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ABSTRACT
This paper proposes randomly-generated synthetic time
series incorporating climate change forecasts to quantify
the variation in energy simulation due to weather inputs,
i.e., a Monte Carlo analysis for uncertainty and sensitiv-
ity quantification. The method is based on the use of
a small sample (e.g., a typical year) and can generate
any numbers of years rapidly. Our work builds on pre-
vious work that has raised the need for viable comple-
ments to the currently-standard typical or reference years
for simulation, and which identified the chief components
of weather time series. While we make no special efforts
to reproduce either extreme or average temperature, the
sheer number of draws ensures both are seen with either
the same or higher probability as recent recorded data.

INTRODUCTION
The analysis of uncertainty in building simulation is re-
lated to the need for risk-conscious design. Existing stud-
ies have largely focused on analysing the effect of un-
certainty in material inputs (a kind of epistemic uncer-
tainty), and variations due to occupant behaviour (a type
of aleatory uncertainty). A few have focused on exam-
ining the impacts of climate change and the effect of
the uncertainties inherent in simulation based on ‘future
weather’ (e.g., Belcher et al. 2005; Chinazzo et al. 2015a;
Crawley 2008; Jentsch et al. 2008; Kershaw et al. 2011;
Wilde et al. 2008). These uncertainties in the weather in-
put arise due to modelling assumptions (simplifications
of physical phenomena, skipping phenomena that are not
well understood), incomplete records (to calibrate climate
models), ‘downscaling’ (where global circulation models
have to be ‘scaled’ down to a region of interest), among
other sources. Kershaw et al. (2011) argue that using a
single typical or reference file is conceptually and compu-
tationally far simpler than working with several files, each
of which have some probability of occurring. They point
out that while the original advantages of reducing simu-
lation time by incorporating smaller weather files should
now be irrelevant, the increasing complexity of building
simulation codes has negated much of the gain in com-
putational speed. In any case, typical files, of any sort,

cannot be used to assess risk.
To simulate the future performance of a building, i.e., an
explicit estimate of some performance parameter condi-
tional on physically viable future projections, a ‘future
weather file’ is needed. Belcher et al. (2005) proposed
‘morphing’, a simple solution that can be easily imple-
mented in the context of building simulation, since it only
requires one of three operations: addition (shifting), mul-
tiplication (linear stretching), and a combination of the
two (shift and stretch). Shifting is applied to those vari-
ables for which an absolute change of mean is available
in climate change forecasts. Stretching works when the
change to mean or variance is given as a fractional change.
Finally, the combination is used when both the mean and
variance of a variable need to be changed. For example,
if the forecast includes a change of minimum and maxi-
mum temperatures in addition to a change of mean tem-
peratures. Belcher et al. (ibid.) demonstrated their method
for three cities in the United Kingdom. They demon-
strated the agreement of future heating degree day val-
ues calculated using their ‘morphed’ Test Reference Year
(TRY) and Design Summer Year (DSY) files, with those
calculated directly from the UKCIP02 report itself (the
forecasts on which the morphed files were based). Ker-
shaw et al. (2011) used the latest future weather genera-
tor from the UK, the UKCP09 , which is based on a fu-
ture rainfall generator model. The baseline climate, like
most generators and projections, is 1961-1990. Upon cal-
ibration, “change factors [were] applied to [recorded data
to] generate the future precipitation”. All “. . . other vari-
able [were] created using mathematical and statistical re-
lationships with daily precipitation and the previous day’s
weather” (ibid.). The UKCP09 generator outputs 100 runs
of 30 years each, from which the authors constructed 100
reference years. Eames et al. (2011) used the percentiles
of monthly mean Dry Bulb Temperature (TDB) to create
reference years tied to certain percentiles, i.e., the median
January “. . . combined with the median February, March,
etc.”
One question that arises in the creation of any synthetic
data is its advantages over recorded data. If long-term
high-quality data is available for some location, is there



any point in using synthetic data? As Kershaw et al.
(2011) point out, the utility of recent records in predicting
future return periods (i.e., probabilities of weather events
of interest) is limited by the length of the record. For ex-
ample, if a 100-year event (over a long enough record, this
event will occur roughly 1% of the time) happened thrice
in the last 10 years, does that make it a 3-year event or
not? While the return period obtained from any weather
generator is speculative, it does at least provide bounds
on a system’s response. Then, it is the decision-makers
who must choose the probability for which they would
like to design. For example, HVAC system failure may
be acceptable for some value of outdoor temperature or
episode of some intensity, which has a very low probabil-
ity of occurrence. Kershaw et al. (ibid.) warn that using
the UKCP09 weather generator to assign return periods
should be done with “extreme care”, and “. . . return peri-
ods longer than 5-years should be used with caution”.
A long record does enable a sensitivity analysis, but one
is still hostage to the vagaries of the weather when us-
ing it. That is to say that there are several possible future
conditions that may not have occurred in the recent past.
There are no guarantees about what conditions may pre-
vail in the future based on knowledge of past conditions.
As far as we are aware, the temperatures of future years
do not have to follow some well-defined mathematical re-
lationship with temperatures from previous years, or even
some well-defined periodic relation. The intention of our
work related to the creation of synthetic weather data is
not to predict future weather. Incorporating stochasticity
does not automatically improve the predictive power of
simulation for a specific time in the future. Rather, we ex-
pand the role of simulation in exploring design options by
broadening the test conditions.
This paper begins with an explanation of the method used
to construct future weather time series. We then present
some descriptive statistics about the generated series. Fi-
nally, the results of simulating a single family home with
these ‘future time series’ are compared to simulation with
recorded data from the last two decades. This building
model has been previously described in Chinazzo (2014).

METHOD
The work presented in this paper builds on previous work
by the authors (Rastogi and Andersen 2015). We begin
with a brief overview of previous work, avoiding repeti-
tion as far as possible. The generation of synthetic future
weather data presented here relies on two major steps:
time series decomposition and resampling1. Both steps
are explained in detail in our previous work, and sum-
marised here in fig. 2. This paper uses the same terminol-

1We use the terms resampling and bootstrapping interchangeably in
our work. See Davison and Hinkley (1997) and Politis (1998) for a re-
fresher on the theory, or Rastogi (2016) for a summary.

Figure 1: The single family home simulated as an exam-
ple, details of which are in Chinazzo (2014).

ogy as previous work, as does fig. 2.

Previous Work
Several publications, listed in Rastogi (2016) and Rastogi
and Andersen (2015), have showed that temperature, so-
lar radiation, and humidity can be divided into periodic
and aperiodic components. That is, if the periodic part of
the original time series is removed (by subtracting Fourier
series with appropriate periods, µt and ζt , for example),
the remainder is aperiodic noise (εt ). These two parts are
shown in fig. 3 for Geneva. This noise is not entirely free
from structure, however, and is generally well described
by low-order Seasonal Auto-Regressive Moving Average
(SARMA) models (ψ(L)). Upon fitting these low-order
models, the residual is near-white noise. This residual or
remainder term (rt ) is reshuffled, in 3-day blocks sepa-
rated by month, to create new ‘resampled’ residuals (r̂t ).
These resampled series are input as the noise component
in simulating the fitted SARMA model to create new syn-
thetic aperiodic noise components ε̂t .
A Seasonal Auto-Regressive Moving Average (SARMA)
model is a combination of seasonal and non-seasonal
Auto-Regressive (AR) and Moving Average (MA) terms.
The idea is that the value of a time series at a certain
point in time is predicted by a polynomial composed of
two parts: an AR part and an MA part. The AR part is
a regression of a time series on itself, i.e., its own val-
ues in the past. The MA part is averaged white noise, a
weighted average of a finite number of white noise draws
preceding the current time step. The seasonal terms in-
clude every Qth past value, e.g., every 24 hours back from
the present. The non-seasonal terms refer to the last p
terms, e.g., 1-4 hours ago (generally p for AR and q for
MA). The coefficients of the polynomial are estimated us-
ing maximum likelihood estimation to minimise the resid-
uals, rt ∼ N (0,σ). The details of these can be found in
a time series analysis book like Cryer and Chan (2008),
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Figure 2: Generating synthetic weather time series from typical data and future forecasts of daily mean values.
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Figure 3: The periodic part of TDB series for Geneva
(line) is overlaid on the raw hourly values (dots). Three
pairs of Fourier terms are used to create the periodic sig-
nal: 8760 hours, 4380 hours, and 24 hours.

or the documentation of a software like the ones we used:
MATLAB R©arima, estimate, infer; and the forecast
package in R (Rob J. Hyndman and R Core Team 2015).

Periodic Signal
Previous work to create future weather files focussed on
a ‘fixed’ addition of some forecast to current data (mor-
phing) or the creation of future data through relation-
ships with a single forecast variable (e.g., rainfall for the
UKCP09 projections). The most popular approach, mor-
phing, is limited to producing “. . . a future weather pat-
tern. . . that is largely analogous to the present-day weather
in terms of diurnal cycles and extremes” (Jentsch et al.
2008). In our work, the combination of a random SARMA
model and climate change forecasts creates ensembles of
future time series, each of which is unique. As with any
data-based methods, we cannot actually account for the
changed physics of the atmosphere. That is what the
Global Climate Model (GCM)-based forecasts are meant

to simulate. The stochastic models added on to the low-
resolution future series create variation around this fore-
cast, generating (bootstrapped) confidence intervals.

The periodic parts of the meteorological time series being
considered, TDB and Relative Humidity (RH), are gen-
erally composed of a low-frequency signal and a high-
frequency signal. The temperature series needs three
Fourier pairs: one for annual seasonal variability, or a pair
of terms with a period of 8760 hours; one for diurnal vari-
ability, or a pair of terms with a period of 24 hours; and,
an additional pair with a period of half a year or 4380
hours, to shift the peak slightly to the right of centre to-
wards August. Humidity shows no appreciable diurnal
variations, so reduces to aperiodic noise with the removal
of just an annual signal. We decided to not de-trend and
simulate the global horizontal irradiation series separately
since it creates additional artefacts that are difficult to re-
move without extensive, manual, post-processing.

The climate change forecasts available to us were daily
mean values for this century (up to 2100). Two Repre-
sentative Concentration Pathways (RCPs) were explored
in our study, RCP 4.5 and RCP 8.5, details of which
can be found in Climate Change 2014, pg. 8. The
first corresponds to an intermediate emissions scenario
while the latter to one with very high Green House
Gas (GHG) emissions. These RCPs are simulated using
GCMs, which are downscaled by meteorological agencies
for their regions of interest. We had access to the Re-
gional Climate Models (RCMs) for Europe through the
CORDEX project website (World Climate Research Pro-
gramme 2015). There are several GCM model runs avail-
able on the CORDEX website forecasting each emissions
scenario for Europe, all of which can be considered equiv-
alent. That is to say, there is no claim that any one model
is more accurate or likely than another.



Incorporating Forecasts
The process begins with a selection of forecast daily val-
ues from one of the GCM/RCM model runs for either
RCP 4.5 or RCP 8.5. One may pick any one of these
model combinations to create a ‘string’ (or ensembles of
strings) of 85 years (2015-2100), or use an average. For
this study, only one GCM/RCM model combination of
daily values is used for demonstration. Each string cor-
responds to either of the two RCPs, since each RCP sep-
arately represents a possible future outcome under a con-
sistent set of assumptions.
These future daily values are used to replace the low-
frequency Fourier series µt . Conceptually, a Fourier fit
with a period of 365 days fit to daily values is identical to
one with a period of 8760 hours fit to hourly values. Thus,
we can insert this ‘future’ low-frequency signal instead
of the ‘present’ low-frequency fit in the reassembly of a
complete future time series. Referring back to fig. 2, in-
stead of putting back the original µt to get the plain T Ssyn,
we put in a different µ̂t that represents future daily mean
values. If present, the daily term ζt remains constant. Fi-
nally, adding the simulated noise values (ε̂t ) creates any
number of variants (weather years) for a given combina-
tion of a future series (µ̂t ) and the (unchanged) daily sig-
nal ζt , for a particular RCP. This procedure is used for
TDB and RH, while the solar terms, Global Horizontal
Irradiation (GHI), Diffuse Horizontal Irradiation (DHI),
and Direct Normal Irradiation (DNI), are created using a
nearest-neighbour bootstrap described below.
Like we mentioned in previous work on creating ‘plain’
synthetic files (i.e., without climate change forecasts),
these synthetic ‘future’ time series have to be cleaned
(censored) due to the nature of the generation process.
For example, the SARMA simulation added to the peri-
odic signal may create a final value of 70◦C for TDB or
0.5 for RH, because the procedure does not ‘know’ that
these values are invalid. Even if these physically invalid
values are removed, there are still ‘outliers’ seen in some
series upon visual inspection. The definition of outliers is
a complicated matter, so we use historical data as a guide.
For example, if a certain hourly change in temperature
is seen in the source Typical Meteorological Year (TMY)
file, then we assume that it is possible. Meaning that the
raw TDB values that caused this change need not be cen-
sored. There are several different techniques to remove
outliers, of which we used a method based on standard
z-scores,

zi =
xi − x̄

s
, (1)

where, x̄ is the sample mean and s is the sample standard
deviation. By itself, this score does not indicate that a par-
ticular data point is an outlier. Rather, an arbitrary cut-off
point must be decided. The advantage of using z-scores is

that instead of imposing arbitrary limits on the raw values
of a parameter, which are highly climate or context depen-
dent, it is possible to use standardised values and cut-offs.
This helps to maintain consistency across climates and pa-
rameters. In our case, we found that choosing the larger of
the 99.9 and 0.1 percentiles is sufficiently conservative to
remove outrageous values (like 100◦C or -100◦C) but not
so conservative as to remove extremes. The time series
is censored for both high and low values. This is obvi-
ously an arbitrary choice, and the generation of weather
files is only moderately affected if this cleaning is not car-
ried out. We looked at various cut-off values, and could
not arrive at a conclusively universal one. This is because
we do not take a position on which extreme is too extreme.
We expect that visual inspection or expert opinion is as
good as hard-coded checks in the generator. Most build-
ing simulation programs have their own cut-offs for valid
values, but since we use daily mean TDB in subsequent
steps, censored values are easier to work with. We cen-
sor both raw hourly values and the first difference of the
series (hourly changes in values).

GHI, DNI, and DHI are treated differently from the oth-
ers since no attempt was made to fit and remove a periodic
component from any solar time series. As these three se-
ries are dealt with in tandem, we will discuss only the pro-
duction of a synthetic time series for GHI. Instead of fit-
ting models to create synthetic hourly values for solar ra-
diation, we decided to resample from the values available
in the TMY file. There is a reasonably strong correlation
between the daily sum of GHI and daily mean of TDB,
as evidenced by values of 0.7-0.75 for Pearson’s (linear)
correlation coefficient (r) and Spearman’s rank correla-
tion coefficient (ρ) in most climates. This should not be
over-interpreted to mean that daily mean TDB is neces-
sarily well-described by a linear function of the daily sum
of GHI. Rather, it is an indication that, in addition to the
effect of the season (which is an indication of the ‘band’
of temperatures within which most values in a month will
lie, and the hours of radiation in a day), high solar irra-
diation during the day will generally coincide with higher
mean temperatures. In this case, we are merely exploiting
this correlation to find valid day-long series of solar radia-
tion. Belcher et al. (2005) point out that there do not seem
to be any mechanisms in climate change models causing
massive shifts in the amount of solar radiation delivered
day by day. What might change for some climates is the
number of cloudy or partially cloudy days, leading to a
change in the quantum of solar radiation received over a
long enough period like a year. Since the length of day
and maximum values of GHI are related to latitude, alti-
tude, and the solar constant, none of which are affected by
atmospheric concentration of GHGs the authors propose
that it is valid to use past or typical data as the source of



future data.
The process of selecting future ‘solar days’ is split by
month, since the length of the day depends on the time
of year. For each day in a given ‘future’ month, we cal-
culate the daily mean TDB. Then, we locate k days in
the TMY file, in the same month, that have the closest
daily mean temperatures to the future daily mean tem-
perature being considered. Of these k days, any random
one is chosen for its solar profile (i.e., hourly solar data),
which becomes the hourly data for the future day. In this
way, hourly temperature values (represented by their daily
means) that have already occurred with certain hourly so-
lar values, occur in the future files as well. Some noise has
been introduced in the process by initially calculating the
k nearest neighbouring days to a future day, in the same
month, and then choosing one randomly. In our work,
we used k = 10 nearest neighbours. While the forecasts
available to us do include future daily mean GHI values,
we chose not to work with these since their distribution
was not very different from the daily mean GHI values
seen in the source TMY file. Basing the selection of fu-
ture hourly values purely on mean GHI forecasts (i.e., by
locating the same value in the TMY file) could break the
cross-correlation between TDB and the solar time series.

Variants
Our method creates any number of variants for a given
year by simulating the SARMA model with bootstrapped
residuals, as described in our previous work (Rastogi and
Andersen 2015). The final values are a combination of the
synthetic residuals ε̂t , unchanged daily Fourier term ζt ,
and future forecasts µ̂t , which are equivalent to the low-
frequency Fourier term µt . Thus, each ‘string’ of 85 years
is based on one GCM/RCM model and a set of simulated
residuals. The individual variants for each year, of which
there can be any number, are an ensemble representing the
possible weather that may occur in the future. They are
meant to be used together, not individually, since the au-
thors do not claim that any one variant is more likely than
another. The nature of Monte Carlo simulation dictates
that a small sample size, or even worse a single sample, is
almost certainly not representative of the phenomena be-
ing simulated. Similarly, the future time series should also
be interpreted loosely – neither climate change forecasts
nor our methods are precise enough to predict a specific
value in the future. A simple rule of thumb we propose
is that the years of each decade should be treated as being
interchangeable.

RESULTS & DISCUSSION
Raw Weather
Figure 4 shows the empirical Cumulative Distribution
Functions (eCDFs) of synthetic TDB and RH, alongside
recorded values and TMY. The distributions are virtually
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Figure 4: The eCDF of hourly TDB [top] and RH [bot-
tom] values for TMY, recorded, and future data.

identical. The monthly extents of values seen in the syn-
thetic and recorded data are given in fig. 6. These figures,
and the percentiles given in table 1, show that the extreme
temperatures and humidity values seen in the past 30-odd
years of recorded data are well reproduced (and exceeded)
in the synthetic series.
Looking at the monthly extents (table 1 and fig. 6), it
seems that both the recorded data (1984-2014) and cli-
mate change forecast-based files are slightly warmer than
the design temperatures, i.e., the lower extremes are less
extreme and the higher extremes are worse. The fact that
the recorded data contains warmer extremes is no surprise
when considering that the TMY file for Geneva is com-
posed of months from the 1980s and 1990s, whereas the
2000s have broken several high temperature records. De-
pending on the source of the typical weather files for dif-
ferent locations, the ‘baseline’ or source years may be
even older. However, the absence of winter extremes
should not be taken as a given: climate change forecasts
do not simply ‘shift’ the existing weather data upwards.
The occurrence and intensity of extreme events, e.g., very
low or very high temperatures, is unpredictable with an-
thropogenic climate change, since past records are less



Table 1: ASHRAE design temperature percentiles for
Geneva. All TMY values are taken from the header of the
TMY file, except for the 98th percentile. This was calcu-
lated, and so represents the 98th percentile of the ‘mean’
signal.

Perc. Geneva – 50-sample run
(%) Rec. TMY Syn. RCP4.5 RCP8.5

99.6 31.13 30.05 30.80 32.56 34.43
99.0 29.21 28.33 29.00 30.24 31.93
98.0 27.35 26.80 27.20 28.00 29.56
50.0 10.10 10.00 10.41 9.66 10.53
2.0 -2.77 -3.70 -1.90 -4.85 -4.09
1.0 -4.04 -5.00 -4.80 -6.53 -5.80
0.4 -5.63 -7.20 -6.90 -8.56 -7.82

representative of the future. On the other hand, the ‘av-
erage’ temperature is marching inexorably upwards.
The broad agreement between new data and our synthetic
climate files would suggest that the synthetic approach is
usable for simulating diverse future conditions. The dis-
agreement of the synthetic data with TMY data is also a
plus, as explained above. We should point out, however,
that the ‘plain’ synthetic files (i.e., ones that did not incor-
porate forecasts) also did a good job of producing extreme
values (as reported in our previous publication). Our pre-
liminary conclusion is that the appearance of extremes de-
pends more strongly on the SARMAsimulation, so it oc-
curs with or without the inclusion of climate change fore-
casts.

Simulation Results

The four different kinds of weather input files shown in
fig. 7 are: recorded files, which include typical files from
the United States Department of Energy (USDOE) web-
site and the METEONORM (MN) software; plain syn-
thetic files, which do not include climate change forecasts;
and synthetic files incorporating projections from the two
RCPs under consideration. The simulation results show
very similar distributions. That is to say that the extents
of the spread, and its shape, are roughly equal for the var-
ious kinds of files. The RCP4.5 files have a more skinny
distribution because fewer of them were simulated. The
RCP8.5 values show the largest extents. In general, the
synthetic files (both plain and with forecasts) show ex-
tremes comparable to or bigger than the recorded data.
This is an important result: the synthetic files reproduce
extremes near the ones seen in the past 30-odd years, with
nearly the same probability, and extend them a little fur-
ther. We are confident that larger samples of synthetic files
(plain and future) will show extremes of longer return pe-
riods (i.e. lower probability).
We expect that the annual sum of heating or cooling en-
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Figure 6: The extents of hourly TDB [top] and RH [bot-
tom] values, by month, for TMY (dotted line), recorded
(solid), and future (dashes) data. The upper lines repre-
sent monthly maximums (99th percentile), while the lower
lines are for monthly minimums (1st percentile). The lines
in the middle are for monthly means. The synthetic data
extremes are appreciably higher, but the probability of
those extremes is still as low as in the recorded data.

ergy usage should be more sensitive to shifts in overall
temperatures rather than the occurrence of intense events,
so the significant overlap between plain and future syn-
thetic files is somewhat surprising. We expected that the
addition of an upward signal would change the overall en-
ergy usage appreciably. Looking at fig. 8, we see the rea-
son that this is not apparent in fig. 7. The range of val-
ues possible in the future, i.e., the spread due to different
weather possibilities in the same climate, is so large as to
drown out the gradual shift seen year-by-year. So, while
the prediction is for a gradual warming of the climate, the
uncertainty in future values makes forecasting noticeable
reductions in heating (or increases in cooling) very inac-
curate. In upcoming work, the authors are analysing other
metrics such as peak demand and overheating to assess if
useful predictions can be found for those. For example,
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Figure 7: Histograms for EUI heating [top] and cooling
[bottom]. The distributions of the four different kinds of
weather files are nearly identical.

the frequency of future extreme events described in Ker-
shaw et al. (2011).

CONCLUSION
In this paper, we have explained our method for incor-
porating climate change forecasts into an overall schema
for generating synthetic weather files. The use of these
files is primarily to enable the exploration of what-if sce-
narios, vis-à-vis weather, to get a range of possible out-
comes (e.g., range of annual cooling energy used). So,
while it is instructive to compare the synthetic data to re-
cent recorded data, the generation process is meant to also
create values that have not been seen before. The point
of this exercise is not to predict the weather at a given
point of time in the future, since that is beyond the ken
of contemporary climate models. Instead, we are looking
to provide a sufficient variety of physically-valid weather
conditions based on GCM model outputs. Upon simula-
tion, these conditions generate a statistically valid sample
of outcomes, like energy use, to have an idea of the robust-
ness of a building or design, an idea previously developed
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Figure 8: The EUI [kWh/m2] plotted by year, [top] heat-
ing, [bottom] cooling. The line at 2015 represents the
extent of results from plain synthetic files. Cumulative
distributions of annual energy use values in the next few
decades, 2010-2100, are plotted below each yearly plot.

by the authors in Chinazzo et al. (2015a,b).
This paper demonstrates a method to include climate
change forecasts with variation in individual values, but
it cannot account for the physical effects of the build-up
of GHGs in the atmosphere. Users must rely on climate
models for that. For Geneva, the forecasts show a very
small upward trend of temperature. The synthetic time
series created using TMY files from the 1980s-90s and
the newest climate change forecasts tally well with recent
recorded data, which includes the 2000s. That is, the ef-
fect of including climate change forecasts on older data
(the TMY files) is similar to actual recently recorded data.
This was to be expected since the concentration of atmo-
spheric GHGs has been increasing steadily for more than
a century, the effects of which have only become apparent
in the past couple of decades.
We have also discussed why our proposal is distinct from
previous efforts based on morphing and similar tech-
niques. While morphing is unable to produce files with



sufficient variety, we are able to produce very widely vary-
ing samples of weather from a future climate scenario
rapidly. Like morphing and any other synthetic weather
generator, it should be noted that our synthetic weather
files are not explicitly accounting for geographical vari-
ability. That is to say, if a source TMY file is not repre-
sentative of the building site (e.g., due to urbanisation),
then our method will not correct for it. This is an impor-
tant limitation, and one we will address only in upcoming
work, since the ‘change’ in weather conditions due to ur-
banisation has nothing to do with the techniques we use
here. It is possible to coincidentally reproduce urban con-
ditions, but that is not guaranteed.
The method shown here, and in Rastogi (2016) and Ras-
togi and Andersen (2015), is also applicable when a long
record of weather data is available. We have focussed on
working with typical year files to expand applicability to
practice. Longer, high-quality, records, where available,
could be a better basis for calculating the various periodic
and aperiodic components we use in our method. The in-
fluence of the quality of typical files is not formally ad-
dressed in our work, but the use of an ensemble of random
files could ameliorate somewhat the impact of unrepresen-
tative data on decision-making.
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