
Inversion Optimization in Majority-Inverter Graphs

Eleonora Testa1, Mathias Soeken1, Odysseas Zografos2, Luca Amaru3, Praveen
Raghavan2, Rudy Lauwereins2, Pierre-Emmanuel Gaillardon4, Giovanni De Micheli1

1 EPFL, Switzerland 2 IMEC, Belgium 3 Synopsys, CA, USA 4 University of Utah, UT, USA
eleonora.testa@epfl.ch

ABSTRACT
Many emerging nanotechnologies realize majority gates as
primitive building blocks and they benefit from a majority-
based synthesis. Recently, Majority-Inverter Graphs (MIGs)
have been introduced to abstract these new technologies. We
present optimization techniques for MIGs that aim at rewrit-
ing the complemented edges of the graph without changing
its shape. We demonstrate the performance of our opti-
mization techniques by considering three cases of emerging
technology design: semi-custom digital design using Spin
Wave Devices (SWDs) and Quantum-Dot Cellular Automata
(QCA); and logic in-memory operation within Resistive Ran-
dom Access Memories (RRAMs). Our experimental results
show that SWD and QCA technologies benefit from com-
plemented edges minimization. Area, delay, and power of
SWD-based circuits are improved by 13.8%, 21.1%, and 9.2%
respectively, while the number of QCA cells in QCA-based
circuits can be decreased by 4.9% on average. Reductions
of 14.4% and 12.4% in the number of devices and sequential
steps respectively can be achieved for RRAMs when the
number of nodes with exactly one complemented input is
increased during MIG optimization.

1. INTRODUCTION
Nanotechnologies are being studied as replacement or en-

hancement for CMOS. Devices in these nanotechnologies have
logic models different from standard transistors and many
of them realize majority gates as primitive building blocks.
Examples of these nanotechnologies are Quantum-Dot Cellu-
lar Automata (QCA, [1, 2]), Spin Wave Devices (SWD, [3,
4]) and Resistive Random Access Memories (RRAMs, [5,
6]). To properly assess these post-CMOS technologies, Elec-
tronic Design Automation (EDA) tools necessitate new logic
synthesis techniques and abstractions [7]. Much work con-
cerning majority synthesis has been carried out back in the
1960s [8, 9]. Recently, Majority-Inverter Graphs (MIG, [10])
are found to suitably abstract novel majority-based nan-
otechnologies [11], besides being a useful tool to reduce area
and delay in standard CMOS circuits [10]. MIGs use the
majority-of-three function 〈xyz〉 = xy∨xz∨yz and negation
as only logic primitives; negations are simply represented
as complemented edges in the graph. Previous work has
considered inversion minimization [12], but it has not taken

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Nanoarch ’16, July 18-20, 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4330-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2950067.2950072

into account nanotechnologies applications. Minimization of
inverters plays a predominant role in emerging technologies
whose circuits are built using only majorities (MAJ) and
inverters (INV) since area and delay costs depend on the
number of INVs in the circuit. In this work, we exploit
the intrinsic algebraic properties of MIGs which allow for
superior rewriting possibilities as compared to other logic
representations such as And-Inverter Graphs (AIGs). As
an example, negations can be freely propagated through an

MIG using self-duality, i.e., 〈x̄ȳz̄〉 = 〈xyz〉.
In this paper, we present MIG rewriting techniques that

target at optimizing inversion within the logic network. The
purpose of this work is to implement MIG optimizations
by working only on complemented edges. We demonstrate
an approach to obtain a minimal number of complemented
edges, achieving a reduction of 60.8% in average. MIGs are an
ideal logic representation in the synthesis of technologies that
(i) are inherently based on majority and (ii) show different
performance based on the influence of inverter metrics. In
this paper, we demonstrate our proposed approach on three
case studies addressing (i) SWDs and (ii) QCA, in which the
number of inverters is minimized, and (iii) RRAMs, which
show best performance when each switch has exactly one
complemented input.

2. BACKGROUND
2.1 Majority-based Technologies

Many emerging nanotechnologies carry natively the MAJ
function. Here, we introduce the basics of SWDs, QCA and
RRAMs.

2.1.1 Spin Wave Devices
Spin-based logic is among the most popular emerging

device-circuit architectures [13] thanks to its non-volatility,
intrinsic data parallelism, and high endurance. SWDs use
spin as information carrier that propagates in waves. The
operating principle of these circuits relies on a synthetic
multiferroic stack used to generate and detect spin waves,
called Magneto-Electric (ME) cell. The generated spin waves
propagate in ferromagnetic wires, called spin wave buses.
The computation principle is based on the interference of
propagating spin waves, that can be constructive or destruc-
tive. The information is then encoded in the phase of the
waves. SWD technology provides the capability of imple-
menting simple and compact majority gates and it benefits
from majority-based synthesis [14]. A majority (MAJ) and
an inverter (INV) standard cell were presented in [15] and are
shown in Fig. 1. An INV is a waveguide with length 1.5× the
spin wavelength (λSW); the MAJ gates can be produced by
symmetrically merging three waveguides.

In our work, we use large benchmarks whose layout cannot
be readily achieved. Thus, we estimate area and delay based
on the number of cells and the critical path length.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148022289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a) INV

λSW

1.5 * λSW
λSW

b) MAJ

λSW

λSW

NiFe Ni PZT Al/OutAl/In

λSW
λSWλSW

λSW

λSW

Figure 1: Layout views of two standard cells used to
P&R the SWD circuit [14].

2.1.2 Quantum-Dot Cellular Automata
QCA is a nanotechnology first proposed in 1993 [16] that

can be used to design circuits with high device density, high
switching speed and low power consumption. The QCA tech-
nology is based on the interaction of QCA cells. Each cell
consists of four quantum dots coupled by tunnel barriers and
has two free electrons that are able to tunnel between the
dots. The Coulomb repulsion is able to force these electrons
in opposite corners of the cell producing two energetically
equivalent polarizations, i.e., P = 1 and P = −1. These two
polarizations are used to represent logic 1 and 0 respectively.
Since QCA based circuits can be built using only majority
and inverter [1], much work has been made in the past to ef-
ficiently build QCA circuits based on majority gates [17, 18].
Figs. 2a and 2b show the layout of a QCA inverter and ma-
jority gate respectively. Designs and performance analysis of

1 0

(a)

0

1 1

1

Input x

Input y

Input z

Device cell

Output cell

(b)

Figure 2: QCA layout for INV (a) and MAJ (b)

QCA-based circuits can be obtained using QCADesigner [19].
Fig. 3 shows the QCA layout of a full adder. Three majorities
and two inverters are needed to generate the sum (S) and
carry (C), while much area is used for routing. The number
of cells is 166 and the total area is 483 nm2. The delay is
evaluated by counting the number of clock zones of different
colors and it is equal to 5.

Since the QCA layouts are not available (as in the case
of SWDs), QCADesigner cannot be used to derive such
characteristics. Instead, we estimate the circuit area based
on the number of QCA cells.

2.1.3 Resistive Random Access Memories
RRAMs are one of the most promising emerging nanotech-

nologies [20] thanks to its non-volatility, high endurance, and
high density. These memories are two terminal devices capa-
ble to switch from a high resistance state to a low resistance

Figure 3: QCA layout for the full adder

state by applying a bias at its terminals, named P and Q.
The internal resistance state Zn is a function of the previous
resistance state Z, the voltage at terminal P and the voltage
at terminal Q and it can be expressed by Zn = 〈PQZ〉. This
basic operation, called Resistive Majority (RM3), embeds
both a majority-of-three and an inversion and can be used
for synthesis of primary logic gates, enabling in-memory com-
puting. In principle, RRAMs can realize a MIG network
by simply replacing each node by a RRAM cell and use
inverters or other RRAM cells for inversion. Nevertheless
the connection among cells requires R/W circuitry, mak-
ing the implementation complicated and non-competitive. A
computer architecture called Programmable Logic-in-Memory
(PLiM) has been proposed [6] that allows logic operations
on a regular RRAM array. Also, the idea of using MIGs
to derive PLiM programs has recently been described [21,
22]. In PLiM, the MIG network is converted into a sequence
of operations to be executed sequentially on some RRAM
cells, thus requiring one R/W circuit. This approach is more
appealing for exploring RRAMs as a computing technology,
even in view of its possible parallelization.

2.2 Majority-based Logic Manipulation
In this section, we describe MIGs [10, 23, 24], which are

logic representation forms based on majority logic. A MIG is
a data structure for Boolean function representation and op-
timization. It is defined as a homogeneous logic network con-
sisting of 3-input majority nodes and regular/complemented
edges. MIGs can efficiently represent Boolean functions
thanks to the expressive power of the majority operator.
Indeed, a majority operator can be configured to behave as a
traditional conjunction (AND) or disjunction (OR) operator.
In the case of 3-input majority operator, fixing one input
to 0 realizes an AND while fixing one input to 1 realizes an
OR. As a consequence of the AND/OR inclusion by MAJ,
traditional AND/OR/INV Graphs (AOIGs) are a special
case of MIGs and MIGs can be easily derived from AOIGs.
Fig. 4a shows an example of MIG representations derived
from its optimal AOIG. Intuitively, MIGs are at least as com-
pact as AOIGs. However, even smaller MIG representation
arises when fully exploiting the majority functionality, i.e.,
with non-constant inputs [10]. In order to manipulate MIGs
and reach advantageous MIG representations, a dedicated
Boolean algebra was introduced in [23]. The axiomatic sys-
tem for the MIG Boolean algebra, referred to as Ω, is defined
by five primitive transformation rules. By using sequences of

∧ ∧

∨

∧ ∧

∨

z z

y yx

AOIG

1

z 1 z1

1

y 1 y1x

MIG

(a)

x

zxy zxy

f = x⊕ y ⊕ z

(b)

Figure 4: Example (a) of MIG (right) for f =
x ⊕ y ⊕ z derived by transposing its optimal AOIG
(left). Complements are represented by bubbles on
the edges. Example (b) of optimized MIG for f .

transformations in Ω it is possible to change one MIG into its
optimized structure. Fig. 4b shows the new MIG structure
for the graph of Fig. 4a.We refer the reader to paper [10] for
an in-depth discussion on MIG optimization recipes.

Here, we focus on MIG self-duality, which states that
negations can be freely propagated through the graph. This
MIG property is described by one of the axiom in Ω [10]

referred as Inverter Propagation (Ω.I) and given by 〈xyz〉 =
〈x̄ȳz̄〉.

3. INVERSION OPTIMIZATION
This section describes the techniques employed to optimize

the number of complemented edges, i.e., inversions. First, we
explain how to minimize the number of complemented edges
in a MIG. Then, we present rules to maximize the number of
nodes having one complemented input, since this represents
a benefit for RRAMs-based circuits.

3.1 Minimization of Complemented Edges
Complemented edges minimization can be highly effective

for improving performances of emerging technologies which
use MAJ and INV as standard cells. We will focus on effects
of inversion minimization for SWDs and QCA in the following
section.

Minimization is obtained by recursively applying the in-
verter propagation axiom Ω.I to move complemented edges
on the inputs to the output. To reduce the number of comple-
mented edges, we apply the transformations rules mentioned
below on all the nodes of the MIG. These transformations do
not change the depth nor the size of the MIG. Different ways
of applying Ω.I can be adopted depending on whether the
node has constant inputs or not. Furthermore, the axiom
can be applied considering one node at a time (one-level) or
evaluating savings in the number of complemented edges for
two levels of the MIG (two-level). A taxonomy of the rules
used to decrease complemented edges is proposed in the fol-
lowing; then the procedure used to minimize complemented
edges is described.

3.1.1 One-level Rules for MAJ
Here, we describe rules that apply to MAJ nodes, which

are nodes with no constant inputs. The rules used to decrease
complemented edges aim at moving complemented edges of
the inputs to the output. They can be formalized as:

Rules

 MAJ 3:

{
〈x̄ȳz̄〉 = 〈xyz〉
〈x̄ȳz̄〉 = 〈xyz〉

MAJ 2: 〈xȳz̄〉 = 〈x̄yz〉
(1)

The MAJ 3 rules consider nodes in which the three inputs
are complemented. Considering each node, these transforma-

1 2

3

a

a bci a bci

s

co

(a)

1 2

3

a

a bci a bci

s

co

(b)

Figure 5: MIG for a full adder, before (a) and after
(b) one-level rules.

tions lead to a decrease in the number of complemented edges
equal to 3 + (#CO − #NCO) where #CO is the number
of complemented outputs of the node and #NCO are the
uncomplemented outputs. Savings for the MAJ 2 rule are
equal to: 1 + (#CO − #NCO). For these rules, only one
node is considered at a time. We evaluate savings according
to the formulas mentioned above; each node is changed using
one of the transformation rules if savings larger than 0 can
be achieved. An example is given in Fig. 5. Fig. 5a shows
the MIG of the full adder composed by the three nodes 1,
2, and 3. It is possible to apply the MAJ 3 rule on node
2 with savings of 3 and the MAJ 2 on node 1 with savings
of 2. Fig. 5b illustrates the MIG of the full adder after the
one-level transformations applied on the nodes of the first
level.

3.1.2 One-level Rules for AND/OR
All the rules mentioned above are applied to nodes in

which none of the inputs is set to a constant value, but they
equally work for AND and OR nodes, which are majority
nodes in which one of the input is set to 0 and 1, respectively.
Our MIG data structure only has constant 1, hence in AND
nodes the constant input is 1̄ = 0. The additional rules used
to decrease complemented edges for AND/OR are:

AND/OR Rules

AND 3:

{
〈x̄ȳ1̄〉 = 〈xy1〉
〈x̄ȳ1̄〉 = 〈xy1〉

AND 2: 〈xȳ1̄〉 = 〈x̄y1〉
OR 2: 〈x̄ȳ1〉 = 〈xy1̄〉

(2)

Note that complements on constant inputs are not ac-
counted in the total amount of complemented edges as in
physical implementations both constants 0 and 1 are present.
The savings estimation is adjusted for the AND/OR cases.
The AND 3 rule has savings equal to 2 + (#CO−#NCO),
while for the AND 2 rule they are equal to: #CO−#NCO.
For OR rule savings are: 2 + (#CO−#NCO).

3.1.3 Two-level Rules
In two level transformations we consider one node (main

node) and all the nodes on its outputs (parents). By doing
this, we consider that transforming only the main node may
not result in savings greater than 0, but this transformation
changes the complemented edges pattern of the parents and
consequently it may result in a total two-level savings larger
than 0 when applying transformations on the parents. We
evaluate the total two-level savings as the sum of the savings
obtained by changing the main node and the savings achieved
on the parents if the main node is changed. If the total two-
level savings are positive, first the main node is changed
according to the rules 1, then all the one-level rules are
applied to the parents. In Fig. 6a, none of the nodes, which
are called here node 1, 2 and 3, can be changed by the
one-level transformation since there is no benefit in the total
number of complemented edges. On the other hand, changing

1 2

3

a

a bci a bci

s

co

(a)

1 2

3

a

a bci a bci

s

co

(b)

1 2

3

a

a bci a bci

s

co

(c)

Figure 6: Example of two-level transformation

node 1 according to the inverter propagation axiom generates
the possibility of applying one of the one level rules on node
3. If node 1 is changed, its savings are equal to 0, but, thanks
to this first transformation, the MAJ 2 rule can be applied
on node 3. Fig. 6b shows the full adder after changing node
1; while Fig. 6c shows the final circuit. The number of
complemented edges is not reduced from step a to step b but
it is reduced from step b to c, with total savings equal to 2.

3.1.4 Minimization Procedure
We minimize the complemented edges using the reduction

rules proposed above in the way given in Alg. 1. We apply
each single rule from node 0 to the last node of the circuit
until no further rules can be applied and we have reached
the minimal number of complemented edges achievable with
our procedure. At the end of the minimization process, the
new MIG has the same logic depth and the same size.

1 while the number of compl. edges is decreasing do
2 AND 3(n) for each node n;
3 AND 2(n) for each node n;
4 MAJ 3(n) for each node n;
5 MAJ 2(n) for each node n;
6 Two-level(n) for each node n;
7 end

Algorithm 1: Minimization Procedure

3.2 Constrained Inversion Optimization
Previous sections describe how it is possible to minimize

the number of complemented edges of the MIG by using
iteratively reduction rules. It is worth noticing that we can
take advantage of the proposed transformations to obtain a
desired complemented edges configuration, which depends on
the specific application. A desired number of complemented
edges per node is obtained by applying the same rules used
for minimization by adding some constraints. For example
we can take advantage of some of the inverter rules to manip-
ulate the distribution of complemented edges in such a way
each node has one input inverted. The presence of a single
complemented edge on each MIG node represents a benefit
for RRAM-based circuits, and can be effective for optimizing
both the number of instructions and required RRAMs.

In this case, the MAJ 3 and MAJ 2 rules proposed in
Section 3.1 are used in order to get the highest number
of nodes with one complemented input. These rules are
not simply applied iteratively on each node, but the effects
that these transformations have on the node outputs are
considered. As an example, Fig. 7a shows a MIG with 11
complemented edges optimized for RRAMs; ideal nodes are
those with one complemented edge on one input, which are
nodes 4, 6, 7, 8, and 9 in Fig. 7a. In this case the number
of ideal nodes is 5. MAJ 2 rule can be applied to nodes 1
and 3, and consequently the MAJ 3 rule can be applied on
node 5. Fig. 7b shows the MIG with a minimal number of

1 2 3

4 5 6

7 8

9

(a)

1 2 3

4 5 6

7 8

9

(b)

Figure 7: Example showing how minimization is not
good to obtain one complemented input on each
node

complemented edges. This is not the best configuration in
terms of number of node with one complemented input, since
in this second case the ideal nodes are only 2. Changing nodes
1 and 3 result in advantage equal to 0, since it will create
two ideal nodes but it will eliminate previously ideal nodes
4 and 6. Moreover, changing node 5 will further eliminate
ideal nodes 7, 8, and 9.

4. EXPERIMENTAL RESULTS
In this section, first, we describe the improvement obtained

in the number of complemented edges with the minimization
rules proposed in Section 3.1. Then, we test the optimization
techniques discussed above for the three different case study
technologies.

4.1 Logic Optimization
We developed a C program to minimize the number of

complemented edges in the MIG according to Alg. 1. We
evaluate our approach on the already optimized arithmetic
circuits of the EPFL benchmarks1 using the rewrite recipe
described in [10]. We compare the number of complemented
edges; results are shown in Table 1. The largest improvement
in the number of complemented edges is obtained after the
first loop (column 1 in Table 1). Our results show that
by applying once one-level and two-level transformations
is possible to decrease the number of complemented edges
by 59.2% as average. On average, 4 loops are necessary
to reach the minimal number of complemented edges. The
final improvement is of 60.8% in average. We apply formal
verification to check the correct behavior of the circuits.

As mentioned before, other optimizations of the comple-
mented edges are possible. We developed a procedure to
obtain the largest number of nodes with one complemented
input. Results showing the number of complemented edges
are shown in the last column of Table 1. As expected, the
final number of complemented edges is smaller than the
original one, but larger than the minimal one.

4.2 First Case Study: SWDs
In this section, we show how minimizing complemented

edges can improve performances of SWD-based circuits. To
evaluate performances of SWD circuits, we use specifications
of SWD technology as modeled in [13, 15]. Area of SWD
circuits is evaluated as the cumulative area of majority and
inverter standard cells; the number of MAJ cells is equal
to the size of the MIG, while the number of INV cells has
been evaluated as the number of MIG nodes with at least
one complemented fanout. For the total delay, we consider
the path with the maximum number of majority nodes and
complemented edges. To test our minimization techniques,

1http://lsi.epfl.ch/benchmarks

Table 1: Complemented Edges Optimization
Benchmark #N #CE #CEmin Improvement #CE1inp

1 2 3 4 5 6 1 2 3 4 5 6

adder 2978 2905 1431 1278 1245 1232 1230 1228 50.7% 56.0% 57.1% 57.6% 57.7% 57.7% 2620
log2 37582 38585 14744 14380 14289 14287 61.8% 62.7% 63.0% 63.0% 28259
max 7202 6543 2977 2967 2965 54.5% 54.7% 54.7% 4348
multiplier 41885 39589 19089 18953 18941 51.8% 52.1% 52.2% 33606
sin 7890 7625 3183 3126 3124 58.3% 59.0% 59.0% 6305
sqrt 52344 53327 20895 20232 20131 20105 20101 60.8% 62.1% 62.2% 62.3% 62.3% 44213
square 19200 23390 5519 5461 5456 5455 76.4% 76.7% 76.7% 76.7% 13650

Average 59.2% 60.5% 60.7% 60.8% 60.8% 60.8%

#N : number of MIG nodes, #CE: number of complemented edges, #CEmin: number of complemented edges after minimization. For
each circuit, the minimization is stopped when the minimal number of CE is reached, Improvement: improvement with regards to the
initial values, #CE1inp: number of complemented edges after constrained optimization.

Table 2: SWD Experimental Results
Benchmark #N MIG Optimized MIG Improvements

#INV Depth #INV Depth Area Delay Energy ADEP

adder 2978 1449 21 830 19 9.1% 9.5% 5.9% 22.6%
log2 37582 22481 342 8445 260 15.6% 24.0% 10.4% 42.5%
max 7202 3147 52 1107 37 12.7% 28.8% 8.2% 43.0%
multiplier 41885 25594 205 12948 163 12.5% 20.5% 8.3% 36.2%
sin 7890 3823 164 1932 128 10.5% 22.0% 6.9% 34.9%
sqrt 52344 28734 1249 12840 980 12.9% 21.5% 8.5% 37.5%
square 19200 17158 70 5012 55 23.5% 21.4% 16.2% 49.6%

Average 13.8% 21.1% 9.2% 38.1%

#N : number of MIG nodes, #INV: number of inverters of the MIG.

we compute area, delay, and energy of the SWD-based cir-
cuits, for both the non-optimized and optimized MIG. The
improvements for the optimized circuit are shown in Table 2.
Due to the smaller amount of complemented edges, the SWD
circuit area of the optimized MIG is lower for all bench-
marks considered, even if the number of majority nodes is
unchanged. The improvement in terms of area is 13.8% as
average. There is a gain for delay (21.1%) and for energy
(9.2%) as well. The Area-Delay-Energy-Product (ADEP) is
totally improved by 38.1% as average.

4.3 Second Case Study: QCA
In this section, we show that improvement in the number

of QCA cells can be obtained by minimizing the number of
complemented edges. To evaluate the number of QCA cells,
we consider both majority, inverter, and wire routing. We
consider that 5 cells are necessary for each majority cells,
while 9 cells are used to build each wire. Thirteen QCA
cells are necessary to create the inverter shown in Fig. 2b.
In other words, four more cells are necessary on each wire
to invert the signal. To test our optimization, we evaluate
the number of QCA cells both for unoptimized circuits and
for circuits with a minimal number of complemented edges.
The improvement in the number of QCA cells is shown in
Table 3 and it is 4.9% on average. As expected, since we
consider wire routing, the improvement is not as large as the
one obtained for the logic optimization.

We attempted also a comparison with the results presented
in [2] on the 10 most complex benchmarks. Since the syn-
thesis procedures were different (SIS vs MIGhty [23]), the
starting point of our inverter optimization is different, thus
invalidating a direct comparison. Nevertheless, using MIG,
we could achieve an improvement in the number of levels of
38.5% in average.

4.4 Third Case Study: RRAMs
In this section, we show that increasing the number of

nodes with one complemented input can improve perfor-
mances of RRAM-based circuits. The size of the MIG and
the number of complemented edges have an impact on the
quality of the PLiM architecture [6] optimization with re-
spect to the number of required RRAMs and number of
steps. The PLiM architecture is able to manage only serial
operations and only one node can be computed at a time; we
compute the total number of instructions as the sum of in-
structions necessary for each single node. Here, we maximize
the number of nodes with one complemented input using
rules proposed in Section 3.1. We use the same approach
presented in [22] to obtain PLiM optimal results, but we do
not change the number of nodes of the MIG. We compare
performances for RRAM-based circuit for the unoptimized
case, the PLiM optimal and the minimized case proposed in
Section 4.1. Results are shown in Table 4. Our experimental
results shows that, by forcing one complemented input on
the largest amount of nodes, the number of required RRAMs
is reduced almost twice as compared to when minimizing
the number of complemented edges. However, the number
of computational steps sees better improvement when mini-
mizing the number of complemented edges compared to the
tailored optimization strategy. This is not surprising as the
number of RRAMs and the number of steps are contradictory
objectives and multi-objective techniques would be required
in order to optimize both of them.

5. CONCLUSION
We described rules to optimize the complemented edges

distribution according to a specific application. We mini-
mized the number of complemented edges and we showed how
minimization affects SWDs and QCA circuits performances.
We also illustrated rules to obtain one complemented input
on the largest amount of nodes. This optimization technique
aims at obtaining better results in terms of performances
and number of steps for RRAM based circuits.

At the logic level, our results showed that a decrease

Table 3: QCA Experimental Results
Benchmark #N #L #E MIG Minimal Impr.

#INV #QCA cells #INV #QCA cells

adder 2978 12 7452 1449 87754 830 85278 2.8%
log2 37582 181 78917 22481 988087 8445 931943 5.7%
max 7202 27 16186 3147 194272 1107 186112 4.2%
multiplier 41885 111 92904 25594 1147937 12948 1097353 4.4%
sin 7890 91 17275 3823 210217 1932 202653 3.6%
sqrt 52344 690 111816 28734 1383000 12840 1319424 4.6%
square 19200 36 39836 17158 523156 5012 474572 9.3%

Average 4.9%

#N : number of MIG nodes, #L: number of levels in the MIG not considering inverters, #E: number of edges, #INV : number of
inverters,#QCA cells: number of QCA cells, Impr: improvement of the minimal values with respect to the initial MIG.

Table 4: RRAM Experimental Results
Benchmark #N MIG PLiM Optimal Minimal

#CE #R #I #CE #R Impr. #I Impr. #CE #R Impr. #I Impr.

adder 2978 2905 263 6583 2620 261 0.8% 6586 -0.1% 1228 261 0.8% 6238 5.2%
log2 37582 38585 1851 85000 28259 1748 5.6% 73891 13.1% 14287 1774 4.2% 65446 23.0%
max 7202 6543 567 13462 4348 562 0.9% 11385 15.4% 2965 565 0.4% 11110 17.5%
multiplier 41885 39589 613 100202 33606 551 10.1% 83078 17.1% 18941 537 12.4% 72646 27.5%
sin 7890 7625 671 16899 6305 571 14.9% 15807 6.5% 3124 577 14.0% 13826 18.2%
sqrt 52344 53327 501 111321 44213 507 -1.2% 101748 8.6% 20101 445 11.2% 87967 21.0%
square 19200 23390 941 52494 13650 287 69.5% 38776 26.1% 5455 845 10.2% 35737 31.9%

Average 14.4% 12.4% 7.6% 20.6%

#N : number of MIG nodes, #CE: number of complemented edges of the MIG, #R: number of required RRAMs, #I: number of
instructions.

in the number of inversions up to 60.8% can be achieved.
Experiments showed that SWD circuits are improved in
terms of area, delay, and power by complemented edges
minimization. The ADEP can be improved of 38.1%. QCA-
based circuits benefit from inversion minimization and a
reduction of 4.9% can be achieved in the number of QCA
cells. Regarding RRAMs, within a PLiM architecture the
number of instructions can be decreased by up to 14.4% and
the number of required RRAMs devices can be reduced by
up to 12.4%.

We conclude that new logic synthesis techniques and opti-
mizations are essential to validate emerging nanotechnologies
which use logic models different from standard transistors.

Acknowledgment. This research was supported by H2020-
ERC-2014-ADG 669354 CyberCare and by the Swiss Na-
tional Science Foundation, project number 200021 146600.

6. REFERENCES
[1] I. Amlani. Digital logic gate using quantum-dot cellular au-

tomata. Science, 284(5412):289–291, 1999.
[2] K. Kong, Y. Shang, and R. Lu. An optimized majority logic syn-

thesis methodology for quantum-dot cellular automata. IEEE
Trans. On Nanotechnology, 9(2):170–183, 2010.

[3] T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L.
Stamps, and M. P. Kostylev. Realization of spin-wave logic gates.
Applied Physics Letters, 92(2):1–4, 2008.

[4] A. Khitun and K. L. Wang. Nano scale computational architec-
tures with spin wave bus. Superlattices and Microstructures,
38(3):184–200, 2005.

[5] E. Linn, R. Rosezin, C. Kügeler, and R. Waser. Complemen-
tary resistive switches for passive nanocrossbar memories. Na-
ture materials, 9(5):403–406, 2010.

[6] Pierre-Emmmanuel Gaillardon, Luca Amarú, Anne Siemon,
Eike Linn, Rainer Waser, Anupam Chattopadhyay, and Gio-
vanni De Micheli. The programmable logic-in-memory (plim)
computer. In DATE, 2016.

[7] L.G. Amarú, P.-E. Gaillardon, S. Mitra, and G. De Micheli.
New logic synthesis as nanotechnology enabler. Proc. of IEEE,
103(11):2168–2195, 2015.

[8] S. B. Akers. Synthesis of combinational logic using three-input
majority gates. SWCT, pages 149–158, 1962.

[9] R. Lindaman. A theorem for deriving majority-logic networks
within an augmented Boolean algebra. IRE Trans. On Elec-
tronic Computers, 47:338–342, 1960.

[10] L.G. Amarú, P.-E. Gaillardon, and G. De Micheli. Majority-
inverter graph: A new paradigm for logic optimization. IEEE
T-CAD, 2015.

[11] L. Amarú, P.-E. Gaillardon, and G. De Micheli. Majority-based
synthesis for nanotechnologies. ASPDAC, pages 499–502, 2016.

[12] S. Muroga. Threshold logic and its applications. NY, New York:
John Wiley & Sons Inc., 1971.

[13] O. Zografos, B. Sorée, A. Vaysset, S. Cosemans, L. Amarù, P.-E.
Gaillardon, G. De Micheli, R. Lauwereins, S. Sayan, P. Ragha-
van, I. P. Radu, and A. Thean. Design and benchmarking of hy-
brid CMOS-spin wave device circuits compared to 10nm CMOS.
In NANO, 2015.

[14] O. Zografos, L. Amarú, P.-E. Gaillardon, P. Raghavan, and
G. De Micheli. Majority logic synthesis for spin wave technol-
ogy. In Euromicro DSD, 2014.

[15] O. Zografos, P. Raghavan, Y. Sherazi, A. Vaysset, F. Ciuba-
toru, B. Soree, R. Lauwereins, I. Radu, and A. Thean. Area and
routing efficiency of SWD circuits compared to advanced CMOS.
ICICDT, pages 1–4, 2015.

[16] C. S. Lent, D. P. Tougaw, W. Porod, and G. H. Bernstein. Quan-
tum cellular automata. In IEEE Trans. On Nanotechnology,
volume 4, pages 49–57, 1993.

[17] R. Zhang, K. Walus, W. Wang, and G. Jullien. A method of ma-
jority logic reduction for quantum cellular automata. In IEEE
Trans. On Nanotechnology, volume 3, pages 443–450, 2004.

[18] R. Zhang, P. Gupta, and N. K. Jha. Synthesis of majority and
minority networks and its applications to qca, tpl ans set based
nanotechnologies. In VLSID, pages 229–234, 2005.

[19] QCA Designer. Available: http://www.qcadesigner.ca.
[20] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen,

B. Lee, F. T. Chen, and M.-J. Tsai. Metal-oxide RRAM. Proc.
of the IEEE, 100(6):1951–1970, 2012.

[21] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler.
Fast logic synthesis for RRAM-based in-memory computing us-
ing majority-inverter graphs. DATE, 2016.

[22] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L.G. Amarú,
R. Drechsler, and G De Micheli. An MIG-based compiler for
programmable logic-in-memory architectures. DAC, 2016.

[23] L.G. Amarú, P.-E. Gaillardon, and G. De Micheli. Majority-
inverter graph: A novel data-structure and algorithms for ef-
ficient logic optimization. In DAC, 2014.

[24] L. Amarú, P.-E. Gaillardon, and G. De Micheli. Boolean logic
optimization in majority-inverter graphs. DAC, 2015.

