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Abstract

Rodents navigating in a well–known environment can rapidly learn and revisit ob-
served reward locations, often after a single trial. While the mechanism for rapid
path planning is unknown, the CA3 region in the hippocampus plays an important
role, and emerging evidence suggests that place cell activity during hippocam-
pal “preplay” periods may trace out future goal–directed trajectories. Here, we
show how a particular mapping of space allows for the immediate generation of
trajectories between arbitrary start and goal locations in an environment, based
only on the mapped representation of the goal. We show that this representation
can be implemented in a neural attractor network model, resulting in bump–like
activity profiles resembling those of the CA3 region of hippocampus. Neurons
tend to locally excite neurons with similar place field centers, while inhibiting
other neurons with distant place field centers, such that stable bumps of activity
can form at arbitrary locations in the environment. The network is initialized to
represent a point in the environment, then weakly stimulated with an input cor-
responding to an arbitrary goal location. We show that the resulting activity can
be interpreted as a gradient ascent on the value function induced by a reward at
the goal location. Indeed, in networks with large place fields, we show that the
network properties cause the bump to move smoothly from its initial location to
the goal, around obstacles or walls. Our results illustrate that an attractor network
with hippocampal–like attributes may be important for rapid path planning.

1 Introduction

While early human case studies revealed the importance of the hippocampus in episodic memory [1,
2], the discovery of “place cells” in rats [3] established its role for spatial representation. Recent
results have further suggested that, along with these functions, the hippocampus is involved in active
spatial planning: experiments in “one–shot learning” have revealed the critical role of the CA3
region [4, 5] and the intermediate hippocampus [6] in returning to goal locations that the animal has
seen only once. This poses the question of whether and how hippocampal dynamics could support
a representation of the current location, a representation of a goal, and the relation between the two.

In this article, we propose that a model of CA3 as a “bump attractor” [7] can be be used for path
planning. The attractor map represents not only locations within the environment, but also the spatial
relationship between locations. In particular, broad activity profiles (like those found in intermediate
and ventral hippocampus [8]) can be viewed as a condensed map of a particular environment. The
planned path presents as rapid sequential activity from the current position to the goal location,
similar to the “preplay” observed experimentally in hippocampal activity during navigation tasks [9,
10], including paths that require navigating around obstacles. In the model, the activity is produced
by supplying input to the network consistent with the sensory input that would be provided at the
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goal site. Unlike other recent models of rapid goal learning and path planning [11, 12], there is
no backwards diffusion of a value signal from the goal to the current state during the learning or
planning process. Instead, the sequential activity results from the representation of space in the
attractor network, even in the presence of obstacles.

The recurrent structure in our model is derived from the “successor representation” [13], which
represents space according to the number and length of paths connecting different locations. The
resulting network can be interpreted as an attractor manifold in a low–dimensional space, where the
dimensions correspond to weighted version of the most relevant eigenvectors of the environment’s
transition matrix. Such low–frequency functions have recently found support as a viable basis for
place cell activity [14–16]. We show that, when the attractor network operates in this basis and is
stimulated with a goal location, the network activity traces out a path to that goal. Thus, the bump
attractor network can act as a spatial path planning system as well as a spatial memory system.

2 The successor representation and path–finding

A key problem in reinforcement learning is assessing the value of a particular state, given the ex-
pected returns from that state in both the immediate and distant future. Several model–free algo-
rithms exist for solving this task [17], but they are slow to adjust when the reward landscape is
rapidly changing. The successor representation, proposed by Dayan [13], addresses this issue.

Given a Markov chain described by the transition matrix P, where each element P (s, s′) gives the
probability of transitioning from state s to state s′ in a single time step; a reward vector r, where
each element r(s′) gives the expected immediate returns from state s′; and a discount factor γ, the
expected returns v from each state can be described by

v = r + γPr + γ2P2r + γ3P3r + . . . (1)

= (I− γP)−1r

= Lr.

The successor representation L provides an efficient means of representing the state space according
to the expected (discounted) future occupancy of each state s′, given that the chain is initialized from
state s. An agent employing a policy described by the matrix P can immediately update the value
function when the reward landscape r changes, without any further exploration.

The successor representation is particularly useful for representing many reward landscapes in the
same state space. Here we consider the set of reward functions where returns are confined to a single
state s′; i.e. r(s′) = δs′g where δ denotes the Kronecker delta function and the index g denotes a
particular goal state. From Eq. 1, we see that the value function is then given by the column s′
of the matrix L. Indeed, when we consider only a single goal, we can see the elements of L as
L(s, s′) = v(s|s′ = g). We will use this property to generate a spatial mapping that allows for a
rapid approximation of the shortest path between any two points in an environment.

2.1 Representing space using the successor representation

In the spatial navigation problems considered here, we assume that the animal has explored the en-
vironment sufficiently to learn its natural topology. We represent the relationship between locations
with a Gaussian affinity metric a: given states s(x, y) and s′(x, y) in the 2D plane, their affinity is

a(s(x, y), s′(x, y)) = a(s′(x, y), s(x, y)) = exp

(
−d2

2σ2
s

)
(2)

where d is the length of the shortest traversable path between s and s′, respecting walls and obstacles.
We define σ to be small enough that the metric is localized (Fig. 1) such that a(s(x, y), ·) resembles
a small bump in space, truncated by walls. Normalizing the affinity metric gives

p(s, s′) =
a(s, s′)∑
s′ a(s, s′)

. (3)
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The normalized metric can be interpreted as a transition probability for an agent exploring the envi-
ronment randomly. In this case, a spectral analysis of the successor representation [14, 18] gives

v(s|s′ = g) = π(s′)

n∑
l=0

(1− γλl)−1ψl(s)ψl(s
′) (4)

where ψl are the right eigenvectors of the transition matrix P, 1 = |λ0| ≥ |λ1| ≥ |λ2| · · · ≥
|λn| are the eigenvalues [18], and π(s′) denotes the steady–state occupancy of state s′ resulting
from P. Although the affinity metric is defined locally, large–scale features of the environment are
represented in the eigenvectors associated with the largest eigenvalues (Fig. 1).

We now express the position in the 2D space using a set of “successor coordinates”, such that

s(x, y) 7→ s̆ =

(√
(1− γλ0)

−1
ψ0(s),

√
(1− γλ1)

−1
ψ1(s), . . . ,

√
(1− γλq)

−1
ψq(s)

)
(5)

= (ξ0(s), ξ1(s), . . . , ξq(s))

where ξl =

√
(1− γλl)−1

ψl. This is similar to the “diffusion map” framework by Coifman and
Lafon [18]; with the useful property that, if q = n, the value of a given state when considering
a given goal is proportional to the scalar product of their respective mappings: v(s|s′ = g) =
π(s′)〈̆s, s̆′〉. We will use this property to show how a network operating in the successor coordinate
space can rapidly generate prospective trajectories between arbitrary locations.

Note that the mapping can also be defined using the eigenvectors φl of a related measure of the
space, the normalized graph Laplacian [19]. The eigenvectors φl serve as the objective functions for
slow feature analysis [20], and approximations have been extracted through hierarchical slow feature
analysis on visual data [15, 16], where they have been used to generate place cell–like behaviour.

2.2 Path–finding using the successor coordinate mapping

Successor coordinates provide a means of mapping a set of locations in a 2D environment to a new
space based on the topology of the environment. In the new representation, the value landscape
is particularly simple. To move from a location s̆ towards a goal position s̆′, we can consider a
constrained gradient ascent procedure on the value landscape:

s̆t+1 = arg min
s̆∈S̆

[
(̆s− (̆st + α∇v(̆st)))

2
]

(6)

= arg min
s̆∈S̆

[
(̆s− (̆st + α̃s̆′))

2
]

where π(s′) has been absorbed into the parameter α̃. At each time step, the state closest to an
incremental ascent of the value gradient is selected amongst all states in the environment S̆. In the
following, we will consider how the step s̆t + α̃s̆′ can be approximated by a neural attractor network
acting in successor coordinate space.

Due to the properties of the transition matrix, ψ0 is constant across the state space and does not
contribute to the value gradient in Eq. 6. As such, we substituted a free parameter for the coefficient√

(1− γλ0)−1, which controlled the overall level of activity in the network simulations.

3 Encoding successor coordinates in an attractor network

The bump attractor network is a common model of place cell activity in the hippocampus [7, 21].
Neurons in the attractor network strongly excite other neurons with similar place field centers, and
weakly inhibit the neurons within the network with distant place field centers. As a result, the
network allows a stable bump of activity to form at an arbitrary location within the environment.
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Figure 1: [Left] A rat explores a maze–like environment and passively learns its topology. We as-
sume a process such as hierarchical slow feature analysis, that preliminarily extracts slowly changing
functions in the environment (here, the vectors ξ1 . . . ξq). The vector ξ1 for the maze is shown in
the top left. In practice, we extracted the vectors directly from a localized Gaussian transition func-
tion (bottom center, for an arbitrary location). [Right] This basis can be used to generate a value
map approximation over the environment for a given reward (goal) position and discount factor γ
(inset). Due to the walls, the function is highly discontinuous in the xy spatial dimensions. The
goal position is circled in white. In the scatter plot, the same array of states and value function are
shown in the first two non–trivial successor coordinate dimensions. In this space, the value function
is proportional to the scalar product between the states and the goal location. The grey and black
dots show corresponding states between the inset and the scatter plot.

Such networks typically represent a periodic (toroidal) environment [7, 21], using a local excitatory
weight profile that falls off exponentially. Here, we show how the spatial mapping of Eq. 5 can be
used to represent bounded environments with arbitrary obstacles. The resulting recurrent weights
induce stable firing fields that decrease with distance from the place field center, around walls and
obstacles, in a manner consistent with experimental observations [22]. In addition, the network
dynamics can be used to perform rapid path planning in the environment.

We will use the techniques introduced in the attractor network models by Eliasmith and Anderson
[23] to generalize the bump attractor. We first consider a purely feed–forward network, composed of
a population of neurons with place field centers scattered randomly throughout the environment. We
assume that the input is highly preprocessed, potentially by several layers of neuronal processing
(Fig. 1), and given directly by units k whose activities s̆ink (t) = ξk(sin(t)) represent the input in the
successor coordinate dimensions introduced above. The activity ai of neuron i in response to the m
inputs s̆ink (t) can be described by

τ
dai(t)

dt
= −ai(t) + g

[
m∑

k=1

wff
ik s̆

in
k (t)

]
+

(7)

where g is a gain factor, [·]+ represents a rectified linear function, and wff
ik are the feed–forward

weights. Each neuron is particularly responsive to a “bump” in the environment given by its encod-
ing vector ei = s̆i

||̆si|| , the normalized successor coordinates of a particular point in space, which
corresponds to its place field center. The input to neuron i in the network is then given by

wff
ik = [ei]k,

m∑
k=1

wff
ik s̆

in
k (t) = ei · s̆in(t). (8)

A neuron is therefore maximally active when the input coordinates are nearly parallel to its encoding
vector. Although we assume the input is given directly in the basis vectors ξl for convenience, a
neural encoding using an (over)complete basis based on a linear combination of the eigenvectors ψl

or φl is also possible given a corresponding transformation in the feed–forward weights.
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Figure 2: [Left] The attractor network structure for the maze–like environment in Fig. 1. The inputs
give a low–dimensional approximation of the successor coordinates of a point in space. The network
is composed of 500 neurons with encoding vectors representing states scattered randomly through-
out the environment. Each neuron’s activation is proportional to the scalar product of its encoding
vector and the input, resulting in a large “bump” of activity. Recurrent weights are generated using a
least–squares error decoding of the successor coordinates from the neural activities, projected back
on to the neural encoding vectors. [Right] The generated recurrent weights for the network. The
plot shows the incoming weights from each neuron to the unit at the circled position, where neurons
are plotted according to their place field centers.

If the input s̆in(t) represents a location in the environment, a bump of activity forms in the network
(Fig. 2). These activities give a (non–linear) encoding of the input. Given the response properties of
the neurons, we can find a set of linear decoding weights dj that recovers an approximation of the
input given to the network from the neural activities [23]:

s̆rec(t) =

n∑
j=1

dj · aj(t). (9)

These decoding weights dj were derived by minimizing the least–squares estimation error of a set
of example inputs from their resulting steady–state activities, where the example inputs correspond
to the successor coordinates of points evenly spaced throughout the environment. The minimization
can be performed by taking the Moore–Penrose pseudoinverse of the matrix of neural activities in
response to the example inputs (with singular values below a certain tolerance removed to avoid
overfitting). The vector dj therefore gives the contribution of aj(t) to a linear population code for
the input location.

We now introduce the recurrent weights wrec
ij to allow the network to maintain a memory of past

input in persistent activity. The recurrent weights are determined by projecting the decoded location
back on to the neuron encoding vectors such that

wrec
ij = (1− ε) · ei · dj, (10)

n∑
j=1

wrec
ij aj(t) = (1− ε) · ei · s̆rec(t).

Here, the factor ε � 1 determines the timescale on which the network activity fades. Since the
encoding and decoding vectors for the same neuron tend to be similar, recurrent weights are highest
between neurons representing similar successor coordinates, and the weight profile decreases with
the distance between place field centers (Fig. 2). The full neuron–level description is given by

τ
dai(t)

dt
= −ai(t) + g

 n∑
j=1

wrec
ij aj(t) + α

m∑
k=1

wff
ik s̆

in
k (t)


+

(11)

= −ai(t) + g
[
ei ·
(
(1− ε) · s̆rec(t) + α · s̆in(t)

)]
+
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where the α parameter corresponds to the input strength. If we consider the estimate of s̆rec(t)
recovered from decoding the activities of the network, we arrive at the update equation

τ
ds̆rec(t)

dt
≈ α · s̆in(t)− ε · s̆rec(t). (12)

Given a location s̆in(t) as an initial input, the recovered representation s̆rec(t) approximates the
input and reinforces it, allowing a persistent bump of activity to form. When s̆in(t) then changes
to a new (goal) location, the input and recovered coordinates conflict. By Eq. 12, the recovered
location moves in the direction of the new input, giving us an approximation of the initial gradient
ascent step in Eq. 6 with the addition of a decay controlled by ε. As we will show, the attractor
dynamics typically cause the network activity to manifest as a movement of the bump towards the
goal location, through locations intermediate to the starting position and the goal (as observed in
experiments [9, 10]). After a short stimulation period, the network activity can be decoded to give a
state nearby the starting position that is closer to the goal. Note that, with no decay ε, the network
activity will tend to grow over time. To induce stable activity when the network representation
matches the goal position (̆srec(t) ≈ s̆in(t)), we balanced the decay and input strength (ε = α).

In the following, we consider networks where the successor coordinate representation was truncated
to the first q dimensions, where q � n. This was done because the network is composed of a limited
number of neurons, representing only the portion of the successor coordinate space corresponding
to actual locations in the environment. In a very high–dimensional space, the network can rapidly
move into a regime far from any actual locations, and the integration accuracy suffers. In effect, the
weight profiles and feed–forward activation profile become very narrow, and as a result the bump
of activity simply disappears from the original position and reappears at the goal. Conversely, low–
dimensional representations tend to result in broad excitatory weight profiles and activity profiles
(Fig. 2). The high degree of excitatory overlap across the network causes the activity profile to move
smoothly between distant points, as we will show.

4 Results

We generated attractor networks according to the layout of multiple environments containing walls
and obstacles, and stimulated them successively with arbitrary startpoints and goals. We used
n = 500 neurons to represent each environment, with place field centers selected randomly through-
out the environment. The successor coordinates were generated using γ = 1. We adjusted q to
control the dimensionality of the representation. The network activity resembles a bump across a
portion of the environment (Fig. 3). Low–dimensional representations (low q) produced large activ-
ity bumps across significant portions of the environment; when a weak stimulus was provided at the
goal, the overall activity decreased while the center of the bump moved towards the goal through
the intervening areas of the environment. With a high–dimensional representation, activity bumps
became more localized, and shifted discontinuously to the goal (Fig. 3, bottom row).

For several networks representing different environments, we initialized the activity at points evenly
spaced throughout the environment and provided weak feed–forward stimulation corresponding to
a fixed goal location (Fig. 4). After a short delay (5τ ), we decoded the successor coordinates from
the network activity to determine the closest state (Eq. 6). The shifts in the network representation
are shown by the arrows in Fig. 4. For two networks, we show the effect of different feed–forward
stimuli representing different goal locations. The movement of the activity profile was similar to the
shortest path towards the goal (Fig. 4, bottom left), including reversals at equidistant points (center
bottom of the maze). Irregularities were still present, however, particularly near the edges of the
environment and in the immediate vicinity of the goal (where high–frequency components play a
larger role in determining the value gradient).

5 Discussion

We have presented a spatial bump attractor model generalized to represent environments with arbi-
trary obstacles, and shown how, with large activity profiles relative to the size of the environment, the
network dynamics can be used for path–finding. This provides a possible correlate for goal–directed
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Figure 3: Attractor network activities illustrated over time for different inputs and networks, in
multiples of the membrane time constant τ . Purple boxes indicate the most active unit at each point
in time. [First row] Activities are shown for a network representing a maze–like environment in
a low–dimensional space (q = 5). The network was initially stimulated with a bump of activa-
tion representing the successor coordinates of the state at the black circle; recurrent connections
maintain a similar yet fading profile over time. [Second row] For the same network and initial con-
ditions, a weak constant stimulus was provided representing the successor coordinates at the grey
circle; the activities transiently decrease and the center of the profile shifts over time through the
environment. [Third row] Two positions (black and grey circles) were sequentially activated in a
network representing a second environment in a low–dimensional space (q = 4). [Bottom row] For
a higher–dimensional representation (q = 50), the activity profile fades rapidly and reappears at the
stimulated position.

activity observed in the hippocampus [9, 10] and an hypothesis for the role that the hippocampus
and the CA3 region play in rapid goal–directed navigation [4–6], as a complement to an additional
(e.g. model–free) system enabling incremental goal learning in unfamiliar environments [4].

Recent theoretical work has linked the bump–like firing behaviour of place cells to an encoding of the
environment based on its natural topology, including obstacles [22], and specifically to the successor
representation [14]. As well, recent work has proposed that place cell behaviour can be learned by
processing visual data using hierarchical slow feature analysis [15, 16], a process which can extract
the lowest frequency eigenvectors of the graph Laplacian generated by the environment [20] and
therefore provide a potential input for successor representation–based activity. We provide the first
link between these theoretical analyses and attractor–based models of CA3.

Slow feature analysis has been proposed as a natural outcome of a plasticity rule based on Spike–
Timing–Dependent Plasticity (STDP) [24], albeit on the timescale of a standard postsynaptic po-
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Figure 4: Large–scale, low–dimensional attractor network activities can be decoded to determine
local trajectories to long–distance goals. Arrows show the initial change in the location of the
activity profile by determining the state closest to the decoded network activity (at t = 5τ ) after
weakly stimulating with the successor coordinates at the black dot (α = ε = 0.05). Pixels show the
place field centers of the 500 neurons representing each environment, coloured according to their
activity at the stimulated goal site. [Top left] Change in position of the activity profile in a maze–
like environment with low–dimensional activity (q = 5) compared to [Bottom left] the true shortest
path towards the goal at each point in the environment. [Additional plots] Various environments
and stimulated goal sites using low–dimensional successor coordinate representations.

tential rather than the behavioural timescale we consider here. However, STDP can be extended to
behavioural timescales when combined with sustained firing and slowly decaying potentials [25] of
the type observed on the single–neuron level in the input pathway to CA3 [26], or as a result of
network effects. Within the attractor network, learning could potentially be addressed by a rule that
trains recurrent synapses to reproduce feed–forward inputs during exploration (e.g. [27]).

Our model assigns a key role to neurons with large place fields in generating long–distance goal–
directed trajectories. This suggests that such trajectories in dorsal hippocampus (where place fields
are much smaller [8]) must be inherited from dynamics in ventral or intermediate hippocampus.
The model predicts that ablating the intermediate/ventral hippocampus [6] will result in a significant
reduction in goal–directed preplay activity in the remaining dorsal region. In an intact hippocampus,
the model predicts that long–distance goal–directed preplay in the dorsal hippocampus is preceded
by preplay tracing a similar path in intermediate hippocampus. However, these large–scale networks
lack the specificity to consistently generate useful trajectories in the immediate vicinity of the goal.
Therefore, higher–dimensional (dorsal) representations may prove useful in generating trajectories
close to the goal location, or alternative methods of navigation may become more important.

If an assembly of neurons projecting to the attractor network is active while the animal searches the
environment, reward–modulated Hebbian plasticity provides a potential mechanism for reactivating
a goal location. In particular, the presence of a reward–induced neuromodulator could allow for
potentiation between the assembly and the attractor network neurons active when the animal receives
a reward at a particular location. Activating the assembly would then provide stimulation to the goal
location in the network; the same mechanism could allow an arbitrary number of assemblies to
become selective for different goal locations in the same environment. Unlike traditional model–
free methods of learning which generate a static value map, this would give a highly configurable
means of navigating the environment (e.g. visiting different goal locations based on thirst vs. hunger
needs), providing a link between spatial navigation and higher cognitive functioning.
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