
Axo: Masking Delay Faults in Real-Time Control
Systems

Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, Jean-Yves Le Boudec
School of Computer Science and Communication Systems

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract—We consider real-time control systems that consist of
a controller that computes and sends setpoints to be implemented
in physical processes through process agents. We focus on systems
that use commercial off-the-shelf hardware and software compo-
nents. Setpoints of these systems have strict real-time constraints:
Implementing a setpoint after its deadline, or not receiving
setpoints within a deadline, can cause failure. In this paper, we
address delay faults: faults that cause setpoints to violate their
real-time constraints. We present Axo, a fault-tolerance protocol
that guarantees safety and improves availability for a class of such
systems that exhibit two main properties: the setpoints must have
a known validity horizon, and process agents must be capable
of handling duplicate setpoints. To reason about delay faults,
and consequently design Axo, we present an abstraction of a
controller; the abstraction applies to a wide range of real-time
control systems. We prove guarantees of safety and availability.
Finally, we present an implementation of Axo and the results of
the tests performed with Commelec, a real-time control system
for electric grids.

I. INTRODUCTION

Real-time control systems (RTCSs) are systems in which
a software controller continuously applies control to a set of
processes, thereby changing or maintaining the system state.
Some common examples are RTCSs for electric grids [1]–[3],
manufacturing processes [4] and autonomous vehicles [5], [6].

Many of these systems are mission critical: their failure can
lead to serious damage [7]. Yet, there is a trend in increasingly
relying on commercial off-the-shelf (COTS) hardware such as
cRIO (from NI), DAP server (from Alstom), and MGC600
(from ABB). Also, as RTCS controllers have a large size,
they often use third-party libraries, including COTS software.
Such COTS-based RTCSs (cb-RTCSs) are susceptible to faults
incurred by their hardware and software components [8].

Figure 1 depicts a model of RTCS architecture. It has a set
of controlled processes, each with an actuator and a software
process agent (PA). Also, it consists of sensors that read the
state of controlled processes and other uncontrollable parts
of the system, and that send this state as measurements to the
controller. In some systems, PAs also send some information as
measurements. The controller makes use of the measurements
received from sensors and PAs, in order to compute setpoints
that are sent to the PAs. To control its process, each PA
implements the received setpoint through the corresponding
actuator, which results in changes to the state.

Setpoints are computed and issued by the controller of
an RTCS in order to drive the state of the system in a

Controller
Sensors

Process Agent

Actuator

Controlled
Process

Process Agent

Actuator

Controlled
ProcessS

en
so
r

measurements

m
easu

rem
ents

set
po
int
s

m
ea
su
re
m
en
ts setpoints

m
easurem

ents

Fig. 1: Model of RTCS architecture

certain direction. Therefore, the setpoints are a function of the
perceived current state of the system and will become invalid
when the state drifts by some threshold. This threshold is
specific to each RTCS and can be mapped, based on the inertia
of the underlying system, to a validity horizon: a time beyond
which setpoints are invalid and must not be implemented.

A validity horizon implies that setpoints are subject to strict
real-time constraints. Therefore, a delay incurred due to soft-
ware/hardware faults in the controller, or due to transmission
delays in the network, could violate such constraints and lead
to failure. We refer to such faults as delay faults. It is worth
noting that crash faults are a special case of delay faults, where
the delay is infinite.

Traditional fault-tolerance protocols can be classified as
benign-fault tolerance [9], [10] and Byzantine-fault tolerance
(BFT) [11]–[13]. Benign-fault tolerance handles crash-only
faults and is thus not designed for delay faults. Whereas BFT
protocols are designed for arbitrary kinds of faults, they focus
on faults affecting the value of a setpoint, rather than its timing
attributes.

An existing approach for dealing with delay faults in a real-
time setting [14] proposes encapsulating all the time-critical
functions of the controller into a strictly real-time component:
the timely computing base (TCB) [15]. However, this is not a
viable option for cb-RTCSs, as their controllers often execute
complicated optimization functions. Moreover, the proposed
approach requires specifying a bound on the execution time of
the time-critical functions, which is not feasible in the presence
of COTS software.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148022339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We designed Axo, a fault-tolerance protocol that targets
delay faults in RTCSs. Axo is transparent to the RTCS, i.e.,
it imposes no interference with the RTCS functionality. Axo
can be used with minor additions to the controller software;
they are elaborated further in Section IV.

Axo requires the RTCS to exhibit the following properties:

Property 1 (P1). There exists a known validity horizon (τo).

Property 2 (P2). PAs are able to handle duplicate setpoints.

P1 requires RTCSs to provide the value of τo as an input to
Axo. P2 requires process agents to handle duplicate setpoints, a
property generally exhibited in RTCSs that use absolute rather
than differential setpoints. An example of absolute setpoints
would be an electric grid controller instructing a battery agent
that is injecting 8kW to ‘set the injected power to 10kW’,
rather than a differential setpoint that would be to ‘increase
the injected power by 2kW’.

Our main contributions in this paper are as follows. First,
we develop an abstraction of a controller that applies to a wide
range of RTCSs. This abstraction enables us to design Axo1

that to the best of our knowledge, is the first fault-tolerance
protocol that guarantees safety and improves availability of cb-
RTCSs. Then, we formally define the concepts of safety and
availability as pertaining to delay faults, and we provide proofs
for their guarantees. Finally, we provide an implementation of
Axo as a fault-tolerance layer, and the results of testing it with
Commelec [1], an RTCS for electric grids.

The rest of the paper is as follows. In Section II, we
discuss related work. In Section III, we list the assumptions
on the RTCS required by Axo. In Section IV, we define
the controller abstraction. In Section V, we discuss the Axo
design and algorithms. In Section VI, we prove the correctness
guarantees of Axo. In Sections VII and VIII, we discuss the
implementation of Axo, and the tests performed with Axo on
Commelec. Finally, we conclude in Section X.

II. RELATED WORK

To the best of our knowledge, Axo is the only fault-tolerance
protocol that guarantees safety and improves availability for
cb-RTCSs.

In the literature, delay faults for real-time systems have been
studied under the name of timing faults [14]–[17]. The closest
existing technique is the work done by Verı́ssimo and Casimiro
on TCB [15]. They propose an architecture and programming
model that can be used to provide generic delay fault tolerance
for real-time systems [14]. As mentioned in Section I, this
fault-tolerance approach relies on encapsulating and rewriting
the time-critical functions of the real-time system in the TCB
module: a strictly real-time component. This method does
not apply for cb-RTCSs that are characterized by their large
code-base that consists of third-party libraries and generally
complex functions, for which it is not feasible to rewrite and
implement in the TCB.

1Named after Axolotl, a type of salamanders that exhibits very quick
regeneration when one or more of their organs fail.

Furthermore, several components of the TCB architecture
require an implementation specific to each RTCS. This draw-
back is shared with other generic architectures such as the
time-triggered architecture (TTA) [17]. Whereas, Axo is a
layer of software that can be used on any RTCS that satisfies
the assumptions (Section III) and requires only minor additions
to the RTCS controller software (Section IV). This enables the
deployment of Axo on existing RTCSs.

Functions to be implemented in the TCB or the TTA require
a known bound on execution time. This requires static analysis
of generally complex functions that might include COTS
software. Additionally, we have seen that in some RTCSs [1],
the execution time heavily depends on the parameters provided
at run time. This would require further dynamic analysis of
the execution time, a task that does not fit within the real-time
constraints of RTCSs.

Other work in this field has focused on improving the
quality-of-service and response-time of the systems [16]. The
authors focus on transaction systems as opposed to RTCSs,
and do not aim at providing hard real-time constraints as Axo
does.

Traditional BFT protocols [11], [13] do not generally con-
sider the timing attributes of the setpoints. Moreover, all
BFT protocols require consensus among the replicas. The
consensus can take unbounded time [18], delaying delivery
of setpoints to PAs indefinitely. This property makes them
unsuitable for tolerating delay faults, even in the cases when
they are designed for real-time applications [13].

Active replication protocols, such as [10], use hot standbys,
all of which simultaneously compute setpoints. The use of
hot standbys incurs zero delay in sending the setpoints, which
makes it attractive for RTCSs, especially in the context of
delay faults. However, when one replica is delay faulty, it can
still send a setpoint at some time after its validity horizon.
This violates safety and must be explicitly handled. Axo uses
active replication with an added mechanism to provide safety
in the presence of delay faults.

III. ASSUMPTIONS

As mentioned in Section I, we assume that the RTCS obeys
P1 and P2 (Properties 1 and 2). Additionally, we consider that
the controller is only susceptible to crash and delay faults, and
that the network can only drop, delay, and reorder messages.
Generic Byzantine faults, such as the controller performing
an incorrect setpoint computation or the network changing the
contents of messages, are not considered.

Moreover, as RTCSs perform real-time actions on dis-
tributed nodes, the controllers and PAs naturally have a global
notion of time. This is realized either through a GPS-based
or network-based (e.g., precise time protocol (PTP), network
time protocol (NTP)) time-synchronization protocol. Such
protocols are characterized by their accuracy. Henceforth, the
synchronization accuracy of the time-synchronization protocol
is denoted by δs.

IV. ABSTRACTION OF THE CONTROLLER

Let tc be the first time-instant at which the measurements
used to compute a setpoint are processed by the controller.
At tc, the perceived state of the system by the controller is
closest to the actual state. As we consider the controller to
not be susceptible to Byzantine faults, a setpoint computed
based on this perceived state will not steer the system into an
infeasible state, as long as the setpoint is received within its
validity horizon. To guarantee this, the validity horizon τo must
be chosen such that it takes into consideration the difference
between the perceived and the actual state of the system, at the
times when the controller makes a decision to compute. Given
tc and τo, we define the validity of a setpoint as follows.

Definition 1 (Valid Setpoint). A setpoint is valid, if and only
if it is received by a PA at tr ≤ tc+τo. Otherwise, it is invalid.

For RTCSs obeying P1 (Property 1), τo is known. Whereas,
a measure of tc and tr can be obtained at the controller and
the PA, respectively. These measures will have an uncertainty
of δs, the accuracy of the time-synchronization protocol.

However, the operations of obtaining these measures are
susceptible to delay faults. Therefore, one can at best obtain
close approximations to these values (t∗c and t∗r). As our aim
is to guarantee that PAs receive no invalid setpoints, it is
essential that the obtained approximations never result in an
invalid setpoint being classified as valid. Hence, on one hand,
it is imperative to obtain a t∗r ≥ tr and a t∗c ≤ tc. On the
other hand, these approximations have to be close, as worse
approximations lead to more valid setpoints being classified
as invalid, an error that must be minimized.

In the presence of delay faults, the operation of measuring tr
will return the desired t∗r . This value is equal to tr in non-faulty
conditions, and is greater than tr in the presence of faults.
Hence, it is the closest obtainable approximation. However,
it is non-trivial to obtain t∗c ≤ tc. Section IV-A presents an
abstract model of RTCS controllers that we have developed.
This model will be essential for obtaining t∗c , as shown in
Section IV-B.

A. Controller Model

We derived an abstraction of an RTCS controller by study-
ing several RTCSs [1]–[6]. The abstract model is shown in
Algorithm 1, excluding the lines in blue (lines 2, 5, 6).
The controller receives measurements from PAs and sensors.
For instance, a controller for an RTCS for electrical grids
receives the state of the resources (e.g., state of charge of
a battery) from the PAs and the state of the grid from phasor
measurement units. Measurements received by the controller
are stored (lines 11-12).

Based on these measurements, the controller invokes the
readyToCompute() function that returns true when a
computation can begin (line 3). The readyToCompute()
function might or might not utilize the available measurements
(M) in its decision. Type A decisions use M to decide whether
to begin a computation. An example of this decision is when
the controller reacts to the state of the system, such as ‘when

Algorithm 1: Abstract Model of an RTCS Controller

1 while true do
2 t∗c<A>← TSnow;
3 decision ← readyToCompute(M, TSnow);
4 if decision then
5 t∗c← TSnow;
6 send t∗c<type>;
7 SPs = compute(M) ;
8 issue(SPs);
9 end

10 end
11 for each measurement m received do
12 M← M ∪m;
13 end

the active power exceeds 1kW’. Type B decisions do not use
the measurements. These decisions might rely on time, as is
the case with periodic RTCSs, where the output depends on
the current time (TSnow).

Note that the two types, A and B, are the types of
the decisions and not of the controller. A controller might
have both type A and type B decisions. In addition to
covering different types of decisions, this abstraction covers
all degrees of synchrony in the RTCS. For example, when
readyToCompute() always returns true, the underlying
RTCS is completely asynchronous, whereas when the function
returns true only when all the measurements have been re-
ceived, the underlying RTCS is completely synchronous. Thus,
it is generic enough to cover a wide range of RTCSs.

The controller uses the available measurements to compute
and issue setpoints to all PAs (lines 7-8). The abstraction
affords any implementation of the compute() function,
thereby remaining non-restrictive.

B. Obtaining t∗c from the Model

Recall that tc is the first time-instant at which the mea-
surements used to compute a setpoint are processed by the
controller. As type A decisions involve a measurement-based
readyToCompute() function, then tc for type A (tc<A>) is
the time of the onset of the readyToCompute() function.
Therefore, obtaining a measure t∗c<A> immediately before this
function (Algorithm 1 line 2) results in the closest approxi-
mation of tc<A>. This approximation never exceeds tc<A>
in the presence of delay faults, as any delay in the operation
of obtaining this measure also delays the time at which the
measurements are processed. This delay offsets both t∗c<A>
and tc<A> by the same amount.

On the other hand, as type B decisions do not use measure-
ments in the readyToCompute() function, the first time-
instant at which the measurements are processed are in the
compute() function itself. Hence, by the same reasoning
used to obtain t∗c<A>, the closest approximation t∗c of
tc is obtained immediately before the compute() func-
tion (Algorithm 1 line 5).

Controller PA

Controller PA

LibraryLibrary
0 1

Tagger Masker

Detector

Rebooter

Timestamp 0 1 Setpoint

2 Setpoint + Axo Header

3 Setpoint

3

4 Validity Report

Fig. 2: Axo design

In addition to obtaining t∗c , the controller is required to send
this obtained timestamp to a specified destination (Algorithm
1 line 6). Here, the controller has to know the type of decision
performed for the computation of each setpoint and send the
appropriate timestamp.

V. AXO DESIGN

Axo uses active replication of the controllers and re-
quires g + 1 replicas to tolerate g delay and crash faults.
In active replication, all the replicas independently receive
measurements from sensors and compute and issue setpoints
to the PAs. This enables Axo to tolerate faults with mini-
mal replication-overhead. Additionally, there is no consensus
between the replicas, which enables Axo to have minimal
latency. However, active replication alone does not guarantee
safety, as some replicas might still send delayed setpoints.

To provide safety, Axo uses the Controller Library and
the PA Library as shown in Figure 2. The Controller Library
comprises the tagger, the detector and the rebooter. The PA
Library contains the masker. The tagger and the masker are
responsible for fault masking, the detector for fault detection
and the rebooter for recovery. The design of the tagger and the
masker is presented below, whereas the design of the detector
and the rebooter is left for future work.

Together, the tagger and the masker achieve fault masking.
The design of the tagger is shown in Algorithm 2. The tagger
receives two types of messages from the controller. First, it
receives the timestamp (t∗c) that the controller records just
before deciding to compute as shown in Algorithm 1. t∗c is
a lower bound on tc, as mentioned in Section IV.

Second, the tagger intercepts the setpoint sent by the con-
troller to the PA and prepends it with an Axo header. The
Axo header consists of a 1-byte replica ID (a unique replica ID
that serves as its identifier for all Axo-related communication),
a 2-byte destination port of the original setpoint and an 8-
byte timestamp. For the timestamp, it uses the most recently
received t∗c from the controller. Besides this information, the
tagger also adds the replica’s status that is later used for fault
detection by other replicas.

The setpoint, along with the Axo header, is sent to the
masker that uses Algorithm 3 to process it. As the validity
horizon (τo) is measured from tc, the setpoint is valid at all

Algorithm 2: Tagger

1 t∗c ← 0;
2 for each message received from the controller do
3 if message is a timestamp then
4 t∗c ← timestamp received;
5 end
6 else if message is a setpoint {SP,dest} then
7 populate axoHeader;
8 Send {axoHeader,SP} to masker of PA dest;
9 end

10 end

Algorithm 3: Masker

1 for each message {axoHeader,SP} received do
2 if TSnow ≤ axoHeader.t∗c + τ then
3 Remove axoHeader and send SP to PA;
4 valid← true;
5 else
6 valid← false;
7 end
8 Send validity report to detectors of controllers;
9 end

times t ≤ t∗c + τo ≤ tc + τo. To account for the accuracy
of time-synchronization protocol δs, and for the computation
time following the validity check at the masker, we use τ ,
instead of τ0. Here, τ = τo − (2δs + δm), where δm is the
upper bound on the computation time at the masker between
performing the validity check (line 2) and sending the setpoint
to the PA (line 3).

As mentioned in Section I, our goal is to tolerate delay
faults in the controller and the network. However, Axo cannot
mask delay faults that occur in the masker, after the validity
check is performed. Therefore, the only operation performed
after this check, in both the design and implementation of the
masker, is the forwarding of the setpoint to the PA. Then, this
part of the masker can be regarded as a thin layer that is not
susceptible to delay faults. This is in line with previous work
in fault-tolerance literature [11], [13].

If the time of reception of the setpoint t ≤ t∗c + τ , then
the setpoint is considered to be valid. When a setpoint is to
be forwarded to the PA (Algorithm 3, line 2), the destination
in the Axo header is used to recreate the original setpoint. At
this point, the setpoint sent to the PA is indistinguishable from
that sent by the controller. Hence, Axo remains transparent to
the RTCS and need not be aware of the messaging format,
encryption, or authentication measures of the setpoint payload
used by the RTCS.

Besides discarding the delayed setpoints, the masker pre-
pares a validity report for each setpoint. The masker sends
this report to the detector on all replicas, which will use it in
the detection process. The mechanism for detection is left for
future work.

As Axo modifies the setpoints sent by the controllers to the
PAs (by adding an Axo header), PAs that do not contain the PA
library cannot process the modified setpoints. Therefore, Axo
is not backward compatible: the PA library must be present
on all PAs.

VI. FORMAL CORRECTNESS GUARANTEES

In this section, we provide correctness guarantees for Axo,
where correctness is defined as Safety (Definition 2) and
Availability (Definition 3). Recall the definition of a valid
setpoint (Definition 1) from Section IV and the assumptions
required for Axo from Section III.

Definition 2 (Safety). Safety is said to hold for a PA P , if
and only if all setpoints received by P are valid.

Theorem 1 (Safety). If all controller replicas have an Axo
controller library, then safety is guaranteed for all PAs.

The proof is presented in Appendix A.

Definition 3 (Availability). Availability is said to hold for a
PA P in an interval [a, b], if and only if P receives at least
one valid setpoint in [a, b] from a set of controller replicas C.
Consequently, C is said to provide availability for P in [a, b].

Remark. When the replicas in C use a fault-tolerance protocol
f– such as Axo – to provide availability, we say that f provides
availability.

Recall from Section III the synchronization accuracy δs of
the time-synchronization protocol. Any measurement of time
has an uncertainty of δs. Consequently, the uncertainty in
recording the end-to-end delay of a setpoint is 2δs. Therefore,
to guarantee safety, any fault-tolerance protocol needs to con-
servatively discard setpoint with an end-to-end delay greater
than τo − 2δs. Furthermore, this deadline needs to be further
offset in order to account for the computation time of the
fault-tolerance protocol (δf). Hence, in order to tolerate delay
faults, all fault-tolerance protocols need to discard potentially
valid setpoints whose end-to-end delay lies in the uncertainty
interval [τo − 2δs − δf , τo], thereby reducing availability.
However, Axo is designed to minimize this uncertainty interval
and provide maximum availability under these constraints.

Theorem 2 (Availability). Consider an interval [a, b] and a
fault-tolerance protocol f that, using a set of g replicas C,
guarantees safety for a PA P . If f provides availability for P
in [a, b], and the time taken by f to process a setpoint is at
least as much as that taken by Axo, then Axo, using C, also
provides availability for P in [a, b].

The proof is presented in Appendix B.
Note that, Theorem 2 already accounts for faults in the

network and guarantees the best possible availability. Hence,
Axo is able to give guarantees on both safety and availability
without being in violation of the impossibility result in [18].

VII. IMPLEMENTATION

We developed a proof-of-concept implementation of Axo
in C++; it is publicly available at https://goo.gl/MFdu28. We

also make available an API in C++ that can be used by the
controller in order to record and send timestamps to the tagger
as described in Algorithm 1.

The API provides the controller with three functions:
get_timestamp_ptp(), get_timestamp_gps() and
send_timestamp(). Depending on the underlying time-
synchronization protocol of the RTCS, one of the first two
functions would be used to record the timestamp. The first
function implements this for systems using PTP, whereas the
second implements it for systems using GPS. The key differ-
ence is that the former accounts for the offset in time from
the time-synchronization server when obtaining the timestamp,
whereas the latter has no such offset. The functions need to
be inserted in the controller at the correct locations, based on
type of decision performed, as described in Section IV.

In the design of Axo, the tagger intercepts messages sent
from the controller to the PAs. For this purpose, we use the
libnetfilter_queue2 (NF QUEUE) framework from
the Linux iptables project. NF QUEUE is a userspace library
that provides an interface to handle packets queued by the
kernel packet filter. We use this framework to filter packets
sent from the controller to the PAs (setpoints), and from the
controller to the tagger (timestamps), using iptables’ rules
based on the destination IP address and the port number of
the packets. Then, the tagger receives packets filtered by these
rules, and handles them accordingly. As the packets filtered by
iptables are only processed by the tagger, then if the tagger
crashes, the setpoints are dropped and not sent to the PAs. In
this way, the setpoints cannot bypass Axo, thereby upholding
safety.

The API and the Axo implementation currently support
only UDP-based IPv4 communication between the controller
and the PAs. Additionally, our implementation uses a 1-byte
replica ID that is derived from the IP address of the controller.
Specifically, we use the last octet of the IPv4 address as the
replica ID. Therefore, our implementation supports up to 256
replicas.

Besides the additions to the controller needed to record
and send timestamps to the tagger using the Axo API, the
installation of Axo is plug-and-play. It requires neither any
information about the inner workings of the controller nor any
modifications to the PAs.

VIII. CASE STUDY: COMMELEC CONTROLLER

To demonstrate the usability of Axo with an existing RTCS,
we use Commelec [1], an RTCS for control of electrical grids.

A. Applicability of Axo to Commelec

Recall that Axo requires two properties from an RTCS,
namely P1 and P2 (see Properties 1 and 2). Also, for Axo to be
applicable, it should be possible to model the RTCS controller
as shown in Algorithm 1. Here, we show how Commelec fares
for these assumptions and for the controller model.

The Commelec controller receives measurements concern-
ing the electrical grid’s state from phasor measurement units

2http://www.netfilter.org/projects/libnetfilter queue/

(sensors). It also receives another form of measurements from
PAs, referred to as advertisements. The controller computes
and sends setpoints to the PAs, the implementation of which
maintains the electrical grid in a feasible state. It follows
that the implementation of a late setpoint, the computation
of which was performed using a state of the electrical grid
that no longer applies, could destabilize the electrical line or
more adversely, result in cascading failures that could trip the
entire grid. Such failures are more likely to arise in cases of an
islanding maneuver of electrical grids. Therefore, we conclude
that there exists a validity horizon for Commelec setpoints,
which means that Commelec satisfies P1. In our experiments,
we consider a test grid with a battery and a photovoltaic cell,
and the validity horizon τo is known to be 95 ms.

Commelec makes use of absolute setpoints. Hence, the
implementation of multiple setpoints has the same effect as
the implementation of last implemented setpoint. Therefore,
the Commelec controller also satisfies P2, which requires PAs
to handle duplicate setpoints.

The Commelec controller continuously receives measure-
ments from sensors that are stored and used in subsequent
setpoint computations. It is the reception of advertisements
from all PAs that onsets setpoint computation. After a com-
putation, existing advertisements are flushed and new ones
are awaited. If, however, a sufficiently long time elapses after
sending a setpoint and not all advertisements were received,
it sends empty setpoints to request for advertisements.

The above algorithm can be mapped to the con-
troller model presented in Algorithm 1 as follows. The
readyToCompute() function corresponds to both type A
and B decisions described in Section IV. When sufficient
advertisements are received, a type A decision is taken and
the advertisements are used for computation of meaningful
setpoints. Alternatively, when a timeout occurs, a type B
decision is taken and “computation” of empty setpoints is
performed.

In the former case, the controller registers a timestamp
immediately before checking whether all advertisements have
been received and sends this timestamp when the check returns
true. In the latter case, the controller registers and sends
a timestamp just before preparing and sending the empty
setpoints.

Based on the discussion above, we conclude that Axo can
be applied to the Commelec RTCS.

B. Fault Tolerance with Axo

To study the fault tolerance in Commelec with Axo, we use
three replicas of the Commelec controller and install Axo. Two
of the replicas C1 and C2 are housed on virtual machines, and
one replica C3 is a Lenovo T400 laptop with 4 GB RAM and
2.33 GHz Intel i5 processor. Furthermore, there are two PAs:
a battery PA and a photovoltaic PA. The controllers and the
PAs are all interfaced with a simulated grid and the validity
horizon of setpoints is taken to be τo = 95 ms. We use PTP for
time synchronization which has an accuracy (δs) of 1 ms, and
we take δm = 1 ms. Then, we have τ = 92 ms. Furthermore,

Time in ms
87 88 89 90 91 92

E
m

p
ir
ic

a
l
C

D
F

0

0.2

0.4

0.6

0.8

1

Delay of C1
Delay of C2
Delay of C3
Delay of Axo
τ

Fig. 3: Safety with Axo

the network is configured to be lossy with a loss probability
of 0.01.

In order to demonstrate the safety and availability properties
of Axo in the presence of a wide range of fault profiles, we
inject bursty delay-faults and crash faults with different fault
rates in different replicas. The probabilities that C1, C2 and C3

send an invalid setpoint are 0.02, 0.01 and 0.001, respectively.
C1 has no crash faults, whereas C2 and C3 are crash-faulty
with a probability of 0.001 and 0.0001, respectively. Further-
more, to detect and recover from faults, we have an initial
version of detector and rebooter in place.

Figure 3 shows the safety property of Axo. It shows that
the delay incurred by setpoints sent by controllers C1, C2, C3

recorded at the masker is sometimes greater than τ . However,
the delay perceived by the PAs is always less than τ . Hence,
we conclude that the PAs never receive an invalid setpoint.
Furthermore, we see an added benefit of Axo: the overall delay
perceived by the PAs is reduced. This is because Axo uses
active replication and the first valid setpoint received by the
masker is forwarded to the PA. Also, Axo does not add any
additional delay, except for the processing of a setpoint at the
masker.

We expect the availability for C1, C2 and C3 to be 98%,
99% and 99.9%. In practice, due to a reduction in availability
as a result of detection and recovery time (repair time),
we observed that the availability for C1, C2 and C3 was
81.31%, 89.37% and 91.31%. As the faults are independent,
the expected availability with Axo is 99.83%. The observed
availability due to Axo was 99.97%.

C. Overhead of Axo API

In order to characterize the latency overhead due to the
Axo API, we profiled its function calls on a NI cRIO-9068, a
ruggedized machine commonly used for deployment of RTCSs
in the field. Recall from Section VII that the Axo API provides
different functions for RTCSs that use GPS- and PTP-based
time synchronization.

The two functions are get_timestamp_gps() and
get_timestamp_ptp(), the difference being the presence
of get_offset() in the latter. The get_offset() func-
tion is called only when enough time has passed since the
last time the offset was recorded. This is realized through a
configurable parameter Toffset (default 1 s). Thus, when PTP
is used, if the time between successive setpoint computations
(Tcomp) is greater than Toffset, the get_offset() function

is triggered each time a setpoint is computed. Alternatively,
when Tcomp < Toffset, the get_offset() function is only
called 100×Tcomp

Toffset
% of the setpoint computations.

Let ξ = Tcomp/Toffset. Let the mean execution times for
the get_timestamp_gps(), get_timestamp_ptp(),
get_offset() and send_timestamp() be ∆gps, ∆ptp,
∆offset and ∆send, respectively. Hence, the delay due to Axo
API when GPS is used is GAxo = ∆gps + ∆send and when
PTP is used is PAxo = ∆ptp + ∆send. Furthermore, when
ξ > 1, ∆ptp = ∆gps + ∆offset and when ξ < 1, ∆ptp =
∆gps + ξ ×∆offset.

From our profiling, we observe that ∆gps = 14.26 µs,
∆offset = 194 µs and ∆send = 33.18 µs. Then GAxo =
47.44 µs. Additionally, for the Commelec controller, we have
Tcomp = 200 ms < Toffset (1 s). Therefore, with ξ = 0.2,
we have PAxo = 144.44 µs.

IX. ACKNOWLEDGMENTS

This research was supported by the “SNSF - NRP 70”
Energy Turnaround project. The authors would like to thank
the anonymous reviewers for their valuable feedback.

X. CONCLUSION AND FUTURE WORK

In this paper we have presented Axo that to the best
of our knowledge, is the first fault-tolerance protocol for
tolerating delay faults in COTS-based RTCSs. To reason about
delay faults and design Axo, we developed an abstraction of
controllers used in RTCSs by studying several RTCSs. The
abstract model developed is generic and applies to systems
with any degree of synchrony.

We have discussed the design of the fault-masking compo-
nents of Axo. Furthermore, we have described the publicly
available implementation of Axo and the associated API. Ad-
ditionally, we have formally proven the safety and availability
properties of Axo and we have validated these properties
through tests with an existing RTCS for control of electrical
grids.

The fault-detection and fault-recovery mechanisms are cur-
rently under consideration. Furthermore, in the future, we will
analyze the bounds on the time taken for detection of a faulty
replica and its recovery with Axo.

Emerging RTCSs are making use of a hierarchy of con-
trollers. We plan to extend Axo, in such a way that it becomes
composable and will therefore directly handle hierarchical
RTCSs. Another possible extension of Axo is with regard
to Byzantine faults. Current approaches deal with Byzantine
faults using consensus, which is unsuitable for RTCSs. This
is left for future work.

REFERENCES

[1] Andrey Bernstein, Lorenzo Reyes-Chamorro, Jean-Yves Le Boudec, and
Mario Paolone. A Composable Method for Real-Time Control of Active
Distribution Networks with Explicit Power Setpoints. Part I: Framework.
Electric Power Systems Research, 125:254–264, 2015.

[2] Konstantina Christakou, D-C Tomozei, J-Y Le Boudec, and Mario
Paolone. GECN: Primary Voltage Control for Active Distribution Net-
works via Real-Time Demand-Response. Smart Grid, IEEE Transactions
on, 5(2):622–631, 2014.

[3] Zhe Xiao, Tinghua Li, Ming Huang, Jihong Shi, Jingjing Yang, Jiang Yu,
and Wei Wu. Hierarchical MAS Based Control Strategy for Microgrid.
Energies, 3(9):1622–1638, 2010.

[4] Paulo Leitão. Agent-Based Distributed Manufacturing Control: A State-
of-the-Art Survey. Engineering Applications of Artificial Intelligence,
22(7):979–991, 2009.

[5] Chris Urmson, J Andrew Bagnell, Christopher R Baker, Martial Hebert,
Alonzo Kelly, Raj Rajkumar, Paul E Rybski, Sebastian Scherer, Reid
Simmons, Sanjiv Singh, et al. Tartan Racing: A Multi-Modal Approach
to the DARPA Urban Challenge. 2007.

[6] Tan Yew Teck, Mandar Chitre, and Prahlad Vadakkepat. Hierarchical
Agent-Based Command and Control System for Autonomous Under-
water Vehicles. In Autonomous and Intelligent Systems (AIS), 2010
International Conference on, pages 1–6. IEEE, 2010.

[7] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa,
P. Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca,
R. Schulz, A. Stankovic, C. Taylor, and V. Vittal. Causes of the 2003
Major Grid Blackouts in North America and Europe, and Recommended
Means to Improve System Dynamic Performance. Power Systems, IEEE
Transactions on, 20(4):1922–1928, Nov 2005.

[8] Donald J Reifer, Victor R Basili, Barry W Boehm, and Betsy Clark.
COTS-Based Systems–Twelve Lessons Learned About Maintenance. In
COTS-Based Software Systems, pages 137–145. Springer, 2004.

[9] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
The Primary-Backup Approach. Distributed systems, 2:199–216, 1993.

[10] Brian M Oki and Barbara H Liskov. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed Systems.
In Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 8–17. ACM, 1988.

[11] Miguel Castro, Barbara Liskov, et al. Practical Byzantine Fault Toler-
ance. In OSDI, volume 99, pages 173–186, 1999.

[12] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine Fault Tolerance. In
ACM SIGOPS Operating Systems Review, volume 41, pages 45–58.
ACM, 2007.

[13] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei, and Paul Skare.
Survivable SCADA via Intrusion-Tolerant Replication. Smart Grid,
IEEE Transactions on, 5(1):60–70, 2014.

[14] A. Casimiro and P. Verissimo. Generic Timing Fault Tolerance Using a
Timely Computing Base. In Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on, pages 27–36,
2002.

[15] Paulo Verı́ssimo and António Casimiro. The Timely Computing Base
Model and Architecture. Computers, IEEE Transactions on, 51(8):916–
930, 2002.

[16] S. Krishnamurthy, W. H. Sanders, and M. Cukier. A Dynamic Replica
Selection Algorithm for Tolerating Timing Faults. In Dependable
Systems and Networks, 2001. DSN 2001. International Conference on,
pages 107–116, July 2001.

[17] Hermann Kopetz. Fault Containment and Error Detection in the Time-
Triggered Architecture. In Autonomous Decentralized Systems, 2003.
ISADS 2003. The Sixth International Symposium on, pages 139–146.
IEEE, 2003.

[18] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

APPENDIX A
PROOF OF SAFETY: THEOREM 1

If all controller replicas have an Axo controller library, then
safety is guaranteed for all PAs.

Proof. Let s be a setpoint computed at some controller replica
C with a timestamp t∗c ≤ tc, where tc is the first instant
at which the measurement to compute this setpoint were
processed. (refer Section IV)
As C contains the Axo controller library, then s will be
intercepted by the tagger.
If P does not contain an Axo PA library, it will never receive
s, thereby upholding safety.

Otherwise, the tagger will forward s to the masker of P .
Recall from Section IV, that the time at which the setpoint is
received at P is tr.
By Definition 1, s is valid if and only if tr ≤ tc + τo.
Based on Algorithm 3 line 2, the masker of P will only accept
s at t∗r ≤ t∗c + τ .
Recall that both t∗c and t∗r are measured locally at C and P ,
respectively.
Since the inaccuracy in time-synchronization protocol is δs,
the true time at which the setpoint is received at the masker
is t′r ≤ t∗r + δs.
Similarly, the true time at which the setpoint is first valid
tc ≥ t∗c − δs. Therefore, t∗r ≤ t∗c + τ =⇒ t′r ≤ tc + τ + 2δs
Since the processing time of the masker is bounded by δm,
then tr ≤ t′r + δm.
Thus, any accepted setpoint will arrive at P at tr ≤ tc + τ +
2δs + δm.
But τ = τo − 2δs − δm
So, the masker of P will only accept and forward s to P if
tr ≤ tc + τo.
Therefore, any setpoint s received by P will be valid.

APPENDIX B
PROOF OF AVAILABILITY: THEOREM 2

Consider an interval [a, b] and a fault-tolerance protocol f ,
using a set of g replicas C, that guarantees safety for a PA P .
If f provides availability for P in [a, b], and the time taken
by f to process a setpoint is at least as much as that taken
by Axo, then Axo, using C, also provides availability for P in
[a, b].

Proof. Consider an RTCS with a PA P .
Let C = {C1, ..., Cg} be a set of g replicas of the controller
of this RTCS.
Let S be the set of setpoints sent by all controllers in C in the
interval [a− τo, b].
Consider a fault-tolerance protocol f , applied to C, that
guarantees safety for P . Denote by Cf the set of controllers
C when f is applied to them.
Let R = {s ∈ S : s is received by P in [a, b] and s is valid}.
Formally, f : S 7→ Rf ⊆ R.
In other words, R is the set of valid setpoints sent by C and
received by P in [a, b]. Rf is the subset of R that are received
by P when f is applied to C. Therefore, f provides availability
for P in [a, b], if and only if |Rf | > 0. Note that we only
consider the interval [a − τo, b] for the set S, since setpoints
sent outside this interval can never be valid if received in [a, b].
We defined the following operations and sets:
Let Sf ⊆ S, be the set of setpoints, sent by C in [a − τo, b],
that f allows to be sent to P . That is, S \ Sf is the set that f
discards before sending.
Let αf : S 7→ Sf
Let Nf ⊆ Sf be the set of setpoints that the network delivers
to P in [a, b], when f is applied.
Then, Nf = {s ∈ Sf : s is delivered to P in [a, b]}
Let γ : Sf 7→ Nf

Then, Rf ⊆ Nf

Let βf : Nf 7→ Rf

Therefore, f = βf ◦ γ ◦ αf

Intuitively, αf is the operation of discarding setpoints before
sending them, and thus depends on the fault-tolerance pro-
tocol. γ is the operation performed by the network, which is
considered to be transparent to the fault-tolerance protocol. βf
is the operation of discarding setpoints before they are received
at P , in order to guarantee safety.
Let Fg be the class of fault-tolerance protocols that guarantee
safety to hold for P using controllers in C. We consider all
f ∈ Fg to have at least as much processing time for each
setpoint as Axo.
As Axo guarantees safety (Theorem 1), Axo ∈ Fg

As Axo uses active replication, it ensures that all g controller
replica in C are active and send setpoints to P .
Furthermore, as the tagger (Algorithm 2) never discards set-
points, all the setpoints sent by the controllers are forwarded
to P .
However, the tagger incurs a processing time to each setpoint,
thus not all setpoints will still be sent in [a− τo, b].
This processing time is also incurred by all f ∈ Fg , therefore

∀f ∈ Fg : Sf ⊆ SAxo ⊆ S (1)

Now we apply γ. Since γ is transparent to the fault-tolerance
protocol, then ∀A,B, s ∈ A∩B and s /∈ γ(A) =⇒ s /∈ γ(B).
Then, it follows from Equation 1, that

∀f ∈ Fg : Nf ⊆ NAxo (2)

Since all fault-tolerance protocols f ∈ Fg guarantee safety,
they need to discard invalid setpoints.
Let, τf ≤ τo be the delay after which f discards setpoints.
Note that τAxo = τ = τo − 2δs − δm.
Then

Rf = βf (Nf) = {s ∈ Nf : end-to-end delay of s ≤ τf}
(3)

Note that,

∀A,∀f1, f2 ∈ Fg, τf1 ≤ τf2 =⇒ βf1(A) ⊆ βf2(A) (4)

To guarantee safety, any fault-tolerance protocol needs to
conservatively discard setpoints that lie within the uncertainty
interval brought about by the uncertainty in measuring time
(δs) and the processing time of the setpoint (δf). Since,
δf ≥ δm, then

∀f ∈ Fg, τf ≤ τ (5)

Then, using Equations 2, 3, 4, 5, we conclude that

∀f ∈ Fg,Rf ⊆ RAxo

=⇒ ∀f ∈ Fg, |Rf | > 0 =⇒ |RAxo| > 0

