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1. Introduction

Formation of simple chemicals, like hydrogen peroxide, at soft

interfaces between two immiscible electrolyte solutions (ITIES)
has gained an increasing attention over the last several

years.[1–3] This is because these reactions can be driven by po-
larization of the liquid–liquid interface. In practice, this can be

done by applying external voltage or by appropriate selection

of electrolytes with a common ion in both liquid phases.[1, 4]

Also, the existence of two liquid phases in contact allows sepa-

ration of the reactants and/or catalysts, which can be beneficial
for both the efficiency and selectivity of the reaction.

Hydrogen peroxide is produced on a large scale by catalytic
hydrogenation and oxidation of the alkylanthraquinone precur-

sor dissolved in an organic solvent mixture, followed by the ex-

traction of the product from the organic to the aqueous
phase.[5, 6] Application of liquid–liquid interface for this process
is an interesting alternative. For this purpose, molecular sol-
vents like 1,2-dichloroethane,[7] 1,2-dichlorobenzene,[8] and tri-

fluorotoluene[9] have been used as water-immiscible organic
media. It has been demonstrated that H2O2 is formed in a two-

electron reduction of oxygen by a hydrophobic electron donor
(metallocene) dissolved in the organic solvent with simultane-
ous access to protons from the aqueous phase.[10] The reaction

occurs either under conditions favorable for proton transfer
from the aqueous phase to the organic phase[10] or when the

potential drop across the liquid–liquid interface is not favora-

ble,[11] which includes systems without deliberately added elec-
trolyte in the organic phase.[12] Under conditions favorable for

proton transfer to the organic phase, H2O2 generation involves
homogeneous electron transfer within the bulk organic phase,

whereas under unfavorable conditions heterogeneous electron

transfer at the liquid–liquid interface is a dominant
process.[10–12]

Independent of the reaction mechanism (homogeneous or
heterogeneous ET), the oxidized decamethylferrocene is not

transferred to the aqueous phase.[7–12] This creates a possibility
of electrochemical regeneration of the electron donor in the
bulk organic solution. To perform noticeable regeneration, one

can confine the organic phase to a small volume and immobi-
lize it on an electrode surface. It is crucial that the organic
phase is stable over time, which limits the choice of the water-
immiscible solvents to nonvolatile ones, for example viscous

ionic liquids. Recently, we have found that the constituent ions
of the ionic liquid can also be transferred to water during the

two-phase reaction.[13] This behavior can lead to gradual disso-

lution of the organic liquid and is highly undesirable in terms
of electrochemical regeneration and stability of the system in

general. In this respect, much better candidates seem to be
nonvolatile water-immiscible molecular solvents because their

neutral molecules are not transferred during the reaction.
Herein, we describe the use of viscous 2-nitrophenyloctyl

ether (NPOE) as a suitable nonvolatile water-immiscible solvent

for generation of hydrogen peroxide and electrochemical re-
generation of the electron donor. To provide favorable condi-

tions for the regeneration, we used a carbon-paste electrode
(CPE) composed of the viscous solvent and graphite parti-

cles.[14] This architecture allows us to overcome mass-transport
limitations caused by the high viscosity of the solvent and pro-
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vides suitable conditions for organic-phase immobilization. It
can also be considered as a simple platform for testing the cat-

alytic properties of solid particles in the studied processes be-
cause it allows us to overcome problems with particle adsorp-

tion, aggregation, or sedimentation. Taking advantage of these
properties, we also used the CPE to investigate the possible

catalytic effect of MoS2 particles on H2O2 generation at an
NPOE/water interface. The use of various nanomaterials as cat-
alysts for the liquid–liquid oxygen reduction reaction (ORR) or

hydrogen evolution reaction (HER) has been extensively stud-
ied over the last few years,[15–19] but none of them have been
applied to an NPOE/water interface system.

Although the electrocatalytic activity of MoS2 towards ORR

at solid–liquid interface has been reported previously,[20, 21] it
has not been tested at a liquid–liquid interface. However, this

material is already known to be a catalyst for HER at the

liquid–liquid interface.[22, 23] Here, we examine MoS2 as a catalyst
for the liquid–liquid ORR with a particular focus on electro-

chemical regeneration of the electron donor. For this purpose,
scanning electrochemical microscopy (SECM) was employed.

This method has been used previously to probe charge-trans-
fer processes at ITIES, such as heterogeneous electron transfer

across a “clear” interface[24, 25] or a molecular monolayer.[26, 27]

Other reactions include facilitated[28] or simple ion transfer,[29]

and processes with coupled homogeneous reactions at

ITIES.[30] We also investigated the influence of MoS2 on the ion-
transfer processes driven by electrogenerated redox-active

ions[31–34] because H2O2 generation at ITIES is an ion-transfer-
coupled reaction.[10]

2. Results and Discussion

2.1. Flask Experiments

NPOE has not been used to date as a water-immiscible solvent

for the two-phase generation of H2O2. Therefore, we performed
shake-flask experiments to find whether formation of H2O2

occurs in the NPOE/water system (Figure 1).
It is clearly visible that after 8 h, the color of NPOE phase in

contact with the acidic aqueous solution has changed from
yellow to green, which indicates the formation of DMFc+ cat-
ions (Figure 1A, B, flask 1). This change is not seen in the ab-
sence of acid in the aqueous phase (Figure 1A, B, flask 2), which

indicates the participation of hydrated protons in the two-
phase reaction. When NPOE is in contact with the acidic solu-
tion, the change in color is even more pronounced in the pres-
ence of MoS2 particles (Figure 1A, B, flask 3), which demon-
strates their catalytic activity in this reaction. It is also impor-

tant to emphasize that these color changes are not seen under
anaerobic conditions, which indicates negligible formation of

hydrogen in studied system.[15–19] The progress of reaction was

also followed by UV/Vis spectroscopy (Figure 2A) One can see
a decrease in the band at l= 425 nm, which is characteristic of

DMFc in organic solution, and the appearance of a band at l=

779 nm, which is characteristic of the presence of DMFc+ .[7]

When KI and starch were added to the aqueous phase taken
from the experiments with acidic aqueous solution, the color

changed to violet (Figure 1C, flasks 1 and 3) due to the oxida-
tion of iodide to triiodide by newly formed H2O2 and subse-

quent formation of a violet complex of I3
@ with starch. Addi-

tionally, formation of I3
@ by reaction with the aqueous solution

was studied by using UV/Vis spectroscopy (Figure 2B), and

a characteristic peak for triiodide (l= 330 nm) appeared in the
spectrum of the yellow solution [Eq. (1)] .[10]

3 I@ þ H2O2 þ 2 Hþ ! I3
@ þ 2 H2O ð1Þ

The above results indicate the generation of H2O2 in the fol-

lowing reaction [Eq. (2)]:

2 DMFcðNPOEÞ þ O2ðw, NPOEÞ þ 2 HþðwÞ þ 2 ClO4
@
ðwÞ !

2 DMFcþðNPOEÞ þ H2O2ðwÞ þ 2 ClO4
@
ðNPOEÞ

ð2Þ

2.2. Voltammetry

After determining that NPOE is a suitable solvent for two-
phase H2O2 generation, we performed voltammetric experi-

ments with both CPE and CPE-MoS2 electrodes. The use of
a CPE with a binder of DMFc in NPOE has already been report-

Figure 1. A, B): The results of a two-phase reaction performed in shake-flask
experiments. The bottom phase consisted of DMFc (5 mmol dm@3) in NPOE
and the upper phase consisted of aqueous HClO4 (0.1 mol dm@3 ; flasks 1 and
3) or aqueous NaClO4 (0.1 mol dm@3, flasks 2 and 4). Flasks 3 and 4 also con-
tained MoS2 powder. Photographs were taken before (A) and after (B) a reac-
tion time of 8 h. C) The aqueous phase from flasks 1–4 in B) after addition of
200 mL of a KI (0.1 mol dm@3) and starch solution (10 %).
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ed,[35] so we focused here on the effect of MoS2 additive on
the voltammetric response of the electrode.

For this purpose, we studied ion-transfer processes across
a NPOE/water interface. The voltammetric peaks recorded in
perchlorate neutral and acidic solutions correspond to DMFc
electrochemical redox reactions and are symmetric and stable

during the subsequent cycles (Figure 3A, B). This behavior con-
firms that DMFc+ is not transferred from NPOE to the aqueous

phase during the two-phase reaction. Additive MoS2 shifted
the position of voltammogram peaks on a potential scale by
a few tens of millivolts. For both CPE and CPE-MoS2, the peak

current is linearly dependent on the square root of the scan
rate (Figures S1 and S2 in the Supporting Information), which

indicates that MoS2 microparticles do not change the diffusion-
al nature of the electrochemical processes.

The voltammetry performed at this electrode in a number of

aqueous solutions of salts with different anions provides a diag-
nostic tool for the mechanism of the electrode reaction.[35–38] In

particular, it allows us to determine whether the electrogener-
ated DMFc+ cation (here an electron acceptor) stays in the or-

ganic phase or is transferred to the aqueous phase. Clearly, the
type of anion affects the position of the square wave voltam-

metry (SWV) peak that corresponds to the DMFc/DMFc+ redox
couple (Figure 4). The peak potentials are lower for more hy-
drophobic anions (PF6

@ , ClO4
@ , SCN@), which indicates that

DMFc molecules are more easily oxidized when the aqueous
anions have higher affinity for the organic phase. For more hy-
drophilic anions (NO3

@ , Br@ , and Cl@), the peak potentials are
similar, which indicates that the nature of the aqueous anion

does not play a role in the overall process. This effect is not af-
fected by the presence of nonconductive MoS2 particles in

CPE. However, wider peak half-height widths are seen for CPE-
MoS2 (Table S4), which indicates the higher specific charge-
transfer resistance of this electrode, as compared with CPE, be-

cause of the smaller number of percolation paths.
To compare the anion effect between CPE and CPE-MoS2

quantitatively, one can plot the dependence of the SWV peak
potential, Ep, on the standard potential of anion transfer across

the NPOE/water interface, DNPOE
W @7An@ . The latter parameter is

a measure of how much energy the anion requires to be able
to transfer from water to NPOE and is proportional to the

standard Gibbs energy of transfer, DNPOE
W G7An@ , according to

Equation (3):

Figure 2. The UV/Vis spectra of organic and aqueous phases obtained after
8 h shake-flask experiments. A) Spectra of organic phase from flask 1 (blue)
and 3 (red; see Figure 1). In the case of flask 3, MoS2 microparticles were
centrifuged. Gray line correspond to the spectrum of freshly prepared 5 mm
DMFc in NPOE. B) Spectra of aqueous phase taken out flask 1 (blue) and 3
(red) after addition of KI (see Figure 1). The gray line corresponds to 0.1 m
aqueous HClO4.

Figure 3. Cyclic voltammograms (10 cycles) recorded for A) a CPE and B) a
CPE-MoS2 prepared with DMFc (5 mmol dm@3) in NPOE immersed in aqueous
NaClO4 (0.1 mol dm@3 ; blue curves) or aqueous HClO4 (0.1 mol dm@3 ; red
curves). The red dotted line indicates voltammograms obtained with CPE
prepared from pure NPOE. Scan rate 0.05 V s@1.
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DNPOE
W @7An@ ¼

DNPOE
W G7An@

zF
ð3Þ

in which z is the charge number of the anion and F is the Fara-

day constant. For the pure anion-transfer mechanism, the plot

of Ep vs. DNPOE
W @7An@ is linear with a unity slope.[39] As can be

seen in Figure 5, for both CPE and CPE-MoS2 the dependence

is linear with a slope close to unity for hydrophobic anions
(PF6

@ , ClO4
@ , SCN@), and there is virtually no dependence for

hydrophilic anions (NO3
@ , Br@ , and Cl@).

These results indicate that in the studied aqueous electro-

lytes, a gradual transition from anion insertion (for hydropho-
bic anions) [Eq. (4)]:

DMFcðNPOEÞ þ An@ðwÞ Ð DMFcþðNPOEÞ þ An@ðNPOEÞ þ e@ðelectrodeÞ

ð4Þ

to cation expulsion (for hydrophilic anions) [Eq. (5)]:

DMFcðNPOEÞ Ð DMFcþðwÞ þ e@ðelectrodeÞ ð5Þ

takes place.[35, 37, 40] Because the NPOE phase does not initially

contain the supporting electrolyte, Reaction (4) is likely to
occur at a three-phase junction between the carbon particle,

NPOE, and the aqueous phase.[35] Otherwise, if the carbon par-
ticle facing the aqueous electrolyte is covered by a thin NPOE

film, the electron transfer step should occur at the carbon par-
ticle–NPOE interface with simultaneous ion transfer across the

NPOE–water interface. This reaction path is possible only after

initial insertion of anions into the liquid binder of the CPE and
usually causes the peak currents to increase in the subsequent

voltammetric cycles because of the increasing concentration of
the salt present in the NPOE phase next to the liquid–liquid in-

terface.[37] Nevertheless, the stability of subsequent voltammo-
grams (Figure 3) confirms the three-phase junction as a locus

of the electrochemical processes at both CPE and CPE-MoS2.

Regarding the two-phase reaction, the most important con-

clusion here is that the anion-insertion mechanism [Eq. (4)]
dominates in the presence of perchlorate and the oxidized

form of the electron donor does not transfer to the aqueous
phase [Reaction (2)] . The presence of MoS2 clearly does not

affect this mechanism.

Figure 4. The effect of anion present in the aqueous phase on SWV curves
obtained with A) a CPE and B) a CPE-MoS2 prepared with DMFc
(5 mmol dm@3) in NPOE immersed in aqueous solutions of different electro-
lytes (0.1 mol dm@3). Step potential : 1 mV, frequency: 8 Hz, amplitude:
50 mV.

Figure 5. Dependence on the standard transfer potential of studied anions (DNPOE
W @7An@ ) of the SWV peak potential (Ep, obtained from the data presented in

Figure 3) for A) CPE and B) CPE-MoS2. The slopes in A) and B) are 1.05 and 1.02, respectively. Values of DNPOE
W @7An@ were taken from Ref. [36] . For the determina-

tion of DNPOE
W @7An@ for PF6

@ , see Figure S3.
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The voltammograms obtained at a slow scan rate in O2- and
Ar-saturated solutions show some differences (Figure 6). The

anodic peak connected with oxidation of DMFc [Reaction (5)]
is less developed in the presence of O2 in aqueous electrolyte.
A larger cathodic current compared with the anodic one indi-

cates consumption of the electron donor in catalytic Reac-
tion (2).[41] The cathodic peak current is clearly higher than the

anodic one.
This effect is even more pronounced if MoS2 microparticles

are present in the CPE, however, in this case peaks are not so
well developed, which is common for electrocatalytic reactions

(wave-shape CV rather than peak). The absence of significant
cathodic current on CPE with pure NPOE as a binder indicates
the role of DMFc and MoS2 as catalysts. This effect is seen only

at very slow scan rates because of the sluggish kinetics of the
two-phase reaction reported earlier for other molecular

solvents.[12]

2.3. SECM Detection of H2O2

To determine directly whether H2O2 is formed next to the CPE,

the SECM technique was applied. This was done by recording
approach curves (Figure S3) by using a Pt tip polarized at a po-

tential that corresponds to the H2O2 electrooxidation [Eq. (6)] ,
here 0.6 V vs. Hg jHg2SO4 jK2SO4.[9, 42–44]

H2O2 ! 2 Hþ þ O2 þ 2 e@ ð6Þ

H2O2 concentration profiles (Figure 7) were estimated from

approach curves, assuming diffusion-limiting H2O2 oxidation at
the ultramicroelectrode (UME) disk tip [Eq. (7)]:

c ¼ iT=4 nFDrT ð7Þ

in which c is the analyte concentration, n is the number of

electrons transferred per analyte molecule (here, 2), F is the
Faraday constant (96 485 C mol@1), D is the diffusion coefficient

of H2O2 (8.8 V 10@6 cm2 s@1),[12] rT is the tip radius (12.5 mm). Due
to the fact that SECM experiments were initialized 5 min after
cell assembly or sample polarization, one can assume that
quasi-steady-state conditions were achieved and concentration

profiles recorded at a tip translation rate of 10 mm s@1 are relia-
ble. Least-square linear regression was applied to find average

H2O2 concentration gradients within the range of 150 to
200 mm, at which feedback influence is negligible. The fluxes
of H2O2 generated at the samples that diffused towards the

aqueous bulk were calculated by using Fick’s first law of diffu-
sion. For a CPE prepared by using DMFc in NPOE, with no po-

tential applied to it, the flux of H2O2 generated at the CPE sur-
face was approximately 0.46 pmol cm@2 s@1. This flux is almost

seven times smaller than that seen at the 1,2-dichloroethane/

water interface,[12] not restricted by carbon particles. No H2O2

was detected when the electron donor (DMFc) was absent

from the carbon paste (violet curve in Figure S4), which con-
firms its role in the two-phase Reaction (2). However, when the

CPE potential was low enough to regenerate the electron
donor from DMFc+ formed in Reaction (2), the flux of H2O2

Figure 6. Cyclic voltammograms recorded for A) CPE and B) CPE-MoS2 pre-
pared with DMFc (5 mmol dm@3) in NPOE, immersed in aqueous HClO4

(0.1 mol dm@3) saturated with O2 (red curve) and saturated with Ar (blue
curve). The grey curve was obtained with CPE prepared from pure NPOE in
the same O2 saturated solution. Scan rate 1 mV s@1.

Figure 7. Comparison of H2O2 concentration profiles estimated from SECM
approach curves (Figure S3) to CPE (red) or CPE-MoS2 (black) at a Pt micro-
electrode tip polarized at 0.6 V in aqueous HClO4 (0.1 mol dm@3). DMFc
(5 mmol dm@3) in NPOE was used as a binder for the CPE. Solid curves were
recorded when the CPE or CPE-MoS2 potential was set at @0.65 V (regenera-
tion of the electron donor), whereas dotted curves were obtained by using
unbiased sample electrodes (without regeneration of the electron donor).
The approaching velocity was 10 mm s@1. All approach curves were recorded
5 min after the electrodes were immersed in the solution. Thin straight lines
are linear regression results for distances of 150–200 mm.

ChemElectroChem 2016, 3, 1400 – 1406 www.chemelectrochem.org T 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1404

Articles

http://www.chemelectrochem.org


was almost 30 times higher (&13 pmol cm@2 s@1) than the
value obtained when the CPE was unbiased. This indicates the

electrochemical regeneration of DMFc, which results in a great-
er efficiency of H2O2 formation. This effect is much more pro-

nounced than that observed in a CPE with a hydrophobic ionic
liquid as a binder.[13]

Modification of the CPE with MoS2 resulted in an additional
increase in the flux of H2O2 generated at both unbiased
(&4.6 pmol cm@2 s@1) and biased CPEs (&81 pmol cm@2 s@1).

This result clearly confirms the catalytic activity of MoS2 parti-
cles observed in the flask experiments in Figure 1B, flask 3.

Unsuccessful attempts to detect hydrogen generation at the
NPOE/water interface by using methodology proposed previ-

ously[45] indicates a lack of catalytic hydrogen evolution in the
studied system.

3. Conclusions

Herein, we have shown that hydrogen peroxide can be gener-
ated at the NPOE/water interface with decamethylferrocene as

the electron donor. MoS2 microparticles accelerate this reaction

and their catalytic effect was observed by using cyclic voltam-
metry and recording SECM approach curves. By using carbon

paste as a reservoir for the viscous NPOE phase, we regenerat-
ed the electron donor, which in turn resulted in an increase in

the quantity of generated H2O2. Electrochemical studies of ion-
transfer processes also revealed that addition of MoS2 micro-

particles to the carbon paste does not affect the electrochemi-

cal performance of the so-obtained electrode material. A simi-
lar methodology can be applied to studies of interfacial reac-

tions at liquid–liquid interfaces in which one of the liquid
phases is viscous enough to apply as a binder in a carbon-

paste electrode.

Experimental Section

Chemicals and Materials

Decamethylferrocene (DMFc; 99 %, ABCR), 2-nitrophenyloctyl ether
(NPOE; Fluka), HClO4 (70 %, Fluka), NaClO4 (>99 %, Fluka), NaBF4

(>99.99 %, Fluka), NaCl (>99 %, Fluka), NaSCN (purum, Fluka), KI
(pure p.a. , POCh), KBr (pure p.a. , POCh), KPF6 (99 %, Sigma Aldrich),
KNO3 (pure p.a. POCh), KI (pure p.a. , POCh), graphite powder (d<
20 mm, CAS 7782-42-5, Sigma–Aldrich), MoS2 (&6 mm, Sigma Al-
drich), starch (Sigma Aldrich), and argon gas (>99.999 % Multax)
were used as received. Aqueous solutions were prepared with
demineralized and filtered water from ELIX system (Millipore).

Apparatus and Procedures

Flask experiments were done by filling glass vials (2 mL) with
DMFc in NPOE (0.75 mL) and aqueous HClO4 or NaClO4 (0.75 mL).
In blank experiments, pure NPOE or aqueous NaClO4 were used. In
other experiments, MoS2 powder (0.5 % w/v) was added to the or-
ganic phase. The samples were stirred with a magnetic bar for 8 h.
For starch and iodide-based H2O2 detection, the aqueous phase
was sampled and KI (200 mL, 0.1 mol dm@3) and starch solution
(10 %) was added.[45]

CPEs (1.55 mm diameter) were prepared by filling glass tubes with
NPOE-based carbon paste. Copper wire was inserted from the re-
verse to ensure electric contact. The paste was prepared by grind-
ing DMFc (200 mL, 5 mmol dm@3) in NPOE in a mortar with graphite
powder (200 mg) for CPEs or graphite powder (100 mg) and MoS2

powder (100 mg) for CPE-MoS2. It was polished on printer paper
(200 g m@2) before use. For blank experiments, the same volume of
pure NPOE was used.

Cyclic voltammetry and square wave voltammetry (SWV) were re-
corded by using a Biologic Bipotentiostat SP-300. A CPE, a graphite
rod, and a Hg/Hg2SO4/K2SO4 electrode (Metrohm) were used as the
working, counter, and reference electrodes, respectively. This refer-
ence was selected to avoid the possible contribution of Cl@ oxida-
tion to the measured oxidation current in SECM experiments. The
working electrode was inserted from the bottom of the polyethy-
lene cell so that it faced upwards during the experiments. All
measurements were performed at RT ((23:2) 8C).

SECM experiments were carried out by using a CHI900B SECM
workstation (CH Instruments). Pt microelectrodes were made by
using a PC-10 micropipette puller (Narishige) to seal a Pt wire
(25 mm diameter, Goodfellow, United Kingdom) into borosilicate
glass capillaries polished with P2000 grit silicon carbide sand paper
and 50 nm alumina slurry (Buehler). The Pt microelectrode in the
aqueous phase served as the SECM probe and its position in the x,
y, and z directions was controlled by using stepper motors.
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