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Abstract

The problem of effect polymorphism is a major obstacle to wide adoption of effect systems in
the programming community. The absence of effect systems reduces compiler optimization
opportunities and disables effect constraints on APIs in parallel and distributed computations.

This study shows that capability-based effect systems, equipped with stoic functions and free

functions, can easily solve the problem of effect polymorphism without incurring notational
burden on programmers. With this advantage, capability-based effect systems stand a better
chance to be adopted by the programming community.

The central idea of capability-based effect system is that a capability is required in order to
produce side effects. If capabilities are passed as function parameters, by tracking capabilities
in the type system we can track effects in the program.

To ensure that capabilities are passed through function parameters, instead of being captured
from the environment, we need to impose a variable-capturing discipline, stipulating that capa-
bility variables cannot be captured. Functions observing the discipline are called stoic functions,
while functions not observing the discipline are called free functions.
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1 Introduction

The main motivation of this study is to turn Scala into an effect-disciplined programming lan-
guage. Currently, Scala doesn’t have the ability to track effects in the type system.

The absence of an effect system disables programmers from imposing effect constraints on
APIs in parallel and distributed computations. For example, in parallel computing, the functions
passed to the function pmap should have no side effects, in order to enable parallel processing
on lists; however, it is currently impossible to do so in Scala:

def pmap(xs: List[Int], f: Int => Int): List[Int]

An effect system can differentiate pure code from impure code in a program, thus enabling
optimization of pure code. For example, independent pure expressions can be executed in
parallel; pure code that is dead can be safely eliminated; common pure expressions can be
reduced to one computation; pure operations on data structures can be fused[CLS07]. The
absence of an effect system makes these optimizations impossible.

As pointed out by Lukas et al.[ROH12], a main difficulty in introducing a practical effect system
is how to handle the problem of effect polymorphism.

1.1 Effect Polymorphism

Effect polymorphism can be illustrated by the function map:

def map[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}

In an effect system, the effect of map depends on the passed in function f. If f has IO effects,
then map also has IO effects. If f is pure, then map is pure as well. The way to express effect
polymorphism in classical type-and-effect systems is to introduce a new type variable E to
denote the generic effect:

def map[A, B, E](f: A => B @E)(l: List[A]): List[B] @E

Java, the only industrial language integrated with an effect system for checked exceptions, ex-
emplifies the classical approach to effect polymorphism:
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public interface FunctionE<T, U, E extends Exception> {

public U apply(T t) throws E;

}

public interface List<T> {

public <U, E extends Exception> List<U>

mapE(FunctionE<T, U, E> f) throws E;

}

Due to the verbosity of syntax, effect polymorphism is rarely used in Java, which reduces the
effectiveness of the effect system.

The problem of effect polymorphism is how to express effect-polymorphic functions with min-
imal syntactical overhead. Capability-based effect systems provide an elegant solution to this
problem.

1.2 Capability-Based Effect Systems

The central idea of capability-based effect system is that a capability is required in order to
produce side effects. If capabilities are passed as function parameters, by tracking capabilities
in the type system we can track effects in the program.

To ensure that capabilities are passed through function parameters, instead of being captured
from the environment, we need to impose a variable-capturing discipline, stipulating that capa-
bility variables cannot be captured. Functions observe the discipline are called stoic functions,
while functions don’t observe the discipline are called free functions. We use→ to denote the
type of stoic functions and ⇒ to denote the type of free functions. The following example
shows that incorrect capturing of capability variables in a stoic function will generate a typing
error:

def map(xs: List[Int], f: Int => Int): List[Int]

def pmap(xs: List[Int], f: Int -> Int): List[Int]

def print(x: Any, c: IO): ()

def bar(xs: List[Int])(c: IO) =

map(xs, { x => print(x, c); x })

def foo(xs: List[Int], c: IO) =

pmap(xs, { x => print(x, c); x }) // Error, stoic function required

7



In the code above, the function map can take either a stoic function or a free function, while the
function pmap can only take a stoic function. The type signature Int→ Int in pmap ensures that
functions passed to pmap must be pure. That’s why there is a typing error in the function foo,
as the passed anonymous function is free instead of stoic.

With the combination of free functions and stoic functions, capability-based effect systems can
solve the problem of effect polymorphism easily, while incurring no syntactical overhead. For
example, the effect-polymorphic function map can be implemented as follows:

def map[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}

def squareImpure(c: IO) = map { x => println(x)(c); x*x }

def squarePure(l: List[Int]) = map { x => x*x } l

In the code above, the function map is exactly the same as it can be written in Scala now,
which would be typed as (A⇒ B)→ List[A]⇒ List[B]. The function squareImpure is stoic,
which would be typed as IO→ List[Int]⇒ List[Int]. The function squarePure is also stoic,
which would be typed as List[Int]→ List[Int]. By just checking the type signature, we can
conclude that squareImpure can only have IO effects and squarePure is pure. No annotation is
required, effect polymorphism just works naturally. We’ll see details of effect polymorphism in
the chapter STLC-Impure (Section 3.4).

1.3 Contributions

The main contributions of this study are as follows:

• We formulate and prove soundness and effect safety of four capability-based effect sys-
tems, which can serve as the foundation for implementing capability-based effect system
in functional programming languages. The formalization is done in Coq based on the
locally-nameless representation[Cha11] and hosted on Github1.

• We propose an approach to solve the problem of effect polymorphism with no syntactical
overhead, thanks to free functions and stoic functions (Section 3.4).

1https://github.com/liufengyun/stoic
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1.4 Structure of Report

In following chapters, we’ll introduce four systems of increasing complexity, namely STLC-
Pure, STLC-Impure, F-Pure and F-Impure. The latter three are a gradual enrichment of STLC-
Pure with free functions, subtyping and universal types.

• STLC-Pure is a variant of simply typed lambda calculus with only stoic functions.

• STLC-Impure is an extension of STLC-Pure with free functions and subtyping.

• F-Pure is an extension of STLC-Pure with universal types.

• F-Impure is an extension of F-Pure with free functions (without subtyping).

We discuss effect polymorphism in the chapter STLC-Impure (Section 3.4).
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2 System STLC-Pure

This chapter describes a variant of the simply typed lambda calculus with the extension of
capabilities. We call this system STLC-Pure, because in this system all functions must observe
a variable-capturing discipline.

The system STLC-Pure, though conceptually simple, can quite well demonstrate the main fea-
tures of capability-based effect systems. We’ll first introduce the formalization, then discuss
soundness and effect safety. Concepts introduced here will be a foundation for more complex
systems in later chapters.

2.1 Definitions

Formally, STLC-Pure is obtained by introducing a capability type and imposing a variable-
capturing discipline on lambda abstractions. Figure 2.1 presents the full definition of STLC-
Pure.

The syntax is almost the same as standard STLC, except the addition of the capability type E

and the taking of variables as values. The evaluation rules are exactly the same, with standard
call-by-value small-step semantics. The typing rule T-ABS is slightly changed by performing an
operation pure on the environment. The peculiarities in the formalization are explained below.

2.1.1 Variable-Capturing Discipline

The most important change to the standard STLC lies in the following typing rule:

pure(Γ), x : S ` t2 : T

Γ ` λx:S.t2 : S→ T
(T-ABS)

This typing rule imposes a variable-capturing discipline on lambda abstractions. This discipline
stipulates that only variables whose type is not a capability type can be captured in a lambda
abstraction.

The discipline is implemented with the helper function pure, which removes all variable bind-
ings of the capability type E from the typing environment. It’s easy to verify that the function
pure satisfies following properties:
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Syntax
t ::= terms:

x variable
λx:T.t abstraction
tt application

v ::= values:
λx:T.t abstraction value
x variable value

T ::= types:
B basic type
E capability type
T→ T type of functions

Evaluation t−→ t′

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

(λx:T.t1)v2 −→ [x 7→ v2]t1 (E-APPABS)

Typing Γ ` x : T

x : T ∈ Γ

Γ ` x : T
(T-VAR)

pure(Γ), x : S ` t2 : T

Γ ` λx:S. t2 : S→ T
(T-ABS)

Γ ` t1 : S→ T Γ ` t2 : S
Γ ` t1 t2 : T

(T-APP)

Pure Environment

pure(∅) = ∅
pure(Γ, x : E) = pure(Γ)
pure(Γ, x : T) = pure(Γ), x : T

Figure 2.1: System STLC-Pure

LEMMA (Pure-Distributivity). pure (Γ, ∆) = pure Γ, pure ∆

LEMMA (Pure-Idempotency). pure (pure Γ) = pure Γ

Initially, we’ve tried a variable-capturing discipline where no free variables can be captured, i.e.
pure(Γ) = ∅. While this definition is certainly effect safe, the system is not very expressive,
as we lose the ability to create closures in the system, which is usually considered to be an
essential feature of functional programming.

In addition to the capability type E, we also tried to exclude variables of the type T→ E (for any
T) from the pure environment. As an over-approximation, this version is certainly effect-safe.
However, it rejects more types than necessary, thus reduces expressiveness of the system.

We introduce two useful definitions with the help of the function pure.
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DEFINITION (Pure-Environment). An environment Γ is pure if pure Γ = Γ.

DEFINITION (Pure-Type). A type is pure if the type can exist in a pure environment.

From the definition, it’s obvious that the type B is pure, while E is impure. However, a pure
function type doesn’t imply the corresponding function is pure. For example, E→ B is a pure
type, but functions that inhabit the type may have side effects, thus is impure. The meta-theory
of the system ensures that if the capability type E doesn’t appear in the type signature of a
function, then the function must be pure. For example, all functions that can be typed as B→ B

are guaranteed to be pure.

2.1.2 Stoic Functions and Free Functions

The variable-capturing discipline makes the functions in STLC-Pure different from functions
in standard STLC. In STLC, functions can capture any variables in scope, while in STLC-Pure
functions can only capture variables whose type is not the capability type E. To differentiate
them (which is important as in later systems both exist), we call the more effect-disciplined
functions stoic functions (or stoics) and the other free functions. We use→ to denote the type
of stoic functions and⇒ to denote the type of free functions.

Stoic functions are essential in capability-based effect systems. If functions are allowed to
capture capability variables in scope, it will be impossible to tell whether a function has side
effect or not (and what kind of effect) by just checking its type. Stoic functions are effect-
disciplined in the sense that the only way for stoic functions to have side effects is to pass a
capability as parameter, thus it can be captured by the type system.

Stoic functions are not necessarily pure functions. Stoic functions can have side effects, and if
they do have side effects they are honest about that in their type signature. For example, the
following function hello is a stoic function with IO effects2.

def hello(c:IO) = println("hello, world!", c)

In the following code snippet, the function f must be pure, as it doesn’t take any capability as
parameter. The type system guarantees that the function indeed cannot produce any side effects.

def twice(f: Int -> Int)(x: Int) = f (f x)

2For the sake of readability, we’ll use a syntax similar to Scala in this report. In particular, we’ll use → for the
type of stoic functions, and⇒ for free functions.
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2.1.3 Where do Effects Come From

There is no formalization of effects in the current effect system. We assume the existence of
primitive functions like println and readln, which take capabilities to produce side effects.

def println: String -> IO -> ()

def readln: IO -> String

2.1.4 Where do Capabilities Come From

It is impossible to create capabilities in the current system. Where do capabilities come from?
There are two possible answers: (1) all capabilities are from the run-time and passed to the
program through the main method; (2) there are no capabilities; they can be erased before
evaluation, without changing the meaning of programs.

2.1.5 Why Treat Variables as Values

As discussed above, there is no way to create a value of capabilities explicitly. Thus, a function
taking a parameter of the capability type E can never be executed in the call-by-value semantics,
unless variables are values. The same is true for the base type B.

Treating variables as values ensures that substitution of a term with a value of the base type B

or the capability type E can actually happen in the system, thus makes the preservation proof
more convincing.

2.1.6 What If a Function Has More than One Side Effect

There is no support for a function with more than one kind of effects in the current system. For
example, in the following code snippet, c1 cannot be used in the function body, as it’s removed
by pure in the typing of the function body.

def error(e:Error)(c1:IO)(c2:Throw) = {

println("error happen!", c1) // Error, can’t capture c1

throw c2 e

}

13



It’s straight-forward to extend the system with pairs or tuples to overcome this limitation. How-
ever, this is not an issue for later systems with free functions, thus we don’t pursue the extension
of pairs and tuples here.

2.2 Soundness

We follow the standard formulation of soundness in TAPL [Pie02], which consists of progress

and preservation, defined as follows:

THEOREM (Progress). If ∅ ` t : T, then either t is a value or there is some t′ with t−→ t′.

THEOREM (Preservation). If Γ ` t : T, and t−→ t′, then Γ ` t′ : T.

The proof of progress is the same as the proof in standard STLC. However, there is a significant
difference in the proof of preservation. The classic proof of preservation for STLC (as shown
in TAPL) depends on a substitution lemma, which is formulated as follows:

LEMMA (Subsitution-Classic). If Γ, x : S ` t : T, and Γ ` s : S, then Γ ` [x 7→ s]t : T.

However, this substitution lemma doesn’t hold in the current system. For a counter-example,
let’s assume that Γ = {f : E→ B, c : E}, then it’s obviously that following two typing relations
hold:

f : E→ B, c : E, x : B ` λz:B.x : B→ B

f : E→ B, c : E ` f c : B

However, the following typing relation doesn’t hold if we replace x with f c.

f : E→ B, c : E ` λz:B. f c : B→ B.

In fact, the substituted term λz:B. f c cannot be typed, as according to the typing rule T-ABS,
it cannot capture the capability variable c in the environment. To overcome this problem, we
stipulate that the term s must be a value. Remember that in the current system, both lambda
abstractions and variables are values, thus substitution of variables of the capability type E and
the base type B can happen. The new formulation is as follows:

LEMMA (Subsitution-New). If Γ, x : S ` t : T, s is a value and Γ ` s : S, then Γ ` [x 7→ s]t : T.

The restriction that s must be a value implies that in a function call, arguments much first be
evaluated to a value before the function is applied. Therefore, capabilities can only work with
strict evaluation.

14



Interestingly, this strict evaluation requirement contrasts capability-based effect systems with
monad-based effect systems. In Haskell, if strict evaluation is adopted, it will be impossible to
track effects in the type system, as demonstrated by the following code snippet:

inc n = (\x -> n + 1) (putStrLn (show n))

The function inc has the type (Num a,Show a)⇒ a→ a. By just checking its type, we would
think it has no side effects because no IO monads appear in the type signature. However,
if Haskell adopts strict evaluation, the function call putStrLn (show n) will be executed, thus
breaking the monad-based effect system.

2.3 Effect Safety

Does the system really work? This question prompts us to formulate and prove effect safety
of the system. We start by formulating effect safety informally, then put forward a formal
formulation, and finally prove effect safety of the system.

2.3.1 Informal Formulation

A straight-forward violation of effect safety is for functions that are taken as pure to have side
effects inside the function body. Thus, a tentative formulation would be as follows:

DEFINITION (Effect-Safety-Informally-1). A function typed in a pure environment cannot have
side effects inside.

However, this formulation is obviously problematic, as we know stoic functions can have side
effects if it takes a capability parameter. Thus, we need to restrict the functions to those not
taking capability parameters:

DEFINITION (Effect-Safety-Informally-2). A function, not taking any capability parameter and
typed in a pure environment, cannot have side effects inside.

This formulation looks more satisfactory, but it’s a little cumbersome. If we inspect the typing
rule T-ABS closely, we can find that if S is not a capability type, pure(Γ), x : S is equal to
pure(Γ, x : S).

pure(Γ), x : S ` t2 : T

Γ ` λx:S. t2 : S→ T
(T-ABS)

15



Thus, instead of saying the function λx:S. t2 cannot have side effects inside, we say the term
t2 cannot have side effects in a pure environment. As we know, capabilities are required to
produce side effects. Thus, the term t2 cannot have side effects if we cannot construct a term of
the capability type E in a pure environment. This observation leads us to the following statement
of effect safety:

DEFINITION (Effect-Safety-Informally-3). It’s impossible to construct a term of the capability
type E in a pure environment.

However, this formulation cannot be proved. For a counter-example, let’s assume Γ = {f : B→
E, x : B}. It’s obvious that Γ is pure, but we can construct the term f x of the capability type E.

The cause of the problem is that in a pure environment, there might exist uninhabited types
like B→ E. Existence of uninhabited types in a pure environment doesn’t pose a problem to
the system; a function taking a parameter of an uninhabited type can never be actually called,
thus is always effect-safe. So we only need to consider environments with only variables of
inhabited types.

To convince readers that the current system is effect-safe, we need to exclude and only exclude
uninhabited types from the pure environment and then prove that it is impossible to construct a
term of the capability type E in this restricted environment. We arrive at the following formula-
tion:

DEFINITION (Effect-Safety-Informally-4). It’s impossible to construct a term of the capability
type E in a pure environment with only variables of inhabited types.

2.3.2 Inhabited Types and Environments

We need to define the concept inhabited types precisely. What types are inhabited? Obviously, if
∅ ` t : T, then T is inhabited. However, given a typing relation Γ ` t : T, we cannot immediately
conclude that T is inhabited. We need to ensure that Γ only contains inhabited types. Otherwise,
any type is inhabited if Γ contains a variable of the corresponding type.

An intuition is that, given Γ ` t : T, x : S ∈ Γ and S is inhabited, we can remove x : S from Γ and
substitute x in the term t with a witness of the type S to obtain a new term t′. The substitution
lemma tells us that the new term t′ still has the type T. Continue this line of thought, we’ll
find out that all inhabited types can be inhabited in the empty environment. Thus, a tentative
definition is as follows:
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DEFINITION (Inhabited-Type-First-Try). A type T is inhabited if there exists a term t with
∅ ` t : T.

However, this definition is not satisfactory in our case, as in STLC-Pure there doesn’t exist
values for the base type B and the capability type E, except variables, and we do want both
types to be inhabited. A natural approach is to extend the empty environment with one variable
of the base type and one of the capability type:

DEFINITION (Inhabited-Type-Second-Try). A type T is inhabited if there exists a term t with
x : B, y : E ` t : T.

This definition indeed gives us all inhabited types in STLC-Pure. Types like E, B, E→B, E→E,
(B→ E)→ E, etc., are all inhabited, while types like B→ E and E→ B→ E are uninhabited.
The reader might want to construct a witness of the type B→ E as follows:

x : B, y : E ` λx:B.y : B→ E

The typing relation doesn’t hold, because the typing rule T-ABS would remove the binding y : E

from the environment in the typing of the function body y.

The second formulation looks good, however, we can do better with the following definition:

DEFINITION (Inhabited-Type-Final). A type T is inhabited if there exists a value v with the
typing x : B, y : E ` v : T.

What if the term t in the second definition is an application? In that case, t must be able to
take a step until it becomes a value due to progress and normalization of the system3. And
the preservation theorem tells us the type remains unchanged during evaluation. This final
definition makes proofs related to inhabited types simpler. It’s useful to give a definition of
inhabited environments as well:

DEFINITION (Inhabited-Environment). An environment Γ is inhabited if it only contains vari-
ables of inhabited types.

2.3.3 Formalization

With the formal definition of inhabited environment, we can formalize effect safety as follows:

3We didn’t prove normalization of STLC-Pure, but the proof should be similar to the proof in standard STLC. We
only proved progress in the empty environment, and the proof can be adapted to prove progress under {x : B,y : E}.
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DEFINITION (Effect-Safety-Inhabited). If Γ is a pure and inhabited environment, then there
doesn’t exist t with Γ ` t : E.

However, this formulation doesn’t give rise to a direct proof. In fact, this statement is too strong.
Some uninhabited types, such as E→ B→ E, don’t enable us to create a term of the type E,
thus it’s safe to keep them in the environment. This implies it’s possible to impose a looser
restriction on Γ, as long as all types that can appear in a pure and inhabited environment can
also appear in Γ.

When we examine the problem more closely, we found that through the lens of the Curry-

Howard isomorphism, effect safety actually says that it is impossible to prove the capability
type E from a group of “good” premises. Thus, we can classify all types (propositions) into two
groups: in one group E cannot be proved and in the other group E can be proved. This leads us
to a formulation of capsafe environment4 given in Figure 2.2. The coined word capsafe is an
abbreviation of capability-safe, and caprod an abbreviation of capability-producing.

Capsafe Type

B capsafe (CS-BASE)

S caprod
S→ T capsafe

(CS-FUN1)

T capsafe
S→ T capsafe

(CS-FUN2)

Caprod Type

E caprod (CP-EFF)

S capsafe T caprod
S→ T caprod

(CP-FUN)

Capsafe Environment

∅ capsafe (CE-EMPTY)

Γ capsafe T capsafe
Γ, x : T capsafe

(CE-VAR)

Figure 2.2: System STLC-Pure Capsafe Environment

In the definition, types like B→ B, E→ E, E→ B and (B→ E)→ B are considered as capsafe,
while types like B→ E, (E→ B)→ E are considered as caprod. Only capsafe types can appear
in a capsafe environment. To inspect the formalization in detail, we can ask several questions.

Are capsafe types inhabited? Not necessarily. The type E→ B→ E is capsafe but uninhabited.

4Sandro Stucki initially suggested the idea of using caprod for the definition of pure environments. I developed it
to be a formulation of capsafe environments and used it in the proof of effect safety.
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Allowing this type in the capsafe environment doesn’t enable us to construct a term of the
capability type E.

Are inhabited types capsafe? Yes, except the capability type E. As the capability type E cannot
appear in the pure environment, this is not a problem.

Are caprod types uninhabited? Yes, except the capability type E. As E is also excluded in the
pure environment, it’s justified to remove it from the capsafe environment.

Why this formulation of capsafe environment is acceptable? In short, it is because the statement
Effect-Safety-Inhabited is logically implied by the more general statement Effect-Safety:

DEFINITION (Effect-Safety). If Γ is capsafe, then there doesn’t exist t with Γ ` t : E.

The logical implication holds because a pure and inhabited environment is also a capsafe envi-
ronment. This claim has been formally proved:

LEMMA (Inhabited-Capsafe). If the type T is inhabited, then either T is capsafe or T = E.

THEOREM (Inhabited-Pure-Capsafe-Env). If Γ is pure and inhabited, then Γ is capsafe.

2.3.4 Proof

The proof of effect safety depends on following lemmas, most of them are straight-forward to
prove. Effect safety follows immediately from the lemma Capsafe-Env-Capsafe.

LEMMA (Capsafe-Not-Caprod). If type T is capsafe, then T is not caprod.

LEMMA (Capsafe-Or-Caprod). For any T, T is either capsafe or caprod.

LEMMA (Capsafe-Env-Capsafe). If Γ is capsafe and Γ ` t : T, then T is capsafe.

THEOREM (Effect-Safety). If Γ is capsafe, then there doesn’t exist t with Γ ` t : E.

2.3.5 An Intuitive Proof

There exists an intuitive proof of effect safety without resorting to capsafe environments. The
main insight is that the statement Effect-Safety-Inhabited is logically implied by the statement
Effect-Safety-Intuitive:

DEFINITION (Effect-Safety-Inhabited). If Γ is a pure and inhabited environment, then there
doesn’t exist t with Γ ` t : E.
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DEFINITION (Effect-Safety-Intuitive). There doesn’t exist value v with x : B ` v : E.

The statement Effect-Safety-Intuitive trivially holds, because the value v can either be a variable
or a function, in neither case can it be typed as the capability type E.

Why does the logical implication hold? In short, if Effect-Safety-Inhabited doesn’t hold, then
Effect-Safety-Intuitive doesn’t hold either. Thus, the latter logically implies the former. In the
following, we present an informal proof, the core idea is that if Γ is pure and inhabited, and
Γ ` t : E, then we can “collapse” Γ to {b : B} through substitution of the witnesses of the pure
and inhabited types in Γ.

For a pure and inhabited environment Γ = {x : T, y : S, . . . , z : U}, if there exists t with Γ ` t : E,
then the typing relation still holds by extending the environment with b : B:

b : B, x : T, y : S, . . . , z : U ` t : E

The type U is pure and inhabited, as Γ is pure and inhabited. According to the definition of
inhabited type, there exists a value u with b : B, e : E ` u : U. As u is a value, it can be either a
variable or a function. If u is a variable, it can only be b, as U is a pure type, thus it cannot be
the capability type E. If u is a function, we have b : B ` u : U, as in the typing of stoic functions
the rule T-ABS will remove the binding e : E from the environment. In both cases, we have
b : B ` u : U. Now using the substitution lemma, we have:

b : B, x : T, y : S, · · · ` [z 7→ u]t : E

Continue this process, we can reduce the typing environment to be {b : B} and the term to t′:

b : B ` t′ : E

Now combining progress and normalization of STLC-Pure5, t′ can take finite evaluation steps
to become a value v:

b : B ` v : E

To summarize, we have given an intuitive proof of the following statement:

¬ Effect-Safety-Inhabited→¬ Effect-Safety-Intuitive

By the logical law contraposition, we have:

Effect-Safety-Intuitive→ Effect-Safety-Inhabited

5We only proved that progress holds in an empty environment, it’s easy to prove it also holds under {b : B}. We
didn’t prove normalization of STLC-Pure, but the proof should be similar to the proof in standard STLC.
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As Effect-Safety-Intuitive trivially holds, Effect-Safety-Inhabited follows by modus ponens.

Though conceptually simpler, the mechanized proof necessitates the proof of the normalization
theorem, which is more involved than the proof based on capsafe environments. On the other
hand, the approach based on capsafe environments works even if normalization doesn’t hold.
Therefore, we don’t take the intuitive approach in the formal development.
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3 System STLC-Impure

This chapter describes an extension of the system STLC-Pure with free functions. As stoic
functions can be used as free functions, it’s natural to integrate subtyping in the system.

We’ll first introduce the formalization, then discuss soundness and effect safety. In the discus-
sion, we’ll focus on its difference from the system STLC-Pure.

3.1 Definitions

Initially, we arrived at a formulation of the system shown in Figure 3.1. It’s a straight-forward
extension of STLC-Pure with subtyping and free functions.

The definition is all good, except that preservation breaks. The problem is caused by typing an
impure term as Top. To see a concrete example, let’s assume Γ = {c : E}. It’s obvious that the
following typing relation holds:

c : E ` (λx:Top.λy:B.x) c : B→ Top

However, after one evaluation step6, we get the term λy:B.c, which can at best be typed as
B⇒ Top. Thus preservation breaks. This problem leads us to two different formulations.

The first one is to introduce two different Top types, Top– Pure and Top– Impure, the former
is pure and the latter is impure7. The capability type E and free function type S⇒ T are not
subtypes of Top – Pure. The subtyping hierarchy is shown in Figure 3.2. This formulation
works well, and we’ve proved soundness and effect safety for the formulation. However, we
lose the simplicity of the type system. And it’s counter-intuitive to forbid variables of the type
Top– Impure in pure environments, as we cannot create side effects with a variable of the type
Top– Impure.

The second possibility is to keep the elegance of the type system and change the evaluation
rules. All terms of the type Top are equivalent, because we can do nothing with a term of
the type Top. This observation inspires us to introduce a value top and replace the standard
E-APPABS rule with two evaluation rules as follows:

6Note that variables are values, thus we can take a step here. We can also construct a counter-example by wrapping
c in a free function like λx:B.c.

7This idea is suggested by Sandro Stucki.
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Syntax
t ::= terms:

x variable
λx:T.t abstraction
tt application

v ::= values:
λx:T.t abstraction value
x variable value

T ::= types:
Top top type
B basic type
E capability type
T→ T type of stoic funs
T⇒ T type of free funs

Evaluation t−→ t′

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

(λx:T.t1)v2 −→ [x 7→ v2]t1 (E-APPABS)

Pure Environment

pure(∅) = ∅
pure(Γ, x : E) = pure(Γ)
pure(Γ, x : S⇒ T) = pure(Γ)
pure(Γ, x : T) = pure(Γ), x : T

Typing Γ ` x : T

x : T ∈ Γ

Γ ` x : T
(T-VAR)

pure(Γ), x : S ` t2 : T
Γ ` λx:S. t2 : S→ T

(T-ABS1)

Γ, x : S ` t2 : T
Γ ` λx:S. t2 : S⇒ T

(T-ABS2)

Γ ` t1 : S⇒ T Γ ` t2 : S
Γ ` t1 t2 : T

(T-APP)

Γ ` t : S S<: T

Γ ` t : T
(T-SUB)

Subtyping S<: T

T<: Top (S-TOP)

T<: T (S-REFL)

S<: U U<: T

S<: T
(S-TRANS)

S→ T<: S⇒ T (S-DEGEN)

S1<: S2 T2<: T1

S2→ T2<: S1→ T1
(S-FUN1)

S1<: S2 T2<: T1

S2⇒ T2<: S1⇒ T1
(S-FUN2)

Figure 3.1: System STLC-Impure First Formulation
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Top– Impure

E S⇒ T Top–Pure

S→ T B

Figure 3.2: Subtyping: Top–Pure and Top– Impure

T 6= Top

(λx:T.t1)v2 −→ [x 7→ v2]t1
(E-APPABS1)

T = Top

(λx:T.t1)v2 −→ [x 7→ top]t1
(E-APPABS2)

The two rules have the effect that if a function takes a parameter of the type Top, when called
it will drop the passed parameter and replace it with the value top. There is no need to consider
the case that the parameter type T is like B→ Top or (Top→ B)⇒ B, as function types cannot
mask impure terms as pure like Top does. We follow this approach in the formulation and the
full definition is presented in Figure 3.3.

Note that in the current system, we need to change the definition of the function pure to exclude
free function types from the pure environment. This restriction is important, because there’s
no way to know what side effects there might be inside free functions. If stoic functions have
access to free functions, we’ll loose the ability to track the effects of stoic functions in the type
system.

However, mixed-arrow types are allowed in pure environments, as long as the first arrow is→.
For example, the type E→ B⇒ B is allowed in the pure environment. As will be shown in the
effect safety section, we have formally proved that having such mixed-arrow types in the pure
environment doesn’t enable pure stoic functions to produce side effects.

In principle, we can keep some free functions that can never be called in the pure environment,
such as (B→ E)⇒ B, as it’s impossible to get an actual instance of the inhabited type B→ E in
order to call this function. However, it’s not useful to have functions in the environment if they
can never be called. Thus, to simplify the system without sacrificing usability, we removed all
free function types from the pure environment.
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Syntax
t ::= terms:

top top value
x variable
λx:T.t abstraction
tt application

v ::= values:
λx:T.t abstraction value
x variable value
top top value

T ::= types:
Top top type
B basic type
E capability type
T→ T type of stoic funs
T⇒ T type of free funs

Evaluation t−→ t′

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

T 6= Top

(λx:T.t1) v2 −→ [x 7→ v2]t1
(E-APPABS1)

T = Top

(λx:T.t1) v2 −→ [x 7→ top]t1
(E-APPABS2)

Pure Environment

pure(∅) = ∅
pure(Γ, x : E) = pure(Γ)
pure(Γ, x : S⇒ T) = pure(Γ)
pure(Γ, x : T) = pure(Γ), x : T

Typing Γ ` x : T

Γ ` top : Top (T-TOP)

x : T ∈ Γ

Γ ` x : T
(T-VAR)

pure(Γ), x : S ` t2 : T
Γ ` λx:S. t2 : S→ T

(T-ABS1)

Γ, x : S ` t2 : T
Γ ` λx:S. t2 : S⇒ T

(T-ABS2)

Γ ` t1 : S⇒ T Γ ` t2 : S
Γ ` t1 t2 : T

(T-APP)

Γ ` t : S S<: T

Γ ` t : T
(T-SUB)

Subtyping S<: T

T<: Top (S-TOP)

T<: T (S-REFL)

S<: U U<: T

S<: T
(S-TRANS)

S→ T<: S⇒ T (S-DEGEN)

S1<: S2 T2<: T1

S2→ T2<: S1→ T1
(S-FUN1)

S1<: S2 T2<: T1

S2⇒ T2<: S1⇒ T1
(S-FUN2)

Figure 3.3: System STLC-Impure
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3.2 Soundness

We proved both progress and preservation of the system.

THEOREM (Progress). If ∅ ` t : T, then either t is a value or there is some t′ with t−→ t′.

THEOREM (Preservation). If Γ ` t : T, and t−→ t′, then Γ ` t′ : T.

As you can imagine, now we need two different substitution lemmas in the proof of preserva-
tion, corresponding to the two reduction rules.

LEMMA (Subsitution-Not-Top). If Γ, x : S ` t : T, S 6= Top, s is a value and Γ ` s : S, then
Γ ` [x 7→ s]t : T.

LEMMA (Subsitution-Top). If Γ, x : Top ` t : T, then Γ ` [x 7→ top]t : T.

We restrict s to be a value in the lemma Substitution-Not-Top for the same reason as in the
system STLC-Pure.

3.3 Effect Safety

We follow the same approach as in the system STLC-Pure in the formulation of effect safety.
The formulation is an extension of the definition of capsafe and caprod in STLC-Pure with free
function types.

3.3.1 Formulation

The definitions of inhabited type and inhabited environment are the same as in the system
STLC-Pure.

With the presence of free functions, the previous formulation of effect safety is not enough. We
not only need to ensure that it’s impossible to construct a term of the capability type E in pure
and inhabited environments, but also need to ensure only stoic functions can be called in pure
and inhabited environments. The two conditions together guarantee that there cannot be actual
side effects inside a pure stoic function. Thus, we need two statements about effect safety.

DEFINITION (Effect-Safety-Inhabited-1). If Γ is a pure and inhabited environment, then there
doesn’t exist t with Γ ` t : E.
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DEFINITION (Effect-Safety-Inhabited-2). If Γ is a pure and inhabited environment, and Γ `
t1 t2 : T, then there exists U, V such that Γ ` t1 : U→ V.

A tempting formulation of the second effect safety statement would be that in a pure and in-

habited environment it’s impossible to construct a term of the free function type. However, this
formulation has no hope to be proved, as S→ T is a subtype of S⇒ T, any term that can be
typed as the former can also be typed as the latter.

As in the system STLC-Pure, the proof of these two statements depends on two more general
statements about capsafe environments. If we can arrive at such a definition of capsafe environ-

ment that a pure and inhabited environment is also capsafe, then it suffices to prove following
two statements about capsafe environments:

DEFINITION (Effect-Safety-1). If Γ is capsafe, there doesn’t exist t with Γ ` t : E.

DEFINITION (Effect-Safety-2). If Γ is capsafe and Γ ` t1 t2 : T, then there exists U, V such that
Γ ` t1 : U→ V.

Now we need to extend the definition of capsafe and caprod for free function types. Our first
attempt is to add the following rule:

S⇒ T caprod (CP-FUN2)

With this rule, the type (B⇒ B)→ E would be considered capsafe, according to the rule CS-
FUN1. However, with a variable f of this type and another variable g of the capsafe type
B→ B in the capsafe environment, the constructed term fg has the capability type E; the first
statement of effect safety breaks. This formulation also breaks the connection between pure
inhabited environments and capsafe environments. A pure and inhabited environment is no
longer capsafe. For example, the type B→ B⇒ B is pure and inhabited, but it’s not capsafe.

On the other hand, we cannot do the opposite to take S⇒ T as capsafe, as it would allow
calling free functions in capsafe environments; the second statement of effect safety breaks.
In the meanwhile, the pure and inhabited type (B⇒ E)→ E is not capsafe, thus a pure and
inhabited environment is no longer a capsafe environment.

This dilemma prompts us to reexamine the meaning of capsafe and caprod. When these facili-
ties were first introduced in STLC-Pure, they were formulated in terms of the provability of the
capability type E. From the perspective of the provability of E, S→ T and S⇒ T don’t make
much difference. Thus, free function types should be formulated the same way as stoic function
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types. We tried this approach, and it worked8. The full formulation is presented in Figure 3.4.

Capsafe Type

B capsafe (CS-BASE)

S caprod

S→ T capsafe
(CS-FUN1)

T capsafe

S→ T capsafe
(CS-FUN2)

S caprod

S⇒ T capsafe
(CS-FUN3)

T capsafe

S⇒ T capsafe
(CS-FUN4)

Caprod Type

E caprod (CP-EFF)

S capsafe T caprod

S→ T caprod
(CP-FUN1)

S capsafe T caprod

S⇒ T caprod
(CP-FUN2)

Capsafe Environment

∅ capsafe (CE-EMPTY)

Γ capsafe T capsafe
Γ, x : T capsafe

(CE-VAR)

Figure 3.4: System STLC-Impure Capsafe Environment

Now a capsafe environment is no longer pure. For example, the type B⇒ B is capsafe, but it’s
not pure. As a consequence, we need to slightly update the definition of the second statement
of effect safety:

DEFINITION (Effect-Safety-2’). If Γ is pure and capsafe, and Γ ` t1 t2 : T, then there exists U,
V such that Γ ` t1 : U→ V.

Why this formulation of capsafe environment is acceptable? In short, it’s because the statement
Effect-Safety-1 and Effect-Safety-2’ logically imply the statement Effect-Safety-Inhabited-1 and
Effect-Safety-Inhabited-2 respectively.

The logical implications hold because a pure and inhabited environment is also a capsafe (and
pure) environment. This claim has been formally proved:

LEMMA (Inhabited-Capsafe). If the type T is inhabited, then either T is capsafe or T = E or T
is a free function type.
8Sandro Stucki suggested to take this approach.
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THEOREM (Inhabited-Pure-Capsafe-Env). If Γ is pure and inhabited, then Γ is capsafe.

COROLLARY (Inhabited-Pure-Capsafe-Env’). If Γ is pure and inhabited, then Γ is pure and
capsafe.

Note that the last corollary follows immediately from the second theorem, as we already know
from the premise that Γ is pure.

3.3.2 Proof

The proof of the first statement of effect safety is almost the same as in STLC-Pure. The only
change worth mention is that, in the presence of subtyping, an additional lemma Capsafe-Sub

is required. The first effect safety statement follows immediately from the lemma Capsafe-Env-

Capsafe.

LEMMA (Capsafe-Not-Caprod). If type T is capsafe, then T is not caprod.

LEMMA (Capsafe-Or-Caprod). For any T, T is either capsafe or caprod.

LEMMA (Capsafe-Sub). If S is capsafe and S<: T, then T is capsafe.

LEMMA (Capsafe-Env-Capsafe). If Γ is capsafe and Γ ` t : T, then T is capsafe.

THEOREM (Effect-Safety-1). If Γ is capsafe, then there doesn’t exist term t with Γ ` t : E.

However, it’s impossible to prove the second statement of effect safety, which states that if we
can construct an application t1 t2 in a pure and capsafe environment, then t1 can be typed as
S→T for some S and T. To see an example why it cannot be proved, let’s assume Γ = {f : B→
B⇒ B, x : B}. It’s obvious Γ is capsafe and pure. However, f x in the term (f x) x has the type
B⇒ B. It’s impossible to prove that f x has the type B→ B. If f is not a variable, but a fully
defined function, then we can prove that f also has the type B→ B→ B. This is because the
inner function of the type B⇒ B cannot capture any capabilities or free functions. Otherwise,
the outer function cannot be typed as stoic.

This observation leads us to assume four axioms listed in Figure 3.5. These axioms can only be
proved if Γ is empty9. Otherwise, if t is a variable, we can do nothing.

The justification for the axiom AX-BASE is as follows. Suppose t = λx:B.λy:S. t1 and Γ ` t :
B→ S⇒ T. The typing rule for t should be the typing rule for stoic functions:

9Except the axiom AX-POLY, which cannot be proved even if Γ is empty.
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Γ ` t : B→ S⇒ T

Γ ` t : B→ S→ T
(AX-BASE)

Γ ` t : Top→ S⇒ T

Γ ` t : Top→ S→ T
(AX-TOP)

Γ ` t : (U→ V)→ S⇒ T

Γ ` t : (U→ V)→ S→ T
(AX-STOIC)

Γ ` t2 : U→ V
Γ ` t1 : (U⇒ V)→ S⇒ T

Γ ` t1 t2 : S→ T
(AX-POLY)

Figure 3.5: System STLC-Impure Axioms

pure(Γ), x : B ` λy:S. t1 : S⇒ T

Γ ` λx:B.λy:S. t1 : B→ S⇒ T
(STEP-1)

Then what’s the rule used in the typing of λy:S. t1? If it’s first typed as S→T and then subsumed
as S⇒ T, we are done. Otherwise, λy:S. t1 is typed using the rule of free functions:

pure(Γ), x : B, y : S ` t1 : T

pure(Γ), x : B ` λy:S. t1 : S⇒ T
(STEP-2)

According to the definition of pure, we know that following two equations hold:

pure(pure(Γ)) = pure(Γ)

pure(Γ, x : B) = pure(Γ), x : B

Then we can obtain the following equation:

pure(pure(Γ), x : B) = pure(Γ), x : B

If we substitute the equation in Step-2, we get exactly the precondition for typing stoic func-
tions. Thus λy:S. t2 can be typed as stoic function:

pure(pure(Γ), x : B), y : S ` t1 : T

pure(Γ), x : B ` λy:S. t1 : S→ T
(STEP-2’)

Given that λy:S. t1 can be typed as S→ T, Step-1 can be updated as follows:

pure(Γ), x : B ` λy:S. t1 : S→ T

Γ ` λx:B.λy:S. t1 : B→ S→ T
(STEP-1’)
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Put all the steps together, we obtained Γ ` t : B→ S→ T from the fact Γ ` t : B→ S⇒ T.
That’s the justification for the axiom AX-BASE. The justifications for AX-TOP and AX-STOIC

are similar.

The axiom AX-POLY can be justified as follows. Suppose the following typing relation holds,
what impure variables can be captured by t?

Γ ` λf:U⇒ V.λy:S. t : (U⇒ V)→ S⇒ T.

As the function is stoic, the only impure variable can be captured is f. Now, if we supply a stoic
function as parameter to the function, it has the same effect as saying that f has the type U→ V.
Thus, in this context, the function can be typed as (U→ V)→ S⇒ T. Now according to the
axiom AX-STOIC, the term can also be typed as (U→ V)→ S→ T. Finally by the rule T-APP,
the type of the application is S→ T. That’s the justification for the axiom AX-POLY.

Assuming the axioms above, it’s straight-forward to prove a lemma Capsafe-Pure-Stoic, and
the second statement of effect safety follows immediately from the lemma.

LEMMA (Capsafe-Pure-Stoic). If Γ is pure and capsafe, and Γ ` t : S⇒ T, then Γ ` t : S→ T.

THEOREM (Effect-Safety-2’). If Γ is pure and capsafe, and Γ ` t1 t2 : T, then there exists U, V
such that Γ ` t1 : U→ V.

3.4 Effect Polymorphism

There are three kinds of effect polymorphism in capability-based effect systems, namely ax-
iomatic polymorphism, curry polymorphism and stoic polymorphism. The first one depends on
the axiom AX-POLY, while the other two are inherent in capability-based effect systems.

3.4.1 Axiomatic Polymorphism

Axiomatic polymorphism depends on the axiom AX-POLY. It can be illustrated by the follow-
ing example:

def map[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}

def squareImpure(c: IO) = map { x => println(x)(c); x*x }
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def squarePure = map { x => x*x }

In the code above, the function map has the type (A⇒ B)→ List[A]⇒ List[B]. Without the
axiom AX-POLY, the function squareImpure would be typed as IO→ List[Int]⇒ List[Int], while
the function squarePure would be typed as List[Int]⇒ List[Int]. Effect polymorphism doesn’t
work in this case, as squarePure can actually be typed as a stoic function.

In the presence of the axiom AX-POLY, squarePure can be typed as List[Int]→ List[Int], as
the function passed to map has the stoic function type Int→ Int. Now both squarePure and
squareImpure are typed as stoic functions, all effects are captured in the type system even in the
presence of (local) free functions.

The reader might be wondering, what if we want to stipulate that the passed function f can only
have IO effects? How does effect polymorphism work in such cases? The answer is as follows:

private def mapImpl[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}

def map[A,B](f: A -> B) = mapImpl(f)

def map[A,B](c: IO)(f: IO -> A => B) = mapImpl(f c)

In the code above, we protect the implementation function mapImpl with the keyword private.
All callings of the map function has to go through the two exposed interfaces. The two interfaces
impose that the passed function f must either be pure or only have IO side effects. It’s straight-
forward to add a new interface to allow exception effects without changing the implementation
or affecting existing code.

3.4.2 Currying Polymorphism

There is another kind of effect polymorphism inherent in capability-based effect systems with-
out resorting to the axiom AX-POLY. This kind of polymorphism is related to currying, thus is
called currying polymorphism. It can be demonstrated by the following example:

def map[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)
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}

def squareImpure(c: IO) = map { x => println(x)(c); x*x }

def squarePure(l: List[Int]) = map { x => x*x } l

Note that the only change we made compared to the example in axiomatic polymorphism

is to add the parameter l : List[Int] explicitly to squarePure, instead of resorting to currying.
This seemingly trivial change makes a big difference in capability-based effect systems. Now
squarePure can be typed as List[Int]→ List[Int] without using the axiom AX-POLY.

3.4.3 Stoic Polymorphism

Stoic functions that take a free function and return a value of a pure type are inherently effect-
polymorphic. This kind of effect polymorphism is called stoic polymorphism. Stoic polymor-
phism can be illustrated by the following example:

def twice(f: Int => Int) = f (f 0)

def pure(x: Int) = twice { n => n + x }

def impure(x: Int)(c: IO) = twice { n => println(n)(c); n + x }

In the code above, the function twice is typed as (Int⇒ Int)→ Int. By just checking the type
signature of twice, we know it might have side effects, if the passed function f has side effects.
Without adding any annotation or resorting to any axiom, the type system automatically types
the function pure as Int→ Int and impure as Int→ IO→ Int. Effect polymorphism works
naturally.

3.4.4 Discussion

As reported in section 1.6 of the thesis[Lip09a], Haskell has fractured into monadic and non-
monadic sub-languages. In Haskell, almost every general purpose higher-order function needs
both a monadic version and a non-monadic version. For example, in Haskell it requires two ver-
sions of the function map , but in capability-based effect systems, only one effect-polymorphic
map is required, as the following code shows:

-- monad-based effect system

map :: (a -> b) -> List a -> List b

mapM :: Monad m => (a -> m b) -> List a -> m (List b)

-- capability-based effect system
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map :: (a => b) -> List a => List b

In Haskell, it’s possible to implement the non-monadic version based on the monadic version
by using the identity monad:

map :: (a -> b) -> List a -> List b

map f xx = runIdentity (mapM (\x -> return (f x)) xx)

However, in practice programmers usually first come up with the non-monadic version, and
later realize the need for a monadic version. Turning the non-monadic code into the monadic
version requires almost a rewrite of the function, as demonstrated by the following code:

map :: (a -> b) -> List a -> List b

map f xs

= case xs of

Nil -> Nil

Cons x xs -> Cons (f x) (map f xs)

mapM :: Monad m => (a -> m b) -> List a -> m (List b)

mapM f xs

= case xs of

Nil -> return Nil

Cons x xs -> do x’ <- f x

xs’ <- mapM f xs

return (Cons x’ xs’)

In capability-based effect systems, if programmers first come up with the pure version, turning
it to the effect-polymorphic version only requires changing → to ⇒, as demonstrated by the
following code:

// pure version

def map[A,B](f: A -> B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}

// effect-polymorphic version

def map[A,B](f: A => B)(l: List[A]) = l match {

case Nil => Nil

case x::xs => f(x)::map(f)(xs)

}
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Monads are not only heavier in handling effect polymorphism, but also more difficult to learn
and use than capabilities. The concept capability has an intuitive meaning as it has in daily
life, while the abstruse concept monad comes from category theory, which is the most abstract
field of mathematics. Therefore, we expect capability-based effect systems to be welcomed by
a larger audience than monad-based effect systems.

Type-and-effect systems based on type-and-effect inference[TJ92, TJ94] can greatly reduce
the syntactical overhead in effect systems, but it still complicates the type signature of effect-
polymorphic functions by introducing generic effect type variables. For example, the type sig-
nature inferred for the effect-polymorphic function map would look like ∀E.(A→ B@E)→
List[A] → List[B]@E, which is a little daunting to programmers, compared to (A ⇒ B) →
List[A]⇒ List[B] in our case.

Effect polymorphism is an advantage of capability-based effect systems over other kinds of ef-
fect systems. In capability-based effect systems, effect polymorphism can be easily achieved
without introducing generic effect type variables in the type signature or depending on addi-
tional annotations.
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4 System F-Pure

In this chapter, we present the system F-Pure, which is an extension of the system STLC-Pure
with universal types. In this system, not only functions need to observe a variable-capturing
discipline, type abstractions also need to observe the same variable-capturing discipline.

We’ll first introduce the formalization, then discuss soundness and effect safety. In the discus-
sion, we’ll focus on its difference from the system STLC-Pure.

4.1 Definitions

The system F-Pure extends STLC-Pure with universal types. Figure 4.1 presents the full defi-
nition of F-Pure, with the difference from the system STLC-Pure highlighted.

The extension of syntax and evaluation rules are exactly the same as the extension of standard
STLC with universal types. The essential difference lies in the two new typing rules T-TABS

and T-TAPP. The typing rule T-TABS stipulates that type abstraction must observe the variable-
capturing discipline.

pure(Γ), X ` t2 : T

Γ ` λX.t2 : ∀X.T
(T-TABS)

We made this design choice in order to allow universal types to be present in pure environments.
Otherwise, if type abstractions can capture capability variables, application of a type abstraction
could generate a term of the capability type or have side effects. This makes it incorrect to have
universal types in pure environments, thus renders universal types useless in the system.

The typing rule T-TAPP requires that the type parameter cannot be the capability type E. How-
ever, it’s allowed to supply uninhabited types like B→ E as parameter to type abstraction.

Γ ` t1 : ∀X.T T2 6= E

Γ ` t1 [T2] : [X 7→ T2]T
(T-TAPP)

Without the restriction, preservation of the system breaks 10, as can be seen from the following
term t, which has the type ∀X.X→ B→ X:

10It’s also possible to allow E as argument to type application, and restore preservation by treating variables with
the type of a type variable as impure. We’ll follow this approach in the system F-Impure.
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Syntax
t ::= terms:

x variable
λx:T.t abstraction
tt application
λX.t type abstraction
t[T] type application

v ::= values:
λx:T.t abstraction value
x variable value
λX.t type abstraction value

T ::= types:
X type variable
B basic type
E capability type
T→ T type of functions
∀X.T universal type

Evaluation t−→ t′

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

(λx:T.t1)v2 −→ [x 7→ v2]t1 (E-APPABS)

t1 −→ t′1

t1 [T2]−→ t′1 [T2]
(E-TAPP)

(λX.t1)[T2]−→ [X 7→ T2]t1
(E-TAPPTABS)

Typing Γ ` x : T

x : T ∈ Γ

Γ ` x : T
(T-VAR)

pure(Γ), x : S ` t2 : T
Γ ` λx:S. t2 : S→ T

(T-ABS)

Γ ` t1 : S→ T Γ ` t2 : S
Γ ` t1 t2 : T

(T-APP)

pure(Γ), X ` t2 : T

Γ ` λX.t2 : ∀X.T
(T-TABS)

Γ ` t1 : ∀X.T T2 6= E

Γ ` t1 [T2] : [X 7→ T2]T
(T-TAPP)

Pure Environment

pure(∅) = ∅
pure(Γ, x : E) = pure(Γ)
pure(Γ, x : T) = pure(Γ), x : T
pure(Γ, X) = pure(Γ), X

Figure 4.1: System F-Pure
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t = λX.λx:X.λy:B.x

If we allow E as parameter to type application, the term t [E] would have the type E→ B→ E.
However, after one evaluation step, the term λx:E.λy:B.x cannot be typed anymore, as the
capability variable x cannot be captured in the inner-most lambda; thus preservation breaks.

The definition of the function pure is changed slightly by allowing type variables to be in the
pure environment. Type variables themselves are harmless to effect safety, their presence in the
pure environment ensures the well-formedness of the environment.

Note that a hidden change to the function pure is that the binding x : X, where X is a type
variable, may appear in pure environments. This is natural, as we know in the typing rule
T-TAPP that the type variable X cannot be the capability type E.

4.2 Soundness

We proved both progress and preservation of the system.

THEOREM (Progress). If ∅ ` t : T, then either t is a value or there is some t′ with t−→ t′.

THEOREM (Preservation). If Γ ` t : T, and t−→ t′, then Γ ` t′ : T.

The proof of progress is the same as in System F. In the proof of preservation, we need to make
small changes to the standard substitution lemmas in System F.

LEMMA (Subsitution-Term). If Γ, x : S ` t : T, s is a value and Γ ` s : S, then Γ ` [x 7→ s]t : T.

LEMMA (Subsitution-Type). If Γ, X ` t : T and P 6= E, then Γ ` [X 7→ P]t : [X 7→ P]T.

We restrict s to be a value in the lemma Substitution-Term for the same reason as in the system
STLC-Pure. In the lemma Substitution-Type, we restrict that P is not the capability type E.
Otherwise, the lemma cannot be proved as explained in the previous section.

4.3 Effect Safety

We follow the same approach as in the system STLC-Pure in the formulation of effect safety.
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4.3.1 Inhabited Types and Environments

In the presence of universal types, we need to adapt the definition of inhabited type and inhab-
ited environment.

The definition of inhabited environment in STLC-Pure would reject a well-formed environ-
ment with type variables like {T, S, f : T→ S, x : T}, which could be the environment for the
following well-defined function:

def apply[T, S](f: T -> S)(x: T) = f x

To handle this problem, we propose the definition of inhabited type and inhabited environment

as shown in Figure 4.2.

Primitive Environment

x : B, y : E primitive (P-BASE)

Σ primitive

Σ, X primitive
(P-TVAR)

Σ primitive

Σ, x : X primitive
(P-TYPE)

Inhabited Type

Σ primitive Σ ` v : T
T inhabited

(IT)

Inhabited Environment

∅ inhabited (IE-EMPTY)

Γ inhabited

Γ, X inhabited
(IE-TVAR)

Γ inhabited T inhabited

Γ, x : T inhabited
(IE-TYPE)

Figure 4.2: System F-Pure Inhabited Environment

The definition of inhabited type depends on primitive environments. A primitive environment is
an extension of the environment {x : B,y : E}with any type variables and type variable bindings.
This definition would take types like X, X→ Y as inhabited, as expected.

The definition of inhabited environment not only allow bindings of inhabited types, but also
allow any type variables to be present in an inhabited environment. This definition ensures
that only uninhabited types, such as B→ E, ∀X.X and ∀X.∀Y.X→ Y are rejected from pure
environments.

39



4.3.2 Formulation

As in STLC, the standard formulation is given based on inhabited environments:

DEFINITION (Effect-Safety-Inhabited). If Γ is a pure and inhabited environment, then there
doesn’t exist t with Γ ` t : E.

The proof of the statement depends on a more general statement about capsafe environments. If
we can arrive at such a definition of capsafe environment that a pure and inhabited environment
is also capsafe, then it suffices to prove the following statement about capsafe environments:

DEFINITION (Effect-Safety). If Γ is capsafe, there doesn’t exist t with Γ ` t : E.

What capsafe and caprod rules we need for universal types? Obviously, we need to take the
uninhabited type ∀X.X as caprod, as with a variable of this type, it’s possible to create a term
of the capability type E. For example, if x is of the type ∀X.X and b is of the type B, then
x [B→ E] b has the type E. We also need to take the uninhabited type ∀X.∀Y.X→ Y as caprod.
Otherwise, if x is of the type ∀X.∀Y.X→ Y and b is of the type B, then x [B] [B→ E] b b

has the type E. This observation leads us to the definition of capsafe environment presented in
Figure 4.3, with differences from STLC-Pure highlighted.

Why this formulation of capsafe environment is acceptable? In short, it’s because the statement
Effect-Safety logically implies the statement Effect-Safety-Inhabited.

The logical implication holds because a pure and inhabited environment is also a capsafe envi-
ronment. This claim has been formally proved:

LEMMA (Inhabited-Capsafe). If the type T is inhabited, then either T is capsafe or T = E.

THEOREM (Inhabited-Pure-Capsafe-Env). If Γ is pure and inhabited, then Γ is also capsafe.

4.3.3 Proof

The proof of effect safety is more involved than in STLC-Pure. We need to introduce the degree

of types in the proof of relevant lemmas about types.
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Capsafe Type

B capsafe (CS-BASE)

X capsafe (CS-VAR)

S caprod

S→ T capsafe
(CS-FUN1)

T capsafe

S→ T capsafe
(CS-FUN2)

[X 7→ B]T capsafe [X 7→ E]T capsafe

∀X.T capsafe
(CS-ALL)

Caprod Type

E caprod (CP-EFF)

S capsafe T caprod

S→ T caprod
(CP-FUN)

[X 7→ B]T caprod

∀X.T caprod
(CP-ALL1)

[X 7→ E]T caprod

∀X.T caprod
(CP-ALL2)

Capsafe Environment

∅ capsafe (CE-EMPTY)

Γ capsafe T capsafe

Γ, x : T capsafe
(CE-VAR)

Γ capsafe

Γ, X capsafe
(CE-TVAR)

Figure 4.3: System F-Pure Capsafe Environment

DEFINITION (Degree of Type). The degree of a type T is defined as follows:

degree(T) =


max(degree(t1),degree(t2)) if T = T1→ T2,

degree(T1)+1 if T = ∀X.T1,

0 others

With the help of the definition above, it’s possible to prove following lemmas based on a nested
induction on the degree of types and the type T.

LEMMA (Capsafe-Not-Caprod). If type T is capsafe, then T is not caprod.
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LEMMA (Capsafe-Or-Caprod). For any type T, T is either capsafe or caprod.

LEMMA (Capsafe-All-Subst). If ∀X.T is capsafe, then for any type U, [X 7→ U]T is capsafe.

To prove the lemma Capsafe-Env-Capsafe, we need a similar definition on terms, and then do
a nested induction on the degree of terms and the typing relation.

DEFINITION (Degree of Term). The degree of a term t is defined as follows:

degree(t) =



degree(t1) if t = λx:T.t1,

max(degree(t1),degree(t2)) if t = t1 t2,

degree(t1)+1 if t = λX.t1,

degree(t1) if t = t1 [T],

0 others

Effect safety follows immediately from the lemma Capsafe-Env-Capsafe.

LEMMA (Capsafe-Env-Capsafe). If Γ is capsafe and Γ ` t : T, then T is capsafe.

THEOREM (Effect-Safety). If Γ is capsafe, then there doesn’t exist t with Γ ` t : E.
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5 System F-Impure

In this chapter, we present the system F-Impure, which is an extension of the system F-Pure with
free functions. It can also be seen as an extension of the system STLC-Impure with universal
types, but without subtyping. Extending the system with subtyping would lead us to bounded
quantification, which we are still working on. Given the importance of parametric polymor-
phism and the fact that subtyping is not a necessary add-on of functional programming, the
system F-Impure deserves a separate presentation here.

We’ll first introduce the formalization, then discuss soundness and effect safety. In the discus-
sion, we’ll focus on its difference from the system STLC-Impure and F-Pure.

5.1 Definitions

Figure 5.1 presents the full definition of F-Impure, with the difference from the system F-
Impure highlighted. As can be seen from the figure, we introduced free function types and
added a typing rule for free functions. We have to add a typing rule T-DEGEN to restore the
subtyping relation between stoic function types and free function types, as there is no subtyping
in the current system.

As in STLC-Impure, we adapted the definition of pure to exclude free function types from pure
environments. If stoic functions have access to free functions, we’ll loose the ability to track
the effects of stoic functions in the type system.

Different from F-Pure, in the rule T-TAPP we allow both capability types and free function types
as type parameter in type application. We know in F-pure, without such restriction preservation
of the system breaks. To restore preservation of the system, in the definition of pure we remove
x : X from the pure environment. That is, we treat variables typed with type variable as impure,
which cannot be captured by a stoic function.

We could also introduce free type abstractions in the system. Such an extension will not be very
useful in real-world programming, as in practice polymorphic functions rarely capture free
variables, not mention capability variables. Thus for the sake of simplicity, we don’t pursue the
extension.
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Syntax
t ::= terms:

x variable
λx:T.t abstraction
tt application
λX.t type abstraction
t[T] type application

v ::= values:
λx:T.t abstraction value
x variable value
λX.t type abstraction

value

T ::= types:
X type variable
B basic type
E capability type
T→ T type of stoic funs
T⇒ T type of free funs
∀X.T universal type

Evaluation t−→ t′

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-APP2)

(λx:T.t1)v2 −→ [x 7→ v2]t1 (E-APPABS)

t1 −→ t′1
t1 [T2]−→ t′1 [T2]

(E-TAPP)

(λX.t1)[T2]−→ [X 7→ T2]t1
(E-TAPPTABS)

Typing Γ ` x : T

x : T ∈ Γ

Γ ` x : T
(T-VAR)

pure(Γ), x : S ` t2 : T
Γ ` λx:S. t2 : S→ T

(T-ABS1)

Γ, x : S ` t2 : T
Γ ` λx:S. t2 : S⇒ T

(T-ABS2)

Γ ` t : S→ T

Γ ` t : S⇒ T
(T-DEGEN)

Γ ` t1 : S⇒ T Γ ` t2 : S
Γ ` t1 t2 : T

(T-APP)

pure(Γ), X ` t2 : T
Γ ` λX.t2 : ∀X.T

(T-TABS)

Γ ` t1 : ∀X.T

Γ ` t1 [T2] : [X 7→ T2]T
(T-TAPP)

Pure Environment

pure(∅) = ∅
pure(Γ, x : E) = pure(Γ)
pure(Γ, x : X) = pure(Γ)
pure(Γ, x : S⇒ T) = pure(Γ)
pure(Γ, x : T) = pure(Γ), x : T
pure(Γ, X) = pure(Γ), X

Figure 5.1: System F-Impure
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5.2 Soundness

We proved both progress and preservation of the system. The subtleties in the proof are the
same as stated in the system F-Pure.

THEOREM (Progress). If ∅ ` t : T, then either t is a value or there is some t′ with t−→ t′.

THEOREM (Preservation). If Γ ` t : T, and t−→ t′, then Γ ` t′ : T.

5.3 Effect Safety

We first introduce the formulation, which is a combination of the formulation in STLC-Impure
and F-Pure, then discuss the proof of effect safety.

5.3.1 Formulation

The definitions of inhabited type and inhabited environment are the same as in the system F-
Pure.

As in the system STLC-Impure, in the presence of free functions, we need two statements of
effect safety:

DEFINITION (Effect-Safety-Inhabited-1). If Γ is a pure and inhabited environment, then there
doesn’t exist t with Γ ` t : E.

DEFINITION (Effect-Safety-Inhabited-2). If Γ is a pure and inhabited environment, and Γ `
t1 t2 : T, then there exists U, V such that Γ ` t1 : U→ V.

As in the system STLC-Impure, the proof of these two statements depends on two more general
statements about capsafe environments. Given that we’ve seen how universal types and free
function types are extended in the formulation of capsafe environment, we can easily combine
them to arrive at the formulation shown in Figure 5.2, with the changes from F-Pure highlighted.
Notice that type variables are now treated as caprod (CP-VAR).

Why this formulation of capsafe environment is acceptable? In short, it’s because the statement
Effect-Safety-Inhabited-1 and Effect-Safety-Inhabited-2 are logically implied by the statement
Effect-Safety-1 and Effect-Safety-2 respectively.

DEFINITION (Effect-Safety-1). If Γ is capsafe, there doesn’t exist t with Γ ` t : E.

45



Capsafe Type

B capsafe (CS-BASE)

S caprod

S→ T capsafe
(CS-FUN1)

T capsafe

S→ T capsafe
(CS-FUN2)

S caprod

S⇒ T capsafe
(CS-FUN3)

T capsafe

S⇒ T capsafe
(CS-FUN4)

[X 7→ B]T capsafe [X 7→ E]T capsafe

∀X.T capsafe
(CS-ALL)

Caprod Type

E caprod (CP-EFF)

X caprod (CP-VAR)

S capsafe T caprod

S→ T caprod
(CP-FUN1)

S capsafe T caprod

S⇒ T caprod
(CP-FUN2)

[X 7→ B]T caprod

∀X.T caprod
(CP-ALL1)

[X 7→ E]T caprod

∀X.T caprod
(CP-ALL2)

Capsafe Environment

∅ capsafe (CE-EMPTY)

Γ capsafe T capsafe

Γ, x : T capsafe
(CE-VAR)

Γ capsafe

Γ, X capsafe
(CE-TVAR)

Figure 5.2: System F-Impure Capsafe Environment
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DEFINITION (Effect-Safety-2). If Γ is pure and capsafe, and Γ ` t1 t2 : T, then there exists U,
V such that Γ ` t1 : U→ V.

The logical implications hold because a pure and inhabited environment is also a capsafe (and
pure) environment. This claim has been formally proved:

LEMMA (Inhabited-Capsafe). If the type T is inhabited, then either T is capsafe or T = E or T
is a free function type.

THEOREM (Inhabited-Pure-Capsafe-Env). If Γ is pure and inhabited, then Γ is also capsafe.

COROLLARY (Inhabited-Pure-Capsafe-Env’). If Γ is pure and inhabited, then Γ is pure and
capsafe.

Note that the last corollary follows immediately from the second theorem, as we already know
from the premise that Γ is pure.

5.3.2 Proof

The proof of the first effect safety statement is almost the same as in the system F-Pure, thus we
omit here.

The proof of the second statement of effect safety faces the same problem as in the system
STLC-Impure. We need to assume a set of axioms, as shown in Figure 5.3, with the newly added
axioms highlighted. The justification for the axiom AX-ALL is the same as the justification for
the axiom AX-BASE in STLC-Impure. In short, because the outer function is stoic and the type
of the first parameter is pure, the inner function cannot capture variables of capabilities or free
functions, thus it’s fair enough to type the inner function as stoic.

The justification for the axiom AX-TABS is similar. If a term t can be typed as ∀X.T1⇒ T2

under Γ, according to the typing rule T-ALL, the whole term can be typed under pure(Γ). Then
the inner function can be typed under pure(Γ), X, which is equal to pure(Γ, X). Thus, it’s fair
enough to type the inner function as stoic.

The justification for the axiom AX-POLY is the same as given in STLC-Impure, thus we omit
here.

Assuming these axioms, it’s straight-forward to prove a lemma Capsafe-Pure-Stoic, and the
second statement of effect safety follows immediately from the lemma.

LEMMA (Capsafe-Pure-Stoic). If Γ is pure and capsafe, and Γ ` t : S⇒ T, then Γ ` t : S→ T.
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Γ ` t : B→ S⇒ T

Γ ` t : B→ S→ T
(AX-BASE)

Γ ` t : (∀X.T)→ S⇒ T

Γ ` t : (∀X.T)→ S→ T
(AX-ALL)

Γ ` t : ∀X.(T1⇒ T2)

Γ ` t : ∀X.(T1→ T2)
(AX-TABS)

Γ ` t : (U→ V)→ S⇒ T

Γ ` t : (U→ V)→ S→ T
(AX-STOIC)

Γ ` t2 : U→ V Γ ` t1 : (U⇒ V)→ S⇒ T

Γ ` t1 t2 : S→ T
(AX-POLY)

Figure 5.3: System F-Impure Axioms

THEOREM (Effect-Safety-2). If Γ is pure and capsafe, and Γ ` t1 t2 : T, then there exists U, V
such that Γ ` t1 : U→ V.
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6 Conclusion

We formalized four capability-based effect systems and proved soundness and effect safety
for each system. The four systems can serve as the theoretical foundation for implementing
capability-based effect systems in functional languages.

The existence of stoic functions is the main trait of capability-based effect systems. The in-
terplay between stoic functions and free functions enables flexible programming patterns that
trivially solve the problem of effect polymorphism.

Capability-based effect systems have to be paired with strict evaluation, just like monad-based
effect systems have to be paired with lazy evaluation.

6.1 Related Work

Lucassen and Gifford first introduced type-and-effect systems[GL86] and effect polymorphism
using effect type parameterization [LG88], which is further developed by Talpin and Jouvelot
to provide type-and-effect inference [TJ92, TJ94]. Type-and-effect inference can greatly reduce
verbosity in syntax, but it only works in languages with global type inference, while Scala is
based on local type inference. Even in those languages with global type-and-effect inference,
the type signature for effect-polymorphic functions are much more complex than in capability-
based effect systems, which is an obstacle to programmers.

Moggi introduced the usage of monads for computation effects[Mog91]. Wadler popularized
the usage of monads[Wad92, Wad95] and proved that it’s possible to transpose any type-and-
effect system into a corresponding monad system[WT03]. As reported in section 1.6 of the
thesis[Lip09a], almost every general purpose higher-order function in Haskell needs both a
monadic version and non-monadic version. Lippmeier proposed the usage of region variables
and dependently kinded witness to encode mutability polymorphism[Lip09b].

Lukas et al. studied type-and-effect systems for Scala[ROH12, RAO13, Ryt14]. In lightweight
polymorphic effects[ROH12], the dichotomy between effect-polymorphic function type and
monomorphic function type resembles the dichotomy between stoic function type and free func-

tion type. However, in the system effect polymorphism doesn’t work for nested functions. To
overcome this problem, they unified the two function types in a framework called relative effect

annotation based on dependent types. In the framework, the function map can be marked as
effect-polymorphic without introducing a generic effect variable:
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def map[A, B](f: A => B)(l: List[A]): List[B] @pure(f)

The annotation @pure(f) says that the effect of map depends on the function f. Nested functions
are handled specially in the system to avoid duplicate annotations.

Heather et al. proposed a variant of functions called spores for Scala[MHO14]. Compared to
normal functions, spores observe a variable capturing discipline. The set of types that can or
cannot be captured is part of the type signature of spores, thus can be used by library authors to
impose constraints on parameters of function types.

Crary et al. proposed a capability calculus for typed memory management[CWM99], which
improves the LIFO-style (last-in, first-out) region-based memory management introduced by
Tofte and Talpin[TT97] by allowing arbitrary allocation and deallocation order. The safety of
deallocation of memory is guaranteed by the type system. In the capability calculus, a capability
is a set of regions that are presently valid to access. It tracks uniqueness of capabilities in
the type system to control aliasing of capabilities. Functions may be polymorphic over types,
regions or capabilities. Capability variables cannot be captured in closures and have to be passed
around in the program.

6.2 Future Work

Recursive types, objects, mutation and general recursion are predominant features of industrial
languages. To provide a more practical model for industrial languages, it’s useful to extend
existing systems with these features.

Effect masking can be a useful feature in real-world programming, especially when dealing
with exception effects and local mutations. It’s worthy to explore effect masking in existing
systems.

Another direction of work is to extend the proposed systems with some implicit calculus, in
order to avoid explicitly passing capabilities around in the code. This would result in significant
savings in boilerplate code, thus make the system more friendly to programmers.
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