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ABSTRACT
Large-scale experiments are often expensive and time consuming.
Although Massive Online Open Courses (MOOCs) provide a solid
and consistent framework for learning analytics, MOOC practition-
ers are still reluctant to risk resources in experiments. In this study,
we suggest a methodology for simulating MOOC students, which
allow estimation of distributions, before implementing a large-scale
experiment.

To this end, we employ generative models to draw independent sam-
ples of artificial students in Monte Carlo simulations. We use Semi-
Markov Chains for modeling student’s activities and Expectation-
Maximization algorithm for fitting the model. From the fitted model,
we generate simulated students whose processes of weekly activities
are similar to these of the real students.
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1. INTRODUCTION
Vast amounts of data which we gather and analyse in modern learn-
ing environments allow us to build models of unprecedented scale
and accuracy. This phenomenon, in parallel with developments in
computer science, gave rise to new possibilities of inference from
educational environments. In particular, the growing field of Simu-
lated Learners [8, 11, 14] provides us with tools for inference from
educational simulations.

Inference from any simulations is bounded by the predefined level
of abstraction of the analysis. In the context of Massive Online
Open Courses (MOOCs), on one hand as an educational institution
we have access to only a handful of MOOCs, on another hand, we
have data as granular as student’s clickstream in a video player. We
are therefore obliged to model granularity robustly, depending on
the availability of the data. We argue that understanding the proper-
ties of the statistical methodology at hand is crucial for successful
inference.

We propose a probabilistic model, based on extended version of
Markov Chains, called semi-Markov Chains. In the model, we can
balance the complexity of the structure and the number of parame-
ters to estimate by cross-validating its parameters. We present an
algorithm for fitting the model as well as illustrative examples of
the fit on a set of MOOCs.

The contributions of this paper are threefold. First, we investigate
to what extent Semi-Markov chains can be used to describe be-
havioural patterns of students (RQ1). Second, since our model
implicitly divides users into clusters, we analyse if these clusters
are interpretable (RQ2). Third, we analyse how these models
can be used to infer distributions of events (RQ3).

2. RELATED WORK
Modeling students is a key concept in learning analytics and edu-
cational research in general. Researchers build models predicting
motivation and cognition, based on student’s goals [19] or they pre-
dict goals by motivational traits [7]. Large datasets allow researchers
to find predictive power of seemingly slightly related signals like
the length of pauses in a video [12] or potentially noisy signals like
head movement in the classroom [16].

2.1 Generative models in MOOCs
All the aforementioned models are focused on prediction and belong
to the class of so-called discriminative models. In this study, we
suggest a generative model, which allow us not only to predict, but
also to generate observations from the estimated distribution. These
models capture the probability structure of input variables and the
flow of the processes. Several generative models in MOOCs have
been applied, e.g. to forums [3].

Among many generative models that can be encountered in educa-
tional research, Markov models were employed for visualization [5],
for modeling engagement [17] and for modeling students reten-
tion [1].

2.2 Simulated learner
The area of simulating students’ behaviour lays on the intersection
of cognitive science and artificial intelligence. Examples of applica-
tions of simulation of students can be found even outside computer
science, where the teacher simulates student’s response in order to
self-improve instructional skills [18]. An acknowledged example
of the usage of simulating humans [9] for education deals with
simulations of patients behaviour for training medicine students.

Emergence of Internet and new data storage techniques allow re-
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searchers to collect and analyse massive amounts of information
about the users. Researchers employ simulations for clustering stu-
dents [13]. For a review of earlier techniques we refer to [2]. We
motivate our methodology by the advancements of user modeling in
web context [4], as we find this environment conceptually close to
the environment of a MOOC.

3. GENERAL FRAMEWORK
3.1 Dataset
From our internal MOOC database, aggregating data from Cours-
era and edX, we extracted events for 61 EPFL courses. The raw
data contained approximately 23 million events for 500,000 stu-
dents, arranged in tuples: <StudentID, CourseID, EventType,
Timestamp>. The EventType describes the type of an activity and
takes one of four possible values presented in Table 1. We choose
these events as the most discriminative actions from the key areas:
learning, validation and community engagement. Note that our
modelling technique can be easily extended to cover other types of
events.

Abbreviation Description Proportion
VideoPlay watching a video 51%
Submission submitting an assignment 33%
ForumView visiting the forum 15%
ForumPost posting on the forum 1%

Table 1: Distribution of events in the dataset.

For the analysis we developed our own Python implementation of the
algorithm fitting the model1. In Section 5 we explain the algorithm
in detail. Since 23 million events can still fit in memory of a single
computer, we did not require a specific computing architecture to
perform the analysis. However, given the considerable size of the
dataset, the algorithm takes several minutes to run.

3.2 Definitions
We start with a general framework, in which student’s activity in any
MOOC can be very precisely described. Next, we elevate abstraction
of the model by adding assumptions simplifying the analysis. Our
goal is to introduce a model whose complexity can be adapted to
the structure of a course and the amount of available data.

We consider a model in which students behaviour is described in
a sequential manner by the type of activity they perform and the
time they wait between two sessions. Furthermore, as most of the
students perform at most 1 MOOC session per day, we choose a
daily granularity of actions.

A sequence of student’s daily activity is described as a list of ’active
events’ (VideoPlay, Submission, ForumView and ForumPost)
followed by a ’end of the day event’ (EndOfDay) or only a EndOfDay
in the case the student did not perform any activity the given day.
The formal definition of the model is following:

The set of all students S : We use the symbol s ∈S to designate
an individual student.

The set A of all types of activities: For this study we chose a set
of four types of events: { VideoPlay, Submission, ForumView,
1Our implementation is available under https://github.com/
lfaucon/edm2016-mooc-simulator

ForumPost }. We add to this set one special type of event, EndOfDay.
This event corresponds to the end of interactions with MOOCs on a
given day. We use the symbol a∈A to designate any type of activity.
One can extend the set of activities to other events if needed for
certain application.

Note that we do not specify the regular ’end of a course’ event,
since we only model the behaviour within the limited time-frame
of a course and we treat the last day of the course as the last day of
the process. Therefore, each student who went through the whole
course without dropping out has just a EndOfDay event on the last
day of the course. Number of EndOfDay events is therefore equal
to the number of days of the course.

The random sequential variable X(s)
1 ,X(s)

2 , ...,X(s)
n represents the

sequence of activities of one student s. Each X(s)
i ∈ A and the

sequence stops after an EndOfDay when the student reaches the end
of the course. We denote the length of the sequence for a student s
as n(s). The observation of one student activity along one MOOC is
thus a realization of the random sequence X.

The probability distribution P: In general, for each student s∈S

we can model the i-th event X(s)
i with a probability distribution

P(s)(X(s)
i = a | X(s)

i−1, ,X
(s)
i−2, ...,X

(s)
1 ,Cs),

where a ∈ A, X(s)
1 , ...,X(s)

i−1 are the previous events of that student
and Cs are personal characteristics of the student.

This distribution represents the student’s behaviour profile and al-
lows to generate typical sequences of activities. Our main objective
is to model this distribution as accurately as possible, given the
limited information. The accurate distribution would allow us to
draw samples of students.

3.3 Assumptions
As discussed in the previous section, assessing P(s) is unfeasible
due to dependence on too many events in the past and due to the
lack of information on personal student features. In order to fit
a probabilistic model we need to relax these dependencies. We
introduce following assumptions:

A1 Students’ behaviours fit into a small number of natural cate-
gories of behaviour.

A2 The type of activity depends only on his previous activity and
not on old past activities.

Assumption A1 maps the space of all possible students’ character-
istics into a limited number of categories, which are much easier
to attribute. Many studies on MOOCs explicitly classify students
into a small number of categories [10], students are divided between
’Viewers’ who only watch videos, ’Forum Actives’ who share with
their peers in the MOOC discussion forum and ’Completers’ who
succeed in the assignments. As we present in the next section, our
method is based on unsupervised clustering, where groups emerge
in the way optimal in terms of maximum likelihood of the model.

Assumption A2 we impose that only the last activity has an impact
on the current activity. This assumption is more constraining, but
since the complexity of history grows exponentially with the number
of steps and, in order to be able to estimate parameters, we have to
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reduce the search space. This simplification is usually called the
’Markov assumption’.

Apart from technical assumptions required for Markov Models, we
impose other assumptions for convenience. First, we do not consider
length of events, so the VideoPlay event is only the moment when
a student starts watching a video. Second, if the series of events
happens during midnight, still an event EndOfDay is added to the
sequence.

4. PROBABILISTIC MODELING
4.1 Soft clustering
In Section 3 we proposed a simplified framework, in which we
assume that there are only a few different possible classes of stu-
dents (A1). We enumerate clusters 1,2, ...,K. For each student
s ∈S we introduce a probability distribution µ

(s)
k which describes

probability that the student belongs to the behaviour classes k, for
k ∈ {1,2, ...,K}.

This technique is often referred to as soft clustering, weighted clus-
tering or fuzzy clustering [15]. Instead of discret cluster assignment,
as for example in K-means, we obtain for each student a proba-
bility distribution among the clusters. These probabilities can be
intuitively seen as our certainty that the student belongs to a given
cluster.

4.2 Semi-Markov Chain
Assumption (A2), i.e. dependence only on the last state, allows us
to model the process Markov Chains. Formally, in the definition of
distribution of the next event we can drop dependence of the events
which occurred before the current one, i.e. we identify

P(s)(X(s)
i | X

(s)
1 , ...,X(s)

i−1) = P(s)(X(s)
i | X

(s)
i−1)

A preliminary analysis revealed an important weakness of using
classic Markov Models in our context. A traditional Markov model
considers that a student is equally likely to stop watching videos
when they have watched one, as when they have already watched ten
videos. In practice, students watch videos sequentially and Markov
Model does not capture appropriately the number of events in the
sequence.

To remedy this issue we employed Semi-Markov Models (also called
Markov Renewal Processes). The key feature of this model is that
it allows to replace the self-loops (transitions from one event type
to itself) in the Markov Chain, by a probability distribution of the
number of repetition of a given state.

In Semi-Markov Models, we still need to choose a parametric distri-
bution, but we have more freedom than in traditional Markov Chain.
Markov Chain implicitly assumes that probability of staying in the
same state is the largest for 1 step and decreases with number of
steps. However, we would expect that 1 is not the most probable
number of repetition at least for a particular group of students. This
phenomenon can be captured by, for example, Poisson distribution,
which proved to be more accurate in our preliminary analysis. Thus,
for an event a ∈ A and a class k we model the number of repeated
events Rk

a by

P(Rk
a = r) =

e−λ k
a
(
λ k

a
)r

r!

where r is the number of repetitions and λ
k
a is the average number

of repetition and needs to be estimated from the data for each k and
a.

To illustrate that the Poisson distribution improves the model, let
us consider an example. Suppose we expect that some group of
students connects to a MOOC twice a week, with approximately
three days interval between connections. In that case, the average
number of repetitions of the EndOfDay event is 3. Simple Markov
Model, accurately models the average to be 3 but implicitly assumes
that the majority of students gets only 1 repetition. Semi-Markov
model with Poisson distribution also gives the average equal to 3
and the distribution is concentrated around 3.

5. FITTING THE MODEL
5.1 Algorithm
The Expectation-Maximisation (EM) algorithm has been introduced
in 1977 in [6]. The goal of this iterative technique is to compute
the parameters that maximize the likelihood of a given probabilistic
model. The EM algorithm has been proven to converge at least to a
local minimum. This minimum depends on the initialization point,
thus multiple runs with different random initialisations are often
used in practice in order to increase the chances of finding the global
minimum.

In this study we use the EM algorithm for unsupervised learning.
Neither the parameters of the latent classes nor the repartition of
the students are known at the beginning and the algorithm has to
estimate both quantities at once. In our settings, we define for each
k ∈ {1,2, ...,K} and states a and b:

- p(k)b−>a, the probability that a student with the behaviour pro-
file k performs the activity a after the activity b:

p(k)b−>a = P(Xi = a | Xi−1 = b)

- λ
(k)
a , the average number of repetitions of an event a from a

student of profile k.

- µ
(s)
k , the probability that a student s belongs to the profile k.

We can thus compute the likelihood of the observed sequence, as a
function of cluster repartition and parameters of Markov Chains by

likelihood = ∏
s∈S

[
K

∑
k=1

µ
(s)
k ∏

(a,b,r)∈Ts

p(k)b−>aPλ
(k)
a
(r)], (1)

where Ts is the set of tuples (a,b,r) ∈ A×A×N corresponding to
transitions from activity b to activity a with r repetitions of activity
a. The goal of the algorithm is to find the parameters that maximize
the likelihood.

In the first stage, the algorithm initialize randomly K profiles. Next,
it iteratively improves the likelihood, by alternating two steps as
described below. In each step it modifies the repartition or the
Markov chain parameters.

Initialization: The initialization consists in choosing randomly
either the p(k)b−>a and λ

(k)
a or the µ

(s)
k . In our algorithm, we start



with the µ
(s)
k . This can be done by generating a random number k∗

from 1 to K for each student s and by setting

µ
(s)
k =

{
1 if k = k∗

0 otherwise.

Iterations: The iteration phase has two steps. First, we compute
the optimal values for p(k)b−>a and λ

(k)
a given that µ

(s)
k are fixed

(equations (2) and (3)).

p(k)b−>a =

∑
s∈S

∑
(a,b,_)∈Ts

µ
(s)
k

∑
s∈S

∑
(_,b,_)∈Ts

µ
(s)
k

(2)

λ
(k)
a =

∑
s∈S

∑
(a,_,r)∈Ts

rµ
(s)
k

∑
s∈S

∑
(a,_,_)∈Ts

µ
(s)
k

(3)

Next, we compute the new values of µ
(s)
k according to the new

p(k)b−>a and λ
(k)
a (equations (4)).

µ
(s)
k =

∏
(a,b,r)∈Ts

p(k)b−>aPλ
(k)
a
(r)

K

∑
c=1

∏
(a,b,r)∈Ts

p(c)b−>aPλ
(c)
a
(r)

(4)

Intuitively, the in the first step we compute the parameters of the
latent classes given the repartition of the students and in the second
step we recompute the repartition from the new classes parameters.

5.2 Example: Interpretation clusters (K=3)
Before we present the results for the choice of the number of clusters,
in this section, we illustrate the behaviour of the algorithm and the
model when the number of clusters is small (K = 3). Although
in this case we may lose important variability among groups of
students, small number of clusters allows us to visualise the Semi-
Markov models and interpret each of the clusters.

The visualizations of the Semi-Markov models on Figure 1 can
reveal general characteristics of students’ behaviours. For exam-
ple, Profiles 1 and 3 are in general less active as they have more
EndOfDay events. On the contrary, Profile 3 has a very high average
number of repetition on VideoPlay and considerable probability
to go back to EndOfDay events. This means that students of this
cluster are not fully engaged in all MOOC activities.

A more insightful way to analyse and interpret the differences is to
generate sequences of events and compare the outcomes. We can
compute the expected number of videos watched or the expected
number of post on the forum directly from simulated sequences.
Table 2 shows the average number of several types of events for
100 simulated students (average from 10000 simulations) over four
weeks generated with the three Markov models from Figure 1. For

Figure 1: Three graphical representations of behaviour profiles
extracted by the EM algorithm. From top to bottom: profiles
1, 2 and 3 (thickness: transition probability; color: average
number of repetitions)

example, we can see that students of Profile 1 participate in the
collaborative activities of the MOOC more rarely, but engage in the
assignments more than in watching the videos. This might indicate



that they already have a good understanding of the content of the
course and do not need to spend more time on studying. To fully
investigate this hypothesis, further analysis should be conducted.

Profiles 1 2 3
Watched Videos 1060 3133 2363
Submissions 1535 2423 442
Forum Visits 68 1711 255
Forum posts 3 96 15

Table 2: Average number of events for 100 students over the
first four weeks of the MOOC

5.3 Choice of the parameter K
A common challenge of unsupervised learning and fitting a proba-
bilistic model is finding the correct number of classes. In our case,
the similarity of the algorithm with other clustering techniques such
as the K-means leads to the "elbow heuristic", often used in practice.
The idea is to choose the number of clusters large enough to explain
a large part of the variability, but such that a greater number of
clusters would not explain substantially more.

Figure 2: Average distance of students from their model for
different number of classes

In order to confirm the result of this first measure of quality, we
designed another measure described in the equation (5). The goal is
to quantify how the students sequences diverge from their attributed
cluster. In the equation, |A| is the cardinality of the set of possible
activities, ps(a) is the probability of finding the activity a if we
take uniformly at random an activity of student s and pk(a) is the
probability of finding the activity a if we take uniformly at random
an activity from a sequence generated by the class k.

d2(s,k) =
1
|A| ∑

a∈A
(ps(a)− pk(a))

2 (5)

This distance measure shows an elbow shape for the same values of
K between 10 and 15 as it can be seen on Figure 2. We conclude
that MOOC students from our dataset can be meaningfully clustered
into 10−15 different classes.

6. SIMULATIONS
With a model fitted with the EM algorithm at hand, the algorithm
repartitioned students and chose parameters of a Semi-Markov
Chain for each of the clusters. Since both the repartition and the
Semi-Markov Chains are generative, we can draw samples from the
fitted distribution, i.e. we can simulate the students. We run the
simulations and show a possible way to measure the validity of the
results.

To validate potential value of simulations, we first propose a simple
accuracy measure. In equation (6), Preal(|a| > n) represents the
probability that a student performs more than n events of type a
during the time of the MOOC. |a| is the count of events of type a.
Psim(|a| > n) represents the same probability but for a simulated
student. In the measure we chose the value N = 50 because it covers
most of the variability in the students activity sequences and is not
too large as still 19% of the students have an activity with more than
50 repetitions.

MSE =
1

(|A|−1)∗N ∑
a∈A

∑
n<N

(Preal(|a|> n)−Psim(|a|> n))2

(6)

In order to prove the correctness of the modeling method, we divided
our dataset into a training set and a test set for validating the results.
The first step is to run the algorithm on the training set with several
parameter K and then, use the computed parameters to simulate
a new population of students and finally compare this population
with the students from the testing set. In Figure 3 we can see
that the fit does not improve much after K = 15, because too high
number of clusters makes the algorithm learn mostly the noise from
the random actions of the students instead of their real intrinsic
behavioural patterns.

Figure 3: Measure of accuracy of a simulation for different
number of classes

The small error proves that the distribution obtained from simula-
tions is close to the original distribution. This implies that the model
properly trained on small sample of students or on just few first
events, can be extrapolated by simulation to further events or larger
samples.



In an experimental setup, simulations with varying initial conditions
of the model (e.x. probabilities of transitions) can give us distribu-
tions of events at the later state. Knowing probability distributions of
the results of two conditions allows to estimate sample sizes needed
for finding statistical evidence of the investigated effect.

7. DISCUSSION
In Section 5 we showed that Semi-Markov chains can be success-
fully applied to describe behavioural patterns of students (RQ1). In
Section 5.2, a simple study with reduced number of clusters prove
their potential interpretability (RQ2). In Section 6, we discuss how
these models can be used to infer distributions of events (RQ3).

Our method has two main limitations. They can be further relaxed
with additional data or with incorporation of domain knowledge.

The Homogeneity of the Markov process: The Markov assump-
tion was introduced for reducing the number of parameters of our
model. It is a strong simplification, which entails some drawbacks.
This assumption implicitly requires that student behave with exactly
the same transition matrix during the whole course. The motivation
to keep learning should increase when getting closer to the end of
the course and thus the dropout rate decreases, which cannot be
capture by our method. A good way to overcome this weakness is
to use inhomogeneous Markov models with transitions probabilities
that are functions of time.

Differences between courses: The quality of the videos, the level
of difficulty of the assignments or the discussion topics in the fo-
rums are all factors that can greatly influence the behaviour of a
student. None of these were included in our model. We hypothesize
that adding external annotations that would impact the transition
probabilities of our Markov models could help solve this problem.
As for now, our model can be used to compare courses. For example,
if we run the algorithm on two MOOCs and realise that the Video
Watchers of one course have a lower engagement, that shows a lower
quality of video content while differences for the Forum Follower
may reveal differences on the quality of the Forum discussions.
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