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Abstract: The major research in the resource management literature focuses primarily on two
complementary sub-problems: 1) specification languages for formulating resource requests and
2) constraint problems modelling allocation and scheduling. Both directions assume the knowledge
of the underlying platform architecture and the dependencies it induces on the usage of the various
resources.

In this paper we bridge this gap, by introducing Constraint-Flow Nets (cfNets). A cfNet
is defined by a set of resources and dependencies between them, each dependency having an
associated constraint. The model is inspired by Petri nets, with resources corresponding to places
and dependencies—to transitions. Given an architecture of dependent resources, an initial resource
request is propagated through the dependencies. The generated constraints are then conjuncted
into the global allocation constraint.

We study the notion of conflicts in cfNets and prove that for conflict-free cfNets the global
allocation constraint can be constructed unambiguously. Furthermore, we provide an efficient
algorithm for conflict detection.
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1 Introduction

Providing resource management is of key importance to many different areas, from embedded
systems domain to distributed resource management in large-scale systems or in a cloud.

In the literature, two main complementary sub-problems are investigated: specification lan-
guages for formulating resource requests [6, 11, 18, 26] and resource management architec-
tures [8, 9, 15, 17, 20]. The former provides application developers with the means to specify
application resource requirements, whereas the latter is using the request information to build a
constraint problem, which is then solved by a satisfiablility modulo theories (SMT) [2, 22] or a con-
straint solver [25] to find a satisfactory resource allocation. However, for non-trivial architectures,
this approach presents a substantial gap. Indeed, on one hand, the resource manager assumes
that an application completely specifies all its resource requirements. On the other hand, spec-
ification languages provide request primitives formulated in terms of 〈required amount/resource
type〉 pairs, e.g. “5Mb of memory” or “1 thread”. Ignoring the physical nature of the resources and
the dependencies among them makes it impossible for applications to define sufficiently complete
resource requests. Furthermore, we argue that such completeness is not desirable. In order to
avoid strong platform dependencies, applications should have the possibility to operate on a more
abstract level. For a simple example, consider a multicore Network-on-Chip (NoC) platform (e.g.
[14]), where each core has a dedicated local memory, but can also access that of the other cores
through the NoC. Depending on the location of the requested memory and under the assumptions
above, application developers must also explicitly request access to the NoC. Another example
is provided by modular platforms, where resources, such as memory, channels or threads, can be
created dynamically: applications should be allowed to specify requests for a certain type of re-
sources without having the knowledge of their structure. While some advanced compilation tools,
e.g. [13, 22, 23] provide ad-hoc solutions for specific target platforms, the objective of the work
presented in this report is to bridge this gap in a generic manner, sufficient to describe resource
dependencies for a wide class of platforms.

We consider an environment with a global set of resources R and an entity (application) that
makes a request for a subset of these resources. In general, the information contained in the
request is not sufficient to find a satisfactory resource allocation, due to potential dependencies
among the resources (in the above example, remote memory access requires the use of the NoC).
To model such dependencies we introduce the notion of Constraint-Flow Nets (cfNets), inspired
by Petri nets with inhibitor arcs. Inhibitor arcs are used to limit dependency applications (e.g.
there is no need to repeat a request for a given resource, if it has already been requested). In order
to specify relations between the amounts of the resources requested by the application and the
necessary amounts of the resources introduced by dependencies, we associate constraint schemata
to all transitions of a cfNet. These constraint schemata are then used to build the global constraint
problem associated to the initial resource request. We prove that such global constraint problems
can be unambiguously built for conflict-free cfNets. Furthermore, we provide a technique for
detection of conflicts and their resolution by introducing priority relations among the conflicting
transitions. Hence, given a cfNet with a priority model, the global constraint can always be built
unambiguously.

The idea of using Petri nets for resource management is not novel. A number of works
explore Resource Allocation Systems (RAS) in the context of Flexible Manufacturing Systems
(FMS) [7] and introduce different subclasses of Petri nets to account for various allocation require-
ments [12, 24]. In [19] the authors investigate how the methods used in FMS can be extended
to software applications with concurrent processes competing for shared resources. They propose
a new subclass of Petri nets, PC2R, where the resources of different types, their availability and
control flow of each process are represented as a unique system. A small change in the process flow
or resources set will require a change of this model. In contrast, we are applying the separation of
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concerns principle by providing distinct models for systems of interdependent resources with their
available capacities and for resource requests from abstract applications.

Numerous works study constraints and dependencies, such as temporal, causality and resource
constraints, in various contexts by considering the underlying dependency graphs, e.g. [1, 3, 16, 21].
Due to their syntactic structure inspired from Petri nets, cfNets generalise these approaches.
Furthermore, they are specifically tailored to provide a natural way of incorporating constraint
schemata, that allow expressing quantitative dependencies among amounts of allocated resources.
To the best of our knowledge, such combinations of constraint schemata with an underlying graph
structure have not been studied in existing literature.

The report is structured as follows. Section 2 introduces cfNets and their semantics in terms
of execution and in terms of constraints modelling resource dependencies. In Section 3, we study
the notion of conflict in the cfNets, and provide an algorithm for conflict detection. Section 4
presents the case study of the Kalray architecture. Section 5 concludes the report and discusses
future work.

2 Modelling resource dependencies

2.1 Constraint-Flow Nets

In this section, we introduce Constraint-Flow Nets (cfNets), which we use to model resource
dependencies. Syntactically, cfNets are Petri nets with inhibitor arcs. The semantics of cfNets
can be compared to that of Coloured Petri nets with inhibitor arcs and capacities (each place has
capacity 1 with respect to each token colour). The colour of a token in a cfNet depends on the
transition that has produced this token. The main difference between cfNets and Petri nets is the
following: firing a transition does not remove tokens from its pre-places. Therefore, the capacity
restriction effectively prevents any transition from being fired more than once.

Definition 2.1. Consider a tuple N = (R, T, F, I), where

� R is a finite set of places (resources);

� T is a finite set of transitions (dependencies);

� F ⊆ (R× T ) ∪ (T ×R) is a set of arcs; and

� I ⊆ R× T ∗ × T , with T ∗
def
= T ∪ {∗}, for some fresh symbol ∗ 6∈ T , is a set of inhibitor arcs.

For t ∈ T , we denote

– by R−(t)
def
= {r ∈ R | (r, t) ∈ F} the set of its pre-places;

– by R+(t)
def
= {r ∈ R | (t, r) ∈ F} the set of its post-places.

Similarly, for r ∈ R, we denote

T−(r)
def
= {t ∈ T | (t, r) ∈ F} the set of its incoming transitions.

If (r, t′, t) ∈ I, for some t′ ∈ T ∗, we say that r is an inhibitor place for t. Finally, we denote

I(t)
def
= {(r, t′) ∈ R× T ∗ | (r, t′, t) ∈ I}.

N is a cfNet, if

1. R−(t) ∩R+(t) = ∅, for any t ∈ T (i.e. there are no looping transitions),
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2. R−(t) 6= ∅, for any t ∈ T , and

3. t′ ∈ T−(r), for all (r, t′, t) ∈ I.

As will be apparent from the following definitions, an inhibitor arc (r, t′, t) checks for the
absence of a token in the place r produced by the transition t′. The asterisk ∗ represents a virtual
initial transition (cf. Definition 2.2 below).

Definition 2.2. A marking of a cfNet (R, T, F, I) is a set of tokens M ⊆ R × T ∗. We say that

a token (r, t) ∈ R× T ∗, has the colour t and denote TM
def
= {t ∈ T ∗ | (r, t) ∈M} the set of colours

involved in the marking M . A marking M is initial if TM = {∗}.

Notice that a marking M can also be viewed as the characteristic function M : R× T ∗ → B,
where we denote B = {tt, ff} the set of truth values true and false, respectively. Under marking
M , a place r ∈ R contains a token (r, t) of colour t ∈ T ∗, when M(r, t) = tt. In the rest of the
report, we will use these two notations interchangeably.

Notice also that in Coloured Petri nets the colour of the tokens is used to specify which tokens
(of which colour) a transition can consume. In the cfNet semantics, each transition can consume
any token regardless of its colour: colours are relevant only for post-places and inhibitor arcs of
transitions.

Below, we provide the formal semantics of cfNets.

Definition 2.3. A transition t ∈ T of a cfNet (R, T, F, I) is enabled with a marking M if the
following three conditions hold:

1. for all r ∈ R−(t), there is a token (r, t′) ∈M for some t′ ∈ T−(r) ∪ {∗};

2. for all r ∈ R+(t), the corresponding token is not in M , i.e. (r, t) 6∈M ;

3. for all (r, t′, t) ∈ I, the corresponding token is not in M , i.e. (r, t′) 6∈M .

Definition 2.4. A marking M ′ of a cfNet (R, T, F, I) is reachable from a marking M in one step
if there exists a transition t ∈ T , enabled with M , such that, for all r ∈ R and all t′ ∈ T ∗, holds
the following equality:

M ′(r, t′) =

{
tt, if r ∈ R+(t) and t′ = t,
M(r, t′), otherwise.

This is denoted by M
t−→M ′.

Notice that this definition of a step indeed implies that, contrary to classical semantics of Petri
nets, transitions do not remove tokens from their pre-places.

Definition 2.5. A marking M is final if there are no transitions enabled with M .

In the rest of the report, we use the following convention for the graphical representation of
cfNets: transitions that have not been fired are shown in black, whereas transitions that have
already been fired—and therefore cannot be fired again—are shown in white (cf. Figure 1a and
Figure 1b). Moreover, for the sake of clarity, when there are several inhibitor arcs from the same
place to the same transition labelled with different colours, we draw only one arc and annotate
it with all the colours. Finally, in all the illustrations in the report, the colour of a token can be
unambiguously derived by considering which transitions have been fired (visible from the black or
white colour of the transition in the diagram). Therefore, we use the usual graphical notation for
tokens in Petri nets, i.e. a bullet within the corresponding place.
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(a) Initial marking for the request {p,m}
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(b) Final marking for the request {p,m}

Figure 1: The cfNet modelling the dependency from Example 2.6

Example 2.6 (Memory and Bus). Consider a system with one processor and one memory unit
connected by a bus. Whenever an application uses the processor to access the memory, access to
the bus is required implicitly. This dependency is modelled by the cfNet shown in Figure 1. The
cfNet has three places p, m and b, corresponding to the processor, the memory and the bus. The
resource dependency is modelled by the transition t with incoming arcs from p and m, and one
outgoing arc to b.

Consider an initial resource request R = {p,m}. The corresponding initial marking M0 of
the cfNet has two tokens: (p, ∗) and (m, ∗) (Figure 1a). Transition t is enabled and can be fired,

generating the token (b, t). Thus, we have M0
t−→ M with M shown in Figure 1b. Since t is not

enabled with M , this marking is final. ♦

Definition 2.7. A run of a cfNet from a marking M0 is a sequence M0
t1−→ M1

t2−→ . . .
tn−→ Mn.

When such a run exists, we say that Mn is reachable from M0 and write M0
〈t1,...,tn〉−−−−−−→ Mn. We

say that a marking is reachable if it is reachable from some initial marking.

Notice that, for any marking M obtained by firing a sequence of transitions, TM (see Defini-
tion 2.2) is the set comprising ∗ and these transitions (see Proposition 2.10 below).

Example 2.8 (Two Memories and two Buses). Consider a system with one processor connected
to two memory units via two different buses. The dependency between resources is the same as in
the previous example: whenever an application uses the processor to access a memory, access to
the corresponding bus is required implicitly. This dependency is modelled by the cfNet shown in
Figure 2. The cfNet has five places p, m1, m2, b1 and b2, corresponding to the processor, the two
memories and the two buses. The resource dependencies are modelled by the transition t1 (resp.
t2) with incoming arcs from p and m1 (resp. p and m2), and one outgoing arc to b1 (resp. b2).

Consider an initial resource request R = {p,m1}. Similarly to the previous example, transition
t1 is enabled and can be fired, generating a token in the place b1 and thus creating a final marking.

Now consider an initial resource request R = {p,m1,m2}. The corresponding initial marking
M0 of the cfNet has three tokens: (p, ∗), (m1, ∗) and (m2, ∗) (Figure 2a). Both transitions t1
and t2 are enabled and can be fired. Let t1 fire first, generating a token (b1, t1). Thus, we have

M0
t1−→M1 with M1 shown in Figure 2b. Transition t1 is disabled, but transition t2 is enabled and

can fire, generating a token (b2, t2). We have M0
t1−→M1

t2−→M2, with M2 being the final marking
(Figure 2c) and TM2 = {∗, t1, t2}.

The situation when t2 fires first before t1 is symmetrical. ♦
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(a) Initial marking for the
request {p,m1,m2}

p

t1 t2

m1 m2

b1 b2

(b) Transition t1 fired for the
request {p,m1,m2}

p

t1 t2

m1 m2

b1 b2

(c) Final marking for the
request {p,m1,m2}

Figure 2: The cfNet modelling the dependency from Example 2.8

Definition 2.9. A marking M of a cfNet (R, T, F, I) is well-formed if, for all t ∈ TM \ {∗}, the
following three conditions hold:

1. for all r ∈ R−(t), there exists a token (r, t′) ∈M for some t′ ∈ T−(r) ∪ {∗};

2. for all r ∈ R+(t), (r, t) ∈M ;

3. for all (r, ∗) ∈ I(t), (r, ∗) 6∈M .

In Definition 2.9, conditions 1 and 3 are necessary for the transition t to have been enabled.
They are not sufficient, since, for the transition to be enabled, inhibitor tokens referring to colours
other than ∗ must also be absent from the marking. However, we cannot include this stronger
requirement in the definition of well-formedness. Indeed, such inhibitor tokens can appear once t
has already been fired. Condition 2 requires that all the tokens generated by firing t be, indeed,
present in the marking.

Proposition 2.10. Let M0 be an initial marking. Let M ′ be a marking reachable from M0 with

M0
〈t1,...,tn〉−−−−−−→M ′. Then M ′ is well-formed and TM ′ = {∗, t1, . . . , tn}.

Proof. Let M0
t1−→ M1

t2−→ . . .
tn−→ Mn with Mn = M ′. By Definition 2.2, the initial marking M0

contains only tokens (r, ∗), for some r ∈ R. By Definition 2.4, for i ∈ [1, n], each ti creates in Mi

tokens of the form (r, ti), for some r ∈ R. No other tokens are created. Thus, ΣM ′ = {∗, t1, . . . , tn}.
Each ti ∈ TM ′ \ {∗} is enabled with Mi−1. Hence, by Definition 2.3, for all r ∈ R−(ti) there

exists a token (r, t′) ∈ Mi−1 for some t′ ∈ T−(r) ∪ {∗}. Since transitions can only add tokens to
a marking, we have (r, t′) ∈ M ′. Since ti has been fired to reach Mi, we have (r, ti) ∈ Mi, for
each r ∈ R+(ti). Hence, (r, ti) ∈M ′. Furthermore, none of the tokens inhibiting ti are present in
Mi−1. In particular, (r, ∗) 6∈ Mi−1, for any (r, ∗) ∈ I(ti). Since initial tokens cannot be added by
firing a transition, this implies (r, ∗) 6∈M ′. Thus, by Definition 2.9, M ′ is well-formed.

The well-formedness of a marking is an overapproximation of reachability: all reachable mark-
ings are well-formed, but there exist well-formed markings which are not reachable.

2.2 Constraints

To account for quantitative dependencies between resources, we extend the definition of cfNets by
associating to each transition a constraint schema, which is instantiated into a constraint for a final
marking of the cfNet. These constraints are then used to build the global allocation constraint
problem, as shown in Section 2.4.
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We assume that each resource r ∈ R has a value domain Dr, where Dr is a commutative
monoid, i.e. it has an addition operation + with an identity element 0.

Definition 2.11. Consider a cfNet (R, T, F, I). For any transition t ∈ T , denote

Xt
def
= {xr | r ∈ R−(t) ∪R+(t)} ,

where each xr is a variable with the value domain Dr. A constraint schema associated to t is a
predicate over the set of variables Xt, i.e.

ct :
∏

r∈R−(t)∪R+(t)

Dr → B .

Definition 2.12. A cfNet with constraints is a tuple (R, T, F, I, C), where (R, T, F, I) is a cfNet
and C = {ct | t ∈ T} is a set of constraint schemata associated to the transitions in T .

In the rest of the report, we will only consider cfNets with constraints. For the sake of con-
ciseness, we will refer to them simply as cfNets.

We build global constraint problems encoding resource allocations compatible with the causal
dependencies defined by the cfNet. A constraint problem is based on the initial resource request
of the application and the constraint schemata associated to transitions constituting a run of the
cfNet. To this end, we introduce, for each place-colour pair (r, t) ∈ R×T ∗, a variable dtr with the
domain value Dr.

Definition 2.13. Let M be a well-formed marking of a cfNet (R, T, F, I, C). We define a platform
constraint

C[M ]
def
=
∧

t∈TM

ct

 ∑
t′:(r,t′)∈M

dt
′

r

/xr

∣∣∣∣∣∣ r ∈ R−(t)

[dtr/xr

∣∣ r ∈ R+(t)
]
, (1)

where, for an expression E, we denote by E[x/y |C] the expression obtained by substituting in E
all occurrences of y, which satisfy the condition C, by x. Thus each conjunct in (1) is the predicate
obtained by replacing, in the corresponding constraint schema ct,

� for each pre-place r ∈ R−(t), the variable xr with the sum of all variables dt
′

r corresponding
to all the tokens (r, t′) ∈M ;

� for each post-place r ∈ R+(t), the variable xr with the corresponding variable dtr.

Notice that the conjuncts in (1) are unambiguously defined, since, by Definition 2.1, there
are no looping transitions in the cfNet, i.e. R−(t) ∩ R+(t) = ∅, for all t ∈ T . Hence the two
substitutions operate on disjoint sets of variables.1

Example 2.14 (Memory and Bus—continued). Building on Example 2.6, we introduce the con-
straint linking the actual resource requirements. Since any data to be written or read from the
memory must transit through the bus, we associate to the transition t a constraint schema impos-
ing that the required bus capacity be greater than or equal to the requested amount of memory:

ct = xb ≥ xm.

1Strictly speaking these conjuncts are unambiguously defined even without this restriction: the application of
the second substitution will have no effect on the variables that have been substituted by the first. However, it is
more elegant to have this separation explicitly.
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(a) Initial marking for the request {r}
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r1 r2

(b) Final marking for the request {r}

Figure 3: The cfNet modelling the dependency from Example 2.15

Consider again the initial request R = {p,m} with the corresponding initial marking in Fig-
ure 1a. The variables corresponding to the initial tokens are d∗p and d∗m. Since the final marking M
in Figure 1b contains a token (b, t), we also introduce the corresponding variable dtb. Substituting
these variables in the constraint schema for t, we obtain the platform constraint

C[M ] = ct
[
d∗p/xp, d

∗
m/xm, dtb/xb

]
= dtb ≥ d∗m .

♦

Example 2.15 (Virtual resources). Consider a system with two physical resources of the same
type, r1 and r2. For example, these could be two storage devices. Applications can access any of
the two directly or, alternatively, request a certain amount without specifying which of r1 and r2
must provide it. This can be modelled by introducing a “virtual” resource r.

In case when the virtual resource is requested, the actual allocation depends on the policy that
the system implements, for instance:

1. one of r1 and r2 must provide the requested amount (dispatching the request);

2. both r1 and r2 must provide the requested amount (redundant allocation);

3. part of the requested amount is provided by one of the two physical resources and the rest
is provided by the other (joint allocation).

In all the three cases, the utilization of r requires the utilization of both r1 and r2. In case of
dispatching the request, only one of the resources is actually allocated. However, at design time,
it is not known which one will be allocated. Therefore, both resources have to be included in the
constraint.

Figure 3 shows a cfNet modelling the above dependencies. The constraint scheme of the
transition depends on the policy:

1. for dispatching the request: ct = (xr1 = xr ∧ xr2 = 0) ∨ (xr1 = 0 ∧ xr2 = xr),

2. for redundant allocation: ct = (xr1 = xr ∧ xr2 = xr),

3. for joint allocation: ct = (xr1 + xr2 = xr).

Consider the initial request R = {r} with the joint allocation policy. The corresponding
initial marking M0 is shown in Figure 3a. The variable corresponding to the initial token is d∗r .
Since the final marking M in Figure 3b contains tokens (r1, t) and (r2, t), we also introduce the
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corresponding variables dtr1 and dtr2 . Substituting these variables in the constraint schema for t
for the joint allocation policy, we obtain the platform constraint

C[M ] = ct
[
d∗r/xr, d

t
r1/xr1 , d

t
r2/xr2

]
= (dtr1 + dtr2 = d∗r) .

♦

Example 2.16 (Processor and Virtual Memory). This example combines Example 2.8 and Ex-
ample 2.15. We again consider a system with one processor connected to two memory units via
two different buses. However now we add a virtual memory resource representing the two mem-
ories, which gives the possibility to ask for a memory without specifying which one is needed
exactly. The other dependencies between resources are the same as in Example 2.8: whenever
an application uses the processor to access a memory, access to the corresponding bus is required
implicitly.

These dependencies are modelled by the cfNet shown in Figure 4. Assume that transition t
implements dispatching policy. The constraint schemata for the transitions then are:

� ct = (xm1 = xm ∧ xm2 = 0) ∨ (xm1 = 0 ∧ xm2 = xm),

� ct1 = xb1 ≥ xm1
,

� ct2 = xb2 ≥ xm2
.

Consider an initial resource request R = {p,m}. Two token variables are created: d∗p and d∗m.
The corresponding marking is shown in Figure 4a. Transition t is enabled and fires, generating
tokens which enable transitions t1 and t2, alongside with corresponding token variables dtm1

and

dtm2
(Figure 4b). Let transition t1 fire first, generating a token in b1 and a token variable dt1b1 .

Finally, t2 fires, generating a token dt2b2 in b2.
Substituting these variables in the constraint schemata, we obtain the platform constraint

C[M ] = ct
[
d∗m/xm, dtm1

/xm1
, dtm2

/xm2

]
∧ct1

[
d∗p/xp, d

t1
m1

/xm1
, dt1b1/xb1

]
∧ct2

[
d∗p/xp, d

t2
m2

/xm2
, dt2b2/xb2

]
=

((dtm1
= d∗m ∧ dtm2

= 0) ∨ (dtm1
= 0 ∧ dtm2

= d∗m)) ∧ (dt1b1 ≥ dtm1
) ∧ (dt2b2 ≥ dtm2

) .

♦

2.3 Examples of cfNets with inhibitor arcs

In this section, we provide some additional examples illustrating the use of inhibitor arcs.

Example 2.17 (Two interdependent resources). Consider a system with three resources r1, r2
and r3, such that 1) r1 and r2 are mutually dependent, i.e. if only r1 is requested, r2 must be
added to the request, and vice versa; and 2) when both r1 and r2 are requested, r3 must also be
allocated. These dependencies are modelled by a cfNet shown in Figure 5.

Consider the transition t1. Apart from the regular arcs, it has an inhibitor arc from r2, i.e. we
have (r2, ∗, t1) ∈ I, which prevents an additional request for r2 when this latter is already part of
the initial request. The transition t2 has a symmetric inhibitor arc from r1.

First consider the initial request {r1} (Figure 5a). Since there are no tokens in r2, transition t1
is enabled. After firing t1, a new token (r2, t1) is added to the place r2 (Figure 5b). Both t1 and t2
are disabled with this marking: t2 due to the influence of the corresponding inhibitor arc, t1 due
to the presence of the token (r2, t1). Thus, the only enabled transition is t3. After firing t3, a new
token appears in the place r3 and the cfNet reaches the final marking shown in Figure 5c. Assuming
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Figure 4: The cfNet modelling the dependency from Example 2.16

10



r1 t1

t2

r2

t3

∗

∗

r3

(a) Initial marking

r1 t1

t2

r2

t3

∗

∗

r3

(b) Intermediate marking

r1 t1

t2

r2

t3

∗

∗

r3

(c) Final marking

Figure 5: cfNet illustrating Example 2.17 with the successive markings for the request {r1}

that constraint schemata associated to t1, t2 and t3 are, respectively, c1, c2 and c3, we obtain, for
this final marking, the platform constraint c1

[
d∗r1/xr1 , d

t1
r2/xr2

]
∧ c3

[
d∗r1/xr1 , d

t1
r2/xr2 , d

t3
r3/xr3

]
.

Consider now the initial request {r1, r2}. The corresponding marking has both tokens (r1, ∗)
and (r2, ∗). Hence both transitions t1 and t2 are disabled by the corresponding inhibitor arcs. Only
t3 is enabled and is fired once before reaching a final marking. The resulting platform constraint
is c3

[
d∗r1/xr1 , d

∗
r2/xr2 , d

t3
r3/xr3

]
. ♦

Example 2.18 (Inhibitors referring to transitions). In the previous example each of the interde-
pendent resources could be required only once. However, a different situation can also exist: it
might be possible that a resource can be explicitly requested by an application, and additional
amounts of the same resource are requested due to dependencies.

Consider a situation when there are different dependency paths through the cfNet to this
resource, and once the resource is requested due to one dependency, it should not be requested
again due to other dependencies.

The cfNet for a system with such a resource r is shown in Figure 6:

1. there is a place r with two incoming transitions t1 and t2;

2. there are some other places and dependencies, different for t1 and t2, denoted by a cloud;

3. there is a inhibitor arc from r to t1 referring to t2 and to t2 referring to t1.

Consider an initial request with no token in r which leads to both t1 and t2 being enabled
(Figure 6a). Let t1 fire. After the firing, a new token in r is created (Figure 6b). This token comes
from transition t1, therefore, transition t2 is disabled because of the inhibitor arc. The platform
constraint then contains c1

[
dt1r /xr, . . .

]
as a conjunct, where the dots stand for other resources of

the cfNet required for t1 to fire.
The case when transition t2 fires instead of t1 is symmetrical (Figure 6c).
Consider an initial request with a token in r which leads to both t1 and t2 being enabled.

This can happen since even though there is a token in r, it is an initial token, and inhibitor arcs
refer to tokens having come from transitions. After the firing of, for example, t2, a new token in
r is created. Transition t1 is disabled because of the inhibitor arc, and the platform constraint
contains c2

[
(d∗r + dt2r )/xr, . . .

]
as a conjunct. ♦
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r
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(c) Transition t2 fired

Figure 6: cfNet for Example 2.18

2.4 Allocation constraint problem

In the following, we assume that a partial cost function costr : Dr → R is associated with each
resource r ∈ R. When defined, the value costr(d) represents the cost of allocating the amount
d ∈ Dr of the resource r. When costr(d) is undefined, this means that it is not possible to allocate
the amount d of the resource r (e.g. d is greater than the resource capacity).

Example 2.19 (Memory cost). Consider a resource m, representing some abstract memory with
the capacity M . The value domain is Dm = N. Assume that the cost of memory usage is linear in
the size of the allocated block. This assumption can be modelled by the following cost function:

costm(d) =

{
d
M , 0 ≤ d ≤M,
⊥, otherwise.

♦

Example 2.20 (Processor cost). Consider a resource p, representing a processor. For a processor,
the value domain represents the number of running applications. Hence, again Dp = N. The
following cost function does not affect the cost of using the allocated resources, but restricts the
use of the processor to at most one application:

costp(d) =

{
0, d ∈ {0, 1},
⊥, otherwise.

♦

Definition 2.21. Let R ⊆ R be a set of resources. A utility function over R is a partial function
u :
∏

r∈RDr → R such that u is constant on all Dr for r /∈ R (i.e. u depends only on resources
belonging to R).

Definition 2.22. An allocation over a set of resources R ⊆ R is a value d = (dr)r∈R ∈
∏

r∈RDr,
such that dr = 0 for all r /∈ R.

Definition 2.23. Consider a system of resource dependencies defined by a cfNet N . Let R0 ⊆ R
be a set of resources corresponding to an initial request, and let u be a utility function over R0.
Let M0 = {(r, ∗) | r ∈ R0} be the initial marking corresponding to R0 and let M be a final marking
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obtained by running N . Let C[M ] be the corresponding platform constraint (see Definition 2.13).
Finally, let costr, for all r ∈ R, be the corresponding cost functions. An allocation d = (dr)r∈R
over R is valid, if the predicate

CM (d)
def
= C[M ] ∧

∧
r∈R

(
dr =

∑
t:(r,t)∈M

dtr

)
(2)

evaluates to true and if the following value is defined:

UM (d)
def
= u(d)−

∑
r∈R

costr(dr). (3)

We call the function UM (d) the global utility of the allocation d.

The problem of finding an optimal resource allocation for a request R0 is modelled by the
following problem of constrained optimisation:

argmax{d |CM (d)} UM (d) . (4)

Notice that both the notions of validity and global utility, and the optimisation problem above
depend on the marking M obtained by running the cfNet. In the next section we characterise
those cfNets, where this dependency does not hold and provide a disambiguating mechanism for
the rest of cfNets.

3 Conflicting dependencies

In the previous sections, we have demonstrated how a constraint problem is built for a given run
of a cfNet. However, Example 3.1 below shows that, in general, a cfNet can have several distinct
runs starting with the same initial marking, due to conflicts between transitions.

Example 3.1 (Inhibitor causing conflict). Consider the cfNet shown in Figure 7. Notice that the
inhibitor arc (r3, t2, t3) refers only to the token (r3, t2), but not to (r3, ∗), nor (r3, t1).

First, consider the request {r1, r4}, corresponding to the initial marking shown in Figure 7a.
The enabled transitions are t1 and t3. Firing the transition t1 generates a new token (r3, t1)
(Figure 7b). Since the inhibitor arc of the transition t3 refers only to (r3, t2), t3 remains enabled.
After the firing of t3, a new token (r5, t3) appears in the place r5 and the cfNet reaches the final
marking shown in Figure 7c. It is easy to see that, if t3 were to be fired before t1, the final marking
(hence also the platform constraint) would be the same.

Now, let us consider the request {r2, r4}, corresponding to the initial marking shown in Fig-
ure 8a. Again, two transitions are enabled: t2 and t3. However, if t2 fires first, t3 becomes disabled
due to the influence of the inhibitor arc and the obtained marking is final (Figure 8b). On the
contrary, if t3 fires before t2, the final marking (hence, also the platform constraint) is different
(Figure 8c). ♦

In the rest of this section, we show that a cfNet is guaranteed to be conflict-free if it does not
contain any inhibitor arcs referring to token colours other than ∗. We then provide methods for
the detection of conflicts in cfNets that do contain such inhibitors.

3.1 Conflicting transitions

Definition 3.2. A cfNet (R, T, F, I, C) under a marking M has a conflict, if there exist two

distinct enabled transitions t1, t2 ∈ T , such that M
t1−→M ′ and t2 is disabled with M ′.

We also say that transitions t1, t2 ∈ T are in conflict under the marking M . A cfNet is
conflict-free if it does not have conflicts under any reachable marking.
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Figure 7: cfNet illustrating Example 3.1 with the successive markings for the request {r1, r4}
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Figure 8: cfNet illustrating Example 3.1 for the request {r2, r4}
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An example of a cfNet with conflicts is shown in Figure 8 and described in Example 3.1.

Proposition 3.3. Any transition t, enabled with a reachable marking M0 of a conflict-free cfNet,
will be enabled with any marking reachable from M0 without firing t.

Proof. Let M0
t1−→ M1

t2−→ . . .
tn−→ Mn be the shortest sequence such that t 6∈ {t1, . . . , tn} and t is

not enabled in Mn. Hence, t is enabled in Mn−1 and in conflict with tn, which contradicts the
proposition assumption.

An important consequence of Proposition 3.3 is that a platform constraint obtained by running
a conflict-free cfNet depends only on the initial marking. Indeed, for a given initial marking the
runs of the cfNet can only differ in the order of transition firing. However, the set of transitions
is the same, generating the same conjuncts contributing to the platform constraint (1).

Proposition 3.4. Let (R, T, F, I, C) be a cfNet and t1, t2 ∈ T (with t1 6= t2) be two transitions in
conflict under some marking M . Then there exists a place r ∈ R, such that either (r, t2, t1) ∈ I
or (r, t1, t2) ∈ I.

Proof. Suppose that, for all r ∈ R, (r, t1, t2) 6∈ I and let M
t1−→M ′. Transition t2 is enabled with

M . Hence, by Definition 2.3, we have

� for all r ∈ R−(t2), there exists (r, t′) ∈M for some t′ ∈ T−(r)∪ {∗}, hence also (r, t′) ∈M ′;

� for all r ∈ R+(t2), (r, t2) 6∈ M , hence also (r, t2) 6∈ M ′, since t2 6= t1 and, by Definition 2.4,
we have M ′(r, t2) = M(r, t2) for all r ∈ R;

� for all (r, t, t2) ∈ I, M(r, t) = ff and, therefore, M ′(r, t) = ff, since (r, t1, t2) 6∈ I.

Therefore, transition t2 is enabled under M ′, which contradicts the assumption that the two

transitions are in conflict under M . A symmetrical argument on M
t2−→M ′′ proves the lemma.

Corollary 3.5. A cfNet (R, T, F, I, C), such that t′ = ∗, for all (r, t′, t) ∈ I, is conflict-free.

Proof. Suppose that the cfNet is not conflict-free. Then, by Definition 3.2, there exist two transi-
tions t1 6= t2, in conflict under some marking M . By Proposition 3.4, there exists a place r ∈ R,
such that either (r, t2, t1) ∈ I or (r, t1, t2) ∈ I. However, this contradicts the corollary assumption,
since both t1 6= ∗ and t2 6= ∗.

Corollary 3.5 provides a simple condition guarantying that a cfNet is conflict-free. Notice,
however, that this proposition does not rely on the reachability of markings. Indeed, a conflict-
free cfNet can still have conflicting transitions, provided that they are not enabled together under
any reachable marking.

Definition 3.6. Transitions t1 and t2 are mutually exclusive if there is no reachable marking that
enables them both.

Figure 9 shows an example of two mutually exclusive transitions. Transitions t1 and t2 cannot
be enabled simultaneously, since the place r2 has a regular arc to t2 and an inhibitor arc to t1,
thus one transition requires a token in r2 while the other requires the place to be empty.

Definition 3.7. An inhibitor arc (r, t′, t) (with t′ 6= ∗) is called non-conflicting if t is mutually
exclusive with t′.

In Figure 9, the inhibitor arc (r3, t1, t2) is non-conflicting.

Lemma 3.8. A cfNet where all inhibitor arcs are non-conflicting is conflict-free.
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Figure 9: A simple net with mutually exclusive transitions

Proof. Let (R, T, F, I, C) be a cfNet with only non-conflicting inhibitor arcs. By Corollary 3.5, a
conflict may be introduced only by some inhibitor arc (r, t′, t) ∈ I, such that t′ 6= ∗. By the lemma
assumption, (r, t′, t) is non-conflicting, i.e. t is mutually exclusive with t′. Therefore, the cfNet is
conflict-free.

Lemma 3.9. Let N = (R, T, F, I, C) be a cfNet and t1, t2 ∈ T be two non-mutually-exclusive
transitions, such that (r, t1, t2) ∈ I. Then N has a conflict.

Proof. Since t1 and t2 are not mutually exclusive, there exists a reachable marking M enabling

both t1 and t2. Let M
t1−→M ′. By Definition 2.4, M ′(r, t1) = tt, therefore, t2 is not enabled with

M ′ and, consequently, N has a conflict.

Theorem 3.10. A cfNet is conflict-free if and only if all its inhibitor arcs refer to initial tokens
or are non-conflicting.

Proof. Follows immediately from Corollary 3.5 and Lemmas 3.8, 3.9.

Lemma 3.11. Let (R, T, F, I, C) be a conflict-free cfNet, M be a marking enabling two transitions

t1 6= t2 and M
t1−→M ′1

t2−→M ′2 and M
t2−→M ′′1

t1−→M ′′2 be two possible runs of N . Then M ′2 = M ′′2 .

Proof. Since the cfNet has no conflicts and t1 6= t2, the statement of the lemma is valid: in the
first run, t2 is enabled with M ′1 and, in the second run, t1 is enabled with M ′′1 .

For all r ∈ R and for all t ∈ T ∗:

M ′1(r, t) =

{
tt, if t = t1 and r ∈ R+(t1),

M(r, t), otherwise,

M ′2(r, t) =

{
tt, if t = t2 and r ∈ R+(t2),

M ′1(r, t), otherwise,

=


tt, if t = t1 and r ∈ R+(t1),

tt, if t = t2 and r ∈ R+(t2),

M(r, t), otherwise.
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On the other hand, we also have

M ′′1 (r, t) =

{
tt, if t = t2 and r ∈ R+(t2),

M(r, t), otherwise,

M ′′2 (r, t) =

{
tt, if t = t1 and r ∈ R+(t1),

M ′′1 (r, t), otherwise,

=


tt, if t = t1 or r ∈ R+(t1)

tt, if t = t2 or r ∈ R+(t2)

M(r, t), otherwise.

Therefore, M ′2 = M ′′2 .

Lemma 3.11 means that, in a conflict-free cfNet, permutation of transitions preserves the
resulting marking.

Theorem 3.12. A conflict-free cfNet is terminating and confluent, i.e. for any initial marking
M0, there exists a unique final marking M reachable from M0.

Proof. Each transition can be fired only once and the number of transitions is finite, therefore,
the cfNet is terminating. Hence, there exists at least one final marking. Let M1 and M2 be two

final markings, such that M0
〈t1,...,tk〉−−−−−−→ M1 and M0

〈t′1,...,t
′
l〉−−−−−→ M2. Assume that {t1, . . . , tk} 6=

{t′1, . . . , t′l}. Without loss of generality, there exists a smallest i ∈ [1, k], such that ti 6∈ {t′1, . . . , t′l}.
Hence, {t1, . . . , ti−1} ⊆ {t′1, . . . , t′l}. Let 〈t1, . . . , ti−1, t′′i , . . . , t′′l 〉 be a permutation of 〈t′1, . . . , t′l〉.

By Lemma 3.11, we have M0
〈t1,...,ti−1,t

′′
i ,...,t

′′
l 〉−−−−−−−−−−−−−→ M2. Since ti 6∈ {t′′i , . . . , t′′l }, we conclude, by

Proposition 3.3, that ti is enabled in M2, which contradicts the assumption that M2 is final.
Thus, {t1, . . . , tk} = {t′1, . . . , t′l}, by Lemma 3.11, M1 = M2.

Theorem 3.12 implies that in a conflict-free cfNet, the platform constraint (1) depends only
on the initial marking M0, given by a request R0. Therefore, the problem of finding a resource
allocation defined by equations (2) and (3) in a conflict-free cfNet is defined uniquely.

3.2 Conflict detection

Theorem 3.12 of the previous section implies that the resource allocation problem is defined
uniquely for any initial marking of a conflict-free cfNet. Theorem 3.10 provides a criterion charac-
terising conflict-free cfNets: all the inhibitor arcs must refer to initial tokens or be non-conflicting.
In order to determine whether an inhibitor arc (r, t′, t) is non-conflicting, we must check whether
t and t′ are mutually exclusive. Mutual exclusiveness of two transitions requires that there be no
reachable marking enabling them simultaneously (Definition 3.6). However, checking the existence
of such a reachable marking—with some arbitrary initial one—by direct exploration is complex.
Instead, we exploit the notion of marking well-formedness, which overapproximates reachability
(Proposition 2.10). Given two transitions that we want to check for mutual exclusiveness, we
proceed in three following steps.

1. We encode the existence of a well-formed marking enabling both transitions as a Boolean
satisfiability problem and submit it to a SAT-solver.

2. If the problem is unsatisfiable, the two transitions are mutually exclusive. Otherwise, the
satisfying valuation returned by the SAT-solver encodes a well-formed marking, which can
be checked for reachability in an efficient manner.
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3. If this marking is reachable, the two transitions are not mutually exclusive. Otherwise, we
repeat step 1 with a refined encoding excluding this marking.

In the remainder of this sub-section, we fix a cfNet (R, T, F, I, C) and develop in detail the
steps of the above algorithm.

3.2.1 Boolean encoding of transition enabledness

With each place-colour pair (r, t) we associate a Boolean variable ytr which evaluates to tt if the
corresponding token is present in a given marking and to ff otherwise. For a transition t ∈ T , we
define four predicates on markings T −t , T +

t , I∗t , I◦t ∈ B[R × T ∗], i.e. T −t , T +
t , I∗t , I◦t : BR×T∗ → B

(T stands for tokens, I stands for inhibitors):

T −t
def
=

∧
r∈R−(t)

( ∨
t∈T−(r)

ytr

)
, // tokens are present in pre-places of t, (5)

T +
t

def
=

∧
r∈R+(t)

ytr , // tokens are present in post-places of t, (6)

I∗t
def
=

∧
(r,∗,t)∈I

y∗r , // tokens are absent from initial inhibitors of t, (7)

I◦t
def
=

∧
(r,t′,t)∈I

t′ 6=∗

yt′r , // tokens are absent from non-initial inhibitors of t. (8)

For a well-formed marking M , if the transition t has already been fired in the run leading to
M , then T +

t (M) evaluates to tt. Thus, t is enabled under M iff Et(M) = tt, for

Et
def
= T −t ∧ T +

t ∧ I∗t ∧ I◦t . (9)

Lemma 3.13. For a transition t enabled with a marking M , holds the equality Et(M) = tt.
Conversely, if Et(M) = tt and M is well-formed then t is enabled.

Proof. The first implication is an immediate consequence of the definition of transition enabledness
(Definition 2.3). Conversely, assuming Et(M) = tt, we have to show that T +

t (M) = ff implies
that none of the post-places r ∈ R+(t) has a token (r, t). Let (r, t) ∈ M be such a token. By
Definition 2.9, (r, t) ∈ M , for all r ∈ R+(t). Hence, T +

t (M) = tt, contradicting the assumption
that Et(M) = tt.

Lemma 3.13 provides a characterisation of transition enabledness under well-formed mark-
ings. The following results provide a similar characterisation of the well-formedness of a marking.
Combining the two, we will obtain the desired encoding.

Transition t may have been enabled in the run leading to a marking M only if Bt(M) = tt (see
Lemma 3.14 below), for

Bt
def
= T −t ∧ I∗t . (10)

Notice that the stronger predicate T −t ∧ I∗t ∧ I◦t does not characterise the desired property, since
some of the tokens inhibiting t may have been generated after t has been fired (clearly, this cannot
be the case for the initial tokens). Notice also that once Bt(M) holds for some marking M , it will
hold for all markings reachable from M .

Lemma 3.14. Let M
〈t,... 〉−−−−→M ′ be a run of a cfNet. Then holds the equality Bt(M ′) = tt.
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Figure 10: A cfNet with mutually exclusive transitions

Proof. By Lemma 3.13, since t is enabled in M , we have Et(M) = tt, which implies Bt(M) = tt.
Since firing the subsequent transitions in the run cannot remove the tokens from the pre-places of
t, neither add initial tokens, we conclude that Bt(M ′) = Bt(M) = tt.

The well-formedness of a marking essentially means that, for every non-initial token, there
is a transition that could have generated it. In order to characterise this, we introduce another
predicate on markings:

W def
=
∧
r∈R

∧
t∈T−(r)

(
ytr ⇒ Bt ∧ T +

t

)
. (11)

Lemma 3.15. A marking M is well-formed iff W(M) = tt.

Sketch of the proof. T +
t encodes the condition 2 of Definition 2.9, whereas Bt encodes the condi-

tions 1 and 3.

Example 3.16. Consider the example in Figure 10 (reproduced for convenience from Figure 9).
For the transitions of this example, we have

T −t1 = y∗r1 , T +
t1 = yt1r3 , I∗t1 = y∗r2 , I◦t1 = tt ,

T −t2 = y∗r2 , T +
t2 = yt2r4 , I∗t2 = tt , I◦t2 = yt1r3 .

Thus, under the marking M1 (Figure 10b), transition t1 is enabled, since

Et1(M1) =
(
T −t1 ∧ T

+
t1 ∧ I

∗
t1 ∧ I

◦
t1

)
(M1) =

(
y∗r1 ∧ yt1r3 ∧ y∗r2

)
(M1) = tt .

Once t1 has been fired to obtain the marking M2 (Figure 10c), it is no longer enabled. Indeed, we
have Et1(M2) = ff, since yt1r3(M1) = tt, but Bt1(M2) =

(
y∗r1 ∧ y∗r2

)
(M2) = tt.

Observe now that the following Boolean equivalence holds:

Et1 ∧ Et2 =
(
y∗r1 ∧ yt1r3 ∧ y∗r2

)
∧
(
y∗r2 ∧ yt2r4 ∧ yt1r3

)
= ff ,

since y∗r2 appears in both positive and negative form. Indeed, as discussed in the previous section,
transitions t1 and t2 are mutually exclusive. ♦

In the above example, we do not need to consider the well-formedness of markings, since
Et1 ∧ Et2 is not satisfiable. In general, we additionally conjunct the predicate W to ensure that
only well-formed markings are considered. Thus, if the predicate

Et1 ∧ Et2 ∧W (12)

is not satisfiable then transitions t1 and t2 are mutually exclusive.
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Figure 11: A cfNet with mutually exclusive t2 and t3

Example 3.17 (Mutually exclusive transitions). Consider a cfNet shown in Figure 11. There is
an inhibitor arc (r5, t2, t3) which might introduce a conflict, so we verify whether transitions t2
and t3 are mutually exclusive. Intuitively, for t3 to be enabled, the token (r3, t1) must be present
in the marking. Hence, transition t1 must have fired, whereby generating also the token (r2, t1).
However, the presence of this latter token would inhibit t2. We now show this through the Boolean
encoding. For the cfNet in Figure 11, we have

Et1 = y∗r1 ∧ yt1r2 ∧ yt1r3 , Bt1 ∧ T +
t1 = y∗r1 ∧ yt1r2 ∧ yt1r3 ,

Et2 = y∗r4 ∧ yt1r2 ∧ y∗r2 ∧ yt2r5 , Bt2 ∧ T +
t2 = y∗r4 ∧ y∗r2 ∧ yt2r5 ,

Et3 = (y∗r3 ∨ yt1r3) ∧ yt2r5 ∧ y∗r3 ∧ yt3r6 Bt3 ∧ T +
t3 = (y∗r3 ∨ yt1r3) ∧ y∗r3 ∧ yt3r6 ,

= yt1r3 ∧ yt2r5 ∧ y∗r3 ∧ yt3r6 , = yt1r3 ∧ y∗r3 ∧ yt3r6 .

In particular,

Et2 ∧ Et3 ∧W =
(
y∗r4 ∧ yt1r2 ∧ y∗r2 ∧ yt2r5

)
∧
(
yt1r3 ∧ yt2r5 ∧ y∗r3 ∧ yt3r6

)
∧W

= y∗r4 ∧ yt1r2 ∧ y∗r2 ∧ yt2r5 ∧ yt1r3 ∧ y∗r3 ∧ yt3r6 ∧W
// applying modus ponens to (11) and yt1r3 , we conjunct Bt1 ∧ T +

t1

= y∗r4 ∧ yt1r2 ∧ y∗r2 ∧ yt2r5 ∧ yt1r3 ∧ y∗r3 ∧ yt3r6 ∧ (y∗r1 ∧ yt1r2 ∧ yt1r3) ∧W
= ff.

Therefore, we conclude that t2 and t3 are mutually exclusive. ♦

Recall from Section 2.1 that well-formedness is an over-approximation of reachability. There-
fore, the converse does not hold: given a marking M satisfying Et1 ∧ Et2 ∧ W, one has to check
whether M is reachable. However, this can be done efficiently, as explained in the following section.

3.2.2 Marking reachability

Let M ⊆ R× T ∗ be a well-formed marking of a cfNet (R, T, F, I, C). Recall (Definition 2.2) that
TM denotes the set of all colours of the tokens in M .
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We associate to the marking M the corresponding directed causality hyper-graph GM
def
= (V,E)

with vertices V = TM and the set E ⊆ TM × 2TM of edges representing essentially the “must
be fired before” relation among the corresponding transitions: an edge (t, S) (from t to S) with
S ∈ 2TM means that, for the transition t to be fired, at least one transition in S must be fired
before t.

For an edge (t, S) and a vertex u ∈ S, we call a pair (t, u) a sub-edge.
We put E = E1 ∪ E2 with E1 and E2 defined by (13) and (14) below.

For a place r ∈ R, denote Tr
def
= {t ∈ TM | (r, t) ∈M} the set of colours of the tokens in r

present in the marking M . We put

E1
def
=
{

(t, Tr) ∈ TM × 2TM

∣∣∣ t ∈ TM , r ∈ R−(t)
}
. (13)

By Definition 2.3, for any transition t to be fired, it is necessary that in each place r ∈ R−(t) there
be at least one token. Hence, at least one of the transitions generating such tokens must be fired
before t.

Furthermore, if firing a transition t′ generates a token that inhibits some transition t, then
firing of t cannot happen after that of t′. Thus, we put

E2
def
=
{

(t′, {t}) ∈ TM × 2TM

∣∣∣ ∃r ∈ R : (r, t′, t) ∈ I
}
. (14)

Notice that, if such (r, t′, t) ∈ I actually exists, necessarily (r, t′) ∈M , since t′ ∈ TM . Thus, we do
not have to state this condition explicitly in (14).

Definition 3.18. Let G = (V,E) with E ⊆ V × 2V be a hyper-graph. A path in G is a sequence
(ei)

n
i=0, with ei = (vi, Si) ∈ E, such that vi+1 ∈ Si, for all i < n. When n ∈ N, we say that the

path is finite, otherwise, when n =∞, it is infinite. We say that the path starts with the edge e0.

Example 3.19. Figure 12a shows a cfNet and a marking M . This marking is reachable by a run
〈t1, t2, t4, t3〉. Figure 12b shows the corresponding causality hyper-graph. Each of the transitions
t1, t2, t3 requires an initial token to fire. Transition t4 requires either a token from t1, or a token
from t2, hence the hyper-arc (t4, {t1, t2}). The inhibitor arc (r5, t3, t4) induces the arc (t3, {t4})
in the causality graph. A sequence ((t3, {t4}), (t4, {t1, t2}), (t1, {∗})) is an example of a path. ♦

Definition 3.20. A hyper-graph G = (V,E) with E ⊆ V × 2V has a cycle C ⊆ V , if there exists
a set of finite paths {(eji )

nj

i=0}j∈J , with eji = (vji , S
j
i ) ∈ E, such that C = {vji | j ∈ J, i ∈ [0, nj ]}

and, for all j ∈ J and i ∈ [0, nj ], we have Sj
i ⊆ C. Otherwise, G is said to be free from cycles.

Example 3.21. Figure 13a shows a cfNet and an unreachable marking M . Figure 13b shows the
corresponding causality hyper-graph with a cycle C = (t1, t2, t3, t4, t5). The set of paths inducing
the cycle is

{(
(t3, {t1, t2}), (t1, {t4}), (t4, {t3})

)
,
(
(t3, {t1, t2}), (t2, {t5}), (t5, {t3})

)}
. ♦

Notice that in the causality hyper-graph GM corresponding to a well-formed marking M , the
only vertex that does not have any outgoing edges is ∗.

Lemma 3.22. Let M be a well-formed marking. If ∗ 6∈ TM then the causality graph GM has a
cycle.

Proof. Let GM = (V,E). The set V is trivially a cycle.

Given a dependency graph which represents a reachable marking M , we can obtain a run
leading to this marking by traversing the graph backwards from the vertex ∗ corresponding to
the initial tokens. Given GM on input, Algorithm 1 constructs a list Order which contains the
transitions in TM in the order of firing that leads to M .
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Figure 13: An example of a cfNet and its causality hyper-graph with a cycle
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Algorithm 1 Topological sort for hyper-graphs

Input: Hyper-graph G = (V,E)
Output: If G is free from cycles, a total order on vertices, respecting the graph edges; otherwise

the empty list
1: Order = EmptyList
2: for v ∈ V do
3: Eo(v) = {(v, S) ∈ E |S ⊆ V } . construct the set of outgoing edges for each vertex
4: Ei(v) = {(u, S) ∈ E | v ∈ S} . construct the set of incoming edges for each vertex
5: end for
6: K = {v ∈ V | Eo(v) = ∅} . working set K consists of vertices without outgoing edges
7: while K 6= ∅ do
8: K = K \ {v} for some v ∈ K . choose a random vertex v from K
9: Order .append(v)

10: for e = (u, S) ∈ Ei(v) . for each edge incoming into v do
11: E = E \ {e} . remove it from the set of all edges
12: Eo(u) = Eo(u) \ {e} . remove it from outgoing edges of u
13: for w ∈ S do
14: Ei(w) = Ei(w) \ {e} . remove it from incoming edges of each w
15: end for
16: if Eo(u) = ∅ . if u has no more outgoing edges then
17: K = K ∪ {u} . add u it to the working set K
18: end if
19: end for
20: end while
21: if E 6= ∅ then
22: return EmptyList . G contains cycles
23: else
24: return Order
25: end if
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Lemma 3.23. Given a hyper-graph (V,E) of well-formed marking M , Algorithm 1 either con-
structs a run leading to M or finds a cycle.

Proof. Since the marking M is well-formed, we have ∗ ∈ V , hence also ∗ ∈ K. Furthermore, for
all t ∈ T and (r, ∗) ∈ I(t), holds (r, ∗) /∈M . Finally, (∗, S) /∈ E, for any S. Thus, Eo(∗) = ∅.

Assume that Algorithm 1 terminates with K = ∅ and E = ∅. Order = 〈∗, t1, . . . , tn〉 is a
sequence of colours. Let us prove that it is a run. Each vertex ti is only added when Eo(ti) = ∅.
This can happen only when the edges are removed. By the algorithm, the edges can be removed
only if they lead to transition which has been in the run before the current one. Therefore, all the
transitions on which ti depends have already fired, ti can fire as well, and Order is indeed a run.

Assume now that Algorithm 1 terminates with K = ∅ and E 6= ∅. Let C = V \ Order be the
set of remaining vertices. Since a vertice is only placed in K (hence also in Order) when all its
outgoing edges have been removed, E 6= ∅ implies C 6= ∅. Consider some v ∈ C. Since v /∈ Order ,
there exists an edge (v, Sv) ∈ E. Furthermore Sv ∩Order = ∅, which implies that Sv ⊆ C. Hence
C is a cycle, as witnessed by the finite set of edges {(v, Sv) | v ∈ C} (trivially, a finite set of edges
is also a finite set of paths).

Theorem 3.24. Let GM be a causality graph for a well-formed marking M . M is reachable iff
Gm is free from cycles.

Proof. If the causality graph is free from cycles, then Algorithm 1 constructs a run, therefore, M
is reachable.

Assume that M is reachable from an initial marking M0 and GM has a cycle C ⊆ TM . First
notice that, by Definition 3.20, ∗ 6∈ C.

We have M0
〈t1,...,tn〉−−−−−−→M with {∗, t1, . . . , tn} = TM . Let k ∈ [1, n] be the smallest index, such

that tk ∈ C. By Definition 3.20, there exists an edge (tk, S) in GM , such that S ⊆ C. Two cases
are possible: 1) S = Tr, for some r ∈ R−(tk) (cf. (13)) or 2) S = {t}, for some t ∈ TM , such that
(r, tk, t) ∈ I (cf. (14)). By the construction of GM , there is at least one t ∈ S, such that t must
have been fired before tk. Since S ⊆ C, we have t ∈ C, which contradicts the assumption that k is
the minimal index, such that tk ∈ C, thereby proving that reachability of M implies cycle-freedom
of GM .

Proposition 3.25. The time complexity of Algorithm 1 is linear in the size of the input hyper-
graph.

Proof. Each node t ∈ V is put in K and hence visited at most once (lines 6, 17):

� each t is removed from K (lines 7, 8);

� t is added to K only when it has become a vertex without outgoing edges after the removal
of an edge (lines 10–17), therefore:

– once t is removed from K, it can never be put back;

– once t is added to K, it cannot be added for the second time.

The construction of the edge sets Eo and Ei runs in linear time:

� the set Eo(v) is constructed in O(|V |) (Line 3);

� during the construction of Ei(v) (Line 4), each edge and each its sub-edge is visited only once,
therefore, the time for it is O(H), where H is the number of all sub-edges: H =

∑
(v,S)∈E

|S|.

The total time for the update of the edge sets Eo and Ei is also linear:

24



� each edge is removed from Eo(u) only once in Line 12 and is never added again;

� there are at most H removals from all the Ei(w) 14, as each edge is removed only once, no
new edges are added and

∑
w∈V
|Ei(w)| = H.

Finally, each edge e ∈ E is visited at most once: once we consider it, we remove it and cannot
visit it again (lines 10–14).

Therefore, the algorithm runs in O(|V |+ H) time, where H is the number of the sub-edges of
the graph.

3.2.3 Encoding refinement

Let M ⊆ R×T ∗ be a well-formed marking of a cfNet N = (R, T, F, I, C), enabling two conflicting
transitions t1 and t2. If M is reachable, N has a conflict. However, if M is not reachable, the
encoding has to be refined to exclude M . Let Φ be the predicate used at the previous step of the
process (initially Φ = Et1 ∧ Et2 ∧W). We refine this predicate by taking the conjunction Φ ∧ΦM ,
where

ΦM =
∧

(r,t)∈M

ytr ∧
∧

(r,t) 6∈M

ytr

is the characteristic predicate of the marking M .

Example 3.26. Consider the cfNet in Figure 14. Let us check transitions t4 and t5 for mutual
exclusiveness.

Et4 = y∗r5 ∧ (y∗r6 ∨ yt3r6) ∧ yt4r8 ∧ y∗r6 = y∗r5 ∧ yt3r6 ∧ yt4r8 ∧ y∗r6

Et5 = y∗r7 ∧ (y∗r4 ∨ yt2r4) ∧ yt5r9 ∧ y∗r4 = y∗r7 ∧ yt2r4 ∧ yt5r9 ∧ y∗r4 ∧ yt4r8

Bt1 ∧ T +
t1 = y∗r1 ∧ yt1r2 ∧ yt1r3 , Bt2 ∧ T +

t2 = (y∗r3 ∨ yt1r3) ∧ y∗r3 ∧ yt2r4 ,

Bt3 ∧ T +
t3 = (y∗r4 ∨ yt2r4) ∧ y∗r2 ∧ yt3r6 , Bt4 ∧ T +

t4 = (yt3r6 ∨ y∗r6) ∧ y∗r6 ∧ y∗r5 ∧ yt4r8 ,

Bt5 ∧ T +
t5 = y∗r7 ∧ (y∗r4 ∨ yt2r4) ∧ y∗r4 ∧ yt5r9 .

Et4 ∧ Et5 ∧W =
(
y∗r5 ∧ yt3r6 ∧ yt4r8 ∧ y∗r6

)
∧
(
y∗r7 ∧ yt2r4 ∧ yt5r9 ∧ y∗r4 ∧ yt4r8

)
∧W

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ yt3r6 ∧ yt2r4 ∧ yt5r9 ∧ yt4r8 ∧W
// applying modus ponens to (11) and yt3r6 , we conjunct Bt3 ∧ T +

t3

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ yt2r4 ∧ yt5r9 ∧ yt4r8 ∧ yt3r6 ∧
(
(y∗r4 ∨ yt2r4) ∧ y∗r2 ∧ yt3r6

)
∧W

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2∧y
t2
r4 ∧ yt3r6 ∧ yt5r9 ∧ yt4r8 ∧W

// applying modus ponens to (11) and yt2r4 , we conjunct Bt2 ∧ T +
t2

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ yt2r4 ∧ yt3r6 ∧ yt5r9 ∧ yt4r8 ∧
(
yt1r3 ∧ y∗r3 ∧ yt2r4

)
∧W

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt2r4 ∧ yt3r6 ∧ yt1r3 ∧ yt5r9 ∧ yt4r8 ∧W
// applying modus ponens to (11) and yt1r3 , we conjunct Bt1 ∧ T +

t1

= y∗r5 ∧ y∗r7 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt2r4 ∧ yt3r6 ∧ yt1r3 ∧ yt5r9 ∧ yt4r8 ∧ y∗r1 ∧ yt1r2 ∧ yt1r3 ∧W

= y∗r5 ∧ y∗r7 ∧ y∗r1 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt2r4 ∧ yt3r6 ∧ yt1r3 ∧ yt1r2 ∧ yt5r9 ∧ yt4r8 ∧W.
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Figure 14: A cfNet with mutually exclusive t4 and t5 which can be enabled by an unreachable
marking
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The well-formed marking M1 = {(r1, ∗), (r5, ∗), (r7, ∗), (r2, t1), (r3, t1), (r4, t2), (r6, t3)} (see Fig-
ure 14) satisfies the formula above. However, this marking is not reachable: once t1 is fired, it
disables t3, therefore there cannot be a token (r6, t3). Transition t3 cannot fire before t1 either,
since it requires a token in r4 which is put there by transition t2, which is enabled only after the
firing of t1.

The causality graph in Figure 14b indeed shows that there is a cycle (t3, t2, t1). Therefore, we
refine the formula above by conjuncting it with the negation of the characteristic predicate of M1:

ΦM1
= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r2 ∧ y∗r3 ∧ y∗r4 ∧ y∗r6 ∧ y∗r8 ∧ y∗r9 ∧ yt4r8 ∧ yt5r9

Φ = Et4 ∧ Et5 ∧W ∧ ΦM1

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W

∧ y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r2 ∧ y∗r3 ∧ y∗r4 ∧ y∗r6 ∧ y∗r8 ∧ y∗r9 ∧ yt4r8 ∧ yt5r9

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ (y∗r8 ∨ y∗r9).

The marking M2 = M1∪{(r8, ∗)} = {(r1, ∗), (r5, ∗), (r7, ∗), (r2, t1), (r3, t1), (r4, t2), (r6, t3), (r8, ∗)}
is well-formed and satisfies the refined encoding. We have TM1 = TM2 ; since there is not t, such
that (r8, ∗, t) ∈ I or r8 ∈ R−(t), we have GM1 = GM2 . Hence, the causality graph GM2 has the
same cycle as GM1

. Therefore M2 is not reachable and we refine the predicate Φ again:

Φ = Et4 ∧ Et5 ∧W ∧ ΦM1 ∧ ΦM2

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ (y∗r8 ∨ y∗r9)

∧ y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r8 ∧ y∗r2 ∧ y∗r3 ∧ y∗r4 ∧ y∗r6 ∧ yt4r8 ∧ yt5r9 ∧ y∗r9

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ y∗r9 .

The marking M3 = M1∪{(r9, ∗)} = {(r1, ∗), (r5, ∗), (r7, ∗), (r2, t1), (r3, t1), (r4, t2), (r6, t3), (r9, ∗)}
is well-formed and satisfies Φ. However, it is unreachable for the same reason as GM2

above. We
refine Φ again:

Φ = Et4 ∧ Et5 ∧W ∧ ΦM1
∧ ΦM2

∧ ΦM3

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ y∗r9

∧ y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r9 ∧ y∗r8 ∧ y∗r2 ∧ y∗r3 ∧ y∗r4 ∧ y∗r6 ∧ yt4r8 ∧ yt5r9

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ y∗r8 ∧ y∗r9 .

Finally, the marking M4 = M1 ∪ {(r8, ∗), (r9, ∗)} = {(r1, ∗), (r5, ∗), (r7, ∗), (r2, t1), (r3, t1),
(r4, t2), (r6, t3), (r8, ∗), (r9, ∗)} is well-formed and satisfies Φ. As above, the causality graph GM4

coincides with GM1
and M4 is again unreachable. Conjuncting Φ with ΦM4 , we obtain

Φ = Et4 ∧ Et5 ∧W ∧ ΦM1 ∧ ΦM2 ∧ ΦM3 ∧ ΦM4

= y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r6 ∧ y∗r4 ∧ y∗r2 ∧ y∗r3 ∧ yt5r9 ∧ yt4r8 ∧W ∧ y∗r8 ∧ y∗r9

∧ y∗r1 ∧ y∗r5 ∧ y∗r7 ∧ yt1r2 ∧ yt1r3 ∧ yt2r4 ∧ yt3r6 ∧ y∗r8 ∧ y∗r9 ∧ y∗r2 ∧ y∗r3 ∧ y∗r4 ∧ y∗r6 ∧ yt4r8 ∧ yt5r9

= ff.

Thus, we conclude that transitions t4 and t5 are indeed mutually exclusive. ♦
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Figure 15

Figure 16: Kalray MPPA-256 many-core architecture

3.3 Priority

As shown in Section 3.1, conflict-free cfNets are confluent: the same platform constraint is obtained
by any run of the cfNet, for a given initial marking. In other words, enabled transitions can be
fired in arbitrary order. This is not the case for cfNets with conflicts: firing one of two conflicting
transitions disables the other one, generating different platform constraints. Thus, for reachable
conflicts, the choice of which of the two conflicting transitions should be fired, has to be resolved
externally to the cfNet. This can be achieved by introducing priority among the conflicting
transitions.

For a cfNet N = (R, T, F, I, C), a priority relation is a partial order > ⊆ T × T on its set of
transitions. For two transitions t1 and t2, a priority t1 > t2 means that when both transitions are
enabled, t1 must be fired before t2. Priorities can be defined statically or dynamically, depend-
ing, for example, on the availability of the resources corresponding to the post-places of the two
transitions.

4 Case-study: Kalray architecture with cfNets

Our case-study example is inspired by the many-core architecture of Kalray MPPA-256 [14], which
consists of 256 processing elements (PEs) or cores grouped in compute clusters, each consisting
of 16 PEs communicating through a shared memory, which consists of 16 independent memory
banks of 128KB organised in two sides, left and right (see Figure 16). For simplicity, in this report
we will consider a version of a single cluster of Kalray architecture composed of four PEs and four
memory banks (see Figure 17), that can be extrapolated to a complete architecture of one cluster.

In general, two processing cores of one cluster cannot access the same memory bank at the
same time. Processing cores are organised in pairs, each pair shares two data-buses, one for each
of the memory sides [10]. Therefore, the access to memory banks is arbitrated by two stages of
arbiters implementing Round Robin (RR) arbitration policy. Our goal in this report is to allocate
PEs, buses and memory banks such that there will be at most one request for any arbiter queue
making the resource unavailable otherwise. This way, we assume that two cores of one pair can
access different memory sides simultaneously and two processors from two different pairs may
access different memory banks of the same side.

Figure 18 presents a cfNet modelling the architecture. For the sake of clarity, we group the
resources and some transitions between them in several boxes: one for each group of processors,
one for each memory side and one for each bus. The small rectangles in each box represent the
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Figure 17: Simplified architecture of a compute cluster with arbitration points

corresponding resource ports or interfaces: for the processor box, the port means both p1 and
p2 (or p3 and p4). For the memory side box, there is one port for each memory bank. The bus
box has one port for both processors and a port per each corresponding memory bank. Thus, the
arrow between the port of the p1–p2 group and the middle port of the busL12 group represents
four arcs: one from each of the places p1 and p2, to each of the transitions t61 and t62. With this
notation, for transition t61 to be enabled, there must be a token in p1, p2, and m1.

It is possible to make a request for either a virtual processing core p or a specific one out of
p1, p2, p3 or p4. Similarly, it is possible to ask for either a virtual memory m, or specific memory
side L or R, or a specific memory bank out of m1, m2, m3 or m4.

The architectural constraints are modelled as follows: 1) transition t1 ensures mutual exclusive-
ness on processors p1, p2, p3 and p4; 2) transition t2 ensures the mutual exclusiveness on memory
sides, and t3, t4 on memory banks of each side respectively; 3) transitions t51, t52, t61, t62, t71, t72,
t81 and t82 ensure that only one of the processors from one group can have access to one memory
side using a dedicated bus.

The resource allocation constraints for the existing transitions implementing the dispatching
policy are as follows:

ct1 =(xp1
= xp ∧ xp2

= 0 ∧ xp3
= 0 ∧ xp4

= 0)

∨ (xp2
= xp ∧ xp1

= 0 ∧ xp3
= 0 ∧ xp4

= 0)

∨ (xp3
= xp ∧ xp1

= 0 ∧ xp2
= 0 ∧ xp4

= 0)

∨ (xp4
= xp ∧ xp1

= 0 ∧ xp2
= 0 ∧ xp3

= 0);

ct2 =(xL = xm ∧ xR = 0) ∨ (xR = xm ∧ xL = 0);

ct3 =(xm1
= xL ∧ xm2

= 0) ∨ (xm2
= xL ∧ xm1

= 0);

constraint ct4 is build similarly to ct3 ;

ct51 =(xbusL34
> 0 ∧ xm1 > 0 ∧

((xp3 = 0 ∧ xp4 > 0) ∨ (xp4 = 0 ∧ xp3 > 0)))

∨ (xbusL34
= 0 ∧ xp3 = 0 ∧ xp4 = 0)

∨ (xbusL34
= 0 ∧ xm1 = 0);

constraints ct52 , ct61 , ct62 , ct71 , ct72 , ct81 and ct82 are build similarly to ct51 .
The initial cost functions for the resources are:
for i ∈ 1..4,

costpi(d) =

{
0, d ∈ {0, 1},
⊥, otherwise,
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for i ∈ 1..4,

costmi(d) =

{
0, 0 ≤ d ≤ 128,
⊥, otherwise,

for i ∈ {L,R} j ∈ {12, 34},

costbusij (d) =

{
0, d ∈ {0, 1},
⊥, otherwise,

for p, m, L, R the cost function is defined everywhere as 0.
Consider a different model of “virtual” resources, shown in Figure 19 representing two process-

ing cores of Kalray architecture. The constraint schemata associated, respectively, to transitions
t1 and t2 are ct1 = (xp = xp1

) and ct2 = (xp = xp2
).

In the dispatching allocation of Figure 18, the constraint schemata ensured that only one core
can be allocated for a single request. In the cfNet of Figure 19, this is ensured by the inhibitor
arcs (p1, t1, t2) and (p2, t2, t1). The initial marking for the request of a “virtual” processing core p
is shown in Figure 19a. Figures 19b and 19c show the two possible runs of the cfNet, where the
firing of transition t1 inhibits the firing of transition t2 and vice versa.

Notice that the constraint schemata associated to the transitions t1 and t2 involve less variables
than the dispatching schema in Figure 18, simplifying the task of the constraint solver.

The fact that a virtual resource is used to represent the two cores implies that they are func-
tionally equivalent. However, we can consider a scenario, where the two cores differ in their
non-functional properties. For instance, suppose that p1 has better energy efficiency than p2.
Imposing the priority t1 > t2 for the cfNet in Figure 19a, would ensure that p1 is allocated rather
than p2.

Consider now the second scenario, where two applications are running on this platform, both
requiring a processing core, but unaware of the platform architecture. In the first cycle, one of
the applications requests p and p1 is allocated as discussed above. In the next cycle, the second
application also requests p. Since p1 is not available (indicated by its cost function being undefined
for all values), we inverse the priority, setting t1 < t2. Thus, t2 will be fired leading to an allocation
of p2 to the second application.

Finally, notice that, if none of p1 and p2 is available, the choice of priority is irrelevant, since
the constraint problems generated from both markings in Fig. 19b and 19c will be unsatisfiable.

5 Conclusion

In this report, we have introduced Constraint-Flow Nets (cfNets) that allow modelling of resource
dependencies, thereby bridging a gap in the current state-of-the-art approaches to the specification
of requests for resources and resource allocation to applications: resource allocation commonly re-
lies on the assumption that the requested resources are completely specified, whereas specification
languages operate with high-level abstractions of resources, e.g. “memory” or “thread”, leaving
the resource manager to endow these with precise semantics.

The cfNet model provides a means to formally specify the structure of resources provided by
the platform and the dependencies among them. This specification serves as an abstraction layer,
which allows designers to focus on the resources immediately relevant to the application func-
tionality, while taking care of low-level structure and dependencies inherent to the specific target
platform. Thus, our approach simplifies application design and greatly enhances portability. This
is particularly useful for platforms with complex resource architectures, such as the Massively Par-
allel Processor Arrays (MPPA) (e.g. Kalray), or cloud platforms, where the resource architecture
can change dynamically at run time.
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Figure 19: The cfNet modelling virtual processing cores using inhibitor arcs

In this report, we have defined the cfNet model and have provided its semantics, defining
a constraint problem for a given initial resource request. The cfNet model allows for the use
of inhibitor arcs. On one hand, these increase the expressiveness of the model and simplify
certain constraint problems by reducing the number of variables involved. On the other hand,
inhibitors can generate conflicts introducing ambiguity in the constraint problem definition. We
have provided a sufficient condition, which can be easily checked syntactically, for the cfNet to be
conflict-free. For cfNets that do not satisfy this condition, we have provided an efficient method
for determining whether a given inhibitor induces a conflict. This is achieved in three steps:
1) given two transitions, we encode the existence of a conflict as a Boolean formula 2) a satisfactory
valuation of this formula represents a marking exhibiting the conflict; 3) by analysing the causality
hyper-graph for cycles, we check whether this marking is reachable and, if not, refine the encoding
to exclude it. These steps are repeated until a reachable marking exhibiting the conflict is found
or the Boolean encoding becomes unsatisfiable.

In our future work, we are planning to further improve the conflict detection algorithm: the
encoding refinement in step 3) excludes only one marking; by exploiting the causality hyper-graph
more unreachable markings could be excluded in one step. Reachable conflicts are resolved by
defining priorities between conflicting transitions. Dynamic priorities can only be resolved at
run time. For static priorities, we are currently working on a cfNet transformation to statically
eliminate the corresponding conflicts.

Finally, we are planning to implement the cfNet model in the JavaBIP [4, 5] component coor-
dination framework and use it in conjunction with the JaCoP 2 constraint solver.
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