ query h, there is an IncNRC+ query δd(h) such
that h(d⊎∆d) = h(d)⊎δd(h)(d)(∆d). We partially evaluate
and materialize such delta queries as views h′ ∶= δd(h)(d)
which then allow lookup of h′(∆d). By Theorem 2, given
an IncNRC+ query h, there is a a finite stack of higher-order

delta queries h0,⋯, hk (with hi = δ
(i)
d (h)(d), 0 ≤ i ≤ k, and

δ
(0)
d (h)(d) = h(d)) such that hk is input-independent (only
depends on ∆d). Thus, hi can be refreshed as hi ∶= hi ⊎

hi+1(∆d) for i < k. We can incrementally maintain overall
query h on a group of views in shredded representation using
just the ⊎ operations and the operations of IncNRC+ on a

constant-size input (executing queries hi on the update).
This is all the work that needs to be done, for an update, to
refresh all the views.
It is easy to verify that in natural bit sequence representa-

tion of the shredded views, both ⊎ (on the full input repre-
sentations) and IncNRC+ on constantly many input bits can
be modeled using NC0 circuit families, one for each mean-
ingful size of input bit sequence. For IncNRC+ on constant-
size inputs, this is obvious, since all Boolean functions over
constantly many input bits can the captured by constant-
size bounded fan-in circuits, and since there is really only
one circuit, it can also be output in LOGSPACE. For ⊎, re-
member that we represent multiplicities modulo 2k, i.e. by
a fixed k bits. Since addition modulo 2k is in NC0, so is
⊎: The view contains aggregate multiplicities, each of which
only needs to be combined with one multiplicity from the
respective delta view. The overall circuit for an input size is
a straightforward composition of these building blocks.

In contrast, even when multiplicities are modeled modulo
2k and the input is presented in flattened form, NRC+ is
not in NC0 since multiplicities of projections (or flatten)
depend on an unbounded number of input bits.
In Appendix B.3, we show that shredding (for the initial

materialization of the views) itself is in TC0; it follows im-
mediately that shredding constant-size updates – the only
shredding necessary during IVM – is in NC0.

6. RELATED WORK
Delta derivation was originally proposed for datalog

programs [19, 20] but it is even more natural for algebraic
query languages such as the relational algebra on bags [16, 5,
8, 37, 40], simply because the algebraic structure of a group
is the necessary and sufficient environment in which deltas
live. In many cases the derived deltas are asymptotically
faster than the original queries and the resulting speedups
prompted a wide adoption of such techniques in commercial
database systems. Our work is an attempt to develop sim-
ilarly powerful static incrementalization tools for languages
on nested collections and comes in the context of advances in
the complexity class separation between recomputation and
IVM [24, 42]. Compared to [24] which discusses the recur-
sive incrementalization of a flat query language, we address
the challenges raised by a nested data model, i.e. we design
a closed delta transformation for IncNRC+’s constructs and
a semantics-preserving shredding transformation for imple-
menting ‘deep’ updates. Furthermore, we provide cost do-
mains and a cost interpretations for IncNRC+’s constructs,
according to which we define the notion of an incremental
nested update and we show that the deltas we generate have
lower upper-bound time estimates than re-evaluation.
The nested data model has been thoroughly studied

in the literature over multiple decades and has enjoyed a
wide adoption in industry in the form of data format stan-
dards like XML or JSON. However, solutions to the problem
of incremental maintenance for nested queries either focus
only on the fragment of the language that does not generate
changes to inner collections [15], or propagate those changes
based on auxiliary data structures designed to track the lin-
eage of tuples in the view [14, 13, 22, 34]. The use of ded-
icated data-structures as well as custom update languages
make it extremely difficult to further apply recursive IVM
on top of these techniques. In contrast, our approach is fully

algebraic and both the given query as well as the generated
deltas belong to the same language and thus they can be
further incrementalized via higher-order delta processing.

The related topic of incremental computation has also
received considerable attention within the programming lan-
guages community, with proposals being divided between
dynamic and static approaches. The dynamic solutions,
such as self-adjusting computation [3, 1, 2], record at run-
time the dependency-graph of the computation. Then, upon
updates, one can easily identify the intermediate results af-
fected and trigger their re-evaluation. As this technique
makes few assumptions about its target language, it is ap-
plicable to a variety of languages ranging from Standard
ML to C. Nonetheless, its generality comes at the price of
significant runtime overheads for building the dependency
graph. Moreover, while static solutions derive deltas that
can be further optimized via global transformations, such
an opportunity is mostly missed by dynamic approaches .

Delta derivation has also been proposed in the context of
incremental computation, initially only for first-order lan-
guages [35], and more recently it has been extended to
higher-order languages [7]. However, these approaches of-
fer no guarantees wrt. the efficiency of the generated deltas,
whereas in our work we introduce cost interpretations and
discuss the requirements for cost-efficient delta processing.

The challenge of shredding nested queries has been pre-
viously addressed by Paredaens et al. [36], who propose a
translation taking flat-to-flat nested relational algebra ex-
pressions into flat relational algebra. Van den Bussche [10]
also showed that it is possible to evaluate nested queries over
sets via multiple flat queries, but his solution may produce
results that are quadratically larger than needed [9].

Shredding transformations have been studied more re-
cently in the context of language integrated querying sys-
tems such as Links [31] and Ferry [17]. In order to efficiently
evaluate a nested query, it is first converted to a series of
flat queries which are then sent to the database engine for
execution. While these transformations also replace inner
collections with flat values, they are geared towards gen-
erating SQL queries and thus they make assumptions that
are not applicable to our goal of efficiently incrementalizing
any nested-to-nested expressions. For example, Ferry makes
extensive use of On-Line Analytic Processing (OLAP) fea-
tures of SQL:1999, such as ROW_NUMBER and DENSE_RANK [18],
while Links relies on a normalization phase and handles only
flat-to-nested expressions [9]. More importantly, none of the
existing proposals translate NRC+ queries to an efficiently
incrementalizable language.

7. REFERENCES
[1] Umut A. Acar, Amal Ahmed, and Matthias Blume.

Imperative self-adjusting computation. In Proc.
POPL, pages 309–322, 2008.

[2] Umut A. Acar, Guy Blelloch, Ruy Ley-Wild, Kanat
Tangwongsan, and Duru Turkoglu. Traceable data
types for self-adjusting computation. In Proc. PLDI,
pages 483–496, 2010.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper.
Adaptive functional programming. In Proc. POPL,
pages 247–259, 2002.

[4] David A. M. Barrington, Neil Immerman, and
H. Straubing. “On Uniformity within NC1”. Journal of
Computer and System Sciences, 41(3):274–306, 1990.

[5] José A. Blakeley, Per-Åke Larson, and Frank Wm.
Tompa. Efficiently updating materialized views. In

Proc. SIGMOD Conference, pages 61–71, 1986.
[6] Peter Buneman, Shamim A. Naqvi, Val Tannen, and

Limsoon Wong. Principles of programming with
complex objects and collection types. Theor. Comput.
Sci., 149(1):3–48, 1995.

[7] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and
Klaus Ostermann. A theory of changes for
higher-order languages: Incrementalizing λ-calculi by
static differentiation. In Proc. PLDI, pages 145–155,
2014.

[8] Stefano Ceri and Jennifer Widom. Deriving
production rules for incremental view maintenance. In
VLDB, 1991.

[9] James Cheney, Sam Lindley, and Philip Wadler.
Query shredding: Efficient relational evaluation of
queries over nested multisets. In Proc. SIGMOD,
pages 1027–1038, 2014.

[10] Jan Van den Bussche. Simulation of the nested
relational algebra by the flat relational algebra, with
an application to the complexity of evaluating
powerset algebra expressions. Theoretical Computer
Science, 254(1–2):363 – 377, 2001.

[11] Jan Van den Bussche, Dirk Van Gucht, and Stijn
Vansummeren. Well-definedness and semantic
type-checking for the nested relational calculus. Theor.
Comput. Sci., 371(3):183–199, 2007.

[12] Jan Van den Bussche and Stijn Vansummeren.
Well-defined NRC queries can be typed - (extended
abstract). In In Search of Elegance in the Theory and
Practice of Computation - Essays Dedicated to Peter
Buneman, pages 494–506, 2013.

[13] Katica Dimitrova, Maged El-Sayed, and ElkeA.
Rundensteiner. Order-sensitive view maintenance of
materialized xquery views. In Conceptual Modeling -
ER 2003, volume 2813 of Lecture Notes in Computer
Science, pages 144–157. 2003.

[14] J. Nathan Foster, Ravi Konuru, Jérôme Siméon, and
Lionel Villard. An algebraic approach to view
maintenance for XQuery. In PLAN-X 2008,
Programming Language Technologies for XML.

[15] Dieter Gluche, Torsten Grust, Christof Mainberger,
and MarcH. Scholl. Incremental updates for
materialized oql views. In Deductive and
Object-Oriented Databases, volume 1341 of Lecture
Notes in Computer Science, pages 52–66. 1997.

[16] Timothy Griffin and Leonid Libkin. Incremental
maintenance of views with duplicates. In Proc.
SIGMOD, pages 328–339, 1995.

[17] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom
Schreiber. Ferry: Database-supported program
execution. In Proc. Conference on Management of
Data, SIGMOD ’09, pages 1063–1066, 2009.

[18] Torsten Grust, Jan Rittinger, and Tom Schreiber.
Avalanche-safe linq compilation. Proc. VLDB Endow.,
3(1-2):162–172, 2010.

[19] Ashish Gupta, Dinesh Katiyar, and Inderpal Singh
Mumick. Counting solutions to the view maintenance
problem. In Proc. Workshop on Deductive Databases,
JICSLP, 1992.

[20] Ashish Gupta, Inderpal Singh Mumick, and V. S.
Subrahmanian. Maintaining views incrementally. In
SIGMOD’93, pages 157–166.

[21] David S. Johnson. A catalog of complexity classes. In
Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 1, chapter 2, pages 67–161.
Elsevier Science Publishers B.V., 1990.

[22] Akira Kawaguchi, Daniel Lieuwen, Inderpal Mumick,
and Kenneth Ross. Implementing incremental view
maintenance in nested data models. In In Proceedings
of the Workshop on Database Programming
Languages, pages 202–221, 1997.

[23] Christoph Koch. On the complexity of nonrecursive
xquery and functional query languages on complex
values. In Proc. PODS, pages 84–97, 2005.

[24] Christoph Koch. Incremental query evaluation in a
ring of databases. In Proc. PODS, pages 87–98, 2010.

[25] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos
Nikolic, Andres Nötzli, Daniel Lupei, and Amir
Shaikhha. Dbtoaster: higher-order delta processing for
dynamic, frequently fresh views. VLDB J.,
23(2):253–278, 2014.

[26] Christoph Koch, Daniel Lupei, and Val Tannen.
Incremental view maintenance for collection
programming. CoRR, abs/1412.4320, 2016.

[27] S. Kazem Lellahi and Val Tannen. A calculus for
collections and aggregates. In Category Theory and
Computer Science, 7th International Conference,
CTCS ’97, Proceedings, pages 261–280.

[28] Alon Y. Levy and Dan Suciu. Deciding containment
for queries with complex objects. In Proc. PODS,
pages 20–31, 1997.

[29] Leonid Libkin and Limsoon Wong. Query languages
for bags and aggregate functions. J. Comput. Syst.
Sci., 55(2):241–272, 1997.

[30] Hartmut Liefke and Susan B. Davidson. Specifying
updates in biomedical databases. In Proc. SSDBM,
1999.

[31] Sam Lindley and James Cheney. Row-based effect
types for database integration. In Proc. Workshop on
Types in Language Design and Implementation, TLDI
’12, pages 91–102, 2012.

[32] Jixue Liu, Millist W. Vincent, and Mukesh K.
Mohania. Incremental evaluation of nest and unnest
operators in nested relations. In Proc. of 1999 CODAS
Conf, pages 264–275, 1999.

[33] Erik Meijer, Brian Beckman, and Gavin Bierman.
Linq: Reconciling object, relations and xml in the .net
framework. In Proc. SIGMOD, pages 706–706, 2006.

[34] Hiroaki Nakamura. Incremental computation of
complex object queries. OOPSLA, pages 156–165,
2001.

[35] Robert Paige and Shaye Koenig. Finite differencing of
computable expressions. ACM Trans. Program. Lang.
Syst., 4(3):402–454, 1982.

[36] Jan Paredaens and Dirk Van Gucht. Converting nested
algebra expressions into flat algebra expressions. ACM
Trans. Database Syst., 17(1):65–93, March 1992.

[37] Nick Roussopoulos. An incremental access method for
viewcache: Concept, algorithms, and cost analysis.
ACM Transactions on Database Systems,
16(3):535–563, 1991.

[38] Dan Suciu. Bounded fixpoints for complex objects. In
Database Programming Languages (DBPL-4), Proc. of
the Fourth International Workshop on Database
Programming Languages - Object Models and
Languages, pages 263–281, 1993.

[39] Dan Suciu and Val Tannen. “A Query Language for
NC”. In Proc. PODS’94, pages 167–178, 1994.

[40] Dimitra Vista. Integration of incremental view
maintenance into query optimizers. In Advances in
Database Technology-EDBT’98, volume 1377, pages
374–388, 1998.

[41] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. HotCloud’10,
2010.

[42] Thomas Zeume and Thomas Schwentick. Dynamic
conjunctive queries. In Proc. ICDT, pages 38–49, 2014.

APPENDIX

A. CHALLENGES FOR EFFICIENT INCREMENTALIZATION
In the following we discuss the challenges in deriving a delta query which is cheaper than full re-evaluation for any expression

in a language.
Informally, we say that the delta δ(e)[R,∆R] of a query e[R] is more efficient than full recomputation (or simply efficient),

if for any update ∆R s.t. size(∆R) ≪ size(R), evaluating δ(e)[R,∆R] and applying it to the output of e is less expensive
than re-evaluating e from scratch, i.e.:

cost(δ(e)[R,∆R])≪ cost(e[R ⊎∆R]) and

size(δ(e)[R,∆R])≪ size(e[R ⊎∆R]),

where the second equation ensures that applying the update is cheaper than re-computation considering that the cost of
applying an update is proportional to its size and that the cost of evaluating an expression is lowerbounded by the size of its
output (size(e[R ⊎∆R]) ≤ cost(e[R ⊎∆R])).
One can guarantee that the delta of any expression in a language is efficient by requiring that every construct p(e)[R] of

the language satisfies the property above, i.e. size(δ(e)[R,∆R])≪ size(e[R]) implies:

cost(δ(p(e))[R,∆R])≪ cost(p(e)[R ⊎∆R]) and

size(δ(p(e))[R,∆R])≪ size(p(e)[R ⊎∆R]) (5)

Unfortunately, this property does not hold for constructs p(e)[R] which take linear time in their inputs e[R] (i.e.
cost(p(e)[R]) = size(e[R])) and whose delta δ(p(e))[R,∆R] depends on the original input e[R] (therefore cost(e[R]) <
cost(δ(p(e))[R,∆R])), as it leads to the following contradiction:

size(e[R]) ≤ cost(e[R]) < cost(δ(p(e))[R,∆R])≪

≪ cost(p(e)[R ⊎∆R]) = size(e[R ⊎∆R]) ≈ size(e[R]),

where the last approximation follows from the fact that:

e[R ⊎∆R] = e[R] ⊎ δ(e)[R,∆R] and

size(δ(e)[R,∆R])≪ size(e[R]).

An example of such a construct is bag subtraction (e1 ∖e2)[R], that associates to every element vi in e1[R] the multiplicity
max(0,m1 −m2), where m1,m2 are vi’s multiplicities in e1[R] and e2[R], respectively. Indeed, the cost of evaluating bag
subtraction is proportional to its input (i.e. cost(e1 ∖ e2)[R] = size(e1[R]), assuming e1[R] and e2[R] have similar sizes) and
the result of (e1 ∖ e2)[R] can be maintained when e2[R] changes, only if the initial value of e1[R] is known at the time of the
update. The singleton constructor or the emptiness test over bags also exhibit similar characteristics. By contrast, constructs
that take time linear in their input, but whose delta rule depends only on the update do not present this issue (eg. flatten).
This problem can be addressed by materializing the result of the subquery e[R], such that one does not need to pay its cost

again when evaluating δ(p(e))[R,∆R]. However, this only solves half of the problem, as we also need to make sure that the
outcome of δ(p(e))[R,∆R] can be efficiently propagated through outer queries e′ that may use p(e)[R⊎∆R] as a subquery.
Solving this issue requires handcrafted solutions that take into consideration the particularities of p and the ways it can be
used. For example, in our solution for efficiently incrementalizing sng(⋅) we take advantage of the fact that the only way of
accessing the contents of a inner bag is via flatten(⋅).
Finally, for constructs p with boolean as output domain (eg. testing whether a bag is empty), it no longer makes sense

to distinguish between small and large values, and therefore, the condition (5) can never be satisfied. This problem extends
to a class of primitives that includes bag equality, negation, and membership testing, and restricts our solution for efficient
incrementalization to only the positive fragment of nested relational calculus NRC+.

B. SHREDDING NRC+

B.1 The shredding transformation
The full definition of the shredding transformation for the constructs of NRC+ can be found in Figure 4. We remark that it

produces expressions that no longer make use of the singleton combinator sng(e), thus their deltas do not generate any deep
updates.
In addition, we note that only the shreddings of sng(e) and flatten(e) fundamentally change the contexts, whereas the

shreddings of most of the other operators modify only the flat component of the output (see sh(e1 × e2), sh(⊖(e))). In fact, if
we interpret the output context BΓ as a tree, having the same structure as the nested type B, we can see that shΓ(sng(e))
/ shΓ(flatten(e)) are the only ones able to add / remove a level from the tree.
We define sFA ∶ A → Bag(AF) and sΓA ∶ A

Γ, for shredding bag values R ∶ Bag(A), as well as uA[aΓ] ∶ AF
→ Bag(A) for

converting them back to nested form:

R
F
= for a in R union sFA(a) R

Γ
= sΓA R = for a

F
in R

F
union uA[R

Γ](aF),
where sFA, s

Γ
A and uA are presented in Figure 5.

shF (sng(x)) ∶ Bag(AF)

shF (sng(x)) = sng(xF)

shΓ(sng(x)) ∶ AΓ

shΓ(sng(x)) = xΓ

shF (for x in e1 union e2) ∶ Bag(BF)

shF (for x in e1 union e2) = let x
Γ ∶= eΓ1 in for xF in eF1 union eF2

shΓ(for x in e1 union e2) ∶ B
Γ

shΓ(for x in e1 union e2) = let x
Γ ∶= eΓ1 in eΓ2

shF (sng(πi(x))) ∶ Bag(AF
i)

shF (sng(πi(x))) = sng(πi(x
F))

shΓ(sng(πi(x))) ∶ A
Γ
i

shΓ(sng(πi(x))) = x
Γi

shF (sng(⟨⟩)) ∶ Bag(1)

shF (sng(⟨⟩)) = sng(⟨⟩)

shΓ(sng(⟨⟩)) ∶ 1

shΓ(sng(⟨⟩)) = ⟨⟩

shF (e1 × e2) ∶ Bag(AF
1 ×A

F
2)

shF (e1 × e2) = e
F
1 × e

F
2

shΓ(e1 × e2) ∶ A
Γ
1 ×A

Γ
2

shΓ(e1 × e2) = ⟨e
Γ
1 , e

Γ
2 ⟩

shF (R) ∶ Bag(AF)

shF (R) = for r in R union sFA(r)

shΓ(R) ∶ AΓ

shΓ(R) = sΓA

shF (e1 ⊎ e2) ∶ Bag(BF)

shF (e1 ⊎ e2) = e
F
1 ⊎ e

F
2

shΓ(e1 ⊎ e2) ∶ B
Γ

shΓ(e1 ⊎ e2) = e
Γ
1 ∪ e

Γ
2

shF (sngι(e)) ∶ Bag(L)

shF (sngι(e)) = inLι,Π(ε)

shΓ(sngι(e)) ∶ (L→Bag(BF)) ×BΓ

shΓ(sngι(e)) = ⟨[(ι,Π)↦ eF], eΓ⟩

shF (∅) ∶ Bag(BF)

shF (∅) = ∅

shΓ(∅) ∶ BΓ

shΓ(∅) = ∅BΓ

shF (⊖(e)) ∶ Bag(BF)

shF (⊖(e)) = ⊖(eF)

shΓ(⊖(e)) ∶ BΓ

shΓ(⊖(e)) = eΓ

shF (flatten(e)) ∶ Bag(BF)

shF (flatten(e)) = for l in eF union eΓ1(l)

shΓ(flatten(e)) ∶ BΓ

shΓ(flatten(e)) = eΓ2

shF (p(x)) ∶ Bag(1)

shF (p(x)) = p(x)

shΓ(p(x)) ∶ 1

shΓ(p(x)) = ⟨⟩

shF (let X ∶= e1 ine2) ∶ Bag(BF)

shΓ(let X ∶= e1 ine2) ∶ B
Γ

shF (let X ∶= e1 in e2) = let X
F ∶= eF1 , XΓ ∶= eΓ2 in eF2

shΓ(let X ∶= e1 in e2) = let X
F ∶= eF1 , XΓ ∶= eΓ2 in eΓ2

Figure 4: The shredding transformation, where sFA and sΓA are described in Figure 5a.

sFBase ∶ Base→Bag(Base) sFA1×A2
∶ (A1 ×A2)→Bag(AF

1 ×A
F
2) sFBag(C) ∶ Bag(C)→Bag(L)

sFBase(a) = sng(a) sFA1×A2
(a) = for ⟨a1, a2⟩ in sng(a) union sFBag(C)(v) = DC(v)

sFA1
(a1) × s

F
A2
(a2)

sΓBase ∶ 1 sΓA1×A2
∶ A

Γ
1 ×A

Γ
2 sΓBag(C) ∶ (L↦Bag(CF)) ×CΓ

sΓBase = ⟨⟩ sΓA1×A2
= ⟨sΓA1

, sΓA2
⟩ sΓ1

Bag(C) = for l in supp(D−1C) union sΓ2

Bag(C) = s
Γ
C

[l ↦ for c in D
−1
C (l) union sFC(c)]

(a) sFA ∶ A→Bag(AF), sΓA ∶ A
Γ

uBase[⟨⟩] ∶ Base→Bag(Base) uBase[⟨⟩](a
F) = sng(aF)

uA1×A2
[aΓ] ∶ AF

1 ×A
F
2 →Bag(A1×A2) uA1×A2

[aΓ](aF) = for ⟨aF
1 , a

F
2 ⟩ in sng(aF) union uA1

[aΓ1](aF
1) × uA2

[aΓ2](aF
2)

uBag(C)[a
Γ] ∶ L→Bag(Bag(C)) uBag(C)[a

Γ](l) = sng(for c
F

in a
Γ1(l) union uC[a

Γ2](cF))

(b) uA[a
Γ] ∶ AF

→Bag(A)

Figure 5: Shredding and nesting bag values.

When shredding a bag value R ∶ Bag(A), the flat component RF
∶ Bag(AF) is generated by replacing every nested bag

v ∶ Bag(C) from R, with a label l = ⟨ιv, ⟨⟩⟩. The association between every bag v ∶ Bag(C), occurring nested somewhere
inside R, and the label l is given via DC and D−1C :

DC ∶ Bag(C)→Bag(L) DC(v) = {l} D
−1
C ∶ L↦Bag(C) D

−1
C (l) = v.

For each label l introduced by DC , s
Γ
Bag(C) constructs a dictionary, mapping l to the flat component of the shredded version

of v. This is done by first using the dictionary D−1C , to obtain v and applying sFC to shred its contents.
Converting a shredded bag RF

∶ Bag(AF),RΓ
∶ AΓ, back to nested form can be done via for x in RF union uA[RΓ](x),

which replaces the labels in RF by their definitions from the context RΓ, as computed by uA[aΓ] (Figure 5b). We note that
the definitions themselves also have to be recursively turned to nested form, which is done in uBag(C).

B.2 Example: Label dictionaries
We give a couple of examples where we contrast the outcome of label unioning dictionaries with that of applying bag

addition on them (we use xn to denote n copies of x).

[l1 ↦ {b1}, l2 ↦ {b2, b3}] ∪ [l2 ↦ {b2, b3}, l3 ↦ {b4}] = [l1 ↦ {b1}, l2 ↦ {b2, b3}, l3 ↦ {b4}]

[l1 ↦ {b1}, l2 ↦ {b2, b3}] ⊎ [l2 ↦ {b2, b3}, l3 ↦ {b4}] = [l1 ↦ {b1}, l2 ↦ {b
2
2, b

2
3}, l3 ↦ {b4}]

[l1 ↦ {b1}, l2 ↦ {b2, b3}] ∪ [l2 ↦ {b5}, l3 ↦ {b4}] = error

[l1 ↦ {b1}, l2 ↦ {b2, b3}] ⊎ [l2 ↦ {b5}, l3 ↦ {b4}] = [l1 ↦ {b1}, l2 ↦ {b2, b3, b5}, l3 ↦ {b4}]

As we can see from these examples, bag addition allows us to modify the label definitions stored inside the dictionaries, which
is otherwise not possible via label unioning.

B.3 Complexity of Shredding
In this section we show that shredding nested bags can be done in TC0. By NC0 we refer to the class of languages

recognizable by LOGSPACE-uniform families of circuits of polynomial size and constant depth using and- and or-gates of
bounded fan-in. The related complexity class AC0 differs from NC0 by allowing gates to have unbounded fan-in, while TC0

extends AC0 by further permitting so-called majority-gates, that compute “true” iff more than half of their inputs are true.
For details on circuit complexity and the notion of uniformity we refer to [21].
We recall that the standard way of representing flat relations when processing them via circuits is the unary representation,

i.e. as a collection of bits, one for each possible tuple that can be constructed from the active domain and the schema, in some
canonical ordering, where a bit being turned on or off signals whether the corresponding tuple is in the relation or not. In
such a representation (denote by FSet below), if the active domain has size σ, then the number of bits required for encoding
a relation whose schema has nf fields is σnf . For example, for a relation with a single field, we need σ bits to encode which
values from the active domain are present or not. We also assume a total order among the elements of the active domain, and
that the bits of FSet are in lexicographical order of the tuples they represent.
In the case of bags, whose elements have an associated multiplicity, we work with circuits that compute the multiplicity of

tuples modulo 2k, for some fixed k. Thus, for every possible tuple in a bag we use k bits instead of a single one, in order to
encode the multiplicity of that tuple as a binary number. In the following we use FBag to refer to this representation of bags.
For nested values the FSet representation discussed above is no longer feasible since it suffers from an exponential blowup

with every nesting level. This becomes apparent when we consider that representing in unary an inner bag with nt possible
tuples requires 2nt bits. Consequently, for a nested value we use an alternate representation NStr, as a relation S(p, s) which
encodes the string representation (over a non-fixed alphabet that includes the active domain, the possible atomic field values)
of the value by mapping each position p in the string to its corresponding symbol s.

Example 8. The string representation {⟨a,{b, c}⟩, ⟨d,{e, f}⟩}, of a nested value of type Bag(Base×Bag(Base)), is encoded
by relation S(p, s) as follows (we show tuples as columns to save space):

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
s { ⟨ a , { b , c } ⟩ , ⟨ d , { e , f } ⟩ }

For a particular input size n, the active domain of S consists of σext symbols including the active domain of the database,
delimiting symbols “⟨”,“⟩”,“,”,“{”,“}”, as well as an additional symbol for each possible position in the string (i.e. σext =

σ + 5 + n). We remark that the FSet representation of S requires σ2
ext bits and thus remains polynomial in the size of the

input.
This representation may seem to require justification, since strings over an unbounded alphabet may seem undesirable. We

note that the representation is fair in the sense that it does not require a costly (exponential) blow-up from the practical string
representation that could be used to store the data on a real storage device such as a disk; we use a relational representation
of the string and the canonical representation of relations as bit-sequences that is standard in circuit complexity. The one way
we could have been even more faithful would have been to start with exactly the bit-string representation by which an (XML,
JSON, or other) nested dataset would be stored on a disk. This – breaking up the active domain values into bit sequences – is
however avoided for the same reason it is avoided in the case of the study of the circuit complexity of queries on flat relations
– reconstructing the active domain from the bit string dominates the cost of query evaluation.
We can now give our main results of this section.

Theorem 10. Shredding a nested bag from NStr representation to a flat bag (FBag) representation is in TC0.

Proof. To obtain our result we take advantage of the fact that first-order logic with majority-quantifiers (FOM) is in
TC0 [4], and express the shredding of a nested value as a set of FOM queries over the S(p, s) relation.
We start by defining a family of queries ValA(i, j) for testing whether a closed interval (i, j) from the input contains a value

of a particular type A:

ValBase(i, j) ∶= SBase(i) ∧ i = j

ValA1×A2
(i, j) ∶= S⟨(i) ∧ S⟩(j) ∧ ∃k.PairA1,A2

(i + 1, k, j − 1)

PairA1,A2
(i, k, j) ∶= S,(k) ∧ValA1

(i, k − 1) ∧ValA2
(k + 1, j)

ValBag(C)(i, j) ∶= S{(i) ∧ S}(j) ∧ (j = i + 1 ∨ SeqC(i + 1, j − 1))

SeqC(i, j) ∶= ∃k, l.ElemC(i, k, l, j) ∧ ∀k, l.ElemC(i, k, l, j)→ (EndsWithC(i, k) ∧ StartsWithC(l, j))

ElemC(i, k, l, j) ∶= (i ≤ k ∧ l ≤ j ∧ValC(k, l))

EndsWithC(i, k) ∶= i = k ∨ (S,(k − 1) ∧ ∃k
′
.i ≤ k

′
∧ValC(k

′
, k − 2))

StartsWithC(l, j) ∶= l = j ∨ (S,(l + 1) ∧ ∃l
′
.l
′
≤ j ∧ValC(l + 2, l

′))

where SBase(i) is true iff we have a Base symbol at position i in the input string (and analogously for S{(i), S}(i), S⟨(i), S⟩(i)
and S,(i)). When determining if an interval (i, j) contains a bag value of type Bag(C) we test if it is either empty, i.e. j = i+1
or if it encloses a sequence of C elements (using SeqC), i.e. it has at least one C element and each element is preceded by
another C element or is the first in the sequence, and succeeded by another C element or is the last in the sequence. We use
auxiliary queries: ElemC(i, k, l, j), which returns true iff the interval (i, j) contains a value of type C between indices k and
l, and StartsWithC(l, j) / EndsWithC(i, k) which returns true iff the intervals (l, j) / (i, k) are either empty or they begin,
respectively end, with a value of type C.
For shredding the value contained in an interval (i, j) of the input we define the following family of queries ShF

A(i, j, p, s):

ShF
Base(i, j, p, s) ∶= i ≤ p ∧ p ≤ j ∧ S(p, s)

ShF
A1×A2

(i, j, p, s) ∶= ∃k.PairA1,A2
(i + 1, k, j − 1) ∧ (ShF

A1
(i + 1, k − 1, p, s) ∨ ShF

A2
(k + 1, j − 1, p, s))

ShF
Bag(C)(i, j, p, s) ∶= p = i ∧ s = i,

where the shredding of bag values results in their replacement with a unique identifier, i.e. the index of their first symbol, that
acts as a label. Additionally, the definitions of these labels, i.e. the shredded versions of the bags they replace are computed
via:

DictC(p, s) ∶= ∃i, j, k, l.ValBag(C)(i, j) ∧ElemC(i + 1, k, l, j − 1) ∧ ((p = k − 1 ∧ s = i) ∨ Sh
F
C(k, l, p, s)),

where we prepend to each shredded element in the output the label of the bag to which it belongs (we can do that by reusing
the index of the preceding “{” or “,” present in the original input). We build a corresponding relation DictC for every bag
type Bag(C) occurring in the input. These relations encode a flat representation of the input, as bags of type Bag(L×CF),
where each tuple uses a fixed number of of symbols, therefore we no longer make use of delimiting symbols.
For our example input, we only have two bag types, Bag(Base ×Bag(Base)) and Bag(Base), and their corresponding

relations are:

DictBase×Bag(Base)(p, s) ∶= DictBase(p, s) ∶=

p 1 3 5 11 13 15
s 1 a 5 1 d 15

p 5 6 7 8 15 16 17 18
s 5 b 5 c 15 e 15 f

.

The flat values that they encode are {⟨1, a,5⟩, ⟨1, d,15⟩} ∶ Bag(L×Base×L) and {⟨5, b⟩, ⟨5, c⟩, ⟨15, e⟩, ⟨15, f⟩} ∶ Bag(L×Base).
However, the DictC relations cannot be immediately used to produce the sequence of tuples that they encode since the

indices p associated with their symbols are non-consecutive. To address this issue we define:

ToSeq[X](p′, s) ∶= ∃p.X(p, s) ∧ p′ =#u(∃w.X(u,w) ∧ u ≤ p),

which maps each index p in relation X(p, s) to an index p′ corresponding to its position relative to the other indices in X.
To do so we used predicate p′ = #uΦ(u) to count the number of positions u for which Φ(u) holds, since it is expressible in
FOM [4].
Finally, we determine the shredded version of an input value x ∶ Bag(B), based on its NStr representation S(p, s), as

SF (p, s) ∶= ToSeq[DictB(p, s)∧ s ≠ 1] where we filter out from DictB(p, s) those symbols denoting that a tuple belongs to the
top level bag, identified by label 1. The shredding context is defined by a collection of relations SΓ

∶= ShΓ
B , where:

ShΓ
Base ∶= ∅ ShΓ

A1×A2
∶= ⟨ShΓ

A1
,ShΓ

A2
⟩ ShΓ

Bag(C) ∶= ⟨ToSeq[DictC],Sh
Γ
C⟩

The last step that remains is to convert the resulting flat bags from the current representation (as X(p, s) relations in FSet

form) to the FBag representation. We recall that each such relation encodes a sequence of tuples such that each consecutive
group of nf symbols (according to their positions p) stands for a particular tuple in the bag, where nf is the number of
fields in the tuple. Additionally, since the bits in the FSet representation are lexicographically ordered it follows that each
consecutive group of σext bits contains the unary representation of the symbol located at that position. Therefore, we can
find out how many copies of a particular tuple t are in the bag by counting (modulo 2k) for how many groups of nf ⋅σext bits
we have unary representations of symbols that match the symbols in t. By performing this counting for all possible tuples t

in the output bag we obtain the FBag representation of X(p, s). We note that both testing whether particular bits are set
and counting modulo k are in TC0.
Since SF (p, s) and SΓ can be defined via FOM queries, and since their conversion from X(p, s) relations in FSet form

to the FBag representation uses a TC0 circuit, this concludes our proof that shredding nested values from NStr to FBag

representation can be done in TC0.

	Introduction
	Motivating example
	Incrementalizing related
	Maintaining inner bags

	Calculus
	Incrementalizing IncNRC+
	Higher-order delta derivation
	Cost transformation

	Incrementalizing NRC+
	The shredding transformation
	Working with labels
	Correctness
	Complexity class separation

	Related Work
	References
	Challenges for efficient incrementalization
	Shredding NRC+
	The shredding transformation
	Example: Label dictionaries
	Complexity of Shredding

