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Abstract

This Technical Report provides the deployment and evaluation guide of the ix dataplane operating
system, as of its first open-source release on May 27, 2016. To facilitate the reproduction of our
results, we include in this report the precise steps needed to install, deploy and configure ix and its
workloads. We reproduce all benchmarks previously published in two peer-reviewed publications at
OSDI ’14 [3] and SoCC ’15 [6] using this up-to-date, open-source code base.

Revision history

Version Date Summary
v1.1 April 28, 2017 Update Fig. 5, Fig 6, and Table 1. In v1.0 the cor-

responding benchmark was executed on an empty
memcached database by mistake.

v1.0 May 27, 2016 Initial release.

1 Introduction

The IX dataplane operating system project started in 2013 as a collaboration between researchers
at Stanford and EPFL. The design and implementation of the dataplane, which combines low latency
and high throughput, was published at OSDI in 2014 [3]. The design and implementation of the control
plane, which additionally ensures high system efficiency, was published at SoCC in 2015 [6].

Like all software projects, IX is in constant evolution. In recent months, the focus was to increase
the robustness, debuggability and extensibility of the system.

As we release the code base in open-source for the first time, this report documents the four necessary
components required to reproduce our research results:

• the IX software: this includes instructions to build and deploy IX, including its dependencies:
Dune [2] and DPDK [4];

• the benchmarks: the full set of benchmarks that were used in prior publications.

• the experimental setup: this includes a description of the hardware used for those experiments
as well as the complete description of the host Linux configuration.

• the experimental results: a complete re-evaluation of IX on all benchmarks, performed with
the open-source code base. The results are generally consistent with the published numbers.

This work was funded by DARPA CRASH (under contract #N66001-10-2-4088), a Google research
grant, the Stanford Experimental Datacenter Lab, the Microsoft-EPFL Joint Research Center, NSF
grant CNS-1422088, and a VMware grant. George Prekas was supported by a Google Graduate Research
Fellowship and Adam Belay by a VMware Graduate Fellowship.
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2 Deploying IX v1.0

The upstream version of ix is available at

https://github.com/ix-project/ix

For normal development, simply clone and work off the master branch. To reproduce the behavior
of ix version 1.0, and the experiments in this report, checkout the tag v1.0.

ix depends on three additional open-source projects, which are automatically downloaded via a
provided script:

• Dune: ix requires a fork of Dune [2], available at https://github.com/ix-project/dune. The
version used in this paper has commit hash 34a94ebbd1b09c84e870396302e4864f500cbba2. Dune’s
upstream is at http://dune.scs.stanford.edu/.

• DPDK: ix uses Intel’s DPDK framework version 16.04.

• PCI DMA management device driver: we have developed a management device driver that reliably
enables and disables DMA for PCI devices – this driver is required to avoid memory corruption
after using DPDK1.

Additionally, a wiki with more detailed and up to date information on ix is available at https:

//github.com/ix-project/ix/wiki

2.1 Prerequisites

Currently ix has been successfully tested on Ubuntu 15.10 and 16.04 LTS running the Linux kernel
version 4.2 and 4.4 respectively.

Currently, IX supports the following NICs:

• Intel 82599

• Intel X520

• Intel X540

Finally, ix requires the libconfig and libnuma libraries. You should use your package manager to
download the above-mentioned libraries before attempting to build ix.

2.2 Build IX

The following steps download ix, its dependencies, the necessary libraries, and build them, on an
APT-based Linux distribution:

git clone git@github.com:ix -project/ix

cd ix

# [OPTIONAL] git checkout v1.0

./deps/fetch -deps.sh

sudo chmod +r /boot/System.map -‘uname -r‘

make -sj64 -C deps/dune

make -sj64 -C deps/pcidma

make -sj64 -C deps/dpdk config T=x86_64 -native -linuxapp -gcc

make -sj64 -C deps/dpdk

sudo apt -get install libconfig -dev libnuma -dev

make -sj64

The resulting executable files are

• ix/cp/ixcp.py – the ix control plane

• ix/dp/ix – the ix dataplane kernel
1bug report: http://dpdk.org/ml/archives/users/2016-March/000340.html
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2.3 Configuration options

In order to successfully run the ix dataplane, you need to adjust the ix configuration to match your
hardware and network setup. Typically, ix reads the ix.conf configuration file from the current working
directory. A sample configuration file ix.conf.sample is provided as a configuration basis. You can also
supply your own configuration file path using the -c command line argument. The available configuration
parameters are:

host addr IP address and netmask that will be assigned to the
adapter once it comes up in CIDR notation
(e.g., 192.168.0.2/24)

gateway addr default gateway IP address (e.g., 192.168.0.1)
port TCP port to bind for ix to listen on (e.g., 1234)
devices A list of PCI device ID of NICs in BDF form

(e.g., 0000:01:00.0)
cpu A list of CPUs to run on (e.g., 0)
batch maximum batch size of received packets to process

(e.g., 64)
loader path path to the dynamic loader

(e.g. /lib64/ld-linux-x86-64.so.2)

2.4 Environment configuration

To run ix, you must remove the kernel NIC driver and install the necessary kernel modules. Also,
ix uses exclusively large pages (2MB), so you need to reserve a number of them before executing ix. ix
takes over the whole NIC. The assumption here is that one has a second NIC for Linux or has terminal
access to the server. If this is not the case, refer to the instructions below to run ix on a Virtual Function
in order to multiplex the network card. To quickly deploy the correct IX environment, follow these steps:

cp ix.conf.sample ix.conf

# modify at least host_addr , gateway_addr , devices , and cpu

sudo sh -c ’ \

for i in /sys/devices/system/node/node*/ hugepages/hugepages -2048kB/\

nr_hugepages; do \

echo 4096 > $i; \

done ’

sudo modprobe -r ixgbe

sudo insmod deps/dune/kern/dune.ko

sudo insmod deps/pcidma/pcidma.ko

Optionally, ix is compatible with PCI Virtual Functions on SR-IOV capable network cards. This
allows sharing of the same NIC with Linux. This setup allows for both Linux and ix network stacks to
be multiplexed on the same network card at a price of a slight performance hit especially on older NICs.
To set up the environment for running ix on a PCI Virtual Function:

sudo modprobe ixgbe

PCI_DEVICE ="$(basename "$(readlink "/sys/class/net/$IFACE/device ")")"

sudo sh -c ’echo 1 > /sys/bus/pci/devices/$PCI_DEVICE/sriov_numvfs ’

sudo ifconfig $VIRTUAL_IFACE up

sudo modprobe -r ixgbevf

where $IFACE is the logical name assigned to your ix-compatible network device (e.g., eth0), and
$VIRTUAL IFACE is the logical name assigned to the VF (e.g., enp1s16).
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Finally, to undo the above steps and reload the default Linux network stack :

sudo modprobe ixgbe

sudo rmmod dune

sudo rmmod pcidma

sudo sh -c ’echo 0 > /sys/bus/pci/devices/$PCI_DEVICE/sriov_numvfs ’

sudo modprobe -r ixgbevf

sudo sh -c ’ \

for i in /sys/devices/system/node/node*/ hugepages/hugepages -2048kB/\

nr_hugepages; do \

echo 0 > $i; \

done ’

sudo ifconfig $IFACE up

2.5 Running the echo server

The ix echoserver program simply listens on a TCP port and echoes input back to the client once
it has received ’n’ bytes of content. To start it:

sudo ./dp/ix -- ./apps/echoserver 4

Or, alternatively :

sudo ./dp/ix -c <path to your ix.conf file> -- ./apps/echoserver 4

To test it, use another machine and open a TCP connection to the IP address and port specified in
ix.conf, e.g.:

nc -vv <HOSTNAME> <PORT>

3 Benchmarks

The current distribution of ix includes three applications that demonstrate its functionality and
measure different aspects of its performance: echoserver, NetPIPE and memcached.

3.1 Echoserver

Echoserver is a simple application that waits to receive a TCP payload of specified size and, then, sends
it back to the sender. The echoserver is available on the ix tree at https://github.com/ix-project/

ix/blob/master/apps/echoserver.c.
The echoserver application allows us to run two simple but useful performance benchmarks: (1) the

throughput behavior of ix when scaling the number of connections with a fixed message size; and (2)
the throughput behavior for variable message size with a fixed number of connections. (1) is available
in the ix-bench tree as bench connscaling.py while (2) is available in the tree as bench short.py.

3.2 NetPIPE

NetPIPE is an application that uses a simple series of ping-pong tests over a range of message
sizes to provide a complete measure of the performance of a network. It bounces messages of increas-
ing size between two hosts across a network. Message sizes are chosen at regular intervals and with
slight perturbations to provide a complete evaluation of the communication system. Each data point
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involves many ping-pong tests to provide an accurate timing. While we did some minor modifications
to the original NetPIPE code, it essentially follows the same principles. The NetPIPE application
is available at https://github.com/ix-project/netpipe while the upstream source is available at
http://bitspjoule.org/netpipe/code/NetPIPE-3.7.1.tar.gz.

The NetPIPE application provides the ability to run benchmarks similar to bench short.py for
latency measurements, but with a different set of parameters. Because NetPIPE has not been ported
to ix, we use the echoclient/echoserver on the ix network stack to generate NetPIPE workloads and
compare these with the results of the NetPIPE application on the Linux network stack. This benchmark
is available in the ix-bench tree as bench pingpong.py.

3.3 Memcached

Memcached is an in-memory key-value store for chunks of arbitrary data (strings, objects). We
use mutilate [5] to generate the dataset and to perform the actual benchmark. We forked memcached
from version 1.4.18 and applied some minor changes to the source code. The memcached application
is available at https://github.com/ix-project/memcached while the upstream source is available at
https://github.com/memcached/memcached.

Memcached allows us to run synthetic benchmarks against datasets and workloads similar to the
ones observed in production deployments. Our benchmarks follow the following pattern: multiple clients
running multiple threads generate concurrent requests against a single instance of memcached run-
ning on ix. We recreate the request distributions observed at Facebook and reported by Atikoglu
et al [1] using mutilate [5], a distributed memcached load generator available at https://github.

com/ix-project/mutilate. There are three memcached benchmarks available in the ix-bench tree
as bench memcached.py, bench memcached dynamic.py, and bench memcached pareto.py.

4 Experimental setup

Our experimental setup consists of a cluster of 17 clients and one server connected by a low-latency
10 GbE switch. For the NetPIPE benchmark we use 2 hosts, for the 10 Gbps benchmarks we use 10
clients to generate load and 1 additional client to measure latency (if needed by the benchmark), and for
the 40 Gbps benchmarks we use 17 clients. The client machines are a mix of Xeon E5-2637 @ 3.5 Ghz
and Xeon E5-2650 @ 2.6 Ghz. The server is a dual Xeon E5-2665 @ 2.4 Ghz with 256 GB of DRAM.
Each client and server socket has 8 cores and 16 hyperthreads. All machines are configured with one
Intel x520 10GbE NIC (82599EB chipset). ix has exclusive access to the NIC (not using VFs). Our
baseline configuration in each machine is Ubuntu 15.10, running the Linux kernel version 4.2. Although
the server has two sockets, the foreground and background applications run on a single processor to avoid
any NUMA effects. We run the control plane on the otherwise empty second socket, but do not account
for its energy draw. For the 40 Gbps benchmarks, we used 4 × 10 Gbps links configured in balance-xor

bonding mode.
The following modifications to operating system level parameters were applied prior to running the

benchmarks:

1. Increase per-process system-wide resources limits. Particularly, we make sure that processes (1) can
lock enough pages in the main memory and (2) have access to enough file descriptors to meet some
of the benchmarks requirements. These limits can be retrieved using the (1) ulimit -l and (2)
ulimit -n commands, and can be edited through the limits.conf file. In our experimental setup,
we use (1) MEMLOCK=2097152 and (2) NOFILE=262144. Note that these values are provided
indicatively and may not meet the resource allocation requirements of any other configuration than
our own.

2. Prevent the Linux kernel from managing huge pages allocation. By default, the kernel automat-
ically merges normal pages into huge pages and the opposite, which introduces variability in the
benchmarks. In our environment, we disabled this feature using

sudo sh -c ’echo never > /sys/kernel/mm/transparent hugepage/enabled’

3. Disable TCP SYN cookies. To effectively monitor connection failures in a timely fashion, we disable
TCP SYN cookies. This allows us to make sure that all connections are effectively alive on the
server side. In our environment, we disabled this feature using

sudo sysctl net.ipv4.tcp syncookies=0
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4. Disable TurboBoost and set the CPU to the maximum available. In our environment :

for i in /sys/devices/system/cpu/cpu*/ cpufreq; do

sudo sh -c "echo userspace > $i/scaling_governor"

sudo sh -c "echo $MAX_FREQ > $i/scaling_setspeed"

done

where $MAX FREQ is the maximum non-TurboBoost CPU frequency.

5 Results

We hereby present the results with the open source version of ix of the benchmarks published at
OSDI ’14 [3]. The figure map is the following:

Figure/Table OSDI this TR
NetPIPE Fig. 2 Fig. 1
Multi-core scalability Fig. 3 Fig. 2
Connection scalability Fig. 4 Fig. 3
Connection scalability (hardware counters) Fig. 4
Memcached USR and ETC Table 1 Table 1
Memcached USR and ETC Fig. 5 Fig. 5
Batch sensitivity Fig. 6 Fig. 6

For SoCC ’15 [6], the figure map is the following:

Figure/Table SoCC this TR
Pareto Fig. 2 Fig. 7
Pareto/DVFS only Fig. 3 Fig. 8
Energy Proportionality Fig. 6 Fig. 9, 10, 11 (left)
Workload consolidation Fig. 7 Fig. 9, 10, 11 (right)
Power savings and cons. gains Table 1 Table 2
Flow Migration statistics Table 2 Table 3

Table 1 shows that the performance has substantially improved between OSDI and v1.0 for both
Linux and ix. This due to a combination of optimizations in the newer Linux kernel (from 3.16 to 4.2),
in the configuration of the memcached application, and in ix itself.
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Configuration Minimum latency RPS for SLA:
@99th pct < 500µs @99th pct

OSDI v1.1 OSDI v1.1

ETC-Linux 94µs 76µs 550K 736K
ETC-IX 45µs 45µs 1550K 4186K

USR-Linux 85µs 70µs 500K 794K
USR-IX 32µs 33µs 1800K 5497K

Table 1 – Unloaded latency and maximum RPS for a given service-level agreement for the memcache
workloads ETC and USR.

Smooth Step Sine+noise
SoCC v1.0 SoCC v1.0 SoCC v1.0

Energy Proportionality (W)

Max. power 91 92 92 93 94 94
Measured 42 (-54%) 43 (-54%) 48 (-48%) 46 (-51%) 53 (-44%) 51 (-46%)
Pareto bound 39 (-57%) 38 (-59%) 41 (-55%) 38 (-59%) 45 (-52%) 43 (-54%)

Server consolidation opportunity (% of peak)

Pareto bound 50% 53% 47% 51% 39% 44%
Measured 46% 47% 39% 43% 32% 35%

Table 2 – Energy Proportionality and Consolidation gains.

avg 95th pct. max. stddev

a
d
d

co
re

prepare (µs) 119 212 10082 653
wait (µs) 113 475 1018 158
rpc (µs) 102 238 378 75
deferred (µs) 125 460 2534 283
total (µs) 462 1227 12804 927

# packets 83 285 2753 280

re
m

ov
e

co
re prepare (µs) 23 49 312 25

wait (µs) 33 106 176 31
rpc (µs) 12 27 48 7
deferred (µs) 16 43 82 11
total (µs) 86 154 370 40

# packets 3 9 25 3

Table 3 – Breakdown of flow group migration measured during the six benchmarks.
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Figure 10 – Energy proportionality (left) and workload consolidation (right) for the step pattern
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Figure 11 – Energy proportionality (left) and workload consolidation (right) for the sin+noise pattern
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