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Abstract— This paper deals with stochastic model predictive
control of constrained discrete-time periodic linear systems.
Control inputs are subject to periodically time-varying poly-
topic constraints with possibly time-dependent state and input
dimensions. A stochastic constraint is instead enforced on the
system state process imposing a bound on the average over
time of state constraint violations. Disturbances are additive,
bounded and described by a periodically time-dependent prob-
abilistic distribution. The aim of this paper is to develop
a receding horizon control scheme which enforces recursive
feasibility for the closed-loop state process. The effectiveness of
the proposed algorithm is finally shown through a simulation
study on a building climate control case.

I. INTRODUCTION

In recent years, many MPC algorithms to robustly con-
trol systems subject to external disturbances and model
uncertainties have been developed. A standard approach is
to consider the perturbation to have a bounded support
and, exploiting this information, to guarantee desired re-
sults such as stability and recursive feasibility, e.g [1], [2].
However, these methods completely disregard any a-priori
known stochastic information on the disturbance which is
often available from the structure of the problem or from
historical data. Therefore, relying on a worst-case approach,
the performance of the resulting controller is often highly
conservative preventing the extensive use of these algorithms
in practical applications.

To fill the gap between sound theoretical results and real
life applications, Stochastic MPC (SMPC) has emerged as a
new area of research. This is due to the fact that this control
scheme is designed to directly account for the stochastic na-
ture of the disturbance and it is therefore capable of reducing
the conservatism of its robust counterpart. Moreover, in many
practical problems, constraint specification is, by nature,
probabilistic so that it is reasonable to allow violations to
occur with a certain frequency or when the amount by which
the constraint is violated is small.

The main challenge within this framework is recursive
feasibility. Standard methods consider point-wise in time
constraint specifications such as expectational, probabilistic
or integrated chance constraints. These constraints are then
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typically enforced by implementing a mixed stochastic-
worst-case tightening procedure [3], [4]. However, these
approaches do not consider past trajectories of the state pro-
cess and this generally results in a conservative formulation.
A different approach was first proposed in [5] and then
extended in [6]. The main idea is to reduce the conservatism
of previous methods by looking at the whole history of the
state trajectory. Hence, rather than controlling the amount of
constraint violations at each time separately, the quantity of
interest is the average over time of constraints violations.

All the aforementioned approaches focused on LTI sys-
tems subject to time-invariant disturbances which is a quite
restrictive assumption in many applications. Periodic linear
systems offer a useful generalization of time-invariant sys-
tems providing a natural framework for modeling various
phenomena [7]. A relevant example of this is represented by
building climate control where the system is subject to time-
varying environmental perturbations that typically present
periodic, seasonal/daily patterns. MPC of linear/nonlinear
periodic systems has been tackled in many contributions [8]–
[10]. The case of linear periodic systems subject to additive
uncertainties has been considered, yet in a robust setting,
in [11]. To the best of authors’ knowledge the control of a
periodic linear system in an SMPC framework has not been
addressed, which was one of the main motivations for this
paper.

The contribution, and novelty, of this manuscript is
twofold. First we generalize the concepts of periodic con-
trolled invariant sets, available in the robust framework [11],
to the stochastic case. Second we provide the extension of the
least-conservative approach of [6] to the powerful and more
general class of discrete-time periodic linear systems with
periodically time-varying system dimensions and subject to
additive time-varying disturbances.

Notation Throughout the article, Rn denotes the n-
dimensional real space, uppercase letters are used for ma-
trices and lower case for vectors. ak represents the value of
vector a at time k. N+ stands for the set of non-negative
integers whereas Nkj is the set of non-negative integers
{j, . . . , k}. Random variables are defined on a common
probability space where a probability measure, P (·), is also
defined; the expectation E{·} is taken with respect to this
measure. The symbol I[x > 0] is used to denote the indicator
function of the event [x > 0].



II. PROBLEM STATEMENT

Definition 1: A discrete time linear periodic system is
defined by:

xk+1 = Aσkxk +Bσkuk + wk

σk := mod(k, p) σk : N→ Np−1
0

(1)

with system time step k ∈ N, period length p ∈ N+, intra-
period step index function σ(·), state xk ∈ Rnσk , input
uk ∈ Rmσk , disturbance wk ∈ Rlσk and Aσk ∈ Rnσk+1

×nσk ,
Bσk ∈ Rnσk+1

×mσk .
Remark 1: The dimensions of state, input and disturbance

vectors are allowed to be periodically time-dependent and
have to satisfy nj , mj , lj ∈ N+∀j ∈ Np−1

0 . The possibility to
consider systems characterized by time-varying dimensions
can be useful in many practical situations, e.g., to model
systems with asynchronous control inputs [11]. Another
evidence of this fact is reported in Section IV-B.
We assume that the state of the system is perfectly known
at time k. The inputs are subject to hard constraints of the
form:

uk ∈ Uσk , k ∈ N+ (2)

At each time step k, we assume the support of wk to belong
to a compact polyhedron Wσk . Finally the closed-loop state
of the process is required to satisfy, in a probabilistic fashion,
the following constraint:

gTσkxk ≤ hσk (3)

where gσk ∈ Rnσk and hσk ∈ R.
In order to quantify the amount of violations occurring at

time k we introduce the concept of a loss function.
Definition 2: A function l : R→ R is a loss function if

it is non-decreasing and lower-semicontinuos and it is zero
at the origin.

In loose terms, one wants the state to remain in the half
space defined by (3) “most of the time” or alternately not to
exceed it “very much”. Note that the state constraint can be
time-varying as well.

A possible way to formalize this requirement is to impose
point-wise in time constraints such as

E{l(gTσkxk − hσk)} ≤ ξ, k ∈ N+ (4)

where ξ ∈ [0, 1). In general, due to the fact that constraints
of this type are hard to deal with, one wants to enforce (4)
by means of the one-step conditional constraint.

E{l(gTσk+1
xk+1 − hσk+1

)|xk)} ≤ ξ, k ∈ N+ (5)

However, constraint (5) is, in general, very conservative
which reduces the potential benefit of the probabilistic
constraint specification. Instead of focusing on point-wise
in time probabilistic constraints such as (4), we enforce
constraints directly on the closed loop state process as a
whole.

To this aim, we first introduce the weighted cumulative
loss up to time k

vk :=

k∑
i=0

γk−il(gTσixi − hσi) k ∈ N+ (6)

where γ ∈ [0, 1] determines the forgetting rate of past losses.
Secondly, we define the normalization factor sk

sk :=

k∑
i=0

γk−i =

{
1−γk+1

1−γ γ ∈ [0, 1)

k + 1 γ = 1
(7)

Hence, the ratio vk/sk represents the weighted average loss
up to time k and it is the main quantity of interest of this
manuscript. In particular we require that:

Ek{
vk+1

sk+1
} ≤ ξ if

vk
sk
≤ ξ

lim
i 7→∞

vmin(k+i,τk)

smin(k+i,τk)
≤ ξ if

vk
sk

> ξ

(8a)

(8b)

where the integer number τk is the first time of return. More
precisely, if at time k the amount of violations exceed the
maximum allowed value, i.e. vk > ξsk, τk represents the
first time after k when the condition vτk ≤ ξsτk is satisfied
again, that is:

τk := inf{i ≥ k | vi/si ≤ ξ} ∈ {k, k + 1, . . .} (9)

III. MAIN RESULT

In this section a recursively feasible receding horizon
control policy that enforces the constraint (8) for the closed-
loop state process is presented. The main idea is to apply
feedback on the ratio vk/sk acting on the one-step condi-
tional constraint (5). If the quantity vk/k is “small” we will
loosen it, on the other hand, if it is “large” we will enforce
(5) as it is.

As a first step, it can be observed that, by exploiting
the state dynamic (1), the conditional constraint (5) can be
written as

E{l(gTσk+1
(Aσkxk +Bσkuk + wk)− hσk+1

)} ≤ ξ (10)

The evaluation of (10) is in general difficult, hence to obtain
a sufficient condition for its satisfaction, we first observe that
the constraint (10) can be arranged as

E{l(gTσk+1
(Aσkxk +Bσkuk)− hσk+1︸ ︷︷ ︸

µ

+gTσk+1
wk)} ≤ ξ

now, considering the function

fσk(µ) := E{l(µ+ gTσk+1
wk)} (11)

one immediately recognizes that it can be written as

fσk(µ) :=

∫ ∞
−∞

l(µ+ y)pdfgTσk+1
wk

(y)dy

Finally, the inequality (5) is satisfied if and only if

gTσk+1
(Aσkxk +Bσkuk) ≤ qσk(ξ) + hσk+1

(12)

where q : R→ R is defined as

qσk(ξ) := sup{µ ∈ R | fσk(µ) ≤ ξ}

and its existence is guaranteed by the assumptions on the
loss function l(·).

In the following we will introduce key concepts that are
useful for the understanding of the proposed algorithm.



Definition 3: The stochastic feasibility set X sj correspond-
ing to the intra-period index j = 0, . . . , p− 1 is defined as

X sj = {x ∈ Rnj : ∃u ∈ Uj |
gTσj+1

(Ajx+Bju) ≤ qj(ξ) + hσj+1
}

(13)

Essentially, Xs
j represents the set of all states from which

there exists an admissible input for the intra-period index
j such that the state process will satisfy the constraint (5)
for all the possible disturbance realizations contained in the
current disturbance support set Wj .

In many practical situations, besides the stochastic con-
straint (8), it is desirable that the amount of violations is
constrained by a maximum admissible loss at each time
iteration.

l(gTσkx− hσk) ≤ ξ̄σk (14)

Typically the parameter ξ̄σk is derived from the problem
specification and can be, in general, time-varying as well.
This requirement defines the feasible set X̄j for each j =
0, . . . p− 1

X̄j := {x ∈ Rnj | gTσjx ≤ hσj + l−1(ξ̄σj )} (15)

where

l−1(a) := sup{y ∈ R|l(y) ≤ ξ} ∈ [−∞,∞]

The second important concept that needs to be introduced is
that of Stochastic Periodic Controlled Invariance sequence
(SPCI).

Definition 4: A collection of sets (S0, S1, . . . , Sp−1), is
an SPCI sequence if it satisfies for each j = 0, 1 . . . , p − 1
Sj ⊆ X sj ∩ X̄j and

∀x ∈ Sj ∃u ∈ Uj : Ajx+Bju+ w ∈ Sσj+1
∀w ∈ Wj

∧ gTσj+1
(Ajx+Bju) ≤ qj(ξ) + hσj+1

(16)
In the following, the parameter that will adjust the loosen-
ing of the one-step conditional constraint (5) is presented.
Starting from the first line of (8) one can observe that the
expected value Ek{vk+1} can be written as

Ek{vk+1} = γvk + Ek{l(gTσk+1
xk+1 − hσk+1

)} (17)

The right side of the inequality (8), in turn

ξsk+1 = ξ(γsk + 1)

Therefore (8a) will be satisfied at time k if the following
condition holds

Ek{l(gTσk+1
xk+1 − hσk+1

)} ≤ γ(ξsk − vk) + ξ (18)

Definition 5: The probability leeway βk ∈ [ξ,∞) at time
k ∈ N is

βk := min{γ(ξsk − vk) + ξ, ξ}1 (19)

1Please note that the probabilistic leeway parameter βk could be equiv-
alently defined as

βk :=

{
ξ if ξsk < vk
γ(ξsk − vk) + ξ if ξsk ≥ vk

Essentially, we will exploit βk to define a control policy
which enforces the satisfaction of (8) as a whole. To this
effect, at each time iteration, depending on the amount of
previous constraint violations, we will enforce the constraint

E{l(gTσk+1
xk+1 − hσk+1

)|xk} ≤ βk (20)

Remark 2: Please note that when βk > ξ, enforcing (20),
guarantees the satisfaction of the first line of (8). On the
contrary, this is not guaranteed whenever βk = ξ. Despite
this, it is still possible to define a control policy which
achieves to enforce satisfaction of (8).

To this aim, we introduce an auxiliary state that controls
the definition of the parameter β

χk = ξsk − vk (21)

For each k ∈ N+, we further define the set

Ũσk(xk, χk) := {u ∈ Uσk :

Aσkxk +Bσku+ w ∈ Sσk+1
∀w ∈ Wσk (22a)

E{l(gTσk+1
(Aσkxk +Bσku+ wσk)− hσk+1

)} ≤ βk}
(22b)

A basic single-layer set-valued control policy that will lead
to the satisfaction of (8) as a whole is then defined as

κ̃σk(xk, χk) ∈ Ũσk(xk, χk), k ∈ N+ (23)

The proof of this statement is given in the following
section where a multi-layer version of the control policy is
presented.

A. Multi-layer version
As already underlined, enforcing (8) is, in general, less

conservative with respect to standard point-wise probabilistic
constraints such as (5). Still the invariance constraint (22a)
is independent of the amount of past violations, therefore
it reduces the potential benefits of loosening the constraint
(22b). Hence, in the following, we will relax the condition
(22a) allowing the state process to move within a sequence
of nested sets built around the SPCI sequence whenever the
number of past violations is “small” enough. More precisely
let’s first observe that, at time k and when xk+1 ∈ X̄σk+1

sk+1ξ − vk+1 = sk+1ξ − γvk − l(gTσk+1
xk+1 − hσk+1

)

= γ(skξ − vk) + ξ − l(gTσk+1
xk+1 − hσk+1

)

≥ γ(skξ − vk) + ξ − ξ̄σk+1

Continuing, we obtain

sk+2ξ − vk+2 = sk+2ξ − γvk+1 − l(gTσk+2
xk+2 − hσk+2

)

= ξ(sk+1γ − vk+1) + ξ − l(gTσk+2
xk+2 − hσk+2

)

≥ γ2(skξ − vk) + γ(ξ − ξ̄σk+1
) + ξ − ξ̄σk+2

the same argument can be used to obtain a condition i steps
ahead

sk+iξ−vk+i ≥ γi(skξ − vk)−
i∑
t=1

γi−t(ξ̄σk+t − ξ)



Consequently, if xk+t ∈ X̄σk+t for each t ∈ {1, . . . , i}, the
requirement sk+iξ − vk+i is satisfied if

(skξ − vk) ≥
i∑
t=1

γ−t(ξ̄σk+t − ξ) (24)

In particular, if at time k, condition (24) is met, we are
guaranteed that vk+i ≤ (k + i)ξ is satisfied without the
imposition of any constraints besides xk+i ∈ X̄σk+i . This
opens the possibility of letting the system state temporarily
leave the SPCI sequence but still making sure that it will
return at time k + i.

To this end we define the concept of preset

Pre(Mj) =: {x ∈Rnj : ∃u ∈ Uj−1 |
Ajx+Bju+ w ∈Mj ∀w ∈ Wj}

(25)
The sequence of nested family of length ns is then obtained
through

S1
j := Sj , ∀j = 0, 1, . . . , p− 1 (26a)

Sk+1
j := Pre(Skj−1), ∀j = 0, 1, . . . , p− 1 (26b)

∀k = 2, . . . , ns − 1

Now let’s assume the current time to be k and the state of
the system to belong to the set Sσk . If condition (24) holds
then the state is free to move up to the set Si+1

σk+1
from which

we are guaranteed to get back to S1
σk+i+1

at time k + i+ 1
where it might be necessary to enforce (22b). According to
this argument, it is possible to introduce an index rt ∈ Nns1

that determines to which layer the state is allowed to move.
Define r̃k as

S1
0 S1

1 S1
2 S1

0 S1
1 S1

2

S2
0 S2

1 S2
2 S2

0 S2
1 S2

2

S3
0 S3

1 S3
2 S3

0 S3
1 S3

2

v0 = 0,
r0 = 1

v1 = 0,
r1 = 2

v2 = 0,
r2 = 2

v3 = 0,
r3 = 3

v4 = 1,
r4 = 2

r0= 1

r
1= 2

r2= 2

r
3= 3 r4

= 2

Fig. 1. Possible evolutions of the state over several time steps when starting
from set S1

0 at time k = 0, with p = 3, ns = 3, γ = 1 and l(·) = I[x > 0]
which corresponds to the classic chance constraint formulation. Note how
the state process is forced to move through the periodic invariant chain at
each time iteration (from left to right) while allowed to climb up the family
of nested sets when a low rate of past violations occurs (from top to bottom).

r̃k := max{i ≥ 1 | skξ − vk ≥
i∑
t=1

(ξ̄σk+t − ξ)} (27)

The index rt is then defined by

rk := min{r̃k, ns} (28)

Finally we can introduce the multi-layer control policy.

To this aim, we define for all k ∈ N the sets

Uσk(xk,χk) := {u ∈ Uj :

Aσkxk +Bσku+ w ∈ Srkσk+1
∀w ∈ Wσk , (29a)

E{l(gTσk+1
(xk+1)− hσk+1

) |xk} ≤ βk}. (29b)

Πk := {(xk, χk) | Uk(xk, χk) 6= ∅} (30)

The multi-layer control law is then defined as

κσk(xk, χk) ∈ Uσk(xk, χk), k ∈ N (31)

The following theorem is the extension to time-variant
periodic linear systems of what shown in [6]:

Theorem 1: Under the control law uk = κk(xk.χk) the
following holds:

(i) If x0 ∈ S0 then (x0, χ0) ∈ Π0 (initial feasibility)
(ii) If (xk, χk) ∈ Πk then (xk+1, χk+1) ∈ Πk+1 (recursive

feasibility)
(iii) If (x0, χ0) ∈ Π0 then xk satisfies the constraint (8)

(closed-loop satisfaction)
To find the proof of theorem 1, the reader is referred to [12].

IV. IMPLEMENTATION

In this section, we describe the implementation in an MPC
framework of the theory previously presented. The general
problem formulation assumes the form

min{Jσk |uk ∈ Uσk(xk, χk)}

where the cost function Jσk is completely arbitrary as well
as the policy parametrization and the prediction horizon.

A. SPCI Parametrization
The definition of the multi-layer control policy (29) re-

quires the parametrization of the SPCI sequence and the
family of nested sets Sjσk . One possible approach to this
end is the explicit parametrization of the maximal sequence
as described in [13]. However, the explicit computation of
invariant sets suffers the so-called “curse of dimensionality”
problem so that it might be difficult to compute the SPCI
explicitly in large dimensions or when a long system period
is considered.

To avoid the explicit parametrization of the SPCI se-
quence, it is possible to adopt standard techniques from MPC
with terminal invariant set [14], adapted to the situation at
hand. The reader is referred to [12] for more details.

B. Deactivation of the counter
In many practical applications, especially when time-

varying state constraints are considered, it is desirable to
account for constraint violations only during a specific sub-
period, p̄, of the system period p. This is the case, for
example, of building climate control where the comfort con-
straint on the air temperature is typically relaxed during non
business hours. If the counter for the process vk/sk was kept
active during night this would result in a large accumulation
of non-violations which would lead to a large amount of vio-
lations at the beginning of the next working day. This aspect,
which represents a limitation of the approach proposed in [6],



perfectly suits the proposed extension to periodic systems
with periodically time-dependent dimensions.

For the sake of understanding, we assume the system to
be described by a LTI system of the form

xk+1 = Axk +Buk +Dwk

with x ∈ Rn, u ∈ Rm and w ∈ Rl. We consider a time-
varying state constraint with period p and we want to control
the trajectory of the process vk/sk on the sub-period p̄ ≤ p.
In the following, we describe how to modify the construction
of the SPCI sequence in order to accomplish this task. For
the other quantities of interest, (13) and (26), the procedure
follows the same principles and it is not reported.

For each j ∈ Np̄−2
0 the definition (16) does not change

whereas the set Sp̄−1 is defined as

∀x ∈Sp̄−1 ∃u ∈ Up̄−1 :

Ap̄−1x+Bp̄−1u+Dp̄−1w ∈ S0 ∀w ∈ Wp̄−1

∧ gT0 (Ap̄−1x+Bp̄−1u) ≤ qp̄−1(ξ) + h0

where u ∈ Rm·(p−p̄+1), w ∈ Rl·(p−p̄+1), Ap̄−1 = Ap−p̄+1,
Bp̄−1 = [Ap−p̄B, . . . , B] and Dp̄−1 = [Ap−p̄D, . . . ,D].

Hence, the resulting SPCI sequence (S0, . . . , Sp̄−1) is
such that the controller does not update the cumulative loss
vk and the normalization factor sk for each time k such that
σk ∈ Np−1

p̄ .

V. NUMERICAL EXAMPLE

The system under analysis is a single zone for a com-
mercial building modeled by a three state LTI model of the
form

xk+1 = Axk +Buk +Dwk

The model is an adaptation of the one described in [15]
and discretized with a sampling period of 15 min which
provides a nice compromise between temporal resolution of
the control and computational complexity of the problem for-
mulation. The control input, expressed in MW, is constrained
to U = [0, 0.2]. The states represent room air temperature,
interior wall temperature and exterior wall temperature. The
single comfort constraint x1 ≥ Tmin is time-varying which
reflects the fact that typically the building controller is
asked to provide a comfortable work environment just during
business hours. Therefore, Tmin varies as follows

Tmin =

{
21.5oC from 8 am to 6 pm
18oC otherwise

The disturbance vector wk models environmental pertur-
bations such as outside air temperature, solar radiation and
internal heat sources. It consists of two terms wk = δk + εk,
where δ is deterministic and periodically time-dependent
with a period of 24h whereas ε is stochastic, bounded and
subject to periodically time-dependent bounds with the same
period. The deterministic component represents the known
fluctuation of the disturbances and it could be provided by,
e.g, weather forecast and historical occupancy patterns. The
random term ε models the uncertainty related to the predic-
tion of the perturbation and is assumed to be distributed as

TABLE I
PARAMETERS FOR THE CONTROL POLICIES UNDER ANALYSIS.

Policy Probab0.95 Integ0.95 Integ1.0
loss function l(x) I[x > 0] max {x, 0} max {x, 0}
allowed violation 0.2 0.1 0.1
maximum violation 1 0.5oC 0.5oC
forgetting factor 0.95 0.95 1

TABLE II
AVERAGE COST IMPROVEMENT OVER THE 100 RUNS OF THE CONTROL

POLICIES WITH RESPECT TO THE ROBUST CONTROLLER OBTAINED

SETTING γ = 0 AND CONVERTING THE STOCHASTIC CONSTRAINT (5) TO

ITS ROBUST COUNTERPART.

Policy Probab0.95 Integ0.95 Integ1.0
Cost improvement 5.8% 15.3 % 17.2 %

a truncated normal random vector with zero mean and time
varying variance. The truncation interval is periodically time-
variant as well with period 24h. The selected cost function
is the sum of control inputs over the simulation time which
corresponds to the minimization of energy consumption. The
number of nested sets to which the state is allowed to climb
in case of low amount of past constraint violations is equal
to ns = 4. The SPCI sequence was determined explicitly
for the two case studies in 34s on a 3.4 GHz Intel Core i7
processor. In the simulation, we study the performance of the
controllers resulting from different constraint specifications
as summarized in Table (I). We compared them by means of
100 Monte Carlo simulations each of 5 full days long (424
steps). Table II and Figure 3 show how all the three stochastic
specifications fully exploit the available flexibility in order
to bring some relevant cost improvement with respect to the
robust approach.

Remark 3: Note that, since we are interested in
violations/non-violations occurring just during working
hours, (13), (16) and (26) have been defined as described
in Section IV-B which shows the practical capabilities of the
proposed method.
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Fig. 2. Deterministic component δ (dashed blue), time-varying bounds
on the stochastic term ε (dash-dotted red) and a possible realization (solid
black).

VI. CONCLUSIONS
In this manuscript, we have proposed a receding horizon

control scheme that enforces recursive feasibility for the
closed loop process of a periodic linear system when subject



Day
1

Day
2

Day
3

Day
4

Day
5

T
ro

om
 [

C
o
]

21

21.2

21.4

21.6

21.8

22

22.2 Integ1.0
Integ0.95
Probab0.95
Robust
Constraint
Constraint-0.1

08.00 10.00 12.00 14.00 16.00 18.00

-
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9integ

9probab

79integ

79probab
Integ1.0 Integ0.95 Probab0.95

Day
1

Day
2

Day
3

Day
4

Day
5

v k
/s

k

0

0.05

0.1

0.15

0.2

0.25

0.3

9integ

9probab

Integ1.0
Integ0.95
Probab0.95

08.00 10.00 12.00 14.00 16.00 18.00
r k

1

2

3

4

Integ1.0
Integ0.95
Probab1.0

Fig. 3. One hundred Monte Carlo simulations for the controllers under analysis. Upper Left: Air temperature variation for each simulation . Upper Right:
The right side of the one-step conditional constraint βk for one particular day of the simulation (Day 3). Lower Left: The process vk/sk representing
the average value over time of the loss function l(·). Lower Right: The layer index rk for one particular day of the simulation (Day 3). Note that,
for all constraint specifications, most of the violations occur during the early business hours of the day. This phenomenon is due to the mean value of
the environmental perturbation which tends to heat the room air temperature from 13pm to 17pm so that the controller accumulates large number of
non-violations. This observation is confirmed by the trajectories of βk and rk that are reported for a particular day of the simulation in order to emphasize
this behaviour.

to stochastic constraints. The class of considered systems is
wide and represents a powerful modeling tool for many real-
life applications. This is true, in particular, since it allows
to consider periodic inputs and states constraints as well as
periodic disturbances that are characterized by time-varying
probability distributions. The developed approach has been
applied, in simulation, on a building temperature control case
showing its flexibility and effectiveness with respect to robust
MPC control schemes.
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