
DynOR: A 32-bit Microprocessor in 28 nm FD-SOI
with Cycle-By-Cycle Dynamic Clock Adjustment

Jeremy Constantin∗, Andrea Bonetti∗, Adam Teman∗†, Christoph Müller∗, Lorenz Schmid∗, and Andreas Burg∗
∗ Telecommunications Circuits Laboratory (TCL), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

† Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
{jeremy.constantin, andrea.bonetti, adam.teman, christoph.mueller, lorenz.schmid, andreas.burg}@epfl.ch

Abstract—This paper presents DynOR, a 32-bit 6-stage Open-
RISC microprocessor with dynamic clock adjustment. To alleviate
the issue of unused dynamic timing margins, the clock period of
the processor is adjusted on a cycle-by-cycle level, based on the
instruction types currently in flight in the pipeline. To this end,
we employ a custom designed clock generation unit, capable of
immediate glitch-free adjustments of the clock period over a wide
range with fine granularity. Our chip measurements in 28 nm FD-
SOI technology show that DynOR provides an average speedup
of 19% in program execution over a wide range of operating
conditions, with a peak speedup for certain applications of up
to 41%. Furthermore, this speedup can be traded off against
energy, to reduce the chip power consumption for a typical die
by up to 15%, compared to a static clocking scheme based on
worst case excitation.

I. INTRODUCTION

The concept of dynamic voltage frequency scaling (DVFS)
has been one of the leading approaches to energy-efficient
operation for the past twenty years. Furthermore, the intro-
duction of in-situ error-detection, such as Razor [4], [5], and
tunable replica circuits with error-detection [6] led to an influx
of designs targeted at real-time adjustment for voltage over-
scaling or over-clocking, according to detected errors [7], [8].
While these innovations have succeeded in pushing margin
reduction to the limit, they rely on the capability of the
microarchitecture to correct a limited number of errors, for
example by replay of instructions.

Despite the impressive results and innovative techniques
proposed in these and other recent publications, they all adhere
to the basic assumption that the clock period must be set
according to a global worst-case timing path. However, the
study carried out in [9] showed that by applying a non-
conventional synthesis strategy to a standard microprocessor
core, the longest relevant path for a given pipeline state can
vary significantly, depending on the executed instruction types.
Therefore, by departing from the conventional global fre-
quency convention and adjusting the clock frequency according
to the current pipeline state, margins can be reduced and
average throughput and/or energy-efficiency can be improved.
In this paper, we present DynOR, a full operational circuit
implementing this novel approach, designed and fabricated in
a deeply-scaled 28 nm fully-depleted silicon-on-insulator (FD-
SOI) technology.

Contributions and Outline: The specific contributions of
this work are:
1) A dynamic clock adjustment (DCA) technique and corre-

sponding micro-architecture, which enables the trimming
of dynamic timing margins occurring in a microprocessor,
which results in an increased instruction throughput.

2) The first silicon implementation of a microprocessor oper-

1085

Path
Shap-
ing

Static
Clock Gen.

of

pa

th
s

delay

of

pa

th
s

delay

timing
wall

making long
latency paths
less probable

long

long

long

long

medium

short

muladdnop

period LUT Dynamic
Clock Gen.

Fig. 1. Dynamic clock adjustment (DCA) approach

ated by a dynamic clock, which adapts its frequency with
a very fine granularity on a cycle-by-cycle basis.

3) A clock generation circuit, enabling this DCA approach.
The rest of this paper is structured as follows: Section II

overviews the concept and methodology of DCA. The chip
architecture and clock generation unit are presented in
Section III, followed by full chip implementation results and
post-fabrication measurements in Section IV. Section V con-
cludes the paper.

II. DYNAMIC CLOCK ADJUSTMENT CONCEPT

The concept of dynamic clock adjustment, as introduced
in [9], is based on the observation that critical paths in a
microprocessor are not always excited, and therefore dynamic
timing margins exist that can theoretically be exploited on a
cycle-by-cycle basis. We observe that with proper design, the
excitations of relevant paths largely depend on the instruction
types currently residing in the processor pipeline.

The path-delay profile of a design implemented according
to a standard synthesis approach results in a so-called “timing
wall”, as illustrated on the left hand side of Fig. 1, due to
optimization steps, such as area recovery. This timing wall
severely limits the effectiveness of the DCA approach. It is,
however, possible to reshape this path-delay profile, such that
all paths that can be made short end up being short (e.g., by
employing aggressive critical range optimization), which can
significantly reduce the rate of excitation for near-critical paths.
Our experiments show that for the core used in this study,
area and power penalties due to path reshaping can be limited
to 5-13% in 28 nm FD-SOI, depending on the target library
and operating voltage [9], while maintaining the frequency
maximum of the circuit. By carefully designing the micro-
architecture of the processor to support the DCA approach,
ensuring that long paths are only activated when necessary1,
we enable the operation of the processor with a dynamic clock

1e.g., through shielding of sometimes irrelevant paths such as the ones
through the multiplier in the ALU, when other ALU instructions are executed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148022175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Config./Control

32-bit Bus Interface

DCA Clock

Gen.

Instr.

SRAM

OpenRISC

Serial IF

Vdd-CPUVdd-Main

D
e

b
u

g

M
o

n
it

o
r

DynOR

Data

SRAM

LUT

GPIO Mux

AD FE DC EX ME WB

c
o
re

 c
lk

 d
o
m

a
in

ext. clk domain

instr. period

clock

Fig. 2. DynOR architecture

period, which is based on the instruction type that is currently
executed, as depicted on the right hand side of Fig. 1. To
limit the hardware complexity induced by DCA, we ensure
that all paths which do not reside in the execution stage of
the pipeline are non-critical, or can be sufficiently accelerated
through voltage scaling (i.e., SRAMs). This is possible with
low overhead, as indicated by the findings in [9], which show
that even in the baseline design (prior to optimization) 93% of
all cycles are already limited by the execution stage.

III. DYNOR ARCHITECTURE

In this section we present the full chip architecture of the
DynOR system, and describe in detail the key building blocks
which enable our dynamic clock adjustment method.

A. Processor Architecture
The DynOR architecture is depicted in Fig. 2. At the

core of the chip architecture lies a 32-bit, 6-stage, in-order
OpenRISC microprocessor with one integer ALU, supporting
single cycle 32-bit multiplications. The processor comprises
16 kB of tightly coupled instruction memory and 8 kB of data
memory, both realized using single cycle latency 6-T SRAM
macros. Instructions are fetched into the processor pipeline
while they are simultaneously analyzed by the DCA module,
in order to determine the required next clock period. The clock
generation unit supplies the dynamic clock within the core
clock domain, which comprises the CPU, the memories, and
the DCA, while the peripheral/interface components of the chip
are externally clocked. All modules of the core clock domain
are connected to those peripherals over a 32-bit bus interface.
The CPU has also indirect access to this bus over a multi-cycle
memory mapped interface.

A serial interface provides communication for DynOR with
the external world, while the central configuration and control
module gives access to all clocks, resets, and different mode
and calibration settings of the modules of the chip. Debug
signals for the operation of the dynamic clock adjustment
are observable via a monitor interface. A multiplexed GPIO
interface also provides these debug signals, as well as access
to a scan chain.

The chip comprises two separate voltage islands (with
level-shifted boundaries): one for the OpenRISC core (Vdd-
CPU) and one for the rest of the chip (Vdd-Main). This allows
for the operation of the CPU at low voltages beyond the point
where the SRAMs are functional, and enables accurate power
measurement of the CPU core.

B. Dynamic Clock Adjustment Module
The DCA module provides the functionality for dynami-

cally determining the next clock period, based on the type of
the currently fetched instruction. The schematic of the DCA
module, together with the clock generation, is shown in Fig. 3.
During every cycle in which an instruction is fetched into
the FE stage of the CPU, the DCA also receives the same
32-bit instruction from the memory bus. This instruction is
then partially decoded (using a subset of the more complex
decoding logic of the OpenRISC) to determine its type, such
that it can be classified into an instruction group. The chosen
groups are as follows: branch, branch-condition, load, store,
logic, xor, shift, add, multiply, nop, register-move, and other.
The group is then used to address a 12-entry 6-bit lookup
table, which provides the critical period, associated with the
respective instruction type/group. As can be seen from Fig. 3,
this period will come into effect for the cycle when the fetched
instruction will reside in the execution (EX) stage of the CPU,
which contains the critical paths.

The lookup table of the DCA is populated through calibra-
tion of a die for the current operating condition (i.e., supply
voltage and temperature). The minimum achievable period
value of each entry is determined through binary search, where
each run of the search is evaluated by testing the outcome of
the program for correctness (including data memory contents),
i.e., by checking if the current clock periods cause a timing
error for one of the instruction groups, resulting either in an
erroneous result or a processor crash. Note that the lookup
table produced by a single calibration point is inherently tuned
for a specific application (type). To generate a “worst case”
table, which provides DCA capabilities independent of the
application that is executed, multiple tables from calibrations
using different applications can be merged, where for each
entry the worst observed period per instruction type is chosen.

C. Clock Generation Unit
The clock generation unit (CGU), shown on the right hand

side of Fig. 3, is a digitally-controlled ring oscillator (DCRO)
that produces a clock signal whose period can be changed in
each clock cycle, as required by the proposed DCA. To modify
the propagation delay inside the ring, the oscillator includes
a programmable delay unit implemented with a cascade of
AND gates that have been placed with a controlled floorplan to
produce an accurate range of clock periods. The cycle-by-cycle
operation is ensured by using a 1-hot encoded period setting
for the programmable delay unit, and by sampling this delay
setting with a set of additional registers that have been placed
close to the programmable delay unit to minimize both their
propagation delays as well as the delay of the clock signal they
receive from the ring oscillator. These registers are clocked as
soon as the rising edge of the clock has propagated through
the programmable delay block. This ensures that the delay
setting is stable at the input of the programmable unit as soon
as the next falling clock edge arrives at the input of the unit,
thereby avoiding both glitches on the clock signal as well as
any contamination of the clock period duration.

IV. TEST CHIP & MEASUREMENT RESULTS

The DynOR system architecture, described in Section III,
was fabricated in a 28 nm FD-SOI regular-VT CMOS tech-
nology, using 0.24 mm2 of the complete 1.2 mm2 die, with

IMEM

SRAM D

A

...

clk
32

AD

CPU

32

FE DC

clk

EX

x12

LUTinstr. word
instr.
group

DCA

period

6

ALU

de-
code

subset

ME WB

... ...

CGU64

ring oscillator

clk

clk

...

...

clock

tree

delayset

CGU
core

ci co

64
...

...

c
i

c
o

d
e

la
ys

e
t[0

]

d
e

la
ys

e
t[1

]

d
e

la
ys

e
t[2

]

d
e

la
ys

e
t[6

3
]

...

programmable

delay unit

1-hot

lower

supply

voltage

...... ...

Fig. 3. Schematic of dynamic clock adjustment and generation

a complexity of about 316 k gate equivalents (GEs). The
micrograph and main features of the chip are shown in Fig. 4.

Fig. 5 details the distribution of all fabricated dies, regard-
ing their maximum static CPU frequency (Fmax). At a CPU
supply voltage (Vdd-CPU) of 0.8 V slow dies operate at an
Fmax which is up to 14% lower than a typical die, while fast
dies are up to 9% faster. For a typical die at 1.0 V (Vdd-
Main) the CGU provides a clock frequency between 365 MHz
and 1906 MHz, with a period step granularity of 35 ps (with
an average accuracy of ±1.8 ps) over 64 settings. A normal
operation range for the CPU at 0.8 V (Vdd-CPU) employing
DCA is a dynamic frequency range between 509 MHz and
1189 MHz.

In the following, we report the measured speedups and
power savings, while varying two main parameters: Vdd-CPU
and the application executed on the CPU. For each reported
Vdd-CPU, the corresponding Vdd-Main is set to a voltage level
that is 200 mV higher (exceptions are 0.6 V and 0.4 V for Vdd-
CPU, where Vdd-Main is only 0.73 V and 0.45 V, respectively).
This higher Vdd-Main is mainly to allow the SRAMs to provide
enough access speed, and in some cases to enable the DCA
to operate fast enough, as well. The two chosen applications
are matrix multiplication (MM) and median calculation (MC),
each with an execution length of about 1010 instructions.
The MM (using full-range 32-bit values) can be seen as
a worst case stress test, since it is heavy in multiplication
instructions, and hence excites the worst paths of the CPU with
the highest rate. The MC is based on sorting, and in general,
performs a more balanced set of instructions, regarding their

CPU core
CGU

DCA

Serial IF
Conf/CtrlData

SRAM

Instr.
SRAM

480 μm

21
0
μm 82

 μ
m

90 μm

19
0
μm

Technology UTBB FD-SOI
28 nm RVT

CPU 32b, 6-stage
OpenRISC with
dynamic clock

Die area 0.24 mm2

(chip: 1.2 mm2)

Memory 16 KB (IM) +
8 KB (DM)

Gate Equiv. 172 k (logic) +
144 k (SRAM)

Vdd range 0.40 V – 1.10 V
(cpu min: 0.26 V)

Freq. range 24 – 1306 MHz

Power range 0.31 – 112 mW

Energy range 13 – 86 pJ/Op

Fig. 4. Die micrograph and chip features

Bin Frequency
0.85 1
0.90 2
0.95 4
1.00 9
1.05 6
1.10 3
1.15 0

0
2
4
6
8

10

0.85 0.90 0.95 1.00 1.05 1.10 1.15

of

 d
ie

s

normalized maximum CPU frequency @ 0.80 V

slow fast
total # of dies: 25typical

Fig. 5. Speed distribution of fabricated dies

path excitations.

A. Speedup
Fig. 6 reports the speedups (individually for a fast, typical,

and slow die), which are all calculated relative to the baseline
speed provided by Fmax for a given Vdd-CPU and die at room
temperature (25◦ C). For each parameter configuration, we
report the three different speedups, achieved through:
1) Over-clocking the CPU with a higher static clock frequency

Fapp, which the application allows. A speedup over Fmax is
possible here, since we implement a path distribution that
avoids the timing wall present in classical designs. Since
the MM always excites the worst paths, Fapp equals Fmax
for this case.

2) DCA using a merged “worst case” period table (as de-
scribed in Section III-B), which shows the application-
independent DCA gains.

3) DCA using a period table that is tuned for the specific
application, showing maximum achievable DCA gains.
For the MC on a typical die at 0.8 V, we observe that

the implemented path distribution allows for an application-
specific speedup of 14% with an increased static clock Fapp.
The proposed DCA approach allows to raise this speedup by
an additional 22% to a total of 36% through the means of
dynamically adjusting the clock frequency on an instruction
basis. Even with a conservative “worst case” DCA table, which
operates application-independent, the speedup still amounts to
6% over Fmax. The application specific speedup for MC en-
abled by DCA over all die types and different Vdd-CPU values
is on average 25%, and can reach up to 41%. Furthermore, we
see that for the MM a speedup is only enabled through DCA,
and even though the application frequently excites the critical
paths of the design, which works against our DCA approach,
an average speedup of 6% can still be measured, which can
help amortize any potential design overhead due to the applied
path profile shaping. The average speedup provided by DCA
over all operating conditions and applications is 19% for a
typical die, and 14% for both the fast and the slow dies.

mat med mat med mat med
fast

static f-max wc 0 0 0 0 0 0 1
static F-app 0% 38% 0% 12% 0% 5% 1
DCA worst case 8% 12% 4% 5% 1% 4% 1.1
DCA tuned app 8% 41% 5% 17% 2% 10% 1.15

typical typical
0 0 0 0 0 0 1

0% 38% 0% 14% 0% 8% 1
18% 23% 4% 6% 7% 7% 1.1
18% 39% 4% 36% 7% 12% 1.15

slow slow
0 0 0 0 0 0 1

0% 32% 0% 15% 0% 13% 1
2% 9% 4% 6% 6% 8% 1.1
2% 36% 4% 21% 6% 14% 1.15

0.6 0.8 1.1

median
MC

0%

38
%

0%

12
%

0% 5%8% 12
%

4% 5% 1% 4%8%

41
%

5%

17
%

2%

10
%

0% 38 % 0% 12 % 0% 5%4% 5% 1% 4%8% 41 % 5% 17 % 2% 10 %

static F-app DCA worst case DCA tuned app

mat-mul
MM

0.60 V 0.80 V 1.10 V

fa
st

 d
ie

app:

Vdd-CPU:

0%

38
%

0%

14
%

0%

8%

18
% 23

%

4% 6% 7% 7%

18
% 39

%

4%

36
%

7% 12
%

ty
pi

ca
l d

ie

0%

32
%

0%

15
%

0%

13
%

2%

9% 4% 6% 6% 8%2%

36
%

4%

21
%

6%

14
%

slo
w

 d
ie

median
MC

mat-mul
MM

median
MC

mat-mul
MM

Fig. 6. Measured application speedup with respect to conventional static
clocking with Fmax, for different supply voltages, die types, and applications

In general, we see that lower supply voltages allow for
higher speedups, and show the strength of DCA, especially for
critical/demanding applications such as MM, while at normal
and higher supply voltages, the strength of DCA is shown
for more balanced (MC type) applications, where significant
additional speedups over Fapp can be achieved.

B. Power Reduction
The presented application speedups can be traded off

against power consumption, by means of supply voltage scal-
ing. In Fig. 7, we report the measured reductions in power
consumption enabled by DCA at fixed throughput rates. To this
end, we lower the CGU frequencies until the CPU performs
the same number of Op/s as it does at fixed Fmax. We then use
the created voltage headroom to lower Vdd-CPU accordingly.

The power density of DynOR ranges between 13µW/Mhz
(at 0.4 V) and 87µW/Mhz (at 1.1 V). Note that since the CPU
processes very close to 1 instruction per cycle, 1µW/MHz here
is equivalent to 1 pJ/Op. At a Vdd-CPU of 0.8 V we measure
power savings of 15% (by decreasing Vdd-CPU by 50 mV) for
the MC at 521 MOp/s, reducing the chip energy consumption
from 50 pJ/Op down to 42 pJ/Op.

Since, to our best knowledge, there are no other fabricated
designs which employ a dynamic clocking scheme, a direct
comparison with other recent works regarding the effectiveness
of the micro-architectural design techniques proves to be
difficult. Nevertheless, to put our silicon implementation into a
broader context of embedded processing, regarding the overall
performance numbers, Table I compares this work with other

24 178 521 1106
0

200

400

600

800

1000

1200

0

20

40

60

80

100

0.40 0.60 0.80 1.10

CP
U

 fr
eq

ue
nc

y
[M

Hz
]

po
w

er
 d

en
sit

y
[μ

W
/M

Hz
]

CPU supply voltage [V]

mat-mul Fmax median Fmax mat-mul DCA median DCA

power reduction:
mat-mul
median

7%
5%n/a

n/a

3%
15%

7%
8%6%

25%69%

CPU

CGU

MEM

power
distri-
bution

13 μW
/MHz

Fig. 7. Measured power reduction at iso-throughput for a typical die, due to
supply voltage scaling enabled by DCA

TABLE I. COMPARISON WITH RECENT CPU IMPLEMENTATIONS

This work [1] [2] [3]
Domain Embedded

Processing
Near-Sensor
Processing

IoT / MCU
Applications

General Purpose
Processing

Technology FD-SOI 28nm RVT FD-SOI 28nm LVT FD-SOI 28nm 32nm
CPU 32b OpenRISC 32b OpenRISC 32b Cortex-M4 32b IA-32 Pentium
of cores 1 4 1 1
I$/D$/L2 16K/8K/- 4K/48K/64K 8K/8K/- 8K/8K/-
Voltage range 0.40 – 1.10 V 0.32 V – 1.15 V 0.34 – 1.10 V 0.28 – 1.20 V
Max. frequency 1306 MHz 825 MHz 834 MHz 915 MHz
Best performance 1.3 GOPS 3.3 GOPS ? 1.8 GOPS
Best power
density

13.0 μW/MHz
@ 24 MOPS

20.7 μW/MHz
@ 4x40.5 MOPS

8.9 μW/MHz
@ 45 MHz

170 μW/MHz
@ 100 MHz

Features Dynamic Clock
Adjustment

Body Biasing,
Shared TCDM

10-T SRAM 2x Superscalar,
FPU, Bran. Pred.

recent CPU implementations.

V. CONCLUSION

This work introduces the first silicon implementation and
micro-architecture of a 32-bit microprocessor which uses a
dynamic clocking scheme to vary its clock period on a cycle-
by-cycle basis, according to the executed instruction types.
The effectiveness of this dynamic clock adjustment (DCA)
approach is enabled through careful path reshaping of the
logic in the processor pipeline. Our measurements in 28 nm
FD-SOI show that by employing DCA, the throughput of the
processor can be increased on average by 19% (up to 41%),
while the power reduction reaches up to 15% for a typical die.
Moreover, we demonstrate that consistent speedup is possible
over varying die speeds, supply voltages, and applications,
which can be differently suited for the proposed technique.

ACKNOWLEDGMENT

The authors would like to thank Davide Rossi (Univ. of
Bologna) and Philippe Flatresse (STMicroelectronics), for their
helpful advice regarding the employed fabrication technology,
and Nicholas Preyss (EPFL) for insightful discussions. This
work has been supported by: (a) The European Commission’s
7th Framework Programme (FP7/2007-2013) under the grant
agreement FP7-323872 (Project “SCoRPiO”) and (b) the Swiss
Nano-Tera Program (Project “IcySoC”).

REFERENCES
[1] D. Rossi et al., “193 MOPS/mW @ 162 MOPS, 0.32V to 1.15V voltage

range multi-core accelerator for energy-efficient parallel and sequential
digital processing,” in IEEE COOL Chips XIX, April 2016.

[2] F. Abouzeid et al., “28nm FD-SOI technology and design platform for
sub-10pJ/cycle and SER-immune 32bits processors,” in IEEE ESSCIRC,
Sept 2015, pp. 108–111.

[3] S. Jain et al., “A 280mV-to-1.2V wide-operating-range IA-32 processor
in 32nm CMOS,” in IEEE ISSCC, Feb 2012, pp. 66–68.

[4] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in IEEE/ACM MICRO, Dec 2003, pp. 7–18.

[5] S. Das et al., “RazorII: In situ error detection and correction for PVT
and SER tolerance,” IEEE Journal of Solid-State Circuits, vol. 44, no. 1,
pp. 32–48, Jan 2009.

[6] J. Tschanz et al., “Tunable replica circuits and adaptive voltage-frequency
techniques for dynamic voltage, temperature, and aging variation toler-
ance,” in Symposium on VLSI Circuits, June 2009, pp. 112–113.

[7] Y. Zhang et al., “iRazor: 3-transistor current-based error detection and
correction in an ARM Cortex-R4 processor,” in IEEE ISSCC, Jan 2016,
pp. 160–162.

[8] E. Beigné et al., “A 460 MHz at 397 mV, 2.6 GHz at 1.3 V, 32 bits
VLIW DSP Embedding FMAX Tracking,” IEEE Journal of Solid-State
Circuits, vol. 50, no. 1, pp. 125–136, Jan 2015.

[9] J. Constantin et al., “Exploiting dynamic timing margins in microproces-
sors for frequency-over-scaling with instruction-based clock adjustment,”
in IEEE DATE, March 2015, pp. 381–386.

