
Heuristic NPN classification for large functions
using AIGs and LEXSAT

Mathias Soeken1, Alan Mishchenko2, Ana Petkovska1, Baruch Sterin2, Paolo
Ienne1, Robert K. Brayton2, and Giovanni De Micheli1

1 EPFL, Lausanne, Switzerland
2 UC Berkeley, CA, USA
mathias.soeken@epfl.ch

Abstract. Two Boolean functions are NPN equivalent if one can be ob-
tained from the other by negating inputs, permuting inputs, or negating
the output. NPN equivalence is an equivalence relation and the number
of equivalence classes is significantly smaller than the number of all
Boolean functions. This property has been exploited successfully to in-
crease the efficiency of various logic synthesis algorithms. Since computing
the NPN representative of a Boolean function is not scalable, heuristics
have been proposed that are not guaranteed to find the representative
for all functions. So far, these heuristics have been implemented using
the function’s truth table representation, and therefore do not scale for
functions exceeding 16 variables.
In this paper, we present a symbolic heuristic NPN classification using
And-Inverter Graphs and Boolean satisfiability techniques. This allows
us to heuristically compute NPN representatives for functions with much
larger number of variables; our experiments contain benchmarks with
up to 194 variables. A key technique of the symbolic implementation is
SAT-based procedure LEXSAT, which finds the lexicographically smallest
satisfiable assignment. To our knowledge, LEXSAT has never been used
before in logic synthesis algorithms.

1 Introduction

Researchers have intensively studied the classification of Boolean functions in the
past. One of the frequently used classifications is based on NPN equivalence[7,
8, 5, 16, 11]. Two Boolean functions f and g are Negation-Permutation-Negation
(NPN) equivalent, denoted f =NPN g, if one can be obtained from the other by
negating (i.e., complementing) inputs, permuting inputs, or negating the output.
This notion of equivalence is motivated by the logic representation because
NPN equivalent functions are invariant to the “shape” of an expression. As an
example, (x1 ∨ x2) ∧ x̄3 =NPN (x̄2 ∨ x3) ∧ x1 by replacing x1 ← x̄2, x2 ← x3,
and x̄3 ← x1. This is especially true in frequently used logic representations,
such as And-Inverter Graphs (AIGs) [9, 15], in which negations are represented
by complemented edges. An equivalence class represents a set of functions such
that each two functions belonging to the class are NPN equivalent. For each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148022284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

equivalence class, one function, called representative, is selected uniquely among
all functions of the class.

Exact NPN classification refers to the problem of finding, for a Boolean func-
tion f , its representative r(f) of an NPN class. Thus, an exact NPN classification
algorithm can be used to decide NPN equivalence of two functions f and g,
since r(f) = r(g) ⇔ f =NPN g. Often r(f) is chosen to be the function in the
equivalence class that has the smallest truth table representation. The smallest
truth table is the one with the smallest integer value, when considering the truth
table as a binary number. To the best of our knowledge, there is no better way
to exactly find r(f) than to exhaustively enumerate all n! permutations and all
2n+1 negations. To cope with this complexity, heuristic NPN classification has
been proposed that computes r̃(f) ≥ r(f), i.e., it may not necessarily find the
smallest truth table representation. Since r̃(f) = r̃(g) ⇒ f =NPN g, heuristic
NPN classification algorithms are nevertheless very helpful in many applications.
For example, it has been applied to logic optimization [18, 21] and technology
mapping [1, 16, 4, 10]. Finally, another option is to perform Boolean matching
that directly checks if f =NPN g, without first generating the representatives.
Several algorithms solve this problem [1], but to the best of our knowledge, there
is no good heuristics for Boolean matching without the representative.

The existing algorithms for heuristic NPN computation are implemented
using truth tables [10, 5] and therefore can only be efficiently applied to functions
with up to 16 variables. The operations that are performed on the functional
representation in heuristic NPN classification algorithms are typically: i) negating
an input, ii) negating an output, iii) swapping two inputs, and iv) comparing
two functions. When using truth tables as an underlying representation, all these
operations can easily be implemented.

In this paper, we propose an implementation of two existing heuristic NPN
classification algorithms using AIGs and LEXSAT. While the first three of the
above described operations are simple to implement in AIGs, the comparison
of two functions is difficult. Thus, our algorithm uses LEXSAT, which is a
variant of the Boolean satisfiability (SAT) problem in which the lexicographically
smallest (or greatest) assignment is returned if the problem is satisfiable. Our
experimental evaluations show that, by using AIGs as function representation
together with LEXSAT, heuristic NPN classification can be applied to functions
with up to 194 variables while providing the same quality as the truth table
based implementation at the cost of additional runtime.

The paper is structured as follows. Section 2 introduces necessary background.
Section 3 reviews two existing heuristic NPN classification algorithms. Section 4
describes the truth table based implementation of the algorithms and the proposed
AIG based implementation using LEXSAT. Section 5 shows the results of the
experimental evaluation and Sect. 6 discusses possible performance improvements.
Section 7 concludes the paper.

2 Preliminaries

2.1 Boolean functions

We assume that the reader is familiar with Boolean functions. A Boolean function
f : Bn → B evaluates bitvectors x = x1 . . . xn of size n. If f(x) = 1, we call x a
satisfying assignment. Given two assignments x = x1 . . . xn and y = y1 . . . yn, we
say that x is lexicographically smaller than y, denoted x < y, if there exists a
k ≥ 1 such that xk < yk and xi = yi for all i < k. We use the notation x1 and
x0 to refer to x and x̄, respectively.

The truth table of f is the bitstring obtained by concatenating the function
values for the assignments 0 . . . 00, 0 . . . 01, . . . , 1 . . . 10, 1 . . . 11 in the given order,
i.e., the lexicographically smallest assignment 0 . . . 00 corresponds to the most
significant bit. The notion of lexicographic order can be transferred to truth
tables. We also use f to refer to its truth table representation, if it is clear from
the context. We use > and ⊥ to refer to tautology and contradiction, respectively.

2.2 NPN equivalence

Definition 1 (NPN equivalence, [7]). Let g(x1, . . . , xn) be a Boolean func-
tion. Given a permutation π ∈ Sn (Sn is the symmetric group over n elements)
and a phase-bitvector ϕ = (p, p1, . . . , pn) ∈ Bn+1, we define

apply(g, π, ϕ) = gp(xp1π(1), . . . , x
pn
π(n)). (1)

We say that two Boolean functions f(x1, . . . , xn) and g(x1, . . . , xn) are Negation-
Permutation-Negation (NPN) equivalent, if there exists π ∈ Sn and ϕ ∈ Bn+1

such that f(x1, . . . , xn) = apply(g, π, ϕ), i.e., g can be made equivalent to f by
negating inputs, permuting inputs, or negating the output. We call the pair π, ϕ
an NPN signature.

NPN equivalence is an equivalence relation that partitions the set of all Boolean
functions over n variables into a smaller set of NPN classes. As an example,
all 22n

Boolean functions over n variables can be partitioned into 2, 4, 14, 222,
616126 NPN classes for n = 1, 2, 3, 4, 5 [8].

Definition 2 (NPN classes and representatives). We refer to the NPN
class of a function f as [f] and define f =NPN g, if and only if [f] = [g]. As the
representative r(f) of each NPN class [f], we take the function with the smallest
truth table. In other words, r(f) ≤ g for all g ∈ [f].

Example 1. The truth table of x1 ∨ x2 is 0111, and its NPN representative is
x1 ∧ x2 = x̄1 ∨ x̄2 which truth table is 0001. Note that g =NPN apply(g, π, ϕ) for
all π ∈ Sn and all ϕ ∈ Bn+1. For a detailed introduction into NPN classification
the reader is referred to the literature [19, 1].

Alg. 1. LEXSAT implementation from [13, Ex. 7.2.2.2-109].
Input : Boolean function f(x1, . . . , xn)
Output :min f if f 6= ⊥, otherwise unsatisfiable

1 set s← SAT(f);
2 if s = unsatisfiable then return unsatisfiable;
3 set y1, . . . , yn ← s and yn+1 ← 1;
4 set d← 0;
5 while true do
6 set d← min{j > d | yj = 1};
7 if d > n then return y1, . . . , yn;
8 set s← SAT(f, {xy11 , . . . , x

yd−1

d−1 , x̄d});
9 if s 6= unsatisfiable then set y1, . . . , yn ← s;

10 end

2.3 Lexicographic SAT

Definition 3 (Lexicographically smallest (greatest) assignment). Let f :
Bn → B with f 6= ⊥. Then x ∈ Bn is the lexicographically smallest assignment
of f , if f(x) = 1 and f(x′) = 0 for all x′ < x. We denote this x as min f .
Analogously, x ∈ Bn is the lexicographically greatest assignment of f , if f(x) = 1
and f(x′) = 0 for all x′ > x. We denote this x as max f .

Based on this definition, lexicographic SAT (LEXSAT) is a decision procedure
that for a given function f , returns min f when the problem is satisfiable, or
returns unsatisfiable, when f = ⊥. LEXSAT is NP-hard and complete for the
class FPNP [14]. Knuth [13] proposes an implementation that calls a SAT solver
several times to refine the assignment, and which is described in Alg. 1. In the
algorithmic description SAT(f, a) refers to the default SAT decision procedure
for a Boolean function f and optional assumptions a that allows incremental
solving. SAT returns unsatisfiable, when f = ⊥, or a satisfying assignment, when
the problem is satisfiable. Further, to use the SAT solver, we assume that f is
translated into a CNF representation (e.g., using [22, 6]). By replacing yj = 1
with yj = 0 in Line 6 and x̄d with xd in Line 8, Alg. 1 can find max f .

3 Heuristic NPN classification

To the best of our knowledge there is no efficient algorithm to find the representa-
tive r(f) for a given Boolean function f : Bn → B, and an exhaustive exploration
of all functions in [f] is required. More efficient algorithms can be found when
using a heuristic to approximate the representative. Such heuristics do not visit
all functions in [f] and therefore are not guaranteed to find r(f), only a function
r̃(f) ≥ r(f) that is locally minimal to all visited ones is returned.

In the following subsections, we describe in detail two heuristic NPN classifica-
tion algorithms from the literature for which truth table based implementations

Alg. 2. Flip-swap heuristic for NPN classification.
Input : Boolean function f ∈ Bn → B

Output : NPN signature π ∈ Sn, ϕ ∈ Bn+1

1 set π ← πe and ϕ← 0 . . . 0;
2 repeat
3 set improvement ← 0;
4 for i = 0, . . . , n do
5 if apply(f, π, ϕ⊕ 2i) < apply(f, π, ϕ) then
6 set ϕ← ϕ⊕ 2i;
7 set improvement ← 1;
8 end
9 end

10 for d = 1, . . . , n− 2 do
11 for i = 1, . . . , n− d do
12 set j ← i+ d;
13 if apply(f, π ◦ (i, j), ϕ) < apply(f, π, ϕ) then
14 set π ← π ◦ (i, j);
15 set improvement ← 1;
16 end
17 end
18 end
19 until improvement = 0;
20 return π, ϕ;

exists, e.g., in ABC [3]. The first heuristic [10] is called flip-swap, which in
alternating steps flips single bits and permutes pairs of indices. The second
algorithm [10] is called sifting (inspired by BDD sifting [20]), which considers
only adjacent indices for flipping and swapping.

3.1 Flip-swap heuristic

Algorithm 2 shows the flip-swap heuristic, which in alternating steps first tries to
flip single bits in the phase ϕ and then permutes pairs of indices in π. The phase
is initialized to consist only of 0, and the permutation is initially the identity
permutation πe. The first for-loop, which flips bits (Line 4), also covers negating
the whole function when i = 0. Note that all index pairs in the second for-loop
(Line 10), which swaps inputs, are enumerated ordered by their distance such that
adjacent pairs are considered first. Flipping and swapping is repeated until no
more improvement, i.e., no smaller representative, can be found. The algorithm
returns a permutation π and a phase-bitvector ϕ, which lead to the smallest
function that is considered as representative r̃(f) of the input function f . One
can obtain r̃(f) by executing apply(f, π, ϕ).

Alg. 3. Sifting heuristic for NPN classification.
Input : Boolean function f ∈ Bn → B

Output : NPN signature π ∈ Sn, ϕ ∈ Bn+1

1 set π ← πe and ϕ← 0 . . . 0;
2 repeat
3 set improvement ← 0;
4 for i = 1, . . . , n− 1 do /* in alternating order */
5 set σ, σ̂ ← πe and ψ, ψ̂ ← 0 . . . 0;
6 for j = 1, . . . , 8 do
7 if 4 | j then
8 set σ ← σ ◦ (i, i+ 1);
9 end

10 else if 2 | j then
11 set ψ ← ψ ⊕ 2i+1;
12 end
13 else
14 set ψ ← ψ ⊕ 2i;
15 end
16 if apply(f, π ◦ σ, ϕ⊕ ψ) < apply(f, π ◦ σ̂, ϕ⊕ ψ̂) then
17 set σ̂ ← σ and ψ̂ ← ψ;
18 set improvement ← 1;
19 end
20 end
21 set π ← π ◦ σ̂ and ϕ← ϕ⊕ ψ̂;
22 end
23 until improvement = 0;
24 return π, ϕ;

3.2 Sifting heuristic

Algorithm 3 shows the sifting heuristic that was presented by Huang et al. [10].
The idea is that a window is shifted over adjacent pairs of input variables xπ(i)

and xπ(i+1). The adjacent variables are negated and swapped (Lines 6–15) in the
following way that guarantees that all eight possibilities are obtained by applying
simple operations, and the initial configuration is restored in the end.

xy
¯
−→
j=1

x̄y
¯
−→
j=2

x̄ȳ
¯
−→
j=3

xȳ
↔−→
j=4

yx̄
¯
−→
j=5

ȳx̄
¯
−→
j=6

ȳx
¯
−→
j=7

yx
↔−→
j=8

xy (2)

Whenever j is a multiple of 4 (i.e., j = 4 and j = 8), the variables are swapped.
Otherwise, whenever j is even (i.e., j = 2 and j = 6), the second variable is
negated, and in all other cases the first variable is negated.

All eight configurations are evaluated and the best configuration is stored in
σ̂ and ψ̂. This procedure is repeated as long as an improvement can be obtained.
The window is moved in alternating order over the variables, i.e., first from left
to right and then from right to left.

4 Implementations

The crucial parts in the algorithms presented in Sect. 3 are the checks in Lines 5
and 13 from Alg. 2, and Line 16 from Alg. 3, which derive the representative of
the given function by applying the given permutation and phase. Four operations
are required to perform these checks, which are i) negating an input, ii) negating
an output, iii) swapping two inputs, and iv) comparing the two functions. This
section describes two implementations for these four operations: i) based on truth
tables which scales to functions with up to 16 variables and ii) based on AIGs
and LEXSAT which scales for large functions.

4.1 Truth table based implementation

A truth table is represented as the binary expansion of a nonnegative number
t ∈ [0, 2n). The most significant bit represents the assignment 0 . . . 0 and the
least significant bit represents the assignment 1 . . . 1. In this representation the
truth table of the function x1 ∧ x2 is 0001 and of x1 ∨ x2 is 0111. The truth
table for a variable xn−i in a n-variable Boolean function is µn,i = 22n−1

22i+1
for

0 ≤ i < n. For n = 3, we have 0000 1111, 0011 0011, and 0101 0101 for x1, x2,
and x3, respectively. The comparison of two functions given in their truth table
representation is straightforward, e.g., by comparing their integer values. The
other three operations can be implemented using well-known bitwise arithmetic
as illustrated next. A truth table t for an n-variable Boolean function can be
negated by flipping each bit, i.e., t ← t̄. In order to negate the polarity of a
variable xi in a truth table t for an n-variable Boolean function, we compute
t ←

(
(t& µn,i)� 2n−i+1

)
|
(
(t& µ̄n,i)� 2n−i+1

)
. The operations ‘&’, ‘|’, ‘�’,

‘�’ are bitwise AND, bitwise OR, logical left-shift, and logical right-shift. Two
variables xi and xj with i > j can be swapped in a truth table t by performing
the two operations t′ ← (t ⊕ (t � δ)) & 2j and t ← t ⊕ t′ ⊕ (t′ � δ), where
δ = i− j and ‘⊕’ is bitwise XOR.

All the described operations can be implemented very efficiently when n is
small. For example, a 6-variable function fits into a word that requires one memory
cell on a 64-bit computer architecture. Almost all of the bitwise operations have
a machine instruction counterpart that can be processed within one clock cycle.
Warren, Jr. [23] and Knuth [12] describe all these bitwise manipulations and give
more detailed equations.

4.2 AIG based implementation using LEXSAT

For large functions, we propose representing the function using the AIG data
structure, which represents a logic network using two-input AND gates and
edges connecting them. The edges may be complemented, representing inverters
over these edges. For an AIG, negating the function, negating the polarity of a
single variable, and swapping two variables is trivial. This can be achieved by
complementing fanout edges from the primary output and primary inputs, and
by swapping two AIG nodes of the corresponding primary inputs, respectively.

f

f

x1

xn

x′1

x′n

p1

pn

p′1

p′n

...

...

p⊕ p′

x1
x′1

s1,1

x1
x′2

s1,2

xn
x′n

sn,n

...

Fig. 1. Shared miter construction. The additional variables pi and p′i control the phase
of the inputs and the output, while the additional variables si,j allow permuting inputs.

Since the truth table is not explicitly represented by an AIG, the lexicographic
comparison in Alg. 2 cannot be performed directly. We find that LEXSAT can
be used to solve this problem. The next theorem, which is the main contribution
of this paper, explains how the comparison can be done.

Theorem 1. Let g : Bn → B and h : Bn → B be two Boolean functions. Then
g < h, if and only if

g 6= h and g(min(g ⊕ h)) = 0.

Proof. ‘⇐’: The condition can only hold if g 6= h. Then, g ⊕ h 6= ⊥ and its
lexicographic smallest assignment x = min(g ⊕ h) is the smallest assignment
for which g and h differ. Hence, x is the first bit-position in which the truth
table representations of g and h differ. (Recall that the most significant bit
corresponds to all variables set to 0.) If g(x) = 0, then h(x) = 1, and g must be
lexicographically smaller than h.

‘⇒’: Obviously, g 6= h. Let x be the smallest assignment for which g and h
differ, i.e., x = min(g ⊕ h). Since g < h, we have g(x) = 0. ut

Based on Theorem 1, the following steps are necessary in an AIG based imple-
mentation to compute whether g < h.

1) Create an AIG for the miter m(x1, . . . , xn) = g(x1, . . . , xn) ⊕ h(x1, . . . , xn)
by matching the inputs and pairing the outputs using an XOR operation [2].

2) Encode the AIG for m as a CNF.
3) Solve LEXSAT for the variables x1, . . . , xn by assuming the output of m to

be 1.
4) If a satisfying assignment x exists and if simulating g(x) returns 0, then g < h.

In our use of this procedure, we will obtain g and h from apply(f, π, ϕ) and
apply(f, π′, ϕ′), respectively, and the result will determine whether the current
permutation and phase-bitvectors will be updated.

Simple miter and shared miter approach. The lexicographic comparison
has to be done several times by following the above mentioned steps that re-
quire to build and encode the miter each time. We call this the simple miter
approach. Contrary to this approach, we propose a shared miter approach in
which the miter is only created once and can be reconfigured. Then, steps 1) and
2) are performed only once. The shared miter is equipped with additional inputs
p1, . . . , pn, p

′
1, . . . , p

′
n and outputs p, p′, s1,1, s1,2, . . . , sn,n to reconfigure w.r.t. dif-

ferent permutations and phases. These inputs and outputs can be assigned using
assumption literals in the LEXSAT calls in step 3).

The details are illustrated in Fig. 1. The assumption literals to control the
phase for inputs and outputs are (p, p1, . . . , pn) = ϕ and (p′, p′1, . . . , p

′
n) = ϕ′.

Instead of assuming the output of m to be 1 in step 3), it is assumed to be
p̄ ⊕ p′ (note the XNOR gate at the outputs). To take input permutation into
consideration, we assume si,j = 1, if πi = π′j . This is ensured by having a quadratic
number of XNOR gates for each pair of inputs xi and x′j . The lexicographically
smallest assignment is determined with respect to x1, . . . , xn. Technically, the
simulation in step 4) is not required since the simulation value is contained in the
satisfying assignment, however, the runtime required for simulation is negligible.
As the experimental results from Sect. 5 show, the simple miter approach and the
shared miter approach trade off solving time against encoding time: the LEXSAT
instances in the simple miter approach are simpler to solve, however, more time
is spent for encoding the AIG of the miter for each lexicographic comparison.

Encoding the AIG. The process of translating an AIG into a conjunctive
normal form (CNF), which is a set of clauses, is called encoding. In order to
call LEXSAT, the AIG of the miter needs to be encoded into a CNF. Several
techniques for encoding exist, but the most conventional one is the Tseytin
encoding [22] that introduces a new variable for each gate, and expresses the
relation of the output to the inputs using clauses. For example, an AND gate
c = a ∧ b is encoded with the three clauses (a ∨ c̄)(b ∨ c̄)(ā ∨ b̄ ∨ c). Since AIGs
contain only AND gates, the SAT formula consists of clauses that have the form
as the three clauses of the AND gate, with literals inverted with respect to
complemented edges.

Particularly for AIGs, one can do much better by using logic synthesis tech-
niques to derive a smaller set of clauses. We call this technique EMS encoding [6]
due to the authors’ last names. EMS encoding applies cut-based technology
mapping in which the objective is not area or delay but clause count. Several
applications indicate that this encoding is particularly desirable when CNFs are
generated from circuits and have a positive effect on the SAT solving runtime [6].
However, due to the overhead of technology mapping, the EMS encoding requires
more runtime than the Tseytin encoding.

Table 1. Evaluating the quality of the heuristics for small functions.

Variables # Functions # Classes / Runtime (s)

Exact Flip-swap Sifting

6 40195 191 13941.11 441 5.65 368 24.26
8 81864 1274 > 4h 2409 51.30 2251 127.55
10 19723 1707 > 4h 2472 56.76 2360 81.25

5 Experiments

We have implemented all presented algorithms using CirKit3 in the commands
‘npn’ and ‘satnpn’. All experiments are carried out on an Intel Xeon E5 CPU
with 2.60 GHz and 128 GB main memory running Linux 3.13. First, Sect. 5.1
shows results of an experiment that compares different heuristics against the
exact NPN classification algorithm. However, this can only be done for small
functions, for which the exact algorithm finishes in reasonable time. On the
other hand, Sect. 5.2 shows results of an experiment that evaluates scalability by
applying the heuristics to larger functions beyond the applicablity of truth table
based implementations.

5.1 Quality evaluation

We applied both the truth table based implementation and the AIG based
implementation of both heuristics to small Boolean functions that were harvested
using structural cut enumeration in all instances of the MCNC, ISCAS, and
ITC benchmark sets as suggested by Huang et al. [10] Based on the computed
representative, all functions are partitioned into a smaller set of classes. Table 1
shows the number of classes generated by an exact algorithm for NPN classification
and by each of the two heuristic algorithms presented in Sect. 3. Although the
heuristic NPN classification algorithms can be applied to truth tables up to 16
variables, exact classification does not scale since all n! · 2n+1 permutations and
phases have to be evaluated in the worst case. Runtimes are obtained from the
truth table based methods. For example, the exact and heuristic classifications
were applied to 40195 distinct functions of six variables. When partitioning
this set based on the NPN representatives, 191 classes are obtained using exact
NPN classification. The flip-swap heuristic cannot determine all representatives
correctly and partitions the 40195 functions into 441 classes. The sifting heuristics
shows better results and returns 368 classes.

The best quality is reached with exact classification, but it cannot be applied
efficiently to larger functions due to the exponential search space. Nevertheless,
the heuristic classification can have a huge contribution in some logic synthesis
algorithms. For example, some optimizations which require a large computational
effort can often be limited to only representatives of each NPN class. In the
3 github.com/msoeken/cirkit

Table 2. Benchmark properties.

Benchmark Inputs Outputs Max. inputs

c432 36 7 36
c499 41 32 41
c880 60 26 45
c1355 41 32 41
c1908 33 25 33
c2670 233 140 119
c3540 50 22 50
c5315 178 123 67
c7552 207 108 194

Table 3. Runtime (in seconds) and number of LEXSAT calls (in millions) of the
heuristics for the benchmark c7552. In bold are the number of SAT calls (in millions).

Heuristic LEXSAT Single miter Shared miter

calls Tseytin EMS Tseytin EMS

Flip-swap 0.8M 4416.10 57M 5348.17 63M 62357.90 22M 29184.40 23M
Sifting 1.8M 9450.02 123M 12018.30 135M 76582.10 49M 44896.10 47M

case of 6-variable functions, when using the sifting heuristic, it means that such
computation only needs to be performed for 368 functions, instead of 40195.

We observed that both the truth table based and the AIG based implemen-
tation generate the same results in terms of quality. However, the AIG based
implementation showed significantly worse performance when applied to small
functions. This is due to the extra overhead spent on encoding and SAT solving
which is only amortized for larger functions for which the truth table based imple-
mentation is not scalable. For large functions, the exponential size representation
of truth tables becomes the bottleneck.

5.2 Scalability evaluation

In order to demonstrate scalability of the AIG based implementation of the
heuristic NPN classification algorithms, as well as to evaluate the different
implementation options, we have applied both heuristics to the combinational
instances from the ISCAS benchmark suite. Since these benchmarks realize
multiple output Boolean functions we ran the algorithm on each output cone
separately. The reported results are cumulative for all outputs. Table 2 shows
number of inputs and outputs of the used benchmarks, as well as the maximum
number of inputs in any of the output cones. Since the runtimes for c7552
are comparably high, we report them separately in Table 3 and allow a better
scaling of the other benchmarks in the plots. As the main objective is runtime in
this experiment, there is no direct comparison of both heuristics. A qualitative
comparison of both approaches has already been provided in the previous section.

c432 c499 c880 c1355 c1908 c2670 c3540 c5315geomean0

2 000

4 000

6 000

8 000
R
un

-t
im

e
(s
ec
on

ds
)

0K

50K

100K

150K

L
E
X
SA

T
ca
lls

15M

10M

5M

0M

SA
T

ca
lls

sim
p
le

(T
)

sim
p
le

(E
M

S
)

sh
a
red

(T
)

sh
a
red

(E
M

S
)

SAT

Encoding

Remaining

Fig. 2. Experimental results for flip-swap heuristic. Bars show the runtime (top) and
the number of SAT calls (bottom). Cross marks show the number of LEXSAT calls.

The results of the experiments are presented in the plots in Fig. 2 for the
flip-swap heuristic and in Fig. 3 for the sifting heuristic. Both plots are organized
in the same way. We ran each benchmark in four configurations: simple miter with
Tseytin encoding, simple miter with EMS encoding, shared miter with Tseytin
encoding, and shared miter with EMS encoding. For each configuration, we plot
the runtime in seconds in the upper axis and the number of total SAT calls
in the lower axis. The runtime is separated into three parts: the lowest (blue)
part shows the runtime spent on SAT solving, the middle (red) part shows the
runtime spent on encoding, and the upper (brown) part shows the remaining
runtime. Finally, cross marks show the number of LEXSAT calls in the upper
axis. Note that the number of LEXSAT call is identical in each configuration.
The last entry in the plots gives the geometric mean of the overall runtimes and
SAT calls for each configuration.

The simple miter approach is often faster compared to the shared miter
approach, especially for larger benchmarks. It can be seen that percentage of
runtime spent on SAT solving is much smaller for the simple miter approach,
since more time is spent on generating and encoding the miter. In the simple
miter approaches the time spent on encoding can matter. Although the EMS

c432 c499 c880 c1355 c1908 c2670 c3540 c5315geomean0

2 000

4 000

R
un

-t
im

e
(s
ec
on

ds
)

0K

200K

400K

600K

800K

L
E
X
SA

T
ca
lls

30M

20M

10M

0M

SA
T

ca
lls

sim
p
le

(T
)

sim
p
le

(E
M

S
)

sh
a
red

(T
)

sh
a
red

(E
M

S
)

SAT

Encoding

Remaining

Fig. 3. Experimental results for sifting heuristic. Bars show the runtime (top) and the
number of SAT calls (bottom), while cross marks show the number of LEXSAT calls.

encoding can reduce the runtime on SAT solving significantly (see, e.g., c2670,
c3540, and c5315) the encoding time becomes the new bottleneck and eventually
results in an overall larger runtime. This effect is not evident in the shared
miter approach where a very small percentage of time is spent on encoding. The
EMS method, due to the improved encoding, and the resulting improvement in
SAT solving, reduces the overall runtime by about half overall. Note also that
the overall number of SAT calls is about two times larger in the simple miter
approach compared to the shared miter approach.

Challenges to performance. Symmetric or functionally independent variables
can cause a problem for the algorithm, since they do not change the function
after permutation and negation, respectively. For two symmetric variables xi and
xj we have apply(f, π, ϕ) = apply(f, π ◦ (i, j), ϕ) and for a functionally indepen-
dent variable xi we have apply(f, π, ϕ) = apply(f, π, ϕ⊕ 2i). Consequently, the
LEXSAT calls for the comparisons in the heuristic yield UNSAT and correspond
to equivalence checking of two equivalent circuits. In practice, the situation may
be slightly better due to several structural similarities of both circuits. In the ex-

perimental evaluation, this problem became evident for the multiplier benchmark
c6288 making a heuristic NPN classification based on SAT infeasible.

6 Possible improvements

In this section, we discuss several improvements that are not considered in the
current implementation, but could be help reduce runtime more.

Symmetry and functional dependency. One can circumvent the problem
with symmetric and functional independent variables by setting a time limit to
the execution of a LEXSAT call. If the timeout is reached one can try random
simulation as a last resort and, if this also fails, then one can proceed while not
updating the current permutation π and phase ϕ. This shows positive effects
on the overall runtime but can degrade the quality by increasing the number of
distict equivalence classes.

Partial EMS encoding. The heuristics update the current permutation and
phase by swapping two variables or negating one variable. Consequently, in most
of the cases only small parts of the updated circuit change. The mapping of the
unchanged part of the circuit and the resulting CNF stay the same and do not
need to be recomputed. Making the EMS encoding aware of changes in the circuit
reduces runtime. Since in case of EMS, the encoding often is the predominant
part of the overall runtime, a significant speedup can be expected.

Avoid miter construction. Note that max f < max g implies f < g. The other
direction is not true which can readily be seen from f = 1010 and g = 1100.
This check may be faster than first constructing the miter and calling LEXSAT
on it. We have tried to integrate this check as a preprocessing step before the
miter construction in the simple miter approach. However, as in most cases we
had max f = max g, this resulted in a higher overall runtime. The check can be
better integrated using a thread, that is started at the same time of the miter
construction, and is terminated when a conclusive answer is found faster.

Using simulation to skip some SAT calls. For simplicity, consider the
computation of max f for one function, as in the above subsection, rather than
for the miter of two functions, as elsewhere in the paper. Assume that we found
max f , which is an assignment of n input variables x such that f(x) = 1, and
f(y) = 0 for all assignments y > x. Now take assignment x and generate n
assignments, which are distance-1 from x, by flipping the value of one input at a
time. Perform bit-parallel simulation of f using these distance-1 assignments and
observe the output of f . If f(d) = 1 for some distance-1 assignment d, we know
that flipping the corresponding input cannot reduce max f , and so we can skip
the SAT call. On the other hand, if f(d) = 0, flipping the corresponding input

may lead to a smaller max f . The reduction in max f is possible if flipping this
input does not create a new 1 for a lexicographically larger assignment, which
has a 0 before (follows from the fact that the original assignment is max f). As
a result, in the case when f(d) = 0, we need a LEXSAT call to check whether
flipping this input leads to an improvement in max f . However, when f(d) = 1
the call can be skipped to reduce the runtime.

Native LEXSAT solver. A considerably faster LEXSAT algorithm can be
obtained by directly modifying the SAT solver (see Ex. 7.2.2.2-275 in [13]). To
this end, instead of using the assumption interface of MiniSAT, as we did in this
paper, we can modify decision heuristics of the SAT solver to always perform
decisions on the input variables in the order, which is imposed by the user of the
LEXSAT algorithm. Decisions on other variables can be performed in any order.

Using binary search in LEXSAT. Another possibility to improve the runtime
of LEXSAT implementation is to use an approach based on binary search. Instead
of trying to append to the array of assumptions one literal at a time, we can
begin by putting one half of all literals, then one quarter, and so on. The binary
search approach can be taken one step further: We can profile and see how often,
on average, the first step of binary search leads to a SAT or UNSAT call. Based
on the result, we could try to make the first step to be, say, 25% or 75% of the
total number of assumptions, instead of 50% (as in the naïve binary search). This
way, we could have a better “success rate” of searching, which could lead to a
faster LEXSAT implementation.

7 Conclusions

In this paper, we have shown how heuristic NPN classification algorithms can
be implemented based on AIGs and SAT instead of truth tables. The new
implementation can be applied to larger functions. The key aspect of the proposed
approach is finding the lexicographically smallest assignment of a SAT instance
using the LEXSAT algorithm. An experimental evaluation shows that using the
AIG based implementation, the heuristic NPN classification algorithms can be
applied to functions with hundreds of inputs. Our current implementation is
preliminary and there are several possibilities to reduce the overall runtime, some
of them have been outlined in Sect. 6.

Acknowledgments. This research was supported by H2020-ERC-2014-ADG
669354 CyberCare, by the German Academic Exchange Service (DAAD) in
the PPP 57134066, and partly by the NSF/NSA grant “Enhanced equivalence
checking in cryptoanalytic applications” at University of California, Berkeley.

References

1. Benini, L., Micheli, G.D.: A survey of Boolean matching techniques for library
binding. ACM Trans. Design Autom. Electr. Syst. 2(3), 193–226 (1997)

2. Brand, D.: Verification of large synthesized designs. In: Proceedings of the Interna-
tional Conference on Computer Aided Design. pp. 534–37 (1993)

3. Brayton, R.K., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proceedings of the International Conference on Computer Aided Verification.
Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer (2010)

4. Chatterjee, S., Mishchenko, A., Brayton, R.K., Wang, X., Kam, T.: Reducing
structural bias in technology mapping. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25(12), 2894–903 (2006)

5. Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean match-
ing in large libraries. In: Proceedings of the Asia and South Pacific Design Automa-
tion Conference. pp. 591–96 (2004)

6. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Proceedings of the International Conference on Theory and Applications
of Satisfiability Testing. pp. 272–86 (2007)

7. Goto, E., Takahasi, H.: Some theorems useful in threshold logic for enumerating
Boolean functions. In: International Federation for Information Processing Congress.
pp. 747–52 (1962)

8. Harrison, M.A.: Introduction to Switching and Automata Theory. McGraw-Hill,
New York (1965)

9. Hellerman, L.: A catalog of three-variable Or-inverter and And-inverter logical
circuits. IEEE Transactions on Electronic Computers 12, 198–223 (1963)

10. Huang, Z., Wang, L., Nasikovskiy, Y., Mishchenko, A.: Fast Boolean matching
based on NPN classification. In: Proceedings of the 2013 International Conference
on Field Programmable Technology. pp. 310–13 (2013)

11. Katebi, H., Markov, I.L.: Large-scale Boolean matching. In: Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition. pp. 771–76
(2010)

12. Knuth, D.E.: The Art of Computer Programming, Volume 4A. Addison-Wesley,
Reading, Massachusetts (2011)

13. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.
Addison-Wesley, Reading, Massachusetts (2015)

14. Krentel, M.W.: The complexity of optimization problems. Journal of Computer
and System Sciences 36(3), 490–509 (1988)

15. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 21(12), 1377–94 (2002)

16. Mailhot, F., Micheli, G.D.: Algorithms for technology mapping based on binary
decision diagrams and on Boolean operations. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 12(5), 599–620 (1993)

17. Mishchenko, A.: Enumeration of irredundant circuit structures. In: Proceedings of
the 23rd International Workshop on Logic and Synthesis (2014)

18. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh look
at combinational logic synthesis. In: Proceedings of the 43rd Design Automation
Conference. pp. 532–36 (2006)

19. Muroga, S.: Logic design and switching theory. John Wiley & Sons Inc., New York
(1979)

20. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of the International Conference on Computer Aided Design. pp. 42–47
(1993)

21. Soeken, M., Amarù, L.G., Gaillardon, P., De Micheli, G.: Optimizing majority-
inverter graphs with functional hashing. In: Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition. pp. 1030–1035 (2016)

22. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko,
A.P. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II,
Seminars in Mathematics, pp. 115–25. Springer (1970)

23. Warren, Jr., H.S.: Hacker’s Delight. Addison-Wesley, Reading, Massachusetts, 2
edn. (2012)

