
Efficient Distributed Decision Trees for Robust
Regression

[Technical Report]

Tian Guo1, Konstantin Kutzkov2, Mohamed Ahmed2, Jean-Paul Calbimonte1, and
Karl Aberer1

1 Ećole Polytechnique Fédérale de Lausanne (EPFL)
{tian.guo,jean-paul.calbimonte,karl.aberer}@epfl.ch,

2 NEC Laboratories, Europe
{mohamed.ahmed}@neclab.eu

{kutzkov}@gmail.com

Abstract. The availability of massive volumes of data and recent advances in
data collection and processing platforms have motivated the development of dis-
tributed machine learning algorithms. In numerous real-world applications large
datasets are inevitably noisy and contain outliers. These outliers can dramatically
degrade the performance of standard machine learning approaches such as regres-
sion trees. To this end, we present a novel distributed regression tree approach that
utilizes robust regression statistics, statistics that are more robust to outliers, for
handling large and noisy data. We propose to integrate robust statistics based er-
ror criteria into the regression tree. A data summarization method is developed
and used to improve the efficiency of learning regression trees in the distributed
setting. We implemented the proposed approach and baselines based on Apache
Spark, a popular distributed data processing platform. Extensive experiments on
both synthetic and real datasets verify the effectiveness and efficiency of our ap-
proach.

Keywords: Decision Tree, Distributed Machine Learning, Robust Regression,
Data Summarization

1 Introduction

Decision trees are at the core of several highly successful machine learning models
for both regression and classification, since their introduction by Quinlan [19]. Their
popularity stems from the ability to (a) select, from the set of all attributes, a subset
that is most relevant for the regression and classification problem at hand; (b) iden-
tify complex, non-linear correlations between attributes; and to (c) provide highly in-
terpretable and human-readable models [7, 17, 19, 25]. Recently due to the increasing
amount of available data and the ubiquity of distributed computation platforms and
clouds, there is a rapidly growing interest in designing distributed versions of regres-
sion and classification trees [1,2,17,21,26,28], for instance, the decision/regression tree
in Apache Spark MLlib machine learning package3. Meanwhile, since many of the large

3 http://spark.apache.org/docs/latest/mllib-decision-tree.html

2 Authors Suppressed Due to Excessive Length

datasets are from observations and measurements of physical entities and events, such
data is inevitably noisy and skewed in part due to equipment malfunctions or abnormal
events [10, 12, 27].

With this paper, we propose an efficient distributed and regression tree learning
framework that is robust to noisy data with outliers. This is a significant contribution
since the effect of outliers on conventional regression trees based on the mean squared
error criterion is often disastrous. Noisy datasets contain outliers (e.g., grossly mis-
measured target values), which deviate from the distribution followed by the bulk of
the data. Ordinary (distributed) regression tree learning minimizes the squared mean
error objective function and outputs the mean of the data points in the leaf nodes as
predictions, which is especially problematic and sensitive to noisy data in two aspects
[10,12,25]. First, during the tree growing phase (the learning phase), internal tree nodes
are split so as to minimize the square-error loss function, which places much more
emphasis on observations with large residuals [7,10,25]. As a result, bias on the split of
a tree node due to noisy and skewed data will propagate to descendent nodes and derail
the tree building process. Second, outliers drag the mean predictions away from the true
values on leaf nodes, thereby leading to highly skewed predictors. Consequentially, the
distributed regression tree trained on noisy data can neither identify the true patterns in
data, nor provide reliable predictions [8, 10, 12, 25, 27].

Previous methods to address robustness in the distributed regression tree fail to pre-
vent noisy data from deviating the splits and predictions of tree nodes. For regression
problems, it can be very difficult to spot noise or outliers in the data without careful
investigation and even harder in multivariate data sets with both categorical and nu-
merical features [13]. Overfitting avoidance, known as the node pruning in the context
of regression trees, is a general way to allow robustness for unseen data by penalizing
the tree for being too complex. But pruning operations cannot correct the biased splits
of tree nodes [10, 12]. Ensemble methods like RandomForest [15], RotationForest [20]
and Gradient Boosted Tree [7] produce superior results by creating a large number of
trees. But outliers distributed across attributes (or features) would still bias individual
trees as well as the predictions aggregated from them.

Contributions: In this paper, we focus on enhancing the robustness of a distributed
regression tree as well as the training efficiency. Concretely, this paper makes the fol-
lowing contributions:

– We define the distributed robust regression tree employing robust loss functions and
identify the difficulty in designing an efficient training algorithm for the distributed
robust regression tree.

– We propose a novel distributed training framework for the robust regression tree,
which consists an efficient data summarization method on distributed data and a
tree growing approach exploiting the data summarization to evaluate robust loss
functions.

– The proposed distributed robust regression tree and baselines are implemented
based on Apache Spark. Extensive experiments on both synthetic and real datasets
demonstrate the efficiency and effectiveness of our approach.

The organization of the paper is as follows: Section 2 summarizes the related work.
Section 3 presents the necessary background and the problem definition. Then, Sec-

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 3

tion 4 and Section 5 present proposed framework and experiment results. We discuss
the possible extension in Section 6 and conclude the work in Section 7.

2 Related Work

To the best of our knowledge, there is no existing work on the robust loss function
based distributed regression trees in the literature, and thus we first summarize previous
efforts to handle noisy data for regression/classification trees in centralized environ-
ments, and then the work on the distributed regression/classification trees. and the data
summarization techniques utilized in the distributed regression trees.

Robust classification/regression trees: Many methods have been proposed to handle
noisy data, but most of them concentrate on refining leaf nodes after training or purely
on the classification problem. [29] applies smoothing on the leaves of a decision tree but
not inner nodes. [5] assigns a confidence score to the classifier predictions rather than
improving the classification itself. Zadorny and Elkan [29], Provost and Domingos [18]
and [3] improve the classification probabilities by using regression in the leaves. An-
other well-known method for dealing with noisy data is fuzzy decision trees [8,16]. The
fuzzy function may be domain specific and require a human expert in order to correctly
define it. The other type of approaches is based on post-processing applied after a de-
cision tree has already been built on noisy data. John [10] proposed iterative removal
of instances with outlier values. [12] requires to perform back-ward path traversal for
examined instances.

Our paper aims to improve the robustness of distributed regression trees by prevent-
ing the outliers from influencing the tree induction phase based on robust loss functions.
Above post-processing methods can be smoothly integrated into our framework.

Distributed classification/regression trees: Our proposed approach borrows ideas from
previous distributed regression tree algorithms to improve the training efficiency. But
the previous algorithms do not consider the effect of data noise and outlier issues.

Parallel and distributed decision tree algorithms can be grouped into two main cat-
egories: task-parallelism and data-parallelism. Algorithms in the first category [4, 23]
divide the tree into sub-trees, which are constructed on different workers, e.g. after the
first node is split, the two remaining sub-trees are constructed on separate workers. The
downside of this approach is that each worker should either have a full copy of data.
For large data sets, this method would lead to slowdown rather than speed-up.

In the data-parallelism approach, the training instances are divided among the differ-
ent nodes of the cluster. Dividing data by features [6] requires the workers to coordinate
which input data instance falls into which tree-node. This requires additional commu-
nication, which we try to avoid as we scale to very large data sets. Dividing the data
by instances [21] avoids this problem. Instance-partitioning approach PLANET [17]
selects splits using histograms with fixed bins constructed over the value domain of
features. Such static histograms overlooks the variation of underlying data distribution
as the tree grows and therefore could lead to biased splits. [2, 26] put forward to con-
struct dynamic histograms rebuilt for each layer of tree nodes and used for deliberately
approximating the exact splits. [2, 26] communicate the histograms re-built for each

4 Authors Suppressed Due to Excessive Length

layer of tree nodes to a master worker for tree induction. [1] is a MapReduce algo-
rithm which builds multiple random forest ensembles on distributed blocks of data and
merges them into a mega-ensemble. In [11] ScalParC employs a distributed hash table
to implement the splitting phase for classification problems. [9] approach uses sampling
to achieve memory efficient processing of numerical attributes for Gini impurity in the
classification tree.

In this paper, our approach falls into the instance-partition category and we build
dynamic histograms to summarize the value distribution of the target variable for the
robust loss estimation.

Data summarization in distributed classification/regression trees: Data summariza-
tion in distributed regression trees [2,17,22,26] serves for data compression to facilitate
the communication between workers and the master and supports mergeable opera-
tions for building a global picture about the data distribution on the master to grow the
tree. Meanwhile, [2, 17, 26] build histograms over the feature value domain to provide
splits candidates in growing the tree. Our proposed data summarization borrows ideas
from [2] and is able to support efficient estimation of robust loss criteria.

3 Preliminaries and Problem Statement

In this part, we first present the regression tree employing robust loss functions. Then,
we describe the robust regression tree in the distributed environment and formulate the
problem of this paper.

3.1 Robust Regression Tree

In the regression problem, define a dataset D = {(xi, yi)}, where xi ∈ Nd is a vector
of predictor features of a data instance and yi ∈ R is the target variable. d is the number
of features. Let Dn ∈ D denote the set of instances falling under tree node n.

Regression tree construction [19,25] proceeds by repeated greedy expansion of tree
nodes layer by layer until a stopping criterion, e.g. the tree depth is met. Initially, all
data instances belong to the root node of the tree. An internal tree node (e.g., Dn)
is split into two children nodes respectively with data subsets DL(DL ⊂ Dn) and
DR(DR = Dn−DL) by using a predicate on a feature, so as to minimize the weighted
loss criteria: |DL||Dn|L(DL)+

|DR|
|Dn|L(DR), where L(·) is a loss function (or error criteria)

defined over a set of data instances.
This paper proposes the distributed regression tree employing robust loss functions

to handle noisy datasets with outliers on the target variable (the regression tree is robust
to outliers in feature space [7]). In robust regression, there are two main types of robust
loss functions: accommodation and rejection [7, 10, 24]. Accommodation approach is
to define a loss function that lessens the impact of outliers The least absolute deviation,
referred to as LAD, is an accommodation method [7, 24, 25]. It is defined on a set of
data instances D as: Ll(D) = 1

|D|
∑

(xiyi)∈D|yi− ŷ|, and ŷ = median(xiyi)∈D({yi}),
which returns the median of a set of values [25]. On the other hand, rejection approach
aims to restrict the attention only to the data that seems ”normal” [10]. The loss function

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 5

of the rejection type is the trimmed least absolute deviation, referred to as TLAD. It
is defined as Ll(D̃), where D̃ is the trimmed dataset of D derived by removing data
instances with the k% largest and k% smallest target values (0 < k < 1) from D and
thus in TLAD ŷ = medianyi∈D̃({yi}).

Then, the robust regression tree in this paper is defined as:

Definition 1 (Robust Regression Tree). In a robust regression tree, an internal tree
node is split so as to minimize the weighted robust loss function |DL||Dn|Ll(DL)+

|DR|
|Dn|Ll(DR),

whereDL andDR are two (trimmed) data subsets corresponding to the children nodes.
The leaf nodes take the median of target values in the leaf node as the prediction value.

3.2 Robust Regression Tree in the Distributed Environment

In contemporary distributed computation systems [14, 22], one node of the cluster is
designated as the master processor and the others are the workers. Denote the num-
ber of workers by P . The training instance set is instance-divided into P disjoint sub-
sets stored in different workers and each worker can only access its local data subset.
Let Dp be the set of data instances stored at worker p, such that ∪Pp=1Dp = D. For
p, q ∈ {1, . . . , P}, Dp ∩ Dq = ∅ and |Dp| u |D|/P . Denote the data instances in
Dp belonging to a tree node n by Dn

p . A straightforward way to grow the robust re-
gression tree layer by layer on the master is inefficient [2, 17, 22], because splitting an
internal tree node requests to repeatedly access distributed data and calculate LAD (or
TLAD) via expensive distributed sorting [2,22], for each trial split predicate per feature.
Such a solution incurs dramatic communication and computation overheads , thereby
degrading the training efficiency and scalability [2, 25].

To this end, our following proposed distributed robust regression tree will exploit
data summarization [2, 17, 26], which is able to provide compact representations of the
distributed data, to enhance the training efficiency.

3.3 Problem Statement

As is presented above, it is non-trivial to design an efficient training approach for dis-
tributed robust regression tree. Therefore, the problem this paper aims to solve is defined
as:

Definition 2 (Training a Distributed Robust Regression Tree). Given robust lost
functions (LAD or TLAD) and training instance partitions D1, . . . , Dp of a data set
D distributed across the workers 1, . . . , p of a cluster, training a robust regression tree
in such a distributed setting involves two sub-problems: (1) to design an efficient data
summarization method for the workers to extract sufficient information from local data
and to transmit only such data summarization to the master with bounded communi-
cation cost. (2) to grow a robust regression tree on the master by estimating the robust
loss function based on the data summarization.

To keep things simple, we assume that all the features are discrete or categorical. How-
ever, all the discussion below can be easily generalized to continuous features [7], which
is discussed in Section 6. Therefore, a split predicate on a categorical feature is a value

6 Authors Suppressed Due to Excessive Length

subset. Let Vk represents the value set of feature k and k ∈ {1, . . . , d}. For instance,
given the set of data instancesDn on a tree node n and a value subset on feature k, V−k ⊂
Vk, two data subsets partitioned by V−k are DL = {(xi, yi)|(xi, yi) ∈ Dn, xi,k ∈ V−k }
and DR = Dn −DL.

Often, regression tree algorithms also include a pruning phase to alleviate the prob-
lem of overfitting the training data. For the sake of simplicity, we limit our discussion to
regression tree construction without pruning. However, it is relatively straightforward
to modify the proposed algorithms to incorporate a variety of pruning methods [2, 7].

4 Distributed Robust Regression Tree

Fig. 1. Framework of the distributed robust regression tree (best viewed in colour).

In this part, we introduce the key contribution, the distributed robust regression tree,
referred to as DR2-Tree.
Overview: As is shown in Figure 1, in DR2-Tree the master grows the regression tree
layer by layer in the top-down manner. Each worker retains the split predicates of the
so-far trained tree nodes for data summarization. An efficient dynamic-histogram based
data summarization approach is designed for workers to communicate with the master
(refer to Section 4.1). Then, by using such approximate descriptions of data, the master
is able to efficiently evaluate robust loss functions for determining the best split of
each internal tree node, thereby circumventing expensive distributed sorting for deriving
LAD/TLAD (refer to Section 4.2). Finally, the master sends the new layer of tree nodes
to each worker for the next round of node splitting.

4.1 Data Summarization on Workers

Our data summarization technique adopts the dynamic histogram, a concise and effec-
tive data structure supporting mergable operations in the distributed setting [2,26]. The
one-pass nature of our proposed data summarization algorithm enables it to be adapt-
able to the distributed streaming learning [2] as well. Moreover, we will derive efficient
robust loss function estimation algorithm based on such data summarization in the next
subsection.

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 7

Algorithm 1 Data summarization on a worker
Input: data partition in this worker, e.g., Dp
Output: histogram sets {Hnp} describing the target value distribution in internal tree node n

Bins in each histogram are maintained according to the order of bin boundaries.
Tnivr : a priority queue recording the distances between neighbouring bins.

1: for each data sample (xi, yi) in Dp do
2: search the tree built so far to locate the leaf node, e.g. ni, to which sample (xi, yi) belongs.
3: for each feature value xi,k of xi do
4: search for the bin bincl such that yi ∈ [bincl.l, bincl.r] by the binary search over bins of

Hni
k,xi,k

5: if there exits such a bin bincl for yi then
6: only update the bin bincl by bincl.c = bincl.c+ 1, bincl.s = bincl.s+ yi
7: else
8: # blower and bupper are obtained during the above search process for bincl.
9: blower = argmax

bj∈{bk|bk.r≤yi}
bj .r

10: bupper = argmin
bj∈{bk|bk.l≥yi}

bj .l

11: insert a new bin (yi, yi, 1, yi) into Hni
k,xi,k

between bin blower and bupper
12: insert two new neighbour-bin distances |blower.r− yi| and |bupper.l− yi| to the Tnivr
13: if current |Hni

k,xi,k
| > histogram space bound β then

14: for the pair of bins bu and bv with the minimum distance in Tnivr , replace the bins
bu and bv in Hni

k,xi,k
by the merged bin as:

(min(bu.l, bv.l),max(bu.r, bv.r), bu.c+ bv.c, bu.s+ bv.s)
15: end if
16: end if
17: end for
18: end for

8 Authors Suppressed Due to Excessive Length

During the data summarization process, worker p builds a histogram set denoted by
Hnp = {Hn

r,vr}, for each tree node on the bottom layer, e.g., node n. It summarizes the
target value distributions of Dn

p , the data instances belonging to tree node n in data par-
tition Dp. Hn

r,vr is a histogram describing the target value distribution of data instances
having value vr on feature r in Dn

p . Hn
r,vr is a space bounded histogram of maximum

β bins (|Hn
r,vr | ≤ β), e.g. Hn

r,vr = {b1, . . . , bβ}. Let count(H) (or count(H)) be
the number of data instances summarized by a histogram H (or a histogram set H).
Each bin of a histogram is represented by a quad, e.g. bi = (l, r, c, s), where l and r are
the minimum and maximum target values in this bin, c is the number of target values
falling under this bin and s is the sum of the target values. We will see how such quad
elements are used in growing the tree in the next subsection. The number of bins β in
the histograms is specified through a trade-off between accuracy and computational and
communication costs: a large number of bins gives a more accurate data summarization,
whereas small histograms are beneficial for avoiding time, memory, and communica-
tions overloads.

Algorithm 1 presents the data summarization procedure on each worker, which up-
dates the local data instances one by one to the corresponding histogram set. First, the
tree node ni in the bottom layer of the tree for a data instance (xi, yi) ∈ Dp is found
(line 1 − 2) and its associated Hnip will be updated. For each feature value of (xi, yi),
yi is inserted to the corresponding histogram in Hnip by either updating an existing bin
having the value range covering yi (line 3 − 6) or inserting a new bin (yi, yi, 1, yi) to
the histogram (line 7− 12). Second, if the size of the histogram exceeds the predefined
maximum value β then the nearest bins are continuously merged until addressing the
limit β (line 13 − 16). A temporary priority structure (e.g., Tnivr) is maintained for ef-
ficiently finding closest bins to merge (line 13 − 16). Finally, workers only send such
data summarization to the master.

Complexity Analysis: In line 2−6, the binary search over bins of a histogram takes
log β time. Then the priority structure can support in finding the nearest bins and up-
dating bin distances in log β time (line 13− 16). Overall, the time complexity of Algo-
rithm 1 is O(|Dp|d log β). Compared with the histogram building approach in [2, 26],
our method circumvents the sorting operation for updating individual data instances
and improves the efficiency, as is demonstrated in Section 5. The communication com-
plexity for transmitting data summarization of the bottom layer of nodes between the
worker and master is bounded by O(max

r
(|Vr|)dβ) independent of the size of the data

partitions. For the features with high cardinality, our data summarization can incorpo-
rate extra histograms over feature values to decorrelate the communication cost and the
feature cardinality [2, 26].

4.2 Tree Growing on the Master

In this part, we will first outline the tree node splitting process using the data summa-
rization in growing the tree. Then, we present the involved two fundamental operations
in detail, namely the histogram merging and LAD/TLAD estimation.

Tree Node Splitting: In order to find the best split of a tree node, we need a histogram
set summarizing all the data instances falling under this node. Therefore, as is presented

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 9

Algorithm 2 Tree node splitting
Input: histogram sets of tree node n from all data partitions,Hn1 , . . . ,HnP .
Output: the split feature and associated value set for tree node n.
1: build a unified histogram set summarizing the overall target value distribution for this tree

node Hn = merge(Hn1 , . . . ,HnP) by using the histogram merging operation presented in
Algorithm 3

2: for each feature k ∈ {1, . . . , d} do
3: Sort the feature values in Vk according to the median estimations of data in the corre-

sponding histograms [25].
4: Ṽk: the sorted feature values in Vk.
5: iterate over Ṽk to find a vj and the associated feature value subsets V− = {vj |j ≤ i} and

V+ = Vk − V−, so as to minimize the weighted robust loss function.
6: end for
7: return the feature and value subsets, which achieve the minimum robust loss.

in Algorithm 2, a unified histogram set is built by using the histogram merging opera-
tion, which will be described in Algorithm 3. Then, it iterates over each feature to find
a split predicate (Line 4-6), i.e., a feature value subset, so as to minimize the weighted
loss as:

{v∗,V+∗,V−∗} = argmin
vi,V+,V−

L̂l(H
−)
count(H−)

count(Hn)
+ L̂l(H

+)
count(H+)

count(Hn)
(1)

where L̂l(·) is the histogram based estimation of robust loss functions (LAD/TLAD),
which is presented in Algorithm 4. For a trial feature value subset, e.g. V− = {vj |j ≤ i}
and V+, we need to estimate the LAD/TLAD over the data subsets defined by V−
and V+. Therefore, two temporary histograms, e.g., H− and H+ are built by merging
the histograms in Hn corresponding to the feature values present in V− and V+, i.e.,
H− = merge({Hn

vj |j ≤ i}) and H+ = merge({Hn
vj |j > i}) approximating the

distributions of two data subsets defined by V− and V+.

Finally, when the tree reaches the stopping depth, the predictions on the leaf nodes
can be exactly derived by accessing the distributed dataset. This step is only performed
when the tree growing phase is finished.

Histogram Merging: Our proposed histogram merging operation is a one-pass method
over the bins of histograms and creates a histogram summarizing the union of data
distribution of the two histograms. As is presented in Algorithm 2, it is mainly used
in two cases: (1) build a unified histogram set for each tree node on the bottom layer;
(2) build temporary histograms to approximate the target value distributions of two
data subsets defined by a trial feature value subset. Algorithm 3 presents the histogram
merging algorithm. Two histograms H1 and H2 are first combined in the merge-sort
way. During this process, a heap is maintained to record the neighbour-bin distances.
Then, bins which are closest are merged together to form a single bin. The process
repeats until the histogram has β bins.

10 Authors Suppressed Due to Excessive Length

Algorithm 3 Histogram merging
Input: Two histograms, e.g., H1 and H2.
Output: A histogram H summarizing the union of data distribution in H1 and H2.

E is a priority queue recording the distances between neighbouring bins.
1: H: merged histogram.
2: while H1 and H2 have bins do
3: bi and bj : current popped bins from H1 and H2

4: if bi.l < bj .l then
5: insert bi in H
6: else
7: insert bj in H
8: end if
9: insert the new neighbour bin distance in E.

10: end while
11: insert the remaining bins in H1 or H2 to H .
12: while |H| > histogram space bound β do
13: pop from E the pair of bins bu and bv with the minimum bin distance
14: replace the bins bu and bv in H by the merged bin

(min(bu.l, bv.l),max(bu.r, bv.r), bu.c+ bv.c, bu.s+ bv.s)
15: end while

Complexity Analysis: In Algorithm 2 Line 2-11 scans the bins in histograms H1

and H2 once and thus takes O(β). Line 12-14 combines the redundant bins by using
the heap, which takes O(βlog(β)).
LAD/TLAD Estimation: A straightforward method to estimate LAD (or TLAD) based
on a histogram is to first make a median estimate and then to sample data in each
bin of the histogram to approximate individual absolute deviations [2, 26]. Both the
median estimation and data sampling process introduce errors into the LAD (or TLAD)
estimation [25].

To this end, we propose a more efficient and precise algorithm to approximate LAD
and TLAD in one-pass way. Before giving the details, we first define some notations.

Definition 3 (Quantile Bin of a Histogram). Given a histogram H = {b1, . . . , bβ},
count(H) the number of values this histogram summarizes and a quantile q over the
summarized values, the quantile bin bq addresses

∑
bi<bq

bi.c < count(H) · q and∑
bi≤bq bi.c ≥ count(H) · q

Definition 4 (R-Partial-Sum of a Bin). Given a bin b = (l, r, c, s) of a histogram, R-
Partial-Sum of bin b, Sp(b, R) is defined as the sum of theR smallest values summarized
in this bin.

Recall that in the data summarization in Algorithm 1, the histogram updating process
unites neighbouring bins according to the distance of bin boundaries. This allows the
bins to adapt to the data distribution. Regarding the values summarized by a bin in a
histogram (e.g., b), we can safely assume that they are uniformly distributed in range
[b.l, b.r] [2]. Therefore, we provide the lemma below, which will be used for LAD
estimation, to approximate R-Partial-Sum:

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 11

Algorithm 4 LAD / TLAD Estimation
Input: A histogram H , trim ratio τ
Output: LAD or TLAD estimation.
1: s: variable to record

∑
bi>bm

bi.s−
∑

bi<bm

bi.s , st: variable to record
∑
bi>bq

bi.s−
∑

bq<bi<bm

bi.s.

m is the index of 1/2-quantile bin; q and q are the indices of τ -quantile and (1-τ)-quantile
bins.

2: c: variable to record the current count of data instances.
3: for each bin bi in H do
4: c = c+ bi.c
5: record quantile bin m, q and q when c address the corresponding conditions.
6: if 0.5-quantile bin m is found then
7: s = s+ bi.s
8: else
9: s = s− bi.s

10: end if
11: if τ -quantile bin bq is found and 1/2-quantile bin bm is not found then
12: st = st − bi.s
13: else if (1-τ)-quantile bin bq is not found and 1/2-quantile bin q is found then
14: st = st + bi.s
15: end if
16: end for
17: LAD: L̂l(H) = s+ bm.s− 2Ŝp(bm, R),
18: TLAD: L̂l(H, τ) = st + Ŝp(bq, R1)− bq.s+ Ŝp(bq, R2) + bm.s− 2Ŝp(bm, R)

Lemma 1. For a bin b = (l, r, c, s) of a histogram and an integer R (R ≤ b.c), under
the assumption of the uniform distribution of values in the bin, R-Partial-Sum of bin b

can be approximated by Sp(b, R) u Ŝp(b, R) =

{
b.s : R = b.c
R · b.l +R(R− 1)δ : otherwise

,

where δ = (b.s−b.r−b.c·b.l+b.l)
(b.c−2)(b.c−1) .

Proof.

Now we provide the following lemma for estimating the LAD/TLAD based on a his-
togram as:

Lemma 2. Given a histogram H = {b1, . . . , bβ}, the LAD/TLAD over the data sum-
marized by histogram H can be exactly computed by:

(1) Ll(H) =
∑

bi>bm

bi.s −
∑

bi<bm

bi.s + bm.s − 2Sp(bm, R), where R = dC2 e −∑
bi<bm

bi.c, C = count(H) is the total number of data instances covered in histogram

H , and an bm is the 1
2 -quantile bin.

(2) Ll(H, τ) =
∑

bm<bi<bq

bi.s−
∑

bq<bi<bm

bi.s+ Sp(bq, R1)− bq.s+ Sp(bq, R2) +

bm.s− 2Sp(bm, R), where bm, bq and bq are respectively the 1
2 , τ and (1− τ)-quantile

bins, R = dC2 e −
∑

bi<bm

bi.c, R1 = C · τ −
∑
bi<bq

bi.c, R2 = C · (1− τ)−
∑
bi<q

bi.c.

12 Authors Suppressed Due to Excessive Length

Proof. Limited by the space, refer to [30] for the proof details.

Lemma 2 suggests that in estimating LAD/TLAD based on a histogram, the median
estimation step is circumvented. Meanwhile, given the histograms LAD/TLAD can be
estimated through replacing Sp(·) in Lemma 2 by Ŝp(·) defined in Lemma 1 and exactly
computing the remaining terms. In summary, the histogram based estimation of robust
loss functions can be expressed as:

L̂l(H) =
∑
bi>bm

bi.s−
∑
bi<bm

bi.s+ bm.s− 2Ŝp(bm, R) (2)

and

L̂l(H, τ) =
∑

bm<bi<bq

bi.s−
∑

bq<bi<bm

bi.s+ Ŝp(bq, R1)− bq.s+

Ŝp(bq, R2) + bm.s− 2Ŝp(bm, R)

(3)

where R, R1 and R2 are defined as Lemma 2.
On the basis of Lemma 2, we put forward the LAD/TLAD estimation algorithm, as

is shown in Algorithm 3. It is able to estimate LAD or TLAD in one-pass over the bins
of the given histogram. In our LAD/TLAD estimation algorithm, the only approximate
part is Ŝp(b, R). Now we provide the theoretical error bound on it:

Theorem 1. Given a bin b = (l, r, c, s) of a histogram and R (R ≤ b.c), if R = 1
or R = b.c, Ŝp(b, R) provided in Lemma 1 is the exact R-Partial-Sum. Otherwise, the
approximation error of R-Partial-Sum of bin b, Sp(b, R)− Ŝp(b, R) is bounded within
[(R− b.c) · (b.r − b.l), b.s− b.c · b.l].

Proof.

Therefore, the LAD/TLAD estimation has bounded errors as well.

5 Experimental Evaluations

In this section, we perform extensive experiments to demonstrate the efficiency and
effectiveness of DR2-Tree. we first present the setup of the experiments including
datasets, baselines and the implementation environment. Then, we report the results
focusing on three aspects: the efficiency in terms of training time and speedup, the ef-
fectiveness in terms of prediction accuracy and the data summarization performance in
DR2-Tree.

5.1 Setup

Dataset: In the experiments, we use one synthetic and two real datasets.

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 13

Synthetic Data: Our synthetic data generator4 produces data instances with speci-
fied number of features. For each distinct feature value combination e.g., (v1, . . . , vd),
where v1 is the value of the first feature and d is the number of features, it generates
several data instances having such feature values and the target values sampled from a
Gaussian distribution. Such Gaussian distributions are specific w.r.t. feature-value com-
binations. Meanwhile, data instances with outliers on the target variable are injected
based on a Bernoulli distribution. The probability of the Bernoulli distribution is spec-
ified through the percentage of outliers in the produced dataset and it is set as 0.05
initially, i.e., 5% of data instances have outlier target values. The magnitude of outlier
target values is defined as the times of the Gaussian distribution mean. By default, the
magnitude is 3, which means that the target value of an outlier data instance is sampled
from a Gaussian distribution with 3 times larger mean than the mean of the correspond-
ing feature value combination’s distribution. The percentage and magnitude of outliers
will be tuned later in Subsection 5.3.

Flight Dataset: It contains the scheduled and actual departure and arrival times of
flights reported by certified U.S. air carriers from 1987-2008 5. It contains data in-
stances with abnormal values on the “arrival delay” and “departure delay” attributes,
due to abnormal events, e.g., weather, security, etc. In our experiments, we use the at-
tribute “ArrDelay” as the target variable and the categorical features as the independent
variables. The cardinalities of these categorical features vary from 10 to 1032.

Network Dataset: It is a dataset provided by a major European telecommunication
service provider consisting of active measurements from probes within a residential
ISP network. The probes measure various performance fields such as the throughput,
jitter and delay between their location and chosen end-points. Furthermore, each probe
and end-point are associated with various categorical and continuous features, such as
the time of the measurement, the location of the endpoints and the configuration of
the lines. Finally the tests cover a period of 2 days and involve 124 probes and 1314
targets. This dataset is noisy in the sense that due to network anomalies and events, the
measurements could have huge outlier values.

Baselines: ER2T is a distributed robust regression tree. SRT and DHRT are two repre-
sentative distributed regression trees in the literature [2, 17, 26]. ER2T: It refers to the
exact distributed robust regression tree. It builds the robust regression tree on the mas-
ter by exactly calculating the robust loss functions in a distributed way. SRT: It refers
to the distributed regression tree based on square error criteria [17] in Apache Spark
machine learning tool set 6. Prior to the tree induction, a pre-processing step is per-
formed to obtain static and equidepth histograms for each feature and the split points
are constantly selected from the bins of such histograms in the training phase. DHRT: It
implements a single distributed regression tree based on [26], which employs dynamic
histograms [2] to summarize statistics in distributed data for evaluating the square error
split criterion on the master. In building histograms, it requires to sort the bins each time
a data instance is added to the set already represented by the histogram [2].

4 https://github.com/weilai0980/DRSquare_tree/tree/master/
dr2tree_src

5 http://stat-computing.org/dataexpo/2009/the-data.html
6 http://spark.apache.org/docs/latest/mllib-decision-tree.html

14 Authors Suppressed Due to Excessive Length

In Subsection 5.3, we will also use random forests (RF) and gradient boosted regres-
sion trees (GBT) in the distributed machine learning library Spark MLlib to compare
with our robust regression tree in terms of accuracy.

Implementation: Our proposed DR2-Tree and baselines are all implemented on Apache
Spark, a popular distributed data processing engine. The engine is deployed on a cluster
of 23 servers, each with 16 cores (2.8GHz) and 32G of RAM.

5.2 Efficiency

In this group of experiments, we evaluate the efficiency of growing regression trees
under different conditions. The training time is measured as the total time for growing
a tree from the root node until the specified depth. To mitigate the effects of varying
cluster conditions, all the results have been averaged over multiple runs.

We consider four parameters to tune in this set of experiments, namely the tree
depth, training data size, maximum number of bins in data summarization and the num-
ber of workers. They have direct effect on the training time [2, 17, 22, 26]. The exper-
iments are performed by varying one parameter while keeping the others as default
values. By default, the maximum number of bins is set as 500, the number of workers
is 5, the depth is 6 and the size of the training dataset is 10 million initially.

2 4 6 8 10 12
Tree depth

 (a)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

2 4 6 8 10 12
Tree depth

 (b)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

2 4 6 8 10 12
Tree depth

 (c)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

Fig. 2. Training time w.r.t. the depth of the tree. (a) synthetic dataset (b) flight dataset (c) network
dataset. (best viewed in colour)

Depth: Figure 2 presents the training time as a function of the training depth of
the regression tree. DR2-Tree outperforms ER2T and DHRT by 3× and 2× faster in
average. In ER2T the training time consistently takes the longest, as it computes the
expensive exact median and LAD (TLAD) in the distributed setting. SRT takes 0.5
times less time than DR2-Tree. This is because SRT constantly summarizes the data
using fixed bins and thus takes less time to extract statistics in bins from distributed
data during the training phase. But square-error based SRT and DHRT are less robust
to noisy data than DR2-Tree, which will be shown in the next subsection.

Data size: In Figure 3, we present the training time as a function of the size of the
training dataset, i.e., the number of data instances. Due to the one-pass nature of data
summarization and tree growing processes, the training time of DR2-Tree increases
linearly, highlighting the scalability. DHRT has a quickly increasing training time in
part due to the quadratic computation in updating histograms. DR2-Tree takes 3× and
2× less training time in average than ER2T and DHRT.

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 15

5 10 15 20 25
Training data size (million)

 (a)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

5 10 15 20 25
Training data size (million)

 (b)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

5 10 15 20 25
Training data size (million)

 (c)

0
1
2
3
4
5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

Fig. 3. Training time w.r.t. the size of training dataset. (a) synthetic dataset (b) flight dataset (c)
network dataset. (best viewed in colour)

200 400 600 800 1000
maximum number of bins

 (a)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
DHRT DR2T-LAD DR2T-TLAD

200 400 600 800 1000
maximum number of bins

 (b)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
DHRT DR2T-LAD DR2T-TLAD

200 400 600 800 1000
maximum number of bins

 (c)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

1e3
DHRT DR2T-LAD DR2T-TLAD

Fig. 4. Training time w.r.t. the maximum number of bins in data summarization. (a) synthetic
dataset (b) flight dataset (c) network dataset. (best viewed in colour)

Maximum number of bins: In Figure 4, we investigate the effect of the maximum
number of bins in data summarization on the training time. ER2T employs no data
summarization. In SRT, bins are built according to the cardinality of features in data.
Therefore, varying the number of bins has no effect on ER2T and SRT and in Figure 4
only the results of DR2-Tree and DHRT are reported. The number of bins affects both
the efficiency of data summarization on workers and tree growing on the master, and
thus in general the training time is positively correlated with the maximum number of
bins. At the highest level of bin numbers, the training time of DR2-Tree is average 4
times less than DHRT.

5 10 15 20 25
workers

 (a)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

ER2T SRT DHRT DR2T-LAD DR2T-TLAD

5 10 15 20 25
workers

 (b)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

ER2T SRT DHRT DR2T-LAD DR2T-TLAD

5 10 15 20 25
workers

 (c)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

ER2T SRT DHRT DR2T-LAD DR2T-TLAD

Fig. 5. Training time w.r.t. the number of workers. (a) synthetic dataset (b) flight dataset (c) net-
work dataset. (best viewed in colour)

Number of workers: In Figure 5, we proceed to investigate the speedup for differ-
ent numbers of workers. For large datasets, the communication between workers and
the master is negligible relative to the gain in the data summarization building phase.
Therefore, increasing the number of workers is beneficial for speeding up the training

16 Authors Suppressed Due to Excessive Length

process [2]. DR2-Tree presents 2× higher speedup than ER2T at the highest level of
number of workers.

5.3 Effectiveness

In this part, we evaluate the prediction accuracy of DR2-Tree and baselines under dif-
ferent dataset properties and regression tree set-ups. Specifically, we aim to study the
effect of the maximum number of bins, the outlier percentage and magnitude in the
training dataset. The prediction accuracy is measured by normalized root mean square
error (NRMSE), so as to facilitate the comparison between datasets. Lower values of
NRMSE are considered better. The trim ratio in DR2-Tree-TLAD is chosen within the
range of [0.05, 0.15] by cross-validation in this group of experiments. The un-tuned
parameters in each group of experiments are set as the default values in Section 5.2.

0 5 10 15
outlier percentage (%)

 (a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

NR
M

SE

ER2T SRT DHRT DR2T-LAD DR2T-TLAD

3x 6x 9x 12x 15x
outlier magnitude (times of normal means)

 (b)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

NR
M

SE
ER2T SRT DHRT DR2T-LAD DR2T-TLAD

Fig. 6. Prediction accuracy w.r.t. the (a) outlier percentage and (b) magnitude in the training
dataset (best viewed in colour).

Outlier properties in the dataset: In this group of experiments, we investigate
the effect of the noise level of the training dataset, namely the outlier percentage and
magnitude, on the prediction accuracy. Since we can only manipulate the noise level of
the synthetic dataset, only the results on the synthetic dataset are reported in Figure 6.

In Figure 6(a), we increase the percentage of data instances with outlier target val-
ues while keeping the magnitude of the outlier values as 3× of the target value mean. It
is observed that initially when the training dataset has no outliers, the accuracies of all
approaches are highly close. As the percentage of outliers increases, the accuracy dif-
ference between the square error and robust error criterion based approaches becomes
significant.

In Figure 6(b), we study the effect of the outlier magnitude on the accuracy. In this
group of experiments, 5% data instances have outlier target values. When the magnitude
of outliers increases, ER2T and DR2-Tree demonstrate stable accuracy and have 2 times
less errors than SRT and DHRT at the highest level of the outlier magnitude. Compared
with Figure 6(a), we also observe that square error based approaches are more sensitive
to the outlier percentage than to the outlier magnitude in the dataset.

Maximum number of bins:
Figure 7 displays the prediction accuracy for different number of bins in the data

summarization. As is presented in Section 4, the number of bins affects the precision

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 17

200 400 600 800 1000
maximum number of bins

 (a)

2.5
3.0
3.5
4.0
4.5
5.0

NR
M

SE

1e 1
DHRT DR2T-LAD DR2T-TLAD

200 400 600 800 1000
maximum number of bins

 (b)

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

NR
M

SE

1e 2
DHRT DR2T-LAD DR2T-TLAD

200 400 600 800 1000
maximum number of bins

 (c)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

NR
M

SE

1e 1
DHRT DR2T-LAD DR2T-TLAD

Fig. 7. Prediction accuracy w.r.t. the maximum number of bins in data summarization. (a) syn-
thetic dataset (b) flight dataset (c) network dataset. (best viewed in colour)

of error criterion estimation in DR2-Tree. Meanwhile, it should avoid setting the num-
ber of bins too large, otherwise the training efficiency would degrade, as is shown in
Figure 4. Since only DR2-Tree and DHRT have tunable dynamic histograms, only the
results of them are shown.

For the noisy synthetic and network datasets, as the number of bins increases, the
master in DR2-Tree can obtain more precise data summarization based LAD/TLAD
estimation and thus yields decreasing prediction errors. DR2-Tree outperforms DHRT
by around 3 times. For the flight data, they present comparable accuracies.

Table 1. Overall accuracy comparison (NRMSE).

datasets ER2T SRT DHRT DR2-Tree-LAD DR2-Tree-TLAD RF GBT
Synthetic data 0.225 0.481 0.493 0.224 0.219 0.481 0.476

Flight data 0.00882 0.00874 0.00908 0.00889 0.00890 0.00836 0.00835
Network data 0.061 0.148 0.153 0.0629 0.0581 0.145 0.181

Overall accuracy comparison: In this part, we run all the approaches by cross-
validation to achieve the best prediction accuracies for the three datasets and report the
results in Table 1. The synthetic dataset is set to have 5% outlier target values with
magnitude 3. It shows that robust error criterion based approaches have around 50%
less error than square error based approaches, i.e., SRT, DHRT, RF and GBT. For not so
noisy data, i.e. the flight data, two types of approaches have very comparable accuracy.
Such results also demonstrate the wide applicability of our DR2-Tree.

5.4 Data Summarization Performance in DR2-Tree

Communication cost of data summarization: Table 2 shows the average communi-
cation cost of data summarization for a tree node between the worker and master. It is
measured by the amount of basic data units (e.g., integer, floats, etc.). We study the com-
munication cost variation as tree grows, since DR2-Tree employs dynamic histograms,
which are rebuilt for the new-grown bottom layer of tree nodes.

From Table 2, we observe that the communication cost increases first, then keeps
relatively constant or slightly decreases, as the tree grows. This is because initially the
data instances are assigned to small number of tree nodes and each tree node has data

18 Authors Suppressed Due to Excessive Length

summarization with histograms of full bins to summarize the data. As the tree grows
and has more nodes, the amount of data instances in each node is decreasing and the
data summarization requires less bins in histograms and therefore the communication
cost keeps relatively stable or decreases. The communication cost is different across
datasets. This is because the number of features and the size of feature value set are
different for the three datasets.

Table 2. Data summarization communication cost as the tree grows.

Tree depth 2 4 6 8 10
Synthetic data 12500 25000 25000 18359 17871

Flight data 560000 1120000 1120000 1225000 1050000
Network data 200000 400000 437500 412500 411500

Accuracy of data summarization: In this part, we proceed to further investigate the
accuracy of the data summarization based LAD/TLAD estimation in DR2-Tree. In or-
der to understand the accuracy under different data distributions [2], we generate seven
synthetic sets via different kinds of probability distributions and summarize each data
set by using the histogram building approach in DR2-Tree. The probability distributions
and associated parameters are listed in Table 3. For each distribution, 105 data points
are generated. Then, we compare the histogram based LAD/TLAD estimation with the
exact values by using the mean absolute percentage error. It expresses the accuracy as a
percentage and fits for the datasets of different value scales. We run the process of data
generation, histogram building and LAD/TLAD estimation for several times to report
average results in Table 3.

We observe that the error significantly decreases as the number of bins in histograms
is increased. For 800 number of bins, most of the errors are below 0.1. The use of a
memory-bounded data summarization in our framework naturally comes at a cost in
accuracy. When the data distribution is highly skewed, practitioners can apply alterna-
tive R-partial sum approximate estimation based on the assumed distribution. This only
changes the LAD/TLAD estimation component while keeping the training framework
intact.

6 Discussion

Our current version of DR2-Tree focuses on the robust regression with categorical fea-
tures. It can be smoothly extended to handle numeric or mixed features. For numeric
features, besides the histograms built on the target values in current DR2-Tree, we can
integrate additional histograms on the domains of numeric features [2, 17, 26] to form
two-dimensional histogram based data summarization, such that these histograms re-
spectively provide split candidates and error criterion estimation. Meanwhile, our data
summarization has potential to support alternative robust error criterion such as Huber
loss in the future. Lastly, note that our robust regression tree learner also supports binary
(0-1) classification tasks by modeling them as instances of logistic regression.

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 19

Table 3. LAD/TLAD estimation error w.r.t. the maximum number of bins in histograms (two
numbers in each cell respectively correspond to the mean absolute percentage errors of LAD and
TLAD.)

XXXXXXXXXDistribution
#Bins

200 400 600 800

Uniform ([0, 100]) (0.0000410, 0.347) (0.0000411, 0.216) (0.0000393, 0.122) (0.0000392, 0.029)
Normal (µ = 0, σ = 1) (0.571, 0.844) (0.450, 0.690) (0.173, 0.403) (0.0712,0.213)
Exponential(µ = 0.5) (0.243, 0.0753) (0.221, 0.0776) (0.205,0.0761) (0.143, 0.0678)

Beta (a = 0.5, b = 0.5) (0.0000316, 0.198) (0.0000309, 0.123) (0.0000315, 0.0721) (0.0000313, 0.0612)
Gama (a = 3, b = 1) (0.118, 0.381) (0.0909, 0.184) (0.0890, 0.114) (0.0772, 0.0983)

Lognormal (µ = 1, σ = 0.5) (0.138, 0.201) (0.0940, 0.135) (0.0862, 0.101) (0.0723, 0.0975)
Chisquare (v = 10) (0.243, 0.130) (0.196, 0.115) (0.138, 0.102) (0.078, 0.083)

7 Conclusion

In this paper, we propose an efficient distributed robust regression tree for handling large
and noisy data. Our DR2-Tree employs a novel data summarization technique, which
is able to support both distributed information extraction and robust error criterion esti-
mation for growing the regression tree. Extensive experiments reveal that: (1) Our pro-
posed DR2-Tree is robust to datasets with various outlier percentages and magnitudes.
(2) DR2-Tree exhibits comparable accuracy as the conventional distributed regression
tree for relatively clean datasets with rare outliers. (3) DR2-Tree is much more efficient
than exact robust regression and the dynamic histogram based regression tree [2, 26].
Such results verifies the broad applicability of our DR2-Tree framework.

8 Acknowledgements

The authors thank Mathias Niepert for his insightful input to this work. The research
leading to these results has received funding from the European Union’s Horizon 2020
innovation action program under grant agreement No 653449-TYPES as well as Nano-
Tera.ch through the OpenSense2 project.

References

1. Basilico J D, Munson M A, Kolda T G, et al. COMET: A recipe for learning and using large
ensembles on massive data. In: IEEE ICDM, 2011: 41-50.

2. Ben-Haim Y, Tom-Tov E. A streaming parallel decision tree algorithm. In: JMLR, 2010, 11:
849-872.

3. Chm-les X L C, CA O, Yan R J. Decision tree with better ranking. In: AAAI 2003.
4. Darlington J, Guo Y, Sutiwaraphun J, et al. Parallel induction algorithms for data mining.

In: Advances in Intelligent Data Analysis Reasoning about Data. Springer Berlin Heidelberg,
1997: 437-445.

5. Esposito F, Malerba D, Semeraro G, et al. A comparative analysis of methods for pruning
decision trees. In: IEEE TPAMI, 1997. 19(5): p. 476-491.

20 Authors Suppressed Due to Excessive Length

6. Freitas A A, Lavington S H. Mining very large databases with parallel processing. In: Springer
Science Business Media, 1998.

7. Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning: data mining,
inference and prediction. The Mathematical Intelligencer, 2005, 27(2): 83-85.

8. Janikow C Z. Fuzzy decision trees: issues and methods. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 1998, 28(1): 1-14.

9. Jin R, Agrawal G. Communication and Memory Efficient Parallel Decision Tree Construction.
In: SIAM SDM, 2003.

10. John G H. Robust Decision Trees: Removing Outliers from Databases. In: KDD, 1995: 174-
179.

11. Joshi M V, Karypis G, Kumar V. ScalParC: A new scalable and efficient parallel classification
algorithm for mining large datasets. In: the 12th International Parallel Processing Symposium,
1998:573579.

12. Katz G, Shabtai A, Rokach L, et al. ConfDTree: Improving decision trees using confidence
intervals. In: IEEE ICDM, 2012: 339-348.

13. Koufakou A, Georgiopoulos M. A fast outlier detection strategy for distributed high-
dimensional data sets with mixed attributes. In: Data Mining and Knowledge Discovery, 2010,
20(2): 259-289.

14. Lee K H, Lee Y J, Choi H, et al. Parallel data processing with MapReduce: a survey. In:
ACM SIGMOD Record, 2012, 40(4): 11-20.

15. Liaw A, Wiener M. Classification and regression by randomForest. R news, 2002, 2(3): 18-
22.

16. Olaru C, Wehenkel L. A complete fuzzy decision tree technique. In: Fuzzy sets and systems,
2003, 138(2): 221-254.

17. Panda B, Herbach J S, Basu S, et al. Planet: massively parallel learning of tree ensembles
with mapreduce. In: VLDB Endowment, 2009, 2(2): 1426-1437.

18. Provost F, Domingos P. Well-trained PETs: Improving probability estimation trees. Technical
Report CDER 00-04-IS, 2001.

19. Quinlan J R. Bagging, boosting, and C4. 5. In: AAAI/IAAI, 1996: 725-730.
20. Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: A new classifier ensemble method.

In: IEEE TPAMI, 2006, 28(10): 1619-1630.
21. Shafer J, Agrawal R, Mehta M. SPRINT: A scalable parallel classier for data mining. In:

PVLDB. 1996: 544-555.
22. Shanahan J G, Dai L. Large scale distributed data science using apache spark. In: ACM

SIGKDD. 2015: 2323-2324.
23. Srivastava A, Han E H, Kumar V, et al. Parallel formulations of decision-tree classification

algorithms. In: Springer US, 2002.
24. Stuart C. Robust regression. Department of Mathematical Sciences, Durham University,

2011, 169.
25. Torgo L F R A. Inductive learning of tree-based regression models. Thesis 1999.
26. Tyree S, Weinberger K Q, Agrawal K, et al. Parallel boosted regression trees for web search

ranking. In: ACM WWW, 2011: 387-396.
27. Wang P, Sun W, Yin D, et al. Robust tree-based causal inference for complex ad effectiveness

analysis. In: ACM WSDM, 2015: 67-76.
28. Ye J, Chow J H, Chen J, et al. Stochastic gradient boosted distributed decision trees. In: ACM

CIKM, 2009: 2061-2064.
29. Zadrozny B, Elkan C. Obtaining calibrated probability estimates from decision trees and

naive Bayesian classifiers. In: ICML, 2001, 1: 609-616.
30. Supplementary Material. https://infoscience.epfl.ch/record/218970

Efficient Distributed Decision Trees for Robust Regression [Technical Report] 21

9 Appendixes

9.1 Proof of lemmas and theorems

Lemma 1. For a bin b = (l, r, c, s) of a histogram and an integer R (R ≤ b.c), under
the assumption of the uniform distribution of values in the bin, R-Partial-Sum of bin b can

be approximated by Sp(b,R) u Ŝp(b,R) =

{
b.s : R = b.c
R · b.l +R(R− 1)δ : otherwise

, where

δ = (b.s−b.r−b.c·b.l+b.l)
(b.c−2)(b.c−1)

.

Proof. We assume that the values in a bin (e.g., b) are uniformly distributed in the value range
[b.l, b.r]. Then, since the sum of values in the bin is given by b.s, we can obtain the sum
of values between b.l and b.r is b.s − b.r − b.l. Meanwhile, the values in (b.l, b.r) can be
derived by adding incremental values over b.l. Therefore, the increments are considered as an
arithmetic series whose elements are the products of the sequence term (e.g., 1, . . . , b.c − 1)
and the unit increment value. The sum of such increments is (b.s − b.r − b.c · b.l + b.l).
The unit increment value is calculated as (b.s−b.r−b.c·b.l+b.l)

(b.c−2)(b.c−1)/2
, where (b.c − 2)(b.c − 1)/2 is

the number of unit increments derived by the sum of the arithmetic series. As a result, the
R-partial sum is approximated by the sum of the sequence of the first R increments plus the
base value b.l, i.e., R · b.l +R(R− 1) · (b.s−b.r−b.c·b.l+b.l)

(b.c−2)(b.c−1)
.

Lemma 2. Given a histogram H = {b1, . . . , bβ}, the LAD/TLAD over the data summarized
by histogram H can be exactly computed by:
(1) Ll(H) =

∑
bi>bm

bi.s−
∑

bi<bm

bi.s+ bm.s− 2Sp(bm, R), where R = dC
2
e −

∑
bi<bm

bi.c,

C = count(H) is the total number of data instances covered in histogram H , and an bm is
the 1

2
-quantile bin.

(2) Ll(H, τ) =
∑

bm<bi<bq

bi.s−
∑

bq<bi<bm

bi.s+Sp(bq, R1)− bq.s+Sp(bq, R2) + bm.s−

2Sp(bm, R), where bm, bq and bq are respectively the 1
2

, τ and (1 − τ)-quantile bins, R =
dC

2
e −

∑
bi<bm

bi.c, R1 = C · τ −
∑
bi<bq

bi.c, R2 = C · (1− τ)−
∑
bi<q

bi.c.

Proof. Assume that the target values of data instances summarized by histogram H are given
as a sorted list yi and C = count(H) is even. The median is m =

yC/2+yC/2+1

2
. The

exact LAD over {yi} is computed as:
C∑
i=1

|yi −m| =
C/2∑
i=1

(m − yi) +
C∑

i=C/2+1

(yi −m) =

C/2∑
i=1

(−yi) +
C∑

i=C/2+1

yi. If {yi} are grouped according to the bins in histogram H , we can

obtain
C/2∑
i=1

(−yi) +
C∑

i=C/2+1

yi =

j=bm−1∑
j=b1

∑
yi∈j

(−yi)︸ ︷︷ ︸
(a)

+

j=bβ∑
j=bm+1

∑
yi∈j

yi

︸ ︷︷ ︸
(b)

+
∑

yi∈bmand i≤R

(−yi)︸ ︷︷ ︸
(c)

+
∑

yi∈bmand i>R

yi︸ ︷︷ ︸
(d)

. Item (a) and (b) in above formula can be exactly calculated by the sum

element in the corresponding bin of the histogram. Item (c) and (d) can be computed through
the R-partial-sum of the 0.5-quantile bin, namely,−Sp(bm, R) and bm.s−Sp(bm, R). Above
derivation also applies to the case that C is odd. The lemma is proved.
Likewise, as for TLAD assume that the target values of data instances summa-
rized by histogram H are given as a sorted list {yi} and C = count(H) is

22 Authors Suppressed Due to Excessive Length

even. The exact Trimmed-LAD for k trimmed dataset (k = τC) is expressed

as
C/2∑
i=k+1

(−yi) +
C−k∑

i=C/2+1

yi. By grouping the individual values into the cor-

responding bins in the histogram, we can obtain
C/2∑
i=k+1

(−yi) +
C−k∑

i=C/2+1

yi =

∑
yi∈bqand i>R1

(−yi)︸ ︷︷ ︸
(a)

+

j=bm−1∑
j=bq+1

∑
yi∈j

(−yi)

︸ ︷︷ ︸
(b)

+

j=bq−1∑
j=bm+1

∑
yi∈j

yi

︸ ︷︷ ︸
(c)

+
∑

yi∈bmand i≤R

(−yi)︸ ︷︷ ︸
(d)

+
∑

yi∈bmand i>R

(yi)︸ ︷︷ ︸
(e)

+

∑
yi∈bqand i≤R2

(yi)

︸ ︷︷ ︸
(f)

. Then, item (a), (d), (e) and (f) can be respectively derived by R-partial

sums of the corresponding bins and (b) and (c) can be exactly calculated in the histogram.�

Theorem 1. Given a bin b = (l, r, c, s) of a histogram andR (R ≤ b.c), ifR = 1 orR = b.c,
Ŝp(b,R) provided in Lemma 1 is the exactR-Partial-Sum. Otherwise, the approximation error
ofR-Partial-Sum of bin b, Sp(b,R)−Ŝp(b,R) is bounded within [(R−b.c) ·(b.r−b.l), b.s−
b.c · b.l].

Proof. We first derive the bounds of the exact R-partial sum and the approximate one. Based
on Lemma 1, when R = b.c, the approximate partial sum is equal to the exact value. For the
case ofR < b.c, Ŝp(b,R) = R · b.l+R(R−1)δ, where δ = (b.s−b.r−b.c·b.l+b.l)

(b.c−2)(b.c−1)
. Therefore,

we can derive that R · b.l ≤ Ŝp(b,R) ≤ R · b.l+ b.s− b.c · b.l. For the exact value Sp(b,R),
we have the first bound below: b.s− Sp(b,R) ≤ (b.c−R) · b.r. It holds because the sum of
the remaining values, i.e. b.s−Sp(b,R) is maximized when all the remaining values locate on
the right boundary of the bin b.r. As a result, we can obtain b.s− (b.c−R) · b.r ≤ Sp(b,R).
Similarly, the upper bound is derived by Sp(b,R) ≤ b.s− (b.c−R) · b.l. Now, merging the
bounds of Ŝp(b,R) and Sp(b,R) leads to the theorem.

