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Abstract
Field Programmable Gate Arrays (FPGAs) have the ability to be configured into application-

specific architectures that are well suited to specific computing problems. This enables

them to achieve performances and energy efficiencies that outclass other processor-based

architectures, such as Chip Multiprocessors (CMPs), Graphic Processing Units (GPUs) and

Digital Signal Processors (DSPs). Despite this, FPGAs are yet to gain widespread adoption,

especially among application and software developers, because of their laborious application

development process that requires hardware design expertise. In some application areas,

domain-specific hardware synthesis tools alleviate this problem by using a Domain-Specific

Language (DSL) to hide the low-level hardware details and also improve productivity of the

developer. Additionally, these tools leverage domain knowledge to perform optimizations

and produce high-quality hardware designs. While this approach holds great promise, the

significant effort and cost of developing such domain-specific tools make it unaffordable

in many application areas. In this thesis, we develop techniques to reduce the effort and

cost of developing domain-specific hardware synthesis tools. To demonstrate our approach,

we develop a toolchain to generate complete hardware systems from high-level functional

specifications written in a DSL.

Firstly, our approach uses language embedding and type-directed staging to develop a DSL

and compiler in a cost-effective manner. To further reduce effort, we develop this compiler by

composing reusable optimization modules, and integrate it with existing hardware synthesis

tools. However, most synthesis tools require users to have hardware design knowledge to

produce high-quality results. Therefore, secondly, to facilitate people without hardware design

skills to develop domain-specific tools, we develop a methodology to generate high-quality

hardware designs from well known computational patterns, such as map, zipWith, reduce

and foreach; computational patterns are algorithmic methods that capture the nature of

computation and communication and can be easily understood and used without expert

knowledge. In our approach, we decompose the DSL specifications into constituent compu-

tational patterns and exploit the properties of these patterns, such as degree of parallelism,

interdependence between operations and data-access characteristics, to generate high-quality

hardware modules to implement them, and compose them into a complete system design.

Lastly, we extended our methodology to automatically parallelize computations across multi-

ple hardware modules to benefit from the spatial parallelism of the FPGA as well as overcome

performance problems caused by non-sequential data access patterns and long access latency

to external memory. To achieve this, we utilize the data-access properties of the computa-
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Abstract

tional patterns to automatically identify synchronization requirements and generate such

multi-module designs from the same high-level functional specifications.

Driven by power and performance constraints, today the world is turning to reconfigurable

technology (i.e., FPGAs) to meet the computational needs of tomorrow. In this light, this

work addresses the cardinal problem of making tomorrow’s computing infrastructure pro-

grammable to application developers.

Keywords— High-level synthesis, domain-specific languages, computational patterns, FPGA,

reconfigurable computing
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Résumé
Les Circuits Logiques Programmables (FPGA) sont uniques dans leur capacité d’être configu-

rable en architectures dédiées à une application. Ces architectures sont donc plus adaptées

à ces problèmes computationnels spécifiques, leur permettant ainsi d’atteindre des per-

formances et des efficacités energétiques surclassant d’autres architectures basées sur des

processeurs, tels que les Microprocesseurs Multi-coeurs (CMPs), les Processeurs Graphiques

(GPUs), et les Processeurs de traitement du signal (DSPs). Malgré cela, les FPGA n’ont toujours

pas bénéficié d’une grande adoption, particulièrement parmi les developpeurs logiciels. Ceci

s’explique principalement par le cycle de developpement d’applications pour FPGAs laborieux,

nécessitant souvent des connaissances élevées en développement matériel. Dans certains

domaines applicatifs, l’usage d’outils de synthèse matériel dédiés au domaine allègent ce

problème en utilisant des langages dédiés (DSL) afin de cacher les détails les plus bas-niveau

du matériel, et permettent ainsi d’améliorer la productivité des développeurs. De plus, ces

outils tirent profit des connaissances du domaine pour effectuer des optimizations et ainsi

produire des designs matériels de haute-qualité. Bien que cette approche soit très prometteur,

le coût, ainsi que l’effort significatif requis pour développer de tels outils, la rend inabordable

dans beaucoup de domaines applicatifs. Dans cette thèse, nous développons des techniques

qui aident à réduire le coût et l’effort requis pour développer des outils de synthèse matériel

dédiés à un domaine. Pour démontrer notre approche, nous developpons une suite d’outils

pour générer des systèmes matériels entiers à partir de spécifications de haut-niveau décrit

dans un langage dédié.

Dans un premier temps, notre approche utilise l’intégration des langages et du “staging” dirigé

par types pour développer un langage dédié et un compilateur de manière rentable. Afin

de réduire d’avantage l’effort requis, nous développons ce compilateur en composant des

modules d’optimization réutilisables, et en l’intégrant avec des outils de synthèse matériel

existants. Cependant, la plupart des outils de synthèse matériel nécessitent que les utilisateurs

aient des connaissances en design matériel pour produire des systèmes de haute-qualité. Donc,

dans un deuxième temps, afin de faciliter le développement d’outils de synthèse matériel

dédiés à un domaine pour les personnes ayant peu de connaissances en design matériel, nous

développons une méthodologie permettant de générer des designs matériels de haute-qualité

à partir de motifs computationnels bien connus tels quemap,zipWith,reduce etforeach. Ces

motifs computationnels sont des méthodes algorithmiques décrivant la nature des calculs et

des communications, et peuvent façilement être compris, ne nécessitent aucune connaissance

en design matériel. Dans notre approche, nous décomposons d’abord les spécifications décrits
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Résumé

par le langage dédié en ses motifs computationnels constituants. Ensuite, nous exploitons

leurs propriétés telles que le degré de parallelisme, l’interdépendance entre les opérations,

et les charactéristiques des accès aux données, pour ainsi générer des modules matériels de

haute-qualité, et les composons en un système matériel complet. Dans un dernier temps,

nous étendons notre méthodologie pour parallelizer, de manière automatique, les calculs

sur plusieurs modules matériels afin de profiter du parallelisme spatiale disponible dans un

FPGA, et additionellement, afin de surmonter les problèmes de performances liés à l’accès

non-contigu aux données et à la latence élevée des mémoires externes. Pour y parvenir, nous

utilisons les propriétés d’accès aux données propre aux motifs computationnels pour identifier

automatiquement les conditions de synchronization nécessaires, et ainsi générer ces designs

à modules multiples à partir des mêmes spécifications fonctionelles de haut-niveau décrits

par le langage dédié.

Porté par des contraintes énergétiques et de performances, le monde d’aujourd’hui se tourne

de plus en plus vers les technologies reconfigurables (comme les FPGA) pour satisfaire les

besoins computationnels de demain. Dans cette perspective, cette thèse adresse un problème

essentiel qui est de rendre l’infrastructure computationnelle de demain programmable aux

developpeurs logiciels.

Mot-clés— Synthèse matériel à haut-niveau, langages dédiés, motifs computationnels, FPGA,

calcul reconfigurable
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1 Introduction

Today, we are living in an age where the way we generate wealth, net- FPGAs can efficiently
tackle the data del-
uge

work socially, search for information, conduct research and advance

science have all become increasingly data-driven. Naturally, we have

come to rely heavily on our computing facilities [Bell et al., 2009, An-

derson, 2008] to process this data. In 2007, humankind stored about

2.9×1020 bytes of optimally compressed digital data (growing at a rate of

23% annually) and were scaling up the sizable computing infrastructure

at a rate of 58% annually [Hilbert and López, 2011]. Now, the increasing

cost of operating this massive and growing computing infrastructure

has become a major concern [Koomey et al., 2009]. Microprocessors are

at the heart of almost all of our computing infrastructure today. Yet, mi-

croprocessors have been shown to be quite lacking in energy efficiency

compared to Application-Specific Integrated Circuits (ASICs). Addition-

ally, researchers have shown that application-specific modifications to

the architecture can considerably improve both the energy-efficiency

and performance of microprocessors [Hameed et al., 2010]. However,

architecture of the microprocessor was designed to be flexible and per-

form well for a wide variety of computing tasks for different applications.

Hence, it is infeasible to make application-specific alterations to the

processor architecture without affecting its suitability to handle this

large range of workloads. Field Programmable Gate Arrays (FPGAs)

are devices that were designed to be programmed into customized

computing architectures. Furthermore, researchers have shown that

FPGAs can implement application-specific architectures that achieve

both high energy-efficiency and computing performance [Kestur et al.,

2010, Betkaoui et al., 2010, Fowers et al., 2012]. The broad objective of

1



Chapter 1. Introduction

this thesis is to make it easier to develop FPGA applications and make

reconfigurable technology more accessible to users.

FPGAs are used in a number of application areas, including communi-FPGA users need
to have hardware
design expertise

cation, aerospace and defense, automotive, consumer electronics and

medicine, but often as ASIC replacements for low volume products or

as prototyping platforms. Despite their potential as a high performance

and energy efficient computing unit, they are seldom used within data-

centers or other general purpose computing infrastructure [Putnam

et al., 2014]. To a large extent, this is due to the complicated workflow

for developing and implementing applications on an FPGA which is

markedly different from any software development flow.

The application implementation workflow for FPGAs is illustrated in

Figure 1.1. The first step, as shown in the figure, is to develop a hard-

ware design at a Register Transfer Level (RTL) from high-level functional

specifications. This is often a tedious manual process that can easily

take a few months. During this step, in addition to the hardware de-

sign, one needs to write a test bench to verify correctness of the design

and create constraint files that hold the timing and physical placement

constraints needed to implement the design on the FPGA. Once the

design is verified through simulation, the synthesis step compiles the

RTL description into a gate-level netlist and maps these gates to the

physical components on the FPGA, such as LUTs, FFs, BRAMs and DSPs.

The subsequent place and route step finds physical placements for the

components on the device and determines how the wires between these

components can be routed on the FPGA’s configurable routing fabric.

Static timing analysis is performed on the placed and routed design to

check if the design meets the timing constraints set by the user. If the

timing constraints are satisfied, the generate bitstream step produces

the bitstream file that is used to program the FPGA. This file contains

the configuration for the logic and routing components to implement

the hardware design on the device. This FPGA design implementation

workflow bears a lot of similarity to the standard ASIC development flow

and warrants a significant amount of hardware design expertise. There-

fore, application developers without any hardware design background

find it difficult, if not impossible, to develop FPGA applications.

2



1.1. High-Level Synthesis

Figure 1.1: FPGA design development flow. In the typical FPGA design development flow, the user
translates functional specifications into a hardware design, a tedious and error-prone process that can
take months. Additionally, steps such as specifying the physical and timing constraints, verifying the
design through simulation, and validating and correcting the implementation based on static analysis
are all performed at a circuit-level. These aspects make this development flow extremely hard for users
without hardware design expertise.

1.1 High-Level Synthesis

Developing the hardware design in RTL is perhaps the biggest obstacle HLS tool users also
need hardware design
knowledge

that deters users without hardware design expertise from using FPGAs.

Even for hardware design experts, developing the RTL specifications is

a laborious task that limits their productivity and their ability to scale

up to larger design sizes while coping with time-to-market pressures. In

recent years, there has been a more concerted effort from the industry

to tackle this problem and we have seen the emergence of new High-
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a) General High Level Synthesis Flow b) Domain-Speci c High Level Synthesis Flow
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Figure 1.2: Design generation using HLS. a) High-Level Synthesis (HLS) tools enable users to generate
hardware designs from functional specifications in high-level languages, such as C, C++, SystemC
and OpenCL, and, therefore, requires less effort and time. b) Domain-specific synthesis tools focus
on synthesizing hardware designs for specific application areas. They often use a Domain-Specific
Language (DSL) for input specifications, perform optimizations based on the domain knowledge and
create complete hardware systems for the specific application. This enables them to achieve improved
productivity, better design quality and make designing hardware more accessible to users with no
hardware design knowledge.

Level Synthesis (HLS) tools. These tools, as illustrated in Figure 1.2a,

can generate hardware designs from high-level specifications written in

languages such as in C, C++, SystemC and OpenCL, to significantly en-

hance the productivity of the user [Xilinx, 2013a, Czajkowski et al., 2012,

Xilinx, 2015]. While most of these tools can produce hardware designs

from high-level functional specifications, they still require the user to

refactor the input specifications and provide additional optimization

directives to produce good quality hardware designs. However, users

require a considerable amount of hardware design expertise to specify

these directives and, therefore, these tools are ineffective in enabling

non-hardware-experts to develop FPGA applications.

Some high-level synthesis tools, such as Spiral [Milder et al., 2012],Domain-specific syn-
thesis tools can al-

leviate the need for
hardware design ex-

pertise to use FPGAs

HDL Coder [The MathWorks, 2015], Optimus [Hormati et al., 2008], and

MMAlpha [Derrien et al., 2008] target specific application domains in

which they make designing hardware more accessible to their users. As
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illustrated in Figure 1.2b, compared to other HLS tools domain-specific

tools offer the following three important advantages:

1. They often use a Domain-Specific Language (DSL) for input spec-

ifications which provides a suitable syntax and abstraction to

make it easier for domain experts to develop applications.

2. They leverage the detailed knowledge of the application domain

properties to perform optimization and achieve improved quality

of results.

3. Due to their domain specialization, these tools can automati-

cally package the hardware designs they generate with necessary

integration facilities (e.g., hardware interfaces, software Applica-

tion Programming Interface (API) and drivers) to make it directly

usable for the intended application.

Therefore, these tools hold great potential in making reconfigurable

technology more accessible to users in different application domains.

Despite these advantages, developing domain-specific tools incurs sig-

nificant effort, as well as cost, and it makes this approach impractical in

many application areas.

1.2 Objective

Our objective in this thesis is to develop a methodology to alleviate the

cost and effort needed to develop domain-specific hardware synthesis

tools. To demonstrate this methodology, we develop an infrastructure

that can be used to generate complete hardware systems from high-level

DSL applications.

1.2.1 Building Domain-Specific Hardware Synthesis Tools With
Low Effort

Developing a new domain-specific HLS tool is a significant effort be- Language embedding
and type-directed
staging can reduce
domain-specific tool
development cost

cause it often involves designing an entirely new DSL, compiler, devel-

opment and debugging environments. However, if the new language

is developed as an embedded DSL [Mernik et al., 2005] (i.e., the DSL is

created by extending a host language by adding domain-specific lan-

guage elements), it can share some of the infrastructure of the host

language, such as type system, module system, development and de-
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bugging environments, and avoid repeating this effort. Additionally, we

can use type-directed staging [Carette et al., 2009] to reduce the effort

needed to develop a compiler for programs written in this new DSL. In

our effort, we explore the benefits of this approach using Scala [Oder-

sky et al., 2004] as the host language and Lightweight Modular Staging

(LMS) [Rompf and Odersky, 2012] infrastructure for developing the com-

piler. These techniques have been successfully employed for software

development [Sujeeth et al., 2014, Ofenbeck et al., 2013, Ackermann

et al., 2012], and we investigate how they can be useful for developing

domain-specific hardware synthesis tools [George et al., 2013]. Addition-

ally, to reduce the repeated development effort for different toolchains,

we propose to develop the tool in a modular fashion by creating reusable

optimization modules; these modules, once developed, can be reused

in a completely different toolchain with very little effort.

1.2.2 Generating Efficient Hardware Designs from Computa-
tional Patterns

Developing new domain-specific tools will become appreciably eas-Computational pat-
terns can bridge

the divide between
high-level appli-

cations and high-
performance designs

ier if they can share a common infrastructure for generating hardware.

Furthermore, to enable software developers and domain-experts, who

might be developing domain-specific tools, to benefit from this infras-

tructure, it must not demand hardware design expertise from the user.

After studying applications from different domains, researchers have de-

termined that they often contain a small set of computational patterns

that can be used to express these applications [Asanovic et al., 2006,

McCool et al., 2012]. Computational patterns are simple algorithmic

methods that capture a pattern of computation and communication

which makes them easy to understand and use without any advanced

knowledge. These computational patterns have well known properties,

such as parallelism, dependency between operations or the nature in

which they produce or consume data. There are compilation infras-

tructures that can leverage these properties to efficiently implement

high-level applications on a variety of different platforms, including

Chip Multiprocessors (CMPs), Graphic Processing Units (GPUs) and clus-

ters [Sujeeth et al., 2014, Catanzaro et al., 2011]. Similar techniques

can be used to map applications on FPGAs where the properties of

the computational patterns can be exploited to produce efficient cir-

cuit structures to implement them [George et al., 2014]. For instance,
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computational patterns with a large amount of structured parallelism

can leverage the spatial parallelism in the FPGA. Patterns with no par-

allelism can also benefit from architecture customization, but since

these patterns often offer limited scope for acceleration, they can be

implemented on a shared processor to conserve resources. When the

application is written in a DSL, the domain knowledge can be utilized

to perform optimizations as well as to select a suitable architecture

template for the system-level integration. This can enable a tool to

automatically generate complete hardware systems to implement the

application.

1.2.3 Generating Multi-Module Hardware Designs from Com-
putational Patterns

Parallel architectures such as CMPs, GPUs and FPGAs perform particu- Computational pat-
terns can enable
automated tools to
leverage the spatial
parallelism of the
FPGA

larly well for applications that have sufficient parallelism to leverage all

the processing resources on the device. To achieve good performance,

the implementation must also ensure a high-bandwidth supply of data

to keep the parallel processing resources busy. But, non-sequential

data access patterns and long memory access latencies can often cause

data starvation at the processing resources and significantly hamper

the performance of applications. Parallelizing computation across mul-

tiple independent hardware modules is a way to tackle this problem

and one that been successfully used in CMPs and GPUs. To achieve

this on an FPGA, the application developer must correctly identify how

shared data is accessed from different modules and use synchroniza-

tion schemes to guard access to this data. This can be difficult for large

applications and there can be issues such as false sharing [Bolosky and

Scott, 1993] that make this process even harder. When an application

is decomposed into computational patterns, these patterns capture

the data access properties within the application. We leverage these

properties to automatically identify when synchronization is needed

among the modules and how these synchronization requirements can

be relaxed [George et al., 2015]. Armed with this knowledge, a tool can

automatically generate complete hardware designs where the computa-

tion is parallelized across multiple modules. Moreover, these designs

employ a dynamic workload partitioning scheme to effectively leverage

these modules and deliver performance improvements.
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1.3 Outline

The rest of the thesis is organized as follows.Outline

• Chapter 2 provides some background information on different

HLS approaches and discusses related work.

• Chapter 3 explores the idea of using language embedding and

type-directed staging to reduce the effort needed to develop do-

main specific hardware synthesis flows. We will illustrate how

these ideas can be applied to generate hardware circuits to imple-

ment linear algebra expressions.

• Chapter 4 discusses how decomposing high-level applications

into computational patterns can enable automatic generation of

high performance hardware systems targeting FPGAs. To demon-

strate the approach, we extend the Delite compiler infrastruc-

ture [Sujeeth et al., 2014, Lee et al., 2011] to develop a tool flow

that generates complete hardware systems from high-level func-

tional specifications in a DSL-program.

• Chapter 5 extends the approach developed in Chapter 4 to au-

tomatically generate multi-module hardware systems from the

same high-level DSL-programs. These hardware systems par-

allelize the computation across multiple hardware modules to

deliver improved performance.

• Chapter 6 concludes the thesis and presents some ideas for future

work.
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2 Background and Related Work

2.1 High-Level Synthesis Tools

Developing hardware designs for FPGAs is an effort intensive process Benefits of HLS tools

that can stretch into months. Therefore, there has been widespread

interest in developing HLS tools to alleviate this development effort

and make reconfigurable technology more accessible to application

developers. HLS tools enable users to synthesize hardware designs from

high-level specifications in languages such as C [Kernighan et al., 1988],

C++ [Stroustrup, 1986], OpenCL [Stone et al., 2010], CUDA [NVIDIA

Corporation, 2015] and Java [Arnold et al., 1996]. Compared to designing

in RTL, the benefits of using HLS tools include the following:

1. Productivity and scalability: HLS tools improve productivity since

they accept input specifications at a higher level of abstraction

and generate RTL specifications for a hardware design, typically in

Hardware Description Languages (HDL) such as VHDL or Verilog.

This enables users to develop large scale designs at a high level of

abstraction.

2. Design space exploration: Since HLS tools can reduce the design

development time, users can leverage these tools to quickly eval-

uate many design options and, thereby, explore a much larger

design space.

3. Accessibility to non-hardware-experts: Many HLS tools use high-

level languages (i.e., C, C++, OpenCL, CUDA and Java) which are

widely used for software development. Therefore, these tools are

more comfortable to use for people with software development
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backgrounds. Although these tools often require hardware design

expertise to develop good quality designs, the higher level of ab-

straction offered by these tools make them much easier to learn

for new users.

4. Debugging and verification efforts: Many HLS tools also help users

to easily generate testbenches1 to verify the correctness of the gen-

erated hardware designs. Since the HLS tools often use popular

software development languages, users can also leverage widely

used software debugging facilities to easily verify the high-level

specifications. More recently, there are also efforts at integrating

debugging infrastructure into HLS tools to make it easier to debug

the generated designs without delving down to the circuit-level

details [Calagar et al., 2014, Goeders and Wilton, 2015].

5. Portability: Starting from the same input specifications, HLS tools

can automatically generate the RTL specifications that are tuned

to different implementation targets, e.g., FPGA devices from dif-

ferent product families, vendors or with different resource con-

straints. Therefore, these tools offer a design portability that is

seldom possible when developing the design directly in HDL.

Due to these benefits, there has been many efforts, both in academiaHistory of HLS tools

and industry, to develop such HLS tools. Martin and Smith [Martin and

Smith, 2009] provide a good overview of the history of HLS tools. Accord-

ing to the authors, HLS tools have evolved over three generation. During

the first generation, tool development occurred mostly in academia and

much of the core algorithmic research occurred during this period. In

the second generation, the industry took active interest in HLS tools and

many commercial tools were developed, but they did not have much

economic success, largely because of the bad quality of results and

wrong choice of specification languages. In the following third genera-

tion, which started in early 2000s, there was a change in focus and many

new HLS tools were developed that take specifications in languages

such as C, C++ and SystemC to produce good quality hardware designs;

This has improved adoption of HLS tools among system-level designers

who already have a significant amount of hardware design expertise.

However, to further improve the adoption, we need to develop tools

that will permit software developers and application domain experts

1Testbenches contain a set of input stimuli as well as expected responses and are
used to verify the correctness of a hardware circuit
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to create good quality hardware designs despite their lack of hardware

design knowledge.

As a result of the rich history, today there exists a large number of HLS Survey and classifica-
tion of HLS toolstools, each focusing on different aspects, like target application domain,

implementation architectures and input languages. Nane et al. [Nane

et al., 2016] and Meeus et al. [Meeus et al., 2012] have provided good

overviews of the rich selection of hardware synthesis tools that exist

today, and Bacon et al. [Bacon et al., 2013] classified some of these tools

based on the programming languages they use. We are interested in

tools that use domain-specific languages to make programming recon-

figurable hardware more accessible to application domain experts and

software programmers. Therefore, in this section, we try to classify these

efforts into two main categories: general-purpose hardware synthesis

tools and domain-specific hardware synthesis tools.

2.1.1 General-Purpose Hardware Synthesis Tools

The most popular approach today is to offer HLS tools that take input

specifications in a C-like language, such as C, C++, OpenCL and CUDA.

Among them, the traditional approach was to develop tools to use se-

quential variants of C, such as C and C++. Later, with the increasing

prominence of parallel programming methodology, there have been

efforts to use parallel programming models, such as PThreads [Nichols

et al., 1996] and OpenMP [Dagum and Menon, 1998], and later, explicitly

parallel variants to C, such as OpenCL and CUDA. In addition to these,

there have been efforts to use other general-purpose programming lan-

guages, such as Python [Van Rossum and Drake, 2003], Java [Arnold

et al., 1996], Haskell [Thompson, 1999] and custom developed languages

for hardware synthesis.

Synthesis from Sequential C-Like Languages

Languages such as C and C++ offer direct and low-level control while Using sequential C-
like languages for
hardware synthesis

developing software for processors. Consequently, these languages are

often used to develop performance critical parts of programs. In areas

such as embedded systems, these languages are almost defacto stan-

dards for application development. Since ASICs and FPGAs can offer

improved performance and energy efficiency compared to processors,
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there is a lot of interest in developing tools to help port the critical parts

of such applications into hardware designs that can be implemented

as an ASIC or on an FPGA. Therefore, there are many HLS tools that

generate hardware designs from specifications in C and C++. Many

of these tools also support SystemC [Grötker et al., 2010] which was

developed as set of C++ classes to make it easier to model hardware

circuits in C.

Tools that accept C, C++ or SystemC for input specifications include

Vivado High-Level Synthesis [Xilinx, 2013a], Handel-C [Mentor Graph-

ics, 2015], Catapult [Calypto Design Systems, 2014], Synphony [Syn-

opsys Inc., 2014], CyberWorkBench [Wakabayashi, 2005], ROCCC [Vil-

larreal et al., 2010], LegUp [Canis et al., 2011] and Trident[Tripp et al.,

2007] to name just a few. Among them, Vivado High-Level Synthesis,

Handel-C, Catapult, Synphony and CyberWorkBench are commercial

tools. Trident focuses on mapping computations rich in floating-point

operations on FPGA. ROCCC and LegUp are open-source tools that are

being developed in the academia; among them LegUp can generate

standalone hardware implementations as well as processor-accelerator

architectures targeting different FPGAs.

FPGA implementations often leverage the spatial parallelism of theDrawbacks

device to improve the performance of application. However, extract-

ing parallelism from sequential C-programs is hard [Cong et al., 2011].

Therefore, many of these tools require the user to refactor the code and

provide additional information (e.g., compiler directives and configura-

tion parameters) to generate parallel hardware. This makes these tools

harder to use for the developer.

Synthesis using Parallel Programming Models

FPGAs excel in parallel execution by performing operations in a spa-Using parallel pro-
gramming models for

hardware synthesis
tially parallel manner. Therefore, researchers have tried to use parallel

programming models, such as OpenMP [Dagum and Menon, 1998] and

PThreads [Nichols et al., 1996], to develop applications for FPGAs. These

models extend the sequential C-like languages to enable users to pro-

grammatically express the parallelism in the computation. Additionally,

this also makes the specifications portable between the different tools

since the users no longer have to use ad hoc optimization directives or

configuration parameters that differ from one tool to another. Efforts
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to synthesize hardware using parallel programming models include

Leow et al. [Leow et al., 2006] who automate the generation of hard-

ware systems by producing Handel-C and VHDL code from OpenMP

programs; Cilardo et al. [Cilardo et al., 2013] who generate C code from

OpenMP program and use CoDeveloper [Antola et al., 2007] (another

commercial C-to-HDL tool) to generate hardware; and Choi et al. [Choi

et al., 2013] who achieve the same from programs using both OpenMP

and PThreads by extending LegUp to generate hardware systems.

Other efforts have implemented multi-processor systems on FPGAs and Using parallel pro-
gramming models to
target multi-processor
systems on FPGAs

utilized the parallel programming models to program these systems.

Among them, efforts such as Hthreads [Andrews et al., 2008], Fuse [Is-

mail and Shannon, 2011] and ReconOS [Agne et al., 2014] use PThreads

and provide generalized operating system services to systems that sup-

port hardware and software threads. SPREAD [Wang et al., 2013] utilizes

PThreads and provides an integrated solution for streaming applica-

tions.

These efforts, especially those that target multi-processor systems, have Drawbacks

been successful in enabling software developers to develop and run

applications on FPGAs. But, the common problem with these efforts is

that they place the tedious and error-prone task of identifying synchro-

nization requirements and correctly parallelizing the application on the

programmer. In the case of HLS tools, the users may need to understand

details of the generated hardware design to perform optimizations. The

processor-based approaches do not fully exploit the application spe-

cific customizability offered by FPGAs. Since they use processors as

computing units, they also suffer from the energy-inefficiencies of this

general-purpose, instruction driven architecture [Hameed et al., 2010];

additionally, these inefficiencies are now worsened because the imple-

mentation target is an FPGA and not an ASIC [Kuon and Rose, 2007].

Synthesis from Parallel C-Like Languages

The growing popularity of using GPUs for general-purpose compu- Using parallel C-
like languages for
hardware synthesis

tation saw the emergence of new parallel C-like languages such as

CUDA [NVIDIA Corporation, 2015] and OpenCL [Stone et al., 2010]

that were developed to program these devices. Compared to the se-

quential variants, these languages make the parallelism explicit and

therefore much easier for compilers to generate implementations tar-
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geting parallel architectures, including FPGAs. Papakonstantinou et

al. [Papakonstantinou et al., 2009] demonstrate that CUDA can be used

for programing FPGAs. Commercial tools to generate hardware designs

from OpenCL programs include Xilinx’s SDAccel [Xilinx, 2015] and Al-

tera SDK for OpenCL [Czajkowski et al., 2012]. SOpenCL [Owaida et al.,

2011] is an academic tool that generates hardware designs from OpenCL

program.

Languages such as OpenCL and CUDA are good to program applicationsDrawbacks

that have regular, fine-grained data parallelism. Therefore, programs

written in these languages can be efficiently mapped to regular archi-

tectures such as GPUs and benefit from the vector processor units on

modern CPUs. In addition to regular, fine-grained parallelism, FPGAs

excel when applications have irregular parallelism and can benefit from

architecture customization, such as application-specific memory or

compute structures. More recently, extensions, such as OpenCL Pipes,

have been proposed and they can potentially improve the suitability

of these languages for developing FPGA applications [Altera Corpora-

tion, 2015]. However, such extensions also complicate the application

development process since there are now many ways to write the same

application, each with a different trade-off between cost and perfor-

mance.

HLS tools using the different variant of C-like languages can produceCommon problem
with C-like languages good results [Andrade et al., 2015, Rupnow et al., 2011, Cong et al.,

2011, Chen and Singh, 2012]. However, a common problem in these

approaches is that their input languages are too low-level; therefore, the

user require to have a detailed knowledge of the optimization potential

of the application and manually perform some optimizations, such as

refactoring the program or adding compiler directives [Rupnow et al.,

2011]. There are also sound arguments against using C-like languages

for HLS [Edwards, 2006]. Therefore, researchers have investigated using

other languages for hardware synthesis.

Synthesis from Other General-Purpose Programming Languages

Researchers have synthesized hardware designs from other program-Using other general-
purpose languages for

hardware synthesis
ming languages, besides the C-like languages noted above. These efforts

include Kiwi [Greaves and Singh, 2008] which uses a parallel program-

ming library to generate hardware circuits from a parallel program
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in C# [Hejlsberg et al., 2003]; MyHDL [Decaluwe, 2004] that models

concurrency of hardware circuits with generator functions in Python;

JHDL [Bellows and Hutchings, 1998] that uses Java to model hardware

circuits; and Lava [Bjesse et al., 1998] which leverages functional pro-

gramming language features, such as monads and type classes, to gen-

erate hardware circuits. However, among them, MyHDL and JHDL start

from a circuit-level description of the hardware design and offer only a

limited productivity advantage.

Synthesis from Custom Programming Languages

Other researchers have tried to create new languages to generate hard- Using custom lan-
guages for hardware
synthesis

ware. Among them, BlueSpec [Nikhil, 2004] uses guarded atomic ac-

tions to express concurrent FSM and they excel in generating control

dominated circuits. Chisel [Bachrach et al., 2012] was developed as a

language embedded in Scala [Odersky et al., 2004] and it provides a

more sophisticated language for hardware development. Both these

approaches improve the designer productivity compared to using Ver-

ilog or VHDL; however, they require the designer to step down from the

abstraction level of algorithms to think more in terms of the hardware

design and its functioning. Lime [Auerbach et al., 2010] is a Java-based

language that uses task-based data-flow programming model to target

heterogeneous system that include CPUs, GPUs and FPGAs. When tar-

geting FPGAs, the tasks in Lime becomes separate hardware circuits

that are interconnected according to a task-graph.

These tools improve the productivity of the designer and, in many cases, Drawbacks

produce reasonably good results. However, the common problem with

all general-purpose tools is that they lack domain-knowledge and there-

fore cannot perform domain-specific optimizations making it difficult

to tune the generated hardware design for specific application areas.

These tools, therefore, depend on the users to appropriately refine the

input specifications, which requires hardware design knowledge, and

guide the tool to produce better quality designs. This makes the tool

less useful to application domain experts or users with a software devel-

opment background.
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2.1.2 Domain-Specific High-Level Synthesis Tools

In contrast to general-purpose tools, domain-specific tools focus onBenefits of domain-
specific languages for

hardware synthesis
specific application domains where they make hardware synthesis eas-

ier and more accessible for their users. Compared to general-purpose

tools, these tools offer the following advantages:

1. They often use a custom DSL for input specifications. These DSLs

have a syntax that makes it easier to express applications in the

domain and, thereby, improves the productivity of the user.

2. They can leverage advanced domain-knowledge to perform op-

timizations and/or have custom implementations of common

domain operations. This enables them to produce better quality

results compared to general-purpose tools.

These include tools such as PARO [Hannig et al., 2008] and MMAl-Tools using domain-
specific languages for

hardware synthesis
pha [Derrien et al., 2008] which focus on loop transformations to imple-

ment highly parallel systems; Spiral [Milder et al., 2012] which synthe-

sizes hardware for linear transforms in signal processing applications;

Optimus [Hormati et al., 2008] which focuses on streaming applica-

tions; and HIPAcc [Reiche et al., 2014] that targets image processing

applications. All these tools focus on specific application areas and use

custom DSLs to elicit input specifications. Some commercial tools in

this category include HDL Coder [The MathWorks, 2015] which takes

Matlab program or Simulink models and generates hardware designs for

them; LabView [Bishop, 2014] that provides a graphical user interface to

develop designs for select application areas, such as signal processing,

instrument control, embedded system monitoring and control; and

SDNet [Brebner and Jiang, 2014, Xilinx, 2014] from Xilinx which focuses

on networking applications.

Some efforts have also tried to use existing general-purpose program-

ming languages to target specific application domain. These include

efforts such as Gaut [Coussy et al., 2008] that takes specifications in C

but performs optimizations to target signal processing, and Streams-

C [Gokhale et al., 2000] which also uses C and focuses on stream pro-

cessing.

While domain-specific tools have huge potential in making FPGA moreReducing the ef-
fort to develop

domain-specific tools
accessible to users without hardware design knowledge, the high effort

required to build these tools makes this approach impractical in many
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areas. In the software domain, research efforts demonstrate that lan-

guage embedding and type-directed staging [Rompf and Odersky, 2012]

based approaches can be used to reduce domain-specific tool devel-

opment effort. These efforts include the Delite project [Lee et al., 2011,

Sujeeth et al., 2014] which targets portability and high performance

for applications running on heterogeneous platforms; a software-only

subset of Spiral [Ofenbeck et al., 2013]; and Jet [Ackermann et al., 2012]

which targets BigData computation. Inspired by these results, we in-

vestigate how similar ideas can be applied to reduce the effort needed

to develop hardware synthesis tools [George et al., 2013]. Additionally,

we show that developing these tools using reusable optimization mod-

ules and integrating with existing general-purpose hardware generation

tools can make it significantly easier to build such domain-specific

tools.

As noted above, integrating with existing general-purpose HLS tools can Need for developing
hardware synthesis
tools that do not
require hardware
design expertise

significantly lower the effort needed to develop new domain-specific

hardware synthesis tools. But, the general-purpose HLS tools require

the user to tune the input specification (e.g., by refactoring the code or

supplying additional optimization directives) based on hardware design

expertise to produce good quality results [Rupnow et al., 2011]. People

developing domain-specific tools, however, might be domain-experts

or software developers who lack hardware design skills. Therefore, to

make it easier for them to create new domain-specific tools, we need

to develop a hardware generation tool that does not require hardware

design expertise to use and can yet produce good quality designs.

2.2 Generating Hardware Designs from Computa-

tional Patterns

2.2.1 Overview of Computational Patterns

On analyzing applications from different domains, researchers have Understanding com-
putational patternsobserved that they contain a few unique patterns of computation and

communication. Computational pattern [Asanovic et al., 2006, McCool

et al., 2012] are algorithmic methods that capture patterns of computa-

tion and communication. These patterns have well defined properties,

such as parallelism in the operations, interdependence between elemen-

tal operations, data access patterns and data-sharing characteristics.
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More importantly, these properties can be leveraged to efficiently map

these patterns on different computational architectures, such as CMPs,

GPUs, clusters and even FPGAs [Newburn et al., 2011, Sujeeth et al.,

2014, Chambers et al., 2010, George et al., 2014].

2.2.2 Using Computational Patterns for Processor-Based Ar-
chitectures

As noted above, the well defined properties of the computational pat-Programming
processor-based ar-

chitectures from com-
putational patterns

terns make it easy to optimize them and map them efficiently on a

variety of different architectures. For instance, Intel’s Array Building

Blocks [Newburn et al., 2011] uses data-parallel patterns to generate

parallel code for CMPs; Copperhead [Catanzaro et al., 2011] uses pat-

terns to generate CUDA code from a subset of Python to target GPUs;

DryadLINQ [Yu et al., 2008] takes programs in LINQ [Meijer et al.,

2006] and executes them over clusters using Dryad [Isard et al., 2007];

Delite [Lee et al., 2011, Sujeeth et al., 2014] decomposes high-level DSL

programs to patterns and executes them on heterogeneous machines

containing CMPs and GPUs as well as on clusters; and FlumeJava [Cham-

bers et al., 2010] from Google provides a Java library to develop applica-

tions which it decomposes into pipelines of MapReduce operations that

can be executed on their MapReduce framework [Dean and Ghemawat,

2008].

These efforts demonstrate that the well understood properties offered

by computational patterns can be used to generate implementations

for different targets. More importantly for our purpose, as seen in the

case of Delite, high-level compilers can decompose a DSL program

into these computational patterns. Therefore, if we develop a toolchain

to generate hardware designs from computational patterns, it can be

used along with a high-level compiler to compile DSL programs into

hardware designs.

2.2.3 Using Computational Patterns for Hardware Synthesis

Computational patterns have been used before in the context of hard-Hardware genera-
tion from compu-
tational patterns

ware designs. Patterns were used to analyze the amenability of acceler-

ating algorithms on FPGAs before implementing them manually [Na-

garajan et al., 2011]. Some parallel programming models (e.g., OpenMP)
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2.2. Generating Hardware Designs from Computational Patterns

and languages (e.g., Lime) have constructs to express some patterns,

such as map and reduce, to reveal the parallelism in the computation.

Developing a tool to generate hardware from computational patterns

has the following advantages:

1. The tool can leverage the well understood properties of the com-

putational patterns to produce high-quality hardware implemen-

tations for them.

2. Since the computational patterns are algorithmic methods, they

are easily understood by domain-experts or software developers

who can use the tool to generate hardware designs. Additionally,

they can also develop high-level compilers that will decompose

DSL-programs into computational patterns and generate hard-

ware designs.

In our work, we decompose high-level DSL applications into comptua-

tional patterns and develop a toolchain to generate hardware designs

from these patterns [George et al., 2014]. To generate high performance

designs from this toolchain, we leverage the properties of the patterns

and perform additional compiler analysis to infer optimizations and

generate a well structured HLS code with all the necessary optimization

directives. Our implementation uses Vivado High Level Synthesis [Xilinx,

2013a] to generate hardware modules and Vivado Design Suite [Xilinx,

2013b] to generate bitstreams for the FPGA. Since we automatically gen-

erate the input to the HLS tool from the high-level patterns, we can also

reduce the syntactic variance in the generated code and, consequently,

its impact on the performance of the generated design [Chaiyakul et al.,

1992]. Furthermore, we integrated this toolchain with Delite [Lee et al.,

2011, Sujeeth et al., 2014], an extensible compiler infrastructure that can

be used to easily develop DSLs for new application domains, to compile

high-level DSL programs in Delite to complete hardware systems. To

generate such complete systems, our approach leverages the domain-

awareness provided by the DSL to select a suitable system-architecture

template for the implementation.

Later, we extended this methodology to automatically generate designs Multi-module paral-
lelization from com-
putational patterns

that parallelize computations across multiple independent hardware

modules [George et al., 2015]. This enables us to utilize the parallelism

revealed by the patterns to overcome performance bottlenecks of de-

signs that only use a single HLS-generated hardware module for each
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parallel operation. These include the underutilization of the available

system bandwidth either due to the nature of computation in the mod-

ule [Zhang et al., 2015] or due to the data access patterns when coupled

with the long external memory access latency. Our approach exploits

the properties of the pattern to automatically parallelize computation

and uses a dynamic load-balancing strategy to leverage multiple mod-

ules to improve the performance of the application. An orthogonal

approach proposed by Winterstein et al. [Winterstein et al., 2015] is to

apply program analysis on the HLS code to identify non-overlapping

memory regions and parallelize applications.

The multi-module parallelization can benefit applications with irregular

data access patterns. Therefore, there have been efforts to develop spe-

cialized HLS tools that use techinques such as deep pipelining [Halstead

and Najjar, 2013] and context switching [Tan et al., 2014] to improve

the performance of such applications. These techniques are also or-

thogonal to our approach and can be used in conjunction with our

work.

Subsequently, Prabakar et al. [Prabhakar et al., 2015] proposed usingOther hardware
generation efforts

from computa-
tional patterns

tiling and metapipelining optimizations to improve the quality of the

designs generated from computational patterns; they used Delite as the

front-end and Maxeler’s MaxCompiler [Maxeler Technologies, 2011] to

generate hardware designs. Ma et al. [Ma et al., 2015] have shown that

by decomposing high-level applications into a library of patterns, they

can utilize the dynamic reconfiguration ability of FPGAs to enable run-

time interpretation of application programs. These efforts reiterate the

benefit of generating hardware designs from computational patterns.
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3 Making Domain-Specific Hardware
Synthesis Tools Cost-Efficient

High-level synthesis tools can enhance productivity of FPGA applica- Advantages of
domain-specific toolstion developers. Among them, tools such as Spiral [Milder et al., 2012],

HDL Coder [The MathWorks, 2015], Optimus [Hormati et al., 2008], and

MMAlpha [Derrien et al., 2008] target specific application domains in

which they make designing hardware even more convenient and acces-

sible to their users. To achieve this, they utilize a high-level Domain-

Specific Language (DSL) for the input specifications, such as SPL for

Spiral, Matlab/Simulink design for HDL Coder, StreamIt for Optimus

and Alpha for MMAlpha, which is more natural to express the applica-

tions they target. Additionally, many of these tools also leverage domain

knowledge to optimize the hardware designs and deliver better design

quality compared to general-purpose tools. A simple tool for synthesiz-

ing matrix expressions into hardware circuits can help us to understand

these advantages: Firstly, using a DSL that uses concepts like matrices

and operations on matrices makes expressing the input design easy,

especially for domain-experts. Secondly, since the tool knows that the

input is a matrix expression, it can automatically choose ideal data

storage formats and operator implementations to ensure higher quality

results compared to general-purpose tools. Lastly, the tool can exploit

its domain awareness, e.g., knowledge of the rules of matrix algebra, to

optimize the design and produce even better results.

3.1 Motivation

Developing a new domain-specific HLS tool is a significant investment Build domain-specific
tools with low effortsince it may involve designing an entirely new DSL, compiler and ap-
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plication development environment, such as IDE and debugging tools;

developing just the compiler would comprise writing a parser, multiple

analysis and optimization phases and output code generators. This

large development effort and, consequently, high cost limits the viabil-

ity of developing new domain-specific HLS tools for new application

domains. However, techniques such as language embedding [Mernik

et al., 2005] and type-directed staging [Carette et al., 2009] can consid-

erably reduce this development effort. In this chapter, we explore the

feasibility of using these techniques to develop domain-specific syn-

thesis tools; we embed the new DSL in Scala [Odersky et al., 2004] and

utilize the Lightweight Modular Staging (LMS) [Rompf and Odersky,

2012] infrastructure for developing the compiler.

As an illustration of this approach, we create an HLS flow to synthesizeCase study: hard-
ware synthesize from

matrix expressions
matrix expressions into hardware designs. This flow is composed of

two optimization modules, one performing optimizations at the matrix-

level and the other at the level of matrix elements (scalar-level). Using

this flow, we demonstrate the flexibility of the approach by showing

how we can easily reuse the optimization modules and by integrating it

with external tools like LegUp [Canis et al., 2011], a C-to-RTL compiler,

and FloPoCo [De Dinechin and Pasca, 2011], an arithmetic core genera-

tor. While we present the concepts using a specific HLS flow, they are

indeed quite general and can be used to create domain-specific tool-

chains and/or to augment existing tool-chains with domain-specific

optimizations with a very reasonable development effort.

The remainder of this chapter is organized as follows. Section 3.2 de-Chapter outline

scribes our modular design approach and Section 3.3 provides a brief

introduction to LMS and our hardware design generation work-flow. In

Section 3.4, we detail the development of the optimization modules.

We evaluate our approach in Section 3.5 using a case study of imple-

menting multiple matrix expressions in hardware. The results show that

we can leverage high-level optimizations to considerably reduce the

implementation area without significant performance loss. We then

summarize our findings in Section 3.6.
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3.2. Compiler Frameworks for Domain-Specific Hardware Synthesis

Figure 3.1: HLS Tool Design Using Traditional Compiler Frameworks. Typical HLS tools use traditional
compiler frameworks like LLVM or GCC which have use one or more low-level IR-formats.

3.2 Compiler Frameworks for Domain-Specific Hard-

ware Synthesis

In this section, we discuss the advantages of LMS over popular open-

source compiler frameworks, such as LLVM [Lattner and Adve, 2004] and

GCC [Stallman et al., 2015], as a common platform for implementing

multiple domain-specific synthesis tools.

Open-source compiler frameworks like LLVM and GCC have been used Overview of tradi-
tional compiler frame-
works

to build HLS tools like Vivado HLS [Xilinx, 2013a], OpenCL to FPGA [Cza-

jkowski et al., 2012], LegUp [Canis et al., 2011] and Trident [Tripp et al.,

2007]. In these HLS tools, as shown in Figure 3.1, the input program is

translated into an Intermediate Representation (IR) format by the front-

end parser. Various analysis and transformation passes then optimize

this IR, maintaining its original format, until the code generator finally

uses it to produce the output RTL code. While HLS tool designers often

extend the framework by adding additional front-end parsers, analysis

and transformation passes, and code generators, they usually use the

same low-level IR-format1 used by the framework since changing it is

not easy. By retaining the IR-format, they can reuse some of the stan-

dard optimizations that are already available in the framework, but it

also introduces limitations.

1GCC does have multiple IR-formats, but they are all at a low-level; therefore, these
multiple IR-formats offer no benefit when performing high-level domain-specific opti-
mizations.
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Figure 3.2: HLS Tool Design Using Our Approach. In contrast to Figure 3.1, we propose using an
architecture based on multiple IR-formats at different levels of abstraction, each used by a unique
optimization module, to enable a more efficient hardware synthesis.

For instance, many domain-specific tools, like Spiral [Milder et al., 2012]Traditional com-
piler frameworks are

unfit for domain-
specific tools

and MMAlpha [Derrien et al., 2008], use multiple IR-formats to perform

high-level, domain-specific optimizations at different levels of abstrac-

tion. One way to achieve this with a single IR is to perform the high-level,

domain-specific optimizations directly at the front-end parser, before

the low-level IR is generated. But, these optimizations are now tied

to the specific IR used by the developer and, consequently, cannot be

reused in a different HLS flow if the IR changes. An alternative is to per-

form the high-level optimizations using a sequence of optimizations on

the low-level IR. But, this can be extremely difficult due to the low-level

nature of the IR; for instance, performing simple optimizations using

rules of matrix algebra is quite easy when the IR represents operations

on matrices, but it becomes hard or just not feasible when the higher-
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3.2. Compiler Frameworks for Domain-Specific Hardware Synthesis

level information is lost. Furthermore, with a single IR-format, there

can also be complex interactions between the different optimization

steps, making it harder to add new optimizations or reuse the existing

ones selectively for an entirely new flow.

In our approach, we use the extensible LMS compiler framework to Proposed approach

define multiple IR-formats, as shown in Figure 3.2, that are often at dif-

ferent levels of abstraction. We create separate standalone optimization

modules for each unique IR-format. The components of an optimiza-

tion module include multiple analysis and transformation passes; an

optional lightweight, front-end parser for the input DSL; and optional

code-generators for the different output formats. Since all these com-

ponents operate only on the unique IR-format used in the module,

we can more easily avoid the possibility of optimizations in different

modules affecting each other; this makes it easier to make changes or

add/remove optimizations. Additionally, as shown in the figure, we

can develop complex HLS flows by connecting multiple optimization

modules to each other using a special variant of a transformation pass

called IR-to-IR transform [Rompf et al., 2013]. Often, the IR-formats

are common across different HLS flows, enabling a natural reuse of

optimization modules.

In the software domain, the Delite project [Lee et al., 2011] employs a Contrast with other
effortssimilar strategy to target code-generation for multi-core CPUs and GPUs

starting from a high-level DSL. In this work, however, we demonstrate

that a similar approach can dramatically lower the cost for developing

domain-specific HLS flows to achieve efficient hardware generation.

In particular, we show that this method of building domain-specific

flows fits naturally into the current EDA ecosystem by enabling an easy

integration of existing IP-cores and the extension of mature HLS flows

by providing domain-specific optimizations.

Using the proposed approach, we can easily develop domain-specific Case study to demon-
strate the benefits of
the approach

hardware synthesis tools like Spiral or MMAlpha by creating different

optimization modules for each level of abstraction at which we want to

apply optimizations. To serve as an example and illustrate this point,

we use a simple tool to synthesize matrix expressions into efficient hard-

ware. We implement this flow using two optimization modules, one for

performing optimizations at the matrix-level and the other for applying

optimizations at the scalar-level. As done in many domain-specific
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tools, we also create a simple DSL to the make it easy for the end-user

to express design specifications. Our matrix-level optimization module

uses an IR that represents computation on matrices (i.e., a matrix-level

IR) to reorder multiplications, apply the distributive property, and elim-

inate common subexpressions at the matrix-level. After that we use an

IR-to-IR transform to decompose this matrix-level IR into a scalar-level

one that represents operations on individual matrix elements. We then

perform standard scalar-level optimizations, such as strength reduc-

tion and common subexpression elimination, as done in many HLS

tools, before generating the output design. Although this is only a well

understood example, it is general enough to show the potential of the

proposed methodology.

3.3 Hardware Synthesis Using Scala and LMS

In this section, we first introduce the LMS framework and discuss how

we use it to efficiently implement the optimization modules. We then

describe our LMS-based workflow for hardware synthesis.

3.3.1 Overview of Scala and LMS

Scala is a novel programming language that brings together functionalCreating a DSL and
custom compiler and object-oriented programming concepts. More importantly, one can

leverage Scala’s syntax, rich type system and module system to embed

other languages in it, giving us a very cost-effective way to create a

custom DSL for our HLS flow. LMS is a library and compiler framework

written in Scala that lends the ability to optimize programs written in

a DSL that is embedded in Scala. More specifically, LMS enables one

to represent the DSL-program in an Intermediate Representation (IR)

format of our choice, a process referred to as staging; additionally, by

using multiple IR-formats that represent the DSL-program at different

levels of abstraction, we can progressively optimize it to achieve high

quality results. In our approach, we group the different optimizations

based on the IR-format that is most suited for their application and

leverage the modularity of the LMS framework to organize them into

separate reusable optimization modules. The framework enables us to

easily compose these optimization modules and to connect them as

required to implement custom HLS flows similar to the one shown in

Figure 3.2.
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Figure 3.3: An LMS-based workflow for hardware synthesis. The input program to the flow consists of
the LMS library, the DSL-program, the custom optimization modules and theRunner function. This
input is compiled using the Scala compiler to generate a Java byte-code which is then executed by the
Java Virtual Machine to produce the optimized, low-level program in the user specified output format
(i.e., C and VHDL in our example). Other tools can be integrated into this flow by interacting with them
during this byte-code execution. We demonstrate this by integrating both LegUp and FloPoCo into our
workflow.

To build a new HLS flow, the tool designer develops custom optimization Building HLS flow
using Scala and LMSmodules and defines aRunner; thisRunner function controls when the

optimizations in these modules are applied to generate the optimized

hardware design. While creating the optimization modules, the tool

designer can specify the following:

1. The DSL used to write the input specifications.

2. The IR-format for representing the DSL-program.

3. The transformation rules and how they are applied to optimize

the IR for the DSL-program.

4. The format for the output produced by the tool.
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To keep the development effort low, the tool designer can also reuse

optimization modules from other flows and interface to external tools

when it is both beneficial and possible.

3.3.2 Hardware Synthesis Workflow Using Scala and LMS

Figure 3.3 shows the workflow we use for synthesizing hardware usingOverview of
the workflow LMS. The input to this flow is composed of the LMS library, the DSL

program, a set of optimization modules that are needed for the specific

HLS flow and the Runner function. This input is compiled using the

Scala compiler into a byte-code format which is then executed on a

standard Java Virtual Machine (JVM) to produce the output design.

When the JVM executes this byte-code, the execution control passes toOperation of
the workflow theRunner function which then orchestrates the process of translating

the high-level DSL-program into optimized hardware. In the flow we

present, this function first uses the facilities in LMS to stage the DSL-

program (i.e., converts it into the IR); coordinates all the optimization

steps, first at the matrix-level and then at the scalar-level; and finally

generates the optimized hardware design as output. The output design

can be generated in different formats as specified by the tool designer.

To demonstrate this, we generate our outputs as a C program, as a com-

binatorial design in VHDL and as a pipelined design in VHDL that uses

arithmetic cores from FloPoCo. In the last case, the tool directs FloPoCo

so that the arithmetic cores are automatically pipelined depending on

the desired operating frequency.

3.4 Hardware Designs from Matrix Expressions

In this section, we highlight the features of LMS and how we use them

to design our optimization modules. To serve as an example, we use

a matrix-level optimization module that tries to reduce the resources

needed to implement a matrix expression in hardware. But, the fea-

tures presented here can be used to develop optimization modules for

other purposes, such as optimizing state-machines, DSP algorithms or

streaming computation.

Figure 3.4 shows an example of the optimization performed by theExample design

matrix-level optimization module. The graph on the left computes
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2 3
2 1
1

-2

Figure 3.4: The graph on the left shows the matrix expression as specified by the user. To implement
this directly in hardware, it would need 22 multipliers and 10 adders. The graph on the right is the same
expression after folding away constants and applying some matrix-level optimizations. Implementing
this design needs only 10 multipliers and 6 adders.

2 ·det (
[

2 1
3 1

]
) ·X 2

2×2 ·Y2×1 +X2×2 ·Y2×1, where X2×2 and Y2×1 are variable

matrices, and it needs 22 multipliers and 10 adders, without consid-

ering the cost to compute det(
[

2 1
3 1

]
). Our module can transform this

expression into the optimized form, shown on the right of the figure, im-

plementing the same expression with only 10 multipliers and 6 adders.

3.4.1 Designing the Optimization Modules

As explained in Section 3.3.1, there are four aspects to developing an

optimization module. We will now see these aspects in the context of

the matrix-level optimization module.

Specifying the DSL

To write matrix expressions efficiently, we can easily define a custom Creating the DSL op-
erators and datatypesDSL, called MatrixDSL, by defining its data-types and operators, as

shown in Figure 3.5; note that the syntax used here is the standard

Scala syntax. In the figure, Mat and T are datatypes we defined for DSL

to represent matrices and matrix elements, respectively. newMat and
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1 //Datatype for matrices
2 type Mat
3 //Datatype for the matrix elements
4 type T = Int
5 //To create a Mat from Rep-type elements
6 def newMat (rows: Int, cols: Int, data: Rep[T]*) : Rep[Mat]
7 //To create a Mat from non-Rep elements
8 def newcMat(rows: Int, cols: Int, data: T*) : Mat
9 //Scalar-Matrix multiplication

10 def mult(x: Rep[T] , y: Rep[Mat]) : Rep[Mat]
11 //Matrix-Matrix multiplication
12 def mult(x: Rep[Mat], y: Rep[Mat]) : Rep[Mat]
13 //Matrix-Matrix addition
14 def add(x: Rep[Mat] , y: Rep[Mat]) : Rep[Mat]

Figure 3.5: Defining the datatypes and operators for the custom DSL (MatrixDSL) that enables users
to write computation on matrices efficiently.

newcMat are operators to compose matrices from scalar values of type T.

Here,mult is an overloaded operator for multiplying matrices or a scalar

with a matrix, and add specifies additions between matrices. The other

data-types and operators of the DSL are defined in a similar manner.

The Rep[] in the code is a special type-qualifier used by LMS that isType-qualifier
for staging used to mark variables that will be part of the constructed IR. Operators

such as newMat, mult and add that produce or use Rep-type variables

also become part of this IR. In LMS, this process of constructing an IR

from a DSL-program is called staging.

Now, we can express the matrix expression illustrated in Figure 3.4 as theThe example de-
sign in MatrixDSL MatrixDSL-program shown in Figure 3.6. Here, lines 2–4 construct the

matrices X2×2, Y2×1 and the constant matrix, C2×2. Lines 5–8 express

the computation on these matrices. As mentioned earlier, only those

operations that either use or produce Rep-type variables are made part

of the IR. Others, like det(C), will be evaluated and replaced by its con-

stant value in the IR. In this manner, LMS performs a partial-evaluation

of the DSL-programs while staging it.
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1 def func(a: Rep[T], b:Rep[T], c:Rep[T], d:Rep[T],
2 e:Rep[T], f:Rep[T])={
3 val X = newMat (2,2, a,b,c,d)
4 val Y = newMat (2,1, e,f)
5 val C = newcMat(2,2, 2,1,3,1)
6 val t1 = mult(X, X)
7 val t2 = mult(2, t1)
8 val t3 = mult(det(C), Y)
9 add(mult(t2, t3), mult(X, Y)) // Return value

10 }

Figure 3.6: MatrixDSL-program for the matrix expression on Figure 3.4 (left).

1 case class MulMM (x:Rep[Mat], y:Rep[Mat]) extends Def[Mat]
2 case class MulSM (x:Rep[T] , y:Rep[Mat]) extends Def[Mat]
3 case class AddMM (x:Rep[Mat], y:Exp[Mat]) extends Def[Mat]
4 override mult(x:Rep[Mat], y:Rep[Mat]) = MulMM(x,y)
5 override mult(x:Rep[T] , y:Rep[Mat]) = MulSM(x,y)
6 override add(x:Rep[Mat] , y:Rep[Mat]) = AddMM(x,y)

Figure 3.7: IR-nodes for some operators defined byMatrixDSL. These nodes are used in the IR-graph
constructed while staging aMatrixDSL-program.

Specifying the IR

LMS provides the facility to represent DSL-programs in an IR-format Specifying the IR for
DSL-programsthat makes it easier to perform optimizations on it. The IR-format used

by LMS is a directed sea-of-nodes graph that captures the dependencies

between operations; this makes it easy to analyze and specify optimiza-

tion rules on it. To represent aMatrixDSL-program as an IR-graph, we

specify the IR-nodes for the operators defined inMatrixDSL, as shown

for themult andaddoperators in Figure 3.7 (lines1–3). We also redefine

the originalmult and add operators (lines 4–6) so that each use of these

operators will instantiate the respective IR-nodes in the IR-graph. In ad-

dition to the IR-nodes for operators used in the DSL-program, we need

to also define IR-nodes that may be created during our optimization

steps. Figure 3.8 shows the graph format IR resulting from staging the

code in Figure 3.6.
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Staging
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Figure 3.8: Staging the DSL-program. This figure illustrates the staging process. On the left we have
the function func() (defined in Figure 3.6) represented in a graph-format and on the right is the
sea-of-nodes IR-format constructed from staging this function.

Performing Analysis and Transformation

Once the DSL-program is expressed as an IR-graph, we can perform

analyses and optimizations on it. LMS provides two mechanisms to

perform optimizations: staging-time macros and IR-transformers.

Staging-time macros are rewriting rules that are applied automaticallyStaging-time macros:
Automatically trig-

gered rewrites
as the IR-graph for the DSL-program is being constructed; therefore,

these are not intended for situations that need rewrite rules to be ap-

plied in a specific order. Here, the tool-flow designer specifies how

certain IR-graph patterns must be rewritten. When any of these pat-

terns appear in the IR-graph, the rewrite rule corresponding to it is

automatically applied (i.e., triggered). LMS uses Scala’s powerful pat-

tern matching construct to make them easy to specify. Figure 3.9 shows

some of the staging-time macros that are applied to themult operators

in the IR-graph on Figure 3.7. Figure 3.10 illustrates the steps through

which these staging-time macros transform the initial IR-graph. Here,

first the rules on lines 12–13 get applied to move the scalar multiplica-

tions −1 ·Y2×1 and 2 ·X 2
2×2 to occur after the matrix multiplication that
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1 // Mult operator
2 def mult(x:Rep[T], y:Rep[T]) = (x,y) match {
3 // Constant propagation: m * n --> (m*n)
4 case(Const(m), Const(n)) => Const(m*n)
5 ... }
6 def mult(x:Rep[T], y:Rep[Mat]) = (x,y) match {
7 // Constant propagation: x * (s*N) --> (x*s)*N
8 case(x, Def(MulSM(s, n))) => mult(mult(x,s),n)
9 ... }

10 def mult(x:Rep[Mat], y:Rep[Mat]) = (x,y) match {
11 // Forward scalar multiply:
12 // X * (s*N) --> s * (X*N)
13 case(x, Def(MulSM(s, n))) => mult(s,mult(x,n))
14 // (s*M) * Y --> s * (M*Y)
15 case(Def(MulSM(s, m)), y) => mult(s,mult(m,y))
16 ... }

Figure 3.9: An example of Scala’s powerful pattern matching construct used to specify optimization
rules in staging-time macros.

initially succeeded it. Now, the rule on line 8 rewrites the two successive

scalar multiplications in 2 · (−1 ·X 2
2×2 ·Y2×1) into (2 ·−1) ·X 2

2×2 ·Y2×1. Fi-

nally, the rule on line 4 performs constant propagation, rewriting 2 ·−1

as −2.

Staging-time macros are very convenient, but they only perform lo- IR-Transformers:
programmer triggered
rewrites

calized rewrites without having a global view of the program and are

automatically applied. To overcome these limitations, LMS provides

the ability to perform analysis passes and IR-transformers. Unlike the

staging-time macros, IR-transformers are explicitly called by theRunner

function and can be preceded by analysis passes that collect additional

information; this enables IR-transformers to have a global view of the

program while performing rewrites. The IR-transformers are similar to

the conventional compiler optimizations found in all compiler infras-

tructures. However, when using LMS, we can leverage Scala’s pattern

matching syntax which makes them easy to specify.

Applying staging-time macros reduced the cost for implementing the Using IR-transformers
for optimizationinitial matrix expression to 14 multipliers and 8 adders, as shown in

Figure 3.10. We can now apply the distributive property of matrices
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MulMM

AddMM

2 MulMM -1
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Figure 3.10: Staging-time macros get automatically applied as the IR-graph for the user design is being
constructed (step shown in Figure 3.8). This figure shows how staging-time macros progressively
optimize one of the operands to theAddMM-node. The figure also shows the line numbers of the rules in
Figure 3.9 that are being applied in each step. (TheNewMatnodes in this graph have been substituted
with just X2×2 and Y2×1 to keep the figure simple to understand).

to further reduce the cost, but this presents us with three options as

shown in Table 3.1. To select the best one, we first run analysis passes

that estimate the cost after applying each of the possible optimizations

and thus gather the necessary global information. With this knowledge,

we now use an IR-transformer to move just the multiplication with X2×2

after the addition to obtain the result shown in Figure 3.4. If we had

to use staging-time macros here, without the global view, we might

easily end up choosing one of the other alternatives, achieving only

sub-optimal results.

In our HLS flow, we also use a variant of IR-transformers, which we callUsing IR-transformers
to connect opti-

mization modules
IR-to-IR transformer, to connect different optimization modules to each

other. For instance, to connect the matrix-level optimization module

to the one at the scalar-level, we use an IR-transformer that rewrites

each matrix-level IR-node using multiple scalar-level IR-nodes. This

effectively represents the matrix-level computation using operations at

the scalar-level enabling us to use standard scalar-level optimizations to
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3.4. Hardware Designs from Matrix Expressions

Table 3.1: Comparison of alternatives after applying staging-time macros

Expression after applying staging-time macros Multipliers Adders
−2 ·X 2

2×2 ·Y2×1 +X2×2 ·Y2×1 14 8

Implementation alternatives Multpliers Adders
X2×2(−2 ·X2×2 ·Y2×1 +Y2×1) 10 6
(−2 ·X 2

2×2 +X2×2)Y2×1 16 10
X2×2(−2 ·X2×2 +

(
1 0
0 1

)
)Y2×1 12 8

1 // Produces "sym = x * y;" in the C code
2 case MulSS(x, y) =>
3 stream.println("%s=%s*%s;".format(quote(sym),quote(x),quote(y)))

Figure 3.11: This figure shows how the instances ofMulSS-nodes are translated during code generation
into C-code for scalar multiplications. The tool-flow designer must specify how each node will be
translated during code generation.

further optimize the design. Using this technique, we can interconnect

different optimization modules as needed while creating custom HLS

flows.

Generating the Optimized Design as Output

To produce an output, LMS traverses the IR-nodes in the optimized

IR-graph in the topological order, i.e., a node is visited only after all

the nodes it depends on have been visited, and translates it into the

output design. Using this facility, we only need to specify the translation

rules for the IR-nodes that appear in the optimized IR-graph to gen-

erate the optimized output. During code generation, since LMS only

visits IR-nodes which affect the final output, it also performs dead-code

elimination.

Our matrix-level optimization module can generate an equivalent C Generating multiple
output formatsprogram from its IR-format. Figure 3.11 shows how theMulSS IR-node

that represents scalar multiplication is translated into the equivalent C-

code where the result ofx*y is assigned tosym. An optimization module

can have multiple sets of translation rules to support different output

formats, like different variants of C-code, VHDL-code, and have specific
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Runner

Figure 3.12: This figure shows the steps involved in transforming a high-levelMatrixDSL-program
into optimized output program at the scalar-level.

interfaces to different external tools. For instance, our scalar-level opti-

mization module produces both C and VHDL codes from its scalar-level

IR-nodes. Additionally, during VHDL code-generation, it can generate

a combinatorial design or interface with FloPoCo (an arithmetic core

generator) to create the arithmetic components needed to generate a

pipelined design. The module also uses the feedback from FloPoCo

to know the pipeline stages in each generated component in order to

produce a glue-logic containing registers to have a correctly pipelined

datapath. We will not detail the development of the scalar-level opti-

mization module separately since it uses the same LMS features that we

have just described.

3.4.2 Managing the Compilation Process

Figure 3.12 shows the different phases in transforming a high-levelIntegrating the
steps with the

Runner program
MatrixDSL-program into an optimized hardware design. Referring back

to Figure 3.3, as the JVM executes the byte-code, the execution control

is handed over to theRunner function. This function then generates the

IR-graph for the DSL-program at the matrix-level and calls the individ-

ual analysis and transformation steps in the matrix-level optimization
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Table 3.2: Design IDs, benchmark expressions and corresponding matrix-level optimizations

ID Matrix Expression Matrix-Level Optimizations
M1 4 · A1×5 ·B5×5 ·C5×3 ·D3×1 Multiplication ordering
M2 A4×4 ·B4×4 ·C4×4 +B4×4 ·C4×4 ·D4×4 Subexpression elimination
M3 A3×3 ·C3×3 +B3×3 ·C3×3 Distributive property
M4 2 ·det

(
2 1
3 1

) ·X 2
2×2 ·Y2×1 +X2×2 ·Y2×1 Distributive property & partial evaluation

Table 3.3: Results using LegUp to generate fixed-point datapaths

ID

Exp1: C with no opt. Exp2: C with only matrix-level opt. Exp3: C with two level opt.

# LEs # Regs
Latency Fmax

# LEs # Regs
Latency Fmax

# LEs # Regs
Latency Fmax

(μs) (MHz) (μs) (MHz) (μs) (MHz)
M1 10,356 2,141 0.11 126 7,167 1,434 0.11 132 5,359 1,226 0.10 127
M2 39,541 5,688 0.15 117 35,322 4,825 0.15 117 13,158 3,072 0.17 106
M3 3,661 1,494 0.07 181 2,281 729 0.08 159 1,608 155 0.07 140
M4 1,748 463 0.07 131 1,547 309 0.06 148 1,547 309 0.06 154

module. The staging-time macros in this module are always automati-

cally applied whenever one of its patterns appear in the IR-graph. Once

the matrix-level optimizations are completed, theRunner function calls

the IR-to-IR transform that converts the matrix-level IR into scalar-level

IR. Then, the analysis and transform functions at the scalar-level are

called to further optimize the DSL-program. Once again, the staging-

time macros at the scalar-level get automatically applied whenever their

control patterns appear in the graph. After the DSL-program has been

optimized at this level, theRunner function calls the code-generator to

translate this scalar-level IR into the final output design.

3.5 Evaluation Results

In this section, we will evaluate the quality of the results produced by our

HLS flow and illustrate how performing optimizations at multiple ab-

straction levels can help improve results. However, our main objective

is to demonstrate the reuse and integration flexibility of our approach

and to show how it can be useful in a practical context.
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3.5.1 Benchmark Designs

We use four designs listed in Table 3.3 for our evaluation; each of theseDesigns used
for evaluation focuses on a specific type of matrix-level optimization. Matrices in

these designs were created by a random assignment of 10 independent

scalar variables. We did this to limit the number of input arguments to

the wrapper function. These designs are used to point out that exist-

ing general-purpose HLS tools do not perform higher order, domain-

specific optimization and to illustrate how our design approach can

avert this limitation.

Table 3.2 lists the matrix expressions we used for the evaluation. InOptimizations at
the matrix-level the expression M1, our matrix-level optimization module reorders mul-

tiplications to reduce its implementation cost. For expression M2, it

performs common subexpression extraction to avoid the repeated com-

putation of B4×4·C4×4. In M3, the module uses the distribute property to

extract the common operand, C3×3, from both the terms. M4 is the run-

ning example used in Section 3.4; in this case, the optimization-module

performs the transformation shown in Figure 3.4.

For all designs, our scalar-level optimizations include common subex-Optimizations at
the scalar-level pressions elimination, such as removing the repeated instance of a +b

in
(a

b

)+ (
b
a

)
, and operator strength-reduction, like replacing multipli-

cation by a power-of-two value with shift operation, that are found in

many existing HLS tools.

3.5.2 Evaluating Benefit of Integrating to C-to-RTL Tool

We first consider the case where the matrix elements are fixed-pointBenefits of matrix-
level optimizations integers and we integrate our HLS flow to LegUp 3.0 [Canis et al., 2011],

an open-source C-to-RTL tool, to generate the hardware design. For

each design, our flow generates three C-programs: Exp1, where our tool

performs no optimizations; Exp2, with only matrix-level optimizations;

and Exp3, with both matrix-level and scalar-level optimizations2. These

C-programs are then compiled using LegUp with its best optimization

setting and the generated RTL designs are synthesized using the Altera

Quartus II toolset [Altera Corporation, 2013] to target a Stratix IV FPGA

2Since LegUp can only supports one output port in the hardware it synthesizes, we
adapted our C-program generator by adding all the elements in the resultant matrix to
produce a scalar value as output. To maintain complete fairness, we do this for every
design we use in our study, even when we use other tools.
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device; the designs were verified using circuit simulation. To make

it possible to compare across designs, we restricted Quartus II from

using any DSP blocks. Table 3.3 shows the result from synthesis in

terms of number of Logic Elements (LEs), number of registers (Reg),

circuit latency and maximum operation frequency (Fmax) for each case.

Comparing the results from Exp1 and Exp2 on Table 3.3, it is easy to see

that our matrix-level optimizations consistently reduce the resources

needed for the implementation without impacting the frequency or

latency significantly. These results reveal the potential of high-level

optimization and how our methodology can complement existing tools

to benefit from them.

The scalar-level optimizations bring further improvement in terms of Benefits of additional
scalar-level optimiza-
tions

area (i.e., resources used by the design), as revealed by the results of

Exp3 on Table 3.3. The area saving mostly comes from the common

subexpression elimination since LegUp already performs the strength

reduction optimizations. This is easily evident in M4 where we get no

further area improvement through the scalar-level optimization as the

program on Figure 3.6 offers no opportunity for scalar-level subexpres-

sion elimination. There is no consistent trend with Fmax and latency

because there are two opposing effects: The smaller design size helps

to improve Fmax and to lower the latency. But, since some of the opti-

mizations increase the amount value sharing between different parts of

the design, it places more pressure on the routing resources and has an

adverse affect on both Fmax and latency. But, overall, the improvement

in area is much more significant compared to the variations in timing.

These experiments show that performing optimizations at different

abstraction levels can progressively improve the design quality. Further-

more, implementing both of our optimization modules in LMS required

less than 2,000 lines of code in total (including all the debugging code,

comments and empty lines for formatting). This gives an indication of

how little effort is needed to develop custom optimization modules for

a new application.

We now consider the case of the matrices with floating-point elements Extending the tool to
support floating-point
matrices

to investigate the impact of such a change in our HLS flow. Since our

matrix-level optimizations are agnostic to the element-type, we can

reuse them by modifying only the type used for representing matrix

elements (T in Figure 3.5). However, we do need to make some modifica-

tions to the scalar-level optimization module and its code-generator to
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Table 3.4: Results using LegUp to generate single precision floating-point datapaths with two-level
optimizations (Exp4)

ID Matrix Expression # LE # Regs
Latency Fmax Throughput

(μs) (MHz) (106· Results/s)
M1 4 · A1×5 ·B5×5 ·C5×3 ·D3×1 10,178 11,806 0.89 235 1.1
M2 A4×4 ·B4×4 ·C4×4 +B4×4 ·C4×4 ·D4×4 64,520 89,693 1.22 166 0.8
M3 A3×3 ·C3×3 +B3×3 ·C3×3 11,281 14,097 0.57 231 1.8
M4 2 ·det

(
2 1
3 1

) ·X 2
2×2 ·Y2×1 +X2×2 ·Y2×1 5,295 6,742 0.38 282 2.6

Table 3.5: Results using FloPoCo to generate pipelined datapaths with two-level optimization

ID

Exp5: FloPoCo-single precision equivalent Exp6: FloPoCo-custom precision

# LE # Regs
Latency Fmax Throughput

# LE # Regs
Latency Fmax Throughput

(μs) (MHz) (106· Results/s) (μs) (MHz) (106· Results/s)
M1 46,967 53,180 0.87 176 176 15,237 27,639 0.50 242 242
M2 174,193 181,619 1.36 116 116 59,787 88,504 0.65 188 188
M3 31,942 35,860 0.53 186 186 11,245 16,331 0.33 231 231
M4 9,657 12,452 0.32 212 212 2,919 3,830 0.17 312 312

support this feature. The total change involved adding/editing less than

50 lines of code, which illustrates the flexibility and the reuse possible

in our approach. Table 3.4 shows the results obtained using LegUp

after this modification and applying all our optimizations. The benefit

of the different levels of optimizations follow similar trends as seen in

Table 3.3, hence we have not reported them separately.

3.5.3 Evaluating Benefit of Integrating to IP-Core Generator

If we now want to improve the throughput of our design, we needGenerating pipelined
designs with FloPoCo to pipeline it. Unfortunately, LegUp 3.0 does not support pipelining

floating-point computation. While future versions of the tool may re-

move this limitation, it is still an excellent example where selective

integration to another tool may be beneficial. To overcome this limita-

tion, we added a VHDL code-generator to the scalar-level optimization

module. Additionally, to generate pipelined floating-point operators,

we integrated FloPoCo [De Dinechin and Pasca, 2011], an open-source

arithmetic core generator, into our flow. During code-generation, our

tool directs FloPoCo to create the necessary floating-point cores. Our

code-generator uses the pipelining information returned by FloPoCo

to generate the glue-logic that connects the individual cores through
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3.6. Discussion

registers, implementing a correctly pipelined datapath; the generated

designs were verified using circuit simulation. As shown under Exp5

on Table 3.5, this design has a much higher throughput because of the

pipelined architecture, but also needs significantly higher area. If the

target application only needs floating-point operators of smaller preci-

sion, we can modify two configuration parameters in our HLS flow to

generate custom cores from FloPoCo that trade-off precision for area.

By using floating-point operators that have a 10-bit mantissa and 5-bit

exponent, we get the results shown under Exp6 on Table 3.5.

These results illustrate how our approach can be used to perform higher

order and domain-specific optimizations that typically go untapped in

general purpose HLS tools. Our examples are simple and well under-

stood, but the whole approach is generally applicable. We showed that

performing optimizations at different abstraction levels can progres-

sively improve the result. We also demonstrated the flexibility and reuse

potential of our approach by integrating different tools and reusing

our optimization modules to create different output designs in a cost-

effective manner.

3.6 Discussion

Domain-specific hardware synthesis tools can make reconfigurable Key insights

technology more accessible to domain experts who have little hardware

design knowledge. In this chapter, we have presented an approach to

significantly reduce the effort needed to develop such tools. To achieve

this, we use Scala and LMS as a common platform to develop stan-

dalone optimization modules that can be easily reused across different

HLS flows. We further reduced the design effort by integrating with

external tools, when possible, and building the domain-specific HLS

tool incrementally. To illustrate this approach, we developed a sim-

ple tool to synthesize matrix expressions into hardware. The evalu-

ation results in Section 3.5 show that our methodology is flexible to

accommodate changes, needs low-development effort, and is able to

effectively leverage domain-specific optimizations to produce better

designs. As we demonstrated in the case of LegUp, our approach can

also be used to augment existing general-purpose tools with additional

domain-specific optimizations, enabling them to produce better results.
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The techniques described in this chapter are useful for developing DSLsWhat is missing?

and performing domain-specific optimizations. However, the incremen-

tal effort needed to develop such tools can be further reduced if they

can share a common hardware generation infrastructure to implement

the domain-specific operators. Additionally, since the people devel-

oping new domain-specific tools might be domain experts or people

with software development background who do not have any hardware

design expertise, to remain widely usable, this shared infrastructure

must not demand much hardware design knowledge. We will explore

the feasibility of developing such a shared infrastructure in chapter 4.
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4 Hardware System Synthesis from
Computational Patterns

The effort needed to develop new domain-specific tools can be con-

siderably reduced if they can share a common hardware generation

infrastructure. Since developers of new domain-specific tools might be

domain-experts or software developers, for successful adoption, this

shared infrastructure must not require hardware design knowledge to

use. However, off-the-shelf HLS tools do not satisfy this requirement.

Most of these HLS tools accept input specifications in high-level lan-

guages, such as C, C++ or SystemC and, thereby, provide a more conve-

nient programming interface for designing hardware. But, to develop

high-quality designs with these tools, the user still needs to manually

perform optimizations that require a detailed knowledge of the tool and

the generated hardware design as well as the implementation target.

This requires a substantial amount of hardware design knowledge and,

consequently, makes these tools unsuitable for non-hardware-experts.

4.1 Motivation

In order to illustrate this problem, consider developing a simple hard- HLS tool users re-
quire hardware design
expertise

ware design that adds 512 integers held in an external memory and

stores back the result. This design can be synthesized using an off-

the-shelf HLS tool from the C++ program shown in Figure 4.1a. But,

this program does not consider aspects of the underlying system archi-

tecture (e.g., the maximum data-width of the memory interface, the

communication modes on this interface, i.e., burst mode vs. individual

accesses, and the available parallelism in each data word from memory)

and does not fully leverage the features in the HLS tool to exploit this
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1 void sum(int* mem){
2 mem[512] = 0;
3 for(int i=0; i<512; i++)
4 mem[512] += mem[i];
5 }

(a) Unoptimized HLS Program; Execution Time = 27,236 clock cycles

1 // Width of MPort = 16 * sizeof(int)
2 #define ChunkSize (sizeof(MPort)/sizeof(int))
3 #define LoopCount (512/ChunkSize)
4 // Maximize data width from memory
5 void sum(MPort* mem){
6 // Use a local buffer and burst access
7 MPort buff[LoopCount];
8 memcpy(buff, mem, LoopCount*sizeof(MPort));
9 // Use a local variable for accumulation

10 int sum=0;
11 for(int i=0; i<LoopCount; i++){
12 // Use additional directives where useful
13 // e.g. pipeline and unroll for parallel exec.
14 #pragma PIPELINE
15 for(int j=0; j<ChunkSize; j++){
16 #pragma UNROLL
17 sum+=(int)(buff[i]>>j*sizeof(int)*8);}}
18 mem[LoopCount]=sum;
19 }

(b) Optimized HLS Program; Execution Time = 302 clock cycles

1 // Here, data_array is an array of 512 integers.
2 // sum adds its elements and the stores back the result
3 val result = data_array.sum()

(c) DSL Program; Execution Time = 368 clock cycles

Figure 4.1: Comparing optimized HLS, unoptimized HLS and DSL specifications. All three programs
produce hardware to perform the same computation. The optimized specification leverages on a
detailed knowledge of the HLS tool, the resulting hardware and the implementation platform while
performing optimizations to improve the performance. The DSL code is much simpler to express and
yet provides comparable performance.
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parallelism; therefore, the generated hardware is extremely inefficient.

The hardware design synthesized from the program in Figure 4.1a, using

Vivado HLS (2013.4)[Xilinx, 2013a] with the highest level of optimiza-

tion, needs 27,236 clock cycles on our test platform to complete the

computation. To achieve good performance, the developer needs to

write the more complex program shown in Figure 4.1b; this program

considers the relevant system-level aspects and exploits the available

data parallelism to generate a more efficient hardware design that per-

forms the same task in 302 clock cycles. Moreover, many HLS tools will

only synthesize these programs into standalone hardware modules and

not a complete design that includes necessary external connections to

board-level interfaces and peripherals, such as the instantiation of the

memory controller and the connection to the external memory in our

example. This forces application developers to make these connections

manually and sometimes even generate the essential clock and control

signals for the module to obtain a complete design. So, while HLS tools

are capable of generating good quality designs and can provide con-

venient programming interface to enhance developer productivity, in

practice, they are difficult to use for application developers who often

lack the necessary hardware design skills.

To overcome these limitations, we propose an automated methodology Computational pat-
terns: productivity
and performance
without hardware
design skills

to generate complete hardware systems from programs written in a

high-level Domain-Specific Language (DSL) using structured computa-

tional patterns. In this methodology, as illustrated in Chapter 3, we first

leverage the application domain-knowledge and the domain-specific

semantics of the DSL to perform optimization. After optimization, the

domain operations are mapped to a set of structured computation pat-

terns, such as map,reduce,foreach andzipwith. These computation

patterns are algorithmic methods that capture the pattern of computa-

tion and communication and, therefore, can be easily used without any

hardware design expertise. Additionally, they have well defined proper-

ties that enables us to create premeditated strategies to optimize them

and generate high-quality hardware modules to implement them. For

instance, the DSL code in Figure 4.1c is simple to express for the applica-

tion developer and it will be mapped to areducepattern. This enables

us to automatically generate a program that is similar to Figure 4.1b,

and obtain a hardware module to perform the same computation in
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368 clock cycles1. Furthermore, since each DSL targets a specific ap-

plication domain, we can have a set of predefined system-architecture

templates that are suitable for applications in that domain. By utilizing

these templates, we can autonomously interconnect the different hard-

ware modules in the application, generate necessary control signals,

and obtain a complete design that is ready for FPGA bitstream gener-

ation. Consequently, this approach enables application developers to

generate hardware designs from high-level functional specifications

without having to meddle with any hardware level details.

The rest of this chapter discusses the details of this proposed method-Chapter outline

ology, starting with a general overview in Section 4.2. We look at the

compilation of high-level application programs into computational

patterns in Section 4.3 and discuss how these patterns are generated

into optimized high-performance hardware systems in Section 4.4. In

Section 4.5, we first evaluate the quality of our generated computation

patterns using a set of microbenchmarks and then assess the overall

effectiveness of our flow using four applications written in OptiML [Su-

jeeth et al., 2011], a high-level DSL for machine learning. The results

reveal that our optimizations significantly improve the performance of

the generated hardware designs. In comparison with a laptop CPU, our

automatically generated hardware achieves reasonable performance

and a much better energy efficiency. Finally, we reiterate the benefits of

the approach and summarize findings in Section 4.6.

4.2 Overview of the Methodology

Our automated methodology accepts an application program written inDecomposing DSL
application to com-
putational patterns

a high-level DSL and generates a complete hardware design that can be

programmed on the target FPGA. Figure 4.2 illustrates the steps in this

process. In this methodology, the application program is a purely func-

tional specification and writing it in a DSL offers higher productivity

and shields the application developer from the hardware-level details;

at the same time, it reveals the specific application domain targeted by

the developer to the compiler. Our compiler infrastructure, indicated

as A in the figure, optimizes this DSL-program by performing both

1The performance of the automatically generated module is slightly lower compared
to the one obtained from Figure 4.1b because it is more generic and designed for
handling reductions of larger sizes.
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4.2. Overview of the Methodology

Figure 4.2: Overview of the methodology. This figure illustrates how the high-level specifications in a
DSL is compiled and then automatically transformed into a hardware system that can be implemented
on an FPGA.

domain-specific optimizations (e.g., applying linear algebra simplifi-

cation rules) and general-purpose optimizations (e.g., common subex-

pression elimination and dead-code elimination). After optimization,

the compiler maps the operations in the DSL program as a composition

of computational patterns. The compiler then regroups these patterns

into kernels after performing additional fusion optimization [Rompf

et al., 2013]; therefore, each kernel can contain one or more compu-
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tational patterns, either fused together or nested inside one another.

Additionally, the compiler represents the complete application program

as a dependency-graph between these separate kernels. The compu-

tational patterns, as we will see, have well defined properties, such as

parallelism, data-access behavior and inter-operation dependences,

which enables the tool to generate efficient and high-performance hard-

ware implementations for them. Based on the domain of the DSL, the

compiler selects a suitable system-architecture template for the final

hardware implementation. This architecture template, which is in-

spired from approaches such as BORPH [So, 2007] and LEAP [Parashar

et al., 2010], delineates how the various hardware components will be

interconnected while composing the final system design.

The hardware generation process starts with the kernel-synthesis step,Synthesizing compu-
tational patterns into

hardware modules
denoted as B in the Figure 4.2, which takes the kernels in the appli-

cation program and generates concrete implementations (i.e., either

hardware or software modules) for them. To facilitate this, as shown in

the figure, system-architecture template provides information about

the shared components in the system as well as the information about

the interfaces to the generated hardware modules. During this step, the

kernels containing some structured parallelism are generated into hard-

ware modules and those without parallelism are generated into software

modules to be executed on a microprocessor. The kernel-synthesis step

also gets information about the specific FPGA platform used as the

implementation target, such as clock frequency constraints, size of ex-

ternal memory and the available device resources (e.g., look-up tables,

flip-flops, block RAMs and DSP units), from the target-configuration;

this information is used to ensure that the generated kernel imple-

mentations are compatible with the selected target. For each parallel

kernel, the kernel-synthesis step produces multiple hardware imple-

mentations, which we call variants, that achieve different trade-offs

between area and performance. Generating multiple variants during

the kernel-synthesis step is essential in order to enable the subsequent

system-synthesis step to compose a system design that will achieve

good performance and still fit within the limited resources available on

the target FPGA.

System-synthesis, indicated as C in the Figure 4.2, uses the informationComposing hard-
ware modules into

a system design
from the system-architecture template to compose the complete system

design. This step uses the target-configuration to know the capabilities
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of the chosen FPGA and selects specific variants to implement each

parallel kernel in the application. The control circuitry for this system

design is also automatically generated based on the application pro-

gram’s dependency graph produced by the high-level compiler. This

complete system design is provided to a standard FPGA tool flow, i.e.,

logic synthesis, place and route and bitstream generation, to produce

the bitstream to program the target FPGA device.

4.3 Compiling DSL-Programs to Patterns

In this section, we will focus on the high-level compiler infrastructure

we use and discuss how it compiles high-level DSL programs into com-

putational patterns.

4.3.1 Compiler Infrastructure

We implement our compiler infrastructure, indicated as A in Fig- Delite: the high-
level compilation
infrastructure

ure 4.2, by extending the Delite [Lee et al., 2011] compiler framework.

Delite is an extensible compiler framework that makes it easy to de-

velop DSLs targeting heterogeneous systems. The core idea of Delite is

to provide DSL developers with a set of structured computation patterns

and data structures that can be extended to implement domain opera-

tions and custom data structures needed in the DSL. Delite currently

supports computation patterns such as map,reduce,zipwith,foreach,

filter, group-by, sort and serial; among them, serial is used for

non-structured computations that cannot be parallelized. For man-

aging data, Delite provides scalar datatypes, multi-element datatypes

such asarray,vector,matrix andhashmap that are called collections,

and user-defined compositions of these datatypes. The structured na-

ture of Delite components facilitates parallelizing and optimizing DSL

programs for different target architectures such as multi-core CPUs

and GPUs. DSL developers using Delite can easily add domain-specific

optimizations that leverage the detailed domain-knowledge to perform

optimizations and they automatically get the generic optimizations,

such as loop fusion and data structure transformations, that are already

built into Delite to produce high-performance implementations. When

a DSL program is compiled with Delite, it produces 1) a set of kernels

that are each composed out of one or more computational patterns and

2) a dependency-graph between these kernels.
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In order to a generate hardware system for a DSL program, we extendedGenerating hard-
ware designs from

Delite-patterns
Delite to generate concrete implementations for the kernels found in

the program. As we will see, we added the ability to generate hardware

modules to implement some kernels by producing an optimized in-

put program for an HLS tool; other kernels were generated as software

modules and executed on a processor on the FPGA. Finally, we use

the program’s dependency-graph to generate a controller that guaran-

tees that these kernels are executed in a valid order. We will discuss

these extensions in detail in Section 4.4. In order to demonstrate the

approach, we generate hardware systems to implement applications

written in OptiML [Sujeeth et al., 2011], a machine learning DSL imple-

mented using Delite. Among the Delite components OptiML supports,

we limit ourselves to the most widely used computation patterns, i.e.,

serial, map, zipWith, reduce and foreach, and data structures, i.e.,

scalar datatypes and collections, such as array, vector, matrix and

user-defined compositions of these, which can be efficiently imple-

mented on the FPGA. One thing to note, however, is that our toolchain

is not limited to OptiML and can be directly used by other DSLs in

Delite that use the computational patterns and data structures we cur-

rently support. Furthermore, our approach is quite general and can

be used in other application development infrastructures that use the

concept of computational patterns, such as Copperhead [Catanzaro

et al., 2011], Intel’s Array Building Blocks [Newburn et al., 2011] and

FlumeJava [Chambers et al., 2010].

4.3.2 Computational Patterns

Our tool flow generates hardware systems from application programsProperties of
the computa-

tional patterns
that are decomposed into structured computations patterns, such as

map,zipWith,reduce andforeach, and non-structured computational

patterns (i.e.,serial). Within each computational pattern, we can have

operations on primitive datatypes (e.g.,bool, int,float anddouble),

collections (e.g., array, vector, matrix) and other user-defined types.

These computational patterns have a well defined properties such as

the degree of parallelism in the operation, interdependences between

elemental operations and data-access patterns.

Among them, the non-structured computational pattern (i.e.,serial)

offers no operation-level parallelism and operates only on primitive
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Figure 4.3: In the map andzipWithpatterns, a pure function (i.e., side-effect free function) is used to
create a new collection from one or more collections, respectively. Thereduceuses a binary operation
that is associative and commutative to compute a single value from a collection. And, theforeachuses
an impure function (i.e., function not having side effects) to update the values of an existing collection.

datatypes; consequently, the kernels composed of this pattern have

no parallelism and are called serial kernels. However, as illustrated in

Figure 4.3, the structured computational patterns we support operate

on collections, in addition to primitive datatypes, and have parallelism

in their operation; the kernels composed of these patterns, naturally,

have parallelism and are called parallel kernels. As seen in the figure, the

map andzipWithpatterns always use a pure (side-effect free) function

to create a fresh collection. The difference between them is that map

has a single input collection while the zipWith has multiple input

collections. So, squaring each element in a vector uses a map while

adding twovectors requires azipWith. Thereducepattern computes

a single element by applying a binary function that is both associative

and commutative to all the elements in a collection; so, finding the

minimum or maximum values in an array are great examples for this

pattern. The foreach pattern is typically used to modify values in an

existing collection by applying an impure function (with side-effects) to

each element, such as to set all the negative numbers in an array to zero.

However, the programming model we use in Delite restricts foreach

to guarantee that this pattern can be executed in parallel without data

races.

During the kernel-synthesis step, B in Figure 4.2, we leverage these

well defined properties of these computational patterns to generate

efficient implementations for them.
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1 // User inputs for element count, normalized-min and normalized-
max

2 val count = args(0).toInt
3 val minValue = args(1).toInt
4 val maxValue = args(2).toInt
5

6 // Some function used to initialize the data to be normalized
7 val data = (0::count){i => ((4*i+2*i+i) % 2048)}.mutable
8 // Compute the min and max from the initialized data
9 val min = data.min

10 val max = data.max
11 // Normalize the data using the user provided min and max value.
12 for(i <- (0::count)) { data(i) =
13 (data(i)-min)*(maxValue - minValue)/(max-min) + minValue
14 }
15 // Print the normalized data
16 data.pprint

Figure 4.4: Normalization application written in OptiML. This OptiML-application accepts three user
inputs, count, minValue and maxValue, an uses this data to generate an array and normalize its
values to lie within the user provided range (between minValue and maxValue). The functional
specifications in the program is automatically decomposed intoserial,map,reduce andforeach
patterns that are then generated into a hardware system design.

4.3.3 OptiML Application Example: Normalization

To illustrate how the patterns are extracted and optimized by the high-Case study: com-
piling a DSL appli-
cation with Delite

level compiler, we use the example of a simple OptiML-application to

perform normalization that is shown in Figure 4.4. This application first

reads some user provided parameters, such as thecount,minValue and

maxValue. Based on these parameters, it initializes a data-set, computes

the minimum and maximum values in the data-set, normalizes the data-

set to be within the interval [minValue,maxValue] and prints out the

normalized values. The DSL operations in this application are mapped

to appropriate computational patterns as defined by the DSL developer.

Here, the operation to read user parameters, on lines 2 to 4 and the

print operation on line 15 are instances ofserialpattern that become

serial kernels. The data-set initialization on line 7 is an instance of amap

pattern, the minimum and maximum computation on lines 9 and 10 are

translated asreducepatterns, and the normalization operation on lines

12 becomes aforeachpattern. Furthermore, since the minimum and
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Figure 4.5: Dependency graph for the normalization application. This graph shows the kernels (graph-
nodes) and kernel-dependency (graph-edges) information generated by our high-level compiler. Here,
kernelx0 stands for the user inputs. x227,x232x235 andx243 are parallel kernels that are generated
from structured patterns,map,reduce andforeach, respectively; the line numbers in Figure 4.4 that
generated these kernels are indicated next to the kernels. All other kernels are generated fromserial
patterns. Among the parallel kernels,x232x235 is generated from applying loop-fusion on themax
andmin operations in the DSL program.

maximum computations have no interdependences and operates on

the same iteration range, the compiler applies loop-fusion optimization

to merge the two operations into a single reduce pattern and benefit

from data-reuse.

The compiler also produces the dependency-graph shown in Figure 4.5

from the application program. The nodes in this graph represent ker-

nels in the program and edges represent data or control dependencies

between these kernels. As seen in the figure, the compiler produces

three parallel kernels and set of serial kernels from the normalization ap-

plication. These kernels are generated into concrete implementations

in the kernel-synthesis step discussed in Section 4.4.
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Figure 4.6: This figure shows the system-architecture template used for hardware systems generated
from OptiML applications. The annotations in the figure are some of the specific details this template
provides to the hardware generation process.

4.4 Hardware Generation from Patterns

In this section, we will discuss how the kernels extracted from the ap-

plication and its associated dependency-graph are automatically trans-

formed into a hardware design.

4.4.1 System Architecture Template

The hardware design generation starts with the selection of a system-Composition of
the system archi-
tecture template

architecture template by the compiler. This template delineates the

various components and interfaces available in the final system as well

as their interconnections. Hence, it provides a general outline based

on which the hardware system for the application will be generated.
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The template we use is composed of two parts: the fixed subsystem,

which remains constant for every application using that template, and

the flexible subsystem, which changes from one application to another.

Figure 4.6 shows the system-architecture template we use for all OptiML

applications. Here, the fixed subsystem includes a processor, on-chip

memory, external memory controller, and external interfaces to the

DRAM, UART and JTAG. The flexible subsystem defines how the kernels

that are synthesized into hardware modules will be connected to the rest

of the system and how the control infrastructure will be generated for

them. We currently use variations of this system-architecture template

for generating designs for different FPGA devices, e.g., Virtex 7 device

with only reconfigurable logic and Zynq device that contain a hardened

processor core and reconfigurable logic. However, the methodology

supports having multiple templates that are very different, in which

case the selection of the appropriate template will be done according to

the specifications of the DSL developer.

4.4.2 Kernel Synthesis

The kernel-synthesis step generates concrete implementations for the Inputs the kernel
synthesis stepkernels in the application; it is marked as B in Figure 4.2. As shown in

the figure, the inputs to this step are 1) the set of kernels from the

compiler, 2) the information about the complete hardware system

from the system-architecture template, and 3) the information about

the implementation target from the target-configuration. The system-

architecture template provides details, such as the number of data-ports

to each kernel, communication protocols on these ports, shared mem-

ories in the design, that are necessary to ensure that the synthesized

kernels will function correctly and can be easily integrated into the final

design. The target-configuration specifies additional details, such as

the sizes and address ranges of the available memories, the bitwidth of

the ports and target-specific resource constraints which help to tailor

the generated kernels to the specific FPGA used in the implementation.

As seen in Section 4.3.3, OptiML applications can contain multiple serial Mapping serial
kernels on the FPGAand parallel kernels. The serial kernels offer only limited opportunities

for acceleration using custom hardware. Therefore, we map all the serial

kernels in the application to the (soft-core) processor in the system-

design template to share implementation resources among them.
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Figure 4.7: Optimizations applied to the kernels. The unoptimized kernel access each data element
separately and, therefore, has a low effective bandwidth to the data (a). When accesses are sequential,
we can improve this bandwidth using burst transfers by adding a local cache (b) or by using local buffer
and a buffer manager (c). To benefit from this improved bandwidth, we need to generate the kernel
differently to correctly leverage the available data parallelism (d).

The parallel kernels, however, can benefit greatly from custom hardwareMapping parallel
kernels (i.e., map,
zipWith, reduce

and foreach)
on the FPGA

that can aptly exploit the available parallelism. Moreover, in typical Op-

tiML applications, these parallel kernels dominate the overall execution

time. Since these parallel kernels are generated from a limited number

of computational patterns that are supported by the compiler, we can

have premeditated strategies to generate high-quality hardware imple-

mentation for them. Although the set of computational patterns are

small, actual computation and data access properties in the kernels

will still vary significantly from one application to another. Additionally,

within each kernel, these patterns can be nested within one another or

fused together, as we saw in the case of the normalization application.

Due to this large variability, we cannot use fixed templates for each

pattern. Instead, we leverage the properties of the computational pat-

terns and perform additional compiler analysis to identify optimization

opportunities and produce a well formatted code for an HLS tool. This

code contains the necessary optimization directives that guides the HLS

tool to generate a high-quality hardware implementation for the kernel.
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4.4.3 Kernel Optimization

While synthesizing parallel kernels, we can use generic optimizations, Generic HLS op-
timizations (e.g.,
loop-unrolling, loop
pipelining) alone are
insufficient

such as loop-unrolling and loop-pipelining, to generate parallel hard-

ware structures. However, to generate high-performance designs, we

need to analyze the properties of the individual kernel and perform

additional optimizations. For instance, consider the lines 9 and 10 of

the normalization application in Figure 4.4. After optimizations in the

high-level compiler, these two DSL-operations are implemented as the

fused kernel,x232x235, shown in Figure 4.5. The hardware implementa-

tion of this kernel will read will readdata, a largevectordata structure

stored in the external memory, sequentially, compute the maximum

and minimum values and store the results as max and min. A relatively

straightforward implementation of this module produced from a HLS

tool will read each element from the data separately and perform the

computation, as shown in Figure 4.7a.

However, since the elements in data are accessed over a shared bus, Instantiate a cache
for sequentially ac-
cessed data structures

each read transaction entails overheads due to the bus protocol and

the latency of the external memory. But, since the kernel accesses this

data structures sequentially, we can use burst communication to reduce

these overheads. To implement this, we first analyze the data access

pattern of each data structure used in the kernel and add a local cache to

those that are accessed sequentially, e.g.,data in kernelx232x235. Now,

as depicted in Figure 4.7b, data requests from/to this data structure is

served from the local cache and, in the event of a cache-miss, the cache

is filled/flushed using burst-transfer from/to the external memory.

Although the cache enables us to use burst-transfers, having to check Utilize a local buffer
and buffer manager
to improve data-
bandwidth

for cache hit/miss on every access incurs some performance overheads.

To avoid this, we can perform a more detailed analysis of the access

patterns, and use this information to replace the cache with a simple

local buffer and an associated buffer manager, as shown in Figure 4.7c.

The difference between the two is that buffer manager knows the access

pattern to the data structure and uses this information to deliberately

move data from/to the local buffer without having to check on each

access. To implement this, as done in the case of the cache, we use

compiler analysis to identify data structures that are sequentially ac-

cessed from the kernel and then generate a local buffer and associated

buffer manager for them. However, unlike in the case of the cache,
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we modify only some sequential accesses to utilize this buffer and the

buffer management is performed based on the data requirements of

specific accesses. When there are multiple sequential accesses from the

kernel to the same data structure, the access that occurs most frequently

(i.e., occurring at the inner-most loop-level) is given priority to use this

buffer. Additionally, when the buffer holds valid data, all other read

accesses to the same data structure, including the non-sequential ones,

will first check the buffer before going to the shared memory. Similarly,

all other write accesses from the kernel that occur when the buffer hold

valid data will use the buffer similar to a write-through cache with no-

write-allocate policy. Accesses that occur when the buffer does not hold

valid data (i.e., accesses in the kernel code that are outside the scope

of the buffer management code) will directly access the shared mem-

ory. In the case of using the cache, these accesses would have caused

cache-pollution [Handy, 1998] and deteriorated the performance of the

application; therefore, by using the local buffer and buffer manager, we

overcome this problem.

Using the cache and local buffer can improve the data bandwidth toPerform loop-
sectioning to im-
prove parallelism
in computation

the hardware module. We will still not get the most out of this higher

data bandwidth by only depending on optimization directives in the

HLS, such as loop-unrolling and loop-pipelining. To obtain better com-

putational throughput, in addition to using these directives, we need

to refactor the kernel computation into multiple sections that are each

specialized to exploit the different amounts of parallelism available in

the input data; this is the same as the loop-sectioning optimization

done for SIMD processors. After applying this optimization, as shown

in Figure 4.7d, the generated hardware will selectively use dedicated

parallel processing units when the input data has sufficient parallelism

to improve the overall processing throughput. In our example, when

possible, the parallel processing unit will read entire lines of data from

the local buffer and utilize balanced reduction trees to compute the re-

sults and will fall back to the less parallel unit when there is insufficient

data to feed the parallel unit.

All the aforementioned optimizations were applied in our tool flow

while generating the input program for the HLS tool. To enable these

optimizations, we added additional compiler analysis into Delite. Fig-

ure 4.8 depicts some of the key data-structures that were added facil-

itate these compiler analyses. Among them, the LoopInfo holds the
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Algorithm 4.1: Identifying Sequential Accesses in the Kernels

LOOP_INVARIANT function checks if a given symbol is an
invariant in the current loop. It takes as parameters, the symbol
to check (s ym) and the current loop counter (loop_i ter _s ym).

1: function LOOP_INVARIANT(s ym, l oop_i ter _s ym)
2: � Symbol in invariant if it is never modified in the loop-body
3: if s ym is a constant value then
4: return true
5: else if s ym is same as loopi ters ym then
6: return false
7: else if value of s ym is never updated inside the loop-body then
8: return true
9: � Else, check if it is computed using other invariant symbols

10: else
11: V ← Set of symbols used to compute the value of s ym
12: i nvar i ance ← true
13: for all v ∈V do
14: s ym_i nvar ← LOOP_INVARIANT(v, l oop_i ter _s ym)
15: i nvar i ance ← i nvar i ance ∧ s ym_i nvar
16: end for
17: return i nvar i ance
18: end if
19: end function

CHECK_SEQUENTIAL_ACCESS function checks if accesses
using a given indexing symbol will sequentially access the elements
in a data structure. It takes as arguments, the indexing symbol
(i ndex_s ym) and the current loop counter (loop_i ter _s ym).

20: function CHECK_SEQUENTIAL_ACCESS(i ndex_s ym, loop_i ter _s ym)
21: � Access is sequential if the index is the loop-counter
22: if i ndex_s ym is same as loop_i ter _s ym then
23: return true
24: � Or, it is computer as loop-counter + loop-invariant symbol
25: else if i ndex_s ym is computed as (a+b) in the IR then
26: a, b ← symbols used to compute i ndex_s ym
27: a_seq ← CHECK_SEQUENTIAL_ACCESS(a, l oop_i ter _s ym)
28: b_i nvar ← LOOP_INVARIANT(b, loop_i ter _s ym)
29: b_seq ← CHECK_SEQUENTIAL_ACCESS(b, l oop_i ter _s ym)
30: a_i nvar ← LOOP_INVARIANT(a, loop_i ter _s ym)
31: return (a_seq ∧ b_i nvar ) ∨ (a_i nvar ∧ b_seq)
32: else
33: return false
34: end if
35: end function 59
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Algorithm 4.2: Selecting Data Structure Accesses to Use the Local Buffer

BUFFER_ACCESSES function selects the data structure
accesses that will use the local-buffer. It takes as arguments
the symbol to the data structure (d at a_s ym) and the
loop info of current loop (loop_i n f o).

1: function BUFFER_ACCESSES(d at a_s ym, l oop_i n f o)
2: � We need to use the local-buffer for most frequent access
3: � Check if an inner-level loop can buffer this data structure
4: bu f f er ed_at_i nner ← false
5: for all i nner _loop ∈ loop_i n f o.i nner _loops do
6: bu f f er ed ← BUFFER_ACCESSES(d at a_s ym, i nner _l oop)
7: bu f f er ed_at_i nner ← bu f f er ed_at_i nner ∨ bu f f er ed
8: end for
9:

10: � If an inner-level loop can use the buffer, do nothing
11: if bu f f er ed_at_i nner then
12: � Return false since not accesses were buffered
13: return false
14:

15: � Else, select the most frequent sequential accesses to buffer
16: else
17: � Select the set of most frequent sequential accesses
18: A ← Get sequential accesses on given d at a_s ym
19: B ← Group A based on the index symbol used for the access
20: � Note: C will be � if A or B is �
21: C ← Select group in B with highest element count
22: � Set the selected accesses to use the local-buffer for buffering
23: for all c ∈ C do
24: Set access in c to buffered
25: end for
26: if C is � then
27: � Return false since no access will use the local-buffer
28: return false
29: else
30: � Return true since some accesses will use the buffer
31: return true
32: end if
33: end if
34: end function
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LoopInfo
// Symbol used for the current loop in the IR

this_loop_sym : Symbol
// Symbol used for the current loop in the IR

loop_iter_sym : Symbol
// Pointer to the loop containing the current loop

outer_loop    : LoopInfo*
// Pointer to the loop containing the current loop

inner_loops   : LoopInfo*[0..*]

CollectionAccessInfo
// Symbol used for the access index in the IR

access_index : Symbol
// Loop containing this access

loop_info    : LoopInfo* 
// Is the access sequential

sequential   : Boolean
// Is this a read-only access

read_only    : Boolean
// Is this access using the local buffer

buffered     : BooleanCollectionAccessData
// Symbol used for the collection in the IR

collection   : Symbol
// The set of access info for this collection

access_data  : CollectionAccessInfo[1..*]

Holds data about all loop constructs in the applica on
e.g., loop symbols, itera on symbol, details about levels of nes ng.

An associa ve array that holds the mapping between a collec on
symbol and the accesses to this collec on.

Holds informa on about each collec on access. This
includes details about the indexing symbol used for access,
details of the loop within which the access occurs (if any), if
the access is sequen al, if the access is read-only and if the
access will use the local bu er.

Figure 4.8: Data structures used to perform program analysis. This figure shows the three main data
structures that were added to perform the program analysis and determine the data structures that
will use the local-buffer. In the figure,LoopInfo structure held information about the loop structure
in the kernel. CollectionAccessInfo held details information all the accesses to the different
data structures in the program. This includes computed details such as if access pattern is strictly
sequential and if the data-structure was buffered using the local buffer. CollectionAccessData is
an associative array that holds the association between the symbols for data structures in the program
and the accesses on these data structures.

details about the loop structure in the kernel. It contains details such

as the symbol for the loop in the IR, the loop iteration counter (loop-

counter), the outer loop that contains the current loop and the set of

loops inside the current one. The CollectionAccessData is an asso-

ciative array that maintains information about all the data structures

(i.e., collections) in the program and all the data accesses associated to

these data structures. The information about each data structure (i.e.,

collection) access within the program is stored in separate instances

ofCollectionAccessInfo. This includes the index used for the access,

the details of the loop (i.e., pattern) from which the access occurs, if

the access is sequential, if the operation is a read and if the access will

use the local-buffer. To determine which data structure accesses are

sequential, we use the CHECK_SEQUENTIAL_ACCESS function whose al-

gorithm is given in in Figure 4.1. Note that the check for sequential

accesses and loop-invariance is much simpler because it only considers

the restricted scenarios that occur in the IR constructed from computa-

tional patterns; this is simplified analysis is another benefit that comes

from decomposing applications into computational patterns. Based

on the information of sequential accesses to the data structures, we
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utilize the BUFFER_ACCESSES function to determine the accesses that

can benefit the most from using a local-buffer along with a a custom

buffer manager. The simplified algorithm for the BUFFER_ACCESSES

function given in Figure 4.2.

While all these optimizations improve the performance of the hardware

kernels, but they also consume more resources. To implement an appli-

cation on the FPGA, we need to partition the limited resources on the

device among all the hardware kernels in the application. To facilitate

this, during kernel-synthesis, we generate multiple hardware variants

for each kernel in the application by applying these optimizations in

different combinations. The selection of the specific variants to use in

the final design is deferred to the system-synthesis step.

Data management

The hardware kernels generated from OptiML use scalar datatypes orMemory allocation for
primitive datatypes

and collections
collections, such as array, vector, matrix and user-defined compo-

sitions of these to exchange data with each other. Among them, the

scalar datatypes have predefined sizes and the space needed to store

them is much smaller than the available on-chip memory capacity. So,

they are statically allocated in a shared on-chip memory to reduce the

data-access latency and make it easy to access this data from the dif-

ferent kernels. In the case of the collections, they each contain a small

amount of metadata, which include details such as the length, stride

and number of rows/columns for matrices, and a contiguous block of

raw-data. The size of this metadata is fixed and known at compile-time

and, therefore, it is statically allocated in the on-chip memory. The

raw-data, however, is typically very large and its size is known only

during the runtime. Therefore, it is dynamically allocated in the larger

shared external memory during the application execution. To perform

dynamic allocation, this external memory is managed as a single cir-

cular buffer with fresh allocations happening only at the head of this

buffer and deallocation occurring both at the head and tail. To dynam-

ically allocate memory from the kernels, we store the head-pointer of

this circular buffer in the shared on-chip memory; this head-pointer

points to the first free location at the head of the circular buffer and

marks the beginning of the unallocated section of the buffer. During the

application run, each kernel allocates memory for new data structures
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by updating the value of this head-pointer. Memory deallocations can

be performed either by the kernel, when the data structure is known

to be only valid within the execution context of that kernel, or by the

control circuit that is aware of the full application context and, therefore,

knows when a data structure is not needed anymore and can be safely

deallocated. The memory deallocation by the control circuit is covered

in detail when discussing the control circuit generation.

4.4.4 System Synthesis

The system-synthesis step, indicated as C in Figure 4.2, has three re- Inputs to the system
synthesis stepsponsibilities: (1) selecting the kernel variants to use in the design; (2)

interconnecting them to the other system components and interfaces;

and (3) generating the control circuitry for the hardware design. The

system-architecture template, which for OptiML applications is shown

in Figure 4.6, provides this step with the information needed to generate

the fixed subsystem and the strategy for generating the flexible subsys-

tem. The target-configuration contains information about the resources

on the target (e.g., LUTs, DSP blocks and BRAMs), the target-specific IP

modules (e.g. DRAM controller, on-chip memory, soft-core processor)

to use as well as their individual configuration parameters.

System Configuration

As noted earlier, the kernel-synthesis generates multiple variants for Determining the
optimum system
configuration

each parallel kernel in the application. The system-synthesis, therefore,

needs to find the ideal system configuration to maximize the applica-

tion’s performance; the system configuration defines the specific kernel-

variants that will be used to generate the hardware design. However, a

valid system configuration must pick one variant per hardware kernel

and, at the same time, ensure that all the selected kernel-variants for

the given application will fit within the limited resources of the target

FPGA. We formulate this as a knapsack optimization problem [Martello

and Toth, 1990] where the objective is to maximize the performance and

the constraint is to ensure that the system design can be implemented

within the limited resources available on the target device.

In our flow, for each kernel we perform a design space exploration by

generating all the different variants for it. Then, we utilize the perfor-
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mance and resource estimates produced by the HLS tool and use an

Integer Linear Programming (ILP) solver to determine the optimal sys-

tem configuration. However, the initial resource estimation in the HLS

tool is based on models and often inaccurate. To overcome this prob-

lem, we use the feature in the HLS tool to execute the complete FPGA

implementation flow and obtain more accurate estimates for resources

and maximum clock frequency for each design. But, this process con-

sumes a significant amount of time and makes exhaustive design space

exploration for an application, sometimes, prohibitively long. In our

toolchain, expert users can provide parameters to constrain the design

space and limit the variants that will be explored for each kernel to

expedite the process. Using the exploration data, we first prune designs

that either exceed the resources of the target FPGA or will not run at the

target clock frequency. The remain designs are used by the ILP solver to

find the optimum system configuration.

Control Circuit Generation

The control circuit for the hardware design is automatically generatedGenerating the con-
trol infrastructure in
the hardware design

from the dependency-graph of the application obtained from the com-

piler. This circuit performs two essential tasks: scheduling the kernel

execution and freeing the dynamically allocated memory. To sched-

ule the kernel execution, the dependency-graph of the application is

analyzed to determine the control and data dependencies among the

kernels. Based on this information, the generated schedule tries to max-

imize the performance by executing multiple kernels in parallel, when

possible.

In order to free the dynamically allocated memory, during the applica-

tion execution, the control circuit keeps track of the amount of memory

allocated by each kernel. To achieve this, since the dynamically allo-

cated memory is managed as a circular buffer, the control-circuit com-

pares the values to the head-pointer, which always points to the first free

location in the memory, before and after each kernel execution and can

track these changes to determine the memory address range used to

store that kernel’s data. During the control circuit generation, variable

lifetime analysis is performed by analyzing the data dependencies in the

application’s dependency-graph. Performing such a lifetime analysis

is easy since Delite’s dependency-graph provides clear and complete
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information about shared data structures in the application as well as

the nature of a access to it from each kernel. The tool uses this infor-

mation to statically determine the schedule for freeing memory blocks

and generates this into the control circuit. Moreover, since the control

circuit is always aware of the amount of memory used by the applica-

tion, it can detect memory overflows and also terminate the application

execution, if needed. For OptiML applications, this control circuit is im-

plemented using the (soft-core) processor that executes the sequential

kernels. Hence, the complete program for this processor is generated

during the system generation step. To control the kernel execution from

this processor, the system-architecture for OptiML applications, shown

in Figure 4.6, includes a control interface module.

4.5 Evaluation Results

In this section, we will first evaluate the benefits of the optimizations

discussed in Section 4.4 for each parallel pattern we can synthesize into

custom hardware. Then, we will use four OptiML applications to illus-

trate the range of solutions, with different performance and resource

utilizations, we can easily generate from our tool. Additionally, to pro-

vide a broader perspective on the quality of the generated hardware

systems, we will compare their performance and energy efficiency to

running the same applications on a laptop CPU.

4.5.1 Evaluation Setup and Methodology

All the hardware designs generated using the proposed methodology Evaluation on the
FPGAwere written as OptiML applications. These were compiled using the

Delite compiler which we modified for the purpose of generating hard-

ware. During the compilation, the kernel-synthesis step generates mul-

tiple variants for each parallel kernel in the application and synthesize

them into hardware modules using Vivado HLS (2013.4) [Xilinx, 2013a].

The system-synthesis step then automatically generates the final hard-

ware design using the specific kernels variants in the system configura-

tion. This step also generates the code for the (soft-core) processor in

the design that executes the sequential kernels and controls the overall

hardware execution flow. To measure the performance of the gener-

ated designs, they were synthesized into a bitstream using Xilinx Vivado

Design Suite [Xilinx, 2013b] and implemented on VC707 and ZC706 de-
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velopment boards from Xilinx. The VC707 board houses a Virtex7 FPGA

(XC7VX485T), and ZC706 board has a Zynq FPGA (XC7Z045) which

contains a hardened ARM processor; both the devices were fabricated

with a 28nm process technology. The hardware energy consumption

values reported are based on the worst-case estimates obtained from

the Vivado Design Suite. It includes both the static and dynamic energy

consumed in all the components implemented on the FPGA, such as

the kernels in the application, the (soft-core) processor, local memory

and the DRAM controller.

To measure the performance on the CPU, we manually implementedEvaluation on a CPU

each application in C++ and used OpenMP API [Dagum and Menon,

1998] for multi-threaded execution. The execution time and energy

consumption were then measured by running these applications on an

Intel Sandy Bridge Core i7-2620M laptop CPU running at 2.7GHz and

fabricated with a 32nm process technology. The energy consumption

was measured using LIKWID performance tool [Treibig et al., 2010].

This tool uses Intel’s Running Average Power Limit (RAPL) energy con-

sumption counters to measure the energy expended in the CPU package

(which also includes the on-chip DRAM controller) for executing each

application program.

4.5.2 Evaluating with Microbenchmarks

To understand the benefit of the proposed optimizations, we considerEvaluating the ben-
efits of premedi-

tated optimization
parallel patterns

three patterns (map, reduce and foreach) separately and study how

their performance and resource usage are affected by these optimiza-

tions2. For each case, we additionally consider the different alternatives

that can be generated by applying generic optimizations, such as loop-

unrolling and loop-pipelining, to see how this would impact the results.

Since the proposed optimizations only target sequentially accessed data

structures, we use an array of 10 million integers which is accessed se-

quentially from each of these patterns. The VC707 development board

was used for this evaluation. In the case of map and foreach patterns,

we increment the elements in this array by a constant value and store

them back into the memory3. In the case of the reduce pattern, we add

2We do not consider thezipWithpattern separately because it is also implemented
in hardware by extending themappattern.

3The difference between these patterns this is thatmap creates a new array as output
whileforeachoverwrites an already existing one.
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Figure 4.9: Performance-area trade-off between the different variants. The proposed optimizations
progressively improve the performance of the generated kernels, but they also consume additional
resources. In all cases, adding the local buffer and applying loop-sectioning produces the highest
performance and the unoptimized variant uses the lowest area. The data-points in the gray region
reveal that using general-purpose optimizations (loop-unrolling, loop-pipelining) alone does not yield
substantial improvement.
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up all the elements in the array to produce a single value which is

then stored into the memory. Figure 4.9 reports the results from this

evaluation.

In all three cases, the hardware generated without applying any opti-

mization needs the least resources, but also has lowest performance.

However, the more important finding is that the data-points in the

gray regions of the figure show that using generic optimizations like

loop-unrolling and loop-pipelining on this unoptimized version has

little effect on the performance. This is because applying these opti-

mizations creates parallel processing resources, but without additional

information the HLS tool performs each memory accesses sequentially

providing no performance improvement in the map and the foreach

and only minor improvement in thereduce. This clearly demonstrates

that blindly applying generic optimizations without considering the

hardware-level details may not produce better results. The results fur-

ther show that adding a local cache to each sequentially accessed data

structure and using burst transfers helps to improve the performance

significantly. But, using a local buffer along with a buffer manager, in-

stead of the cache, can achieve even better performance with lesser

resources. The performance improves from avoiding the cache lookup

overhead on each access, and the resource usage is lowered because the

buffer manager is simpler to implement compared to the cache control

logic; this is because the memory transfers in the buffer manager are

statically determined. The highest performance in all three cases is

obtained when the local buffer and buffer manager are used in conjunc-

tion with the loop-sectioning optimization, which achieves between

180× to 290× speedup over the unoptimized case. The is because loop-

sectioning creates blocks with fixed amounts of parallelism which the

HLS tools can leverage to obtain higher performance.

4.5.3 Evaluating with Application Benchmarks

We performed the full system evaluations using the following four Op-Applications used
for benchmarking tiML applications that utilize the features we currently support for hard-

ware generation.

1. Nearest Neighbor application finds from a set of data-points the

one that is closest to a given point.

2. Outlier Counter application uses the criterion proposed by Knorr
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Table 4.1: Datatype, computation patterns and hardware modules in each application

Application Datatype Map/ Reduce Foreach Hardware
Zipwith3 Kernels

Nearest Neighbor integer 3 1 0 2
1-D Correlation float 8 5 0 4
Outlier Counter integer 4 2 0 2
1-D Normalization integer 1 2 1 3

Table 4.2: Percentage utilization of resource in each application

Apps.
Soft-Core Processor (%) Unoptimized HLS (%) Optimized HLS (%)

LUTs+FFs BRAMs DSPs LUTs+FFs BRAMs DSPs LUTs+FFs BRAMs DSPs
Nearest Neighbor 7.01 0.18 4.76 11.27 0.61 4.76 24.62 23.11 6.50
1-D Correlation 7.01 0.18 4.76 15.69 0.96 4.76 58.99 17.89 11.21
Outlier Counter 7.01 0.18 4.76 12.15 0.82 4.76 26.37 29.96 6.50
1-D Normalization 7.01 0.18 4.76 12.53 0.29 4.76 47.59 10.68 7.28

and Ng [Knorr and Ng, 1997] to count outliers in a given data-set.

3. 1-D Correlation computes the cross-correlation between two

large data-sets.

4. 1-D Normalization applies a linear transforms to a given data-set

to fit it within a user provided upper and lower bounds.

Table 4.1 lists the datatype, the parallel patterns and number of sep-

arate hardware kernels in each of these applications. The number of

hardware kernels is always lower than the number of computational

patterns since Delite’s built-in fusion optimization, as we saw in the

normalization application, can sometimes fuse multiple independent

patterns into a single more complex kernel.

Comparing Different the Hardware Designs

To illustrate the range of solutions we can generate, for each applica- Evaluating the ben-
efit of premeditated
optimizations on com-
plete applications

tion we generate two specific hardware implementations: one that uses

hardware kernels without any of our proposed optimizations and the

other uses hardware kernels that benefit from optimization discussed

in Section 4.4 to achieve the highest performance. Among these, the

former design represents the performance one can expect by naïvely

using the HLS tool. However, as revealed in Figure 4.9, the performance
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Figure 4.10: Performance comparison among hardware implementations on VC707. The execution
performance on the soft-core processor was used a baseline to calculate the speed-up of the other im-
plementations. The design using hardware modules without premeditated optimizations achieve only
between 2.4× to 3.2× speed-up. With premeditated optimizations, the performance of the hardware
modules improve and the overall speed-up is between 450× to 717× that of the soft-core processor.
However, the most important observation is that our premeditated optimizations can achieve between
161× to 275× performance improvement for these applications.

of hardware kernels without premeditated optimizations remains rel-

atively constant despite applying generic optimizations; therefore, we

always use the kernel-variants that require the least resources in this

design. The added benefit of this is that we are now comparing among

two Pareto-optimal design points that can be generated using our tool

flow; therefore, we get an impression range of solutions with different

performance and resource requirements our tool flow can produce. To

generate the hardware kernels in the implementation achieving highest

performance, the tool performed optimizations based on the properties

of the patterns, explored the design space and used the ILP solver to

select the variants that maximized the overall application performance

while targeting an FPGA utilization factor of 80% on each target. To

serve as a reference, we executed each application using only the (soft-
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Figure 4.11: Performance comparison among hardware implementations on ZC706. The execution
performance on the ARM processor was used a baseline to calculate the performance gains of other
implementations. The design using hardware modules without premeditated optimizations achieve
only between 1.0× to 1.6× improvement. But, with premeditated optimizations, the performance of the
hardware modules improve and the overall speed-up is between 91× to 100× that of the ARM processor.
The most important result is that our premeditated optimizations can achieve between 57× to 99×
performance improvement for these applications.

core) processor without any optimizations (i.e., using the -O0 flag); this

was done to ensure that the acceleration potential shown in the figure

are not skewed due to compiler optimizations.

Figure 4.10 compares the performance of the implementations on the Comparing implemen-
tations on a VC707VC707 development board and Table 4.2 lists the resources utilized for

each one. From the figure, the designs without premeditated optimiza-

tions is between 2.4 to 3.2 times faster than the processor while utilizing

slightly less than twice the resources. However, the high-performance

implementation achieves between 450 to 717 times the soft-core proces-

sor’s performance, albeit by using more resources, and clearly illustrates

the benefit our approach. Comparing across applications, the highest

performance gain was for the outlier counter application where the

execution time was dominated by a kernel containing nested patterns.
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Due to the significant performance benefit obtained for this kernel,

the overall execution time of the application was improved. The near-

est neighbor also has a similar, albeit simpler, kernel, but this kernel

had a lesser influence on the overall execution time of the application;

hence, the performance gain for this application was limited. How-

ever, comparing among the hardware implementations for the same

application, the simpler kernels of the nearest neighbor enabled the

tool to use the highest performing kernel variants while implementing

the optimized design to deliver the highest improvement. The lowest

performance improvement was obtained for the normalization applica-

tion we described in Section 4.3.3. This is because the normalization

application contains aforeachpattern and, as seen in Figure 4.9, the

relative performance improvement for theforeach is the lowest among

the patterns.

Considering the ZC706 development board, the hardened ARM pro-Comparing implemen-
tations on a ZC706 cessor enabled the software execution performance to improve con-

siderably4. As seen in Figure 4.11, the designs without premeditated

optimizations only achieve between 1.0 to 1.6 times the performance of

the processor while those one with premeditated optimizations are be-

tween 91 to 100 times better. This again shows that the premeditated op-

timizations can significantly improve the performance of the hardware

implementations. The performance gains for the optimized designs

were restricted on the Zynq due to the limited data bandwidth avail-

able from the programmable logic part of the chip, where the hardware

designs are implemented, and the hardened memory controller that

is collocated with the ARM processor. To verify if the performance im-

provements were constrained due to data bandwidth, we implemented

each application on the VC707 board by using the same hardware mod-

ules that were used in the optimized Zynq designs and measured the

performance. For every application, the execution performance on

VC707 board was higher than that on the Zynq, ranging between 1.4× to

3.8×, despite using the same hardware modules; this clearly illustrates

how performance is limited due to data bandwidth on Zynq board.

Comparing the performance gains of unoptimized hardware design

on the ZC706 with the VC707, the gains for the correlation application

has dropped because of the superior performance of the hardened

floating point units on the ARM, and improvement for normalization

4The software running on the processor was compiled using the-O0flag.
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Figure 4.12: Performance comparison between FPGA and CPU. The CPU achieve better execution
performance compared the FPGA. However, for some applications, such as Nearest Neighbor and
Normalization, the FPGA is able to reach the performance on a single-core implementation. Between
the CPU implementations, as expected, the multi-core implementations outperforms the single-core
ones.

has increased because the ARM did not have a division unit while the

soft-processor has one.

These results show that our methodology can easily generate a variety of

different solutions from a high-level DSL program that achieve different

trade-offs between performance and resource usage. More importantly,

it demonstrates that by decomposing the application into a set of well

understood computation patterns, we can automatically generate high-

performance hardware systems.

Comparing the Hardware Design with a Processor

To provide more insight into performance and energy efficiency of the Comparing the FPGA
design with running
the application on a
CPU

generated solutions, we compare the highest performing FPGA designs

on the VC707 with a laptop CPU (Intel Core i7-2620M). The results on

Figures 4.12 and 4.13 shows that when we use the highest-performing
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Figure 4.13: Energy-efficiency comparison between FPGA and CPU. For applications, the FPGA im-
plementations are more energy-efficient compared to the best CPU implementations, by a factor
ranging from 2.5 to 6.6. Among the CPU implementations, the multi-core implementations are more
energy-efficient compared to the single-core ones.

variants in the FPGA design, such as in the case of nearest neighbor

and normalization, FPGA’s execution performance is quite close to the

single-threaded execution on the laptop CPU. This performance gap

increases in the outlier counter and correlation applications because

of using lower performing variants in the hardware design. In terms of

energy efficiency, however, the FPGA clearly outperforms the CPU for

all applications. The lowest improvement was observed for correlation

application where the ASIC implementation of floating-point units on

the CPU gives it a definite edge over the FPGA. The figure also shows

that multi-threaded execution can improve the performance and energy

efficiency of the CPU, but the FPGA is still the more energy-efficient

platform.

To understand the cause of the performance difference, we need to takeUnderstanding
the performance

difference
a closer look at the applications we used for the evaluation. All these

applications have a low computational complexity and process large

amounts of data that is stored in the external DRAM. Therefore, its exe-
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cution performance on any platform depends greatly on the platform’s

effective memory bandwidth. The maximum memory bandwidth avail-

able to the CPU is 21.3GB/s, compared to the theoretical maximum of

6.4GB/s available to the hardware design. This along with the highly

tuned memory architecture of the CPU, enables it to have a higher ef-

fective bandwidth and, thereby, achieve better performance. Moreover,

in the hardware designs, the DRAM controller accounts for between

50% to 70% of the total energy consumption in the system. On the CPU,

this controller is implemented using as an ASIC and, therefore, is much

more energy-efficient. This suggests that implementing this DRAM con-

troller as an hard IP will enable FPGAs to achieve a better performance

and a much higher energy efficiency for such applications.

4.6 Discussion

Domain-specific synthesis tools can significantly reduce the entry bar- Key insights

rier for a user without hardware design knowledge, i.e, domain experts

and users with a software development background, to using FPGAs.

The approach presented in this chapter enables the automatic genera-

tion of high-performance FPGA designs from high-level DSL specifica-

tions. This DSL specification is intuitive to express for application devel-

opers and also shields them from the hardware details. By decomposing

the DSL operations into well understood computational patterns, i.e.,

map, zipWith, reduce and foreach, we enable the efficient hardware

generation for many DSL operations using a small set of computational

patterns. Our results indicate that the proposed optimizations are ef-

fective and that our approach can produce complete hardware designs

to target FPGAs. We also demonstrate that these designs can offer a

better energy efficiency compared to a laptop CPU. Such a tool flow

that generates hardware systems from computational patterns can be

easily reused by other domain-specific tools where the DSL-operation

can be mapped to the same set of patterns; for instance, other DSLs

build into Delite will be able to directly utilize the tool flow described in

this chapter. Moreover, the tool flow itself can be extended by adding

more patterns to support hardware generation for even more domains.

The task of mapping new DSL operations into existing patterns will not

require hardware design knowledge because computational patterns

are essentially algorithmic methods that can be easily understood by

domain-experts and software developers. Thereby, such a tool flow

75



Chapter 4. Hardware System Synthesis from Computational Patterns

can become a shared infrastructure that significantly reduces the effort

needed to develop new domain-specific tool flows.

The hardware designs we generated in this chapter, use only singleWhat is next?

hardware modules per parallel operation and exploit the parallelism

within that module to achieve high performance. However, such single

module designs did not fully utilize the resource available on the FPGA

as well as the data access bandwidth on the interconnect bus. Addi-

tionally, the performance of a single module can sometimes be quite

low when there are non-sequential data accesses from the modules

where the long data access latency will cause data starvation and limit

performance. To overcome these problems, we need to parallelize com-

putations across multiple modules. We will investigate the possibility

of extending this hardware synthesis flow to automatically generate de-

signs that parallelize computations across multiple modules in the next

chapter. Additionally, to keep the flow easy to use for the end-user, we

want to generate these multi-module designs from the same high-level

functional specifications. We explore the potential for this extension in

Chapter 5.
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with Computational Patterns

FPGAs can offer great performance for parallel applications by perform-

ing computation in a spatially parallel manner. In order to fully benefit

from this spatial parallelism, the designer must carefully consider how

the application is mapped on the device and how its computational

throughput is matched with the available data access bandwidth. This

often requires a detailed analysis of the application and can be quite

tedious, even for hardware design experts. To improve productivity

of designers and to enable people without hardware design expertise

to fully benefit from FPGAs, we need to develop tools and automated

methodologies to correctly parallelize applications on an FPGA. The

work explored in Chapter 4 only exploited parallelism within a hardware

module generated by the HLS tool. However, the effective parallelism

in the computation within one module can depend heavily on the data

access bandwidth to the module, which in turn can depend on the

module’s data access patterns. Data access patterns are particularly

important when the data is accessed from an external memory with

long access latencies. Moreover, the overall bandwidth utilization by

a single HLS generated module can be much smaller than what is af-

forded by the system bus [Zhang et al., 2015]. Exploiting parallelism

across multiple modules is one way to alleviate these problems.

5.1 Motivation

Using the approach developed in Chapter 4, we can easily write a pro- Matrix multiplication
using computational
patterns

gram to compute C = A×B , where A, B and C are floating point matri-

ces; Figure 5.1 shows the part of this program that computes C . This
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1 // A and B are input matrices and this code computes C as A*B
2 // rows_A is the number of rows in matrix A and cols_B number

of columns in B
3 val C = (0::rows_A, 0::cols_B){ (i,j) =>
4 // Compute the elements of C a dot-product between rows

of A with columns of B
5 (A.getRow(i) * B.getCol(j)).sum
6 }

Figure 5.1: Matrix multiplication in OptiML. This high-level program provides only the functional
specifications and contains no hardware level details making it easy to specify for application develop-
ers. Here, matrices A and B are floating point matrices that are defined elsewhere and this program
computes the elements of matrix C by computing the dot-products between the rows of A with the
columns ofB.

program will be decomposed by our high-level compiler into a set of

nested computational patterns as shown in Figure 5.2. Here, each cell in

C is the dot-product of a row of A and a column of B ; this computation

can be composed using azipWithpattern, which performs the element-

wise multiplication between a row of A and a column of B , followed

by a reduce pattern that adds the results from the multiplication. To

complete the matrix multiplication, thezipWith andreducepatterns

are nested inside twomappatterns, one iterating along the columns of B

and the other along the rows of A1. These patterns reveal the parallelism

in the computation (e.g., the separate multiplications in zipWith can

be parallelized) and expose how the data is consumed and produced in

the process (i.e., A is read row-wise and B is read column-wise and used

to produce a completely new matrix C ). By leveraging these properties,

a purely functional application description can be automatically trans-

lated into a well structured and annotated program that will produce a

good quality hardware module using current HLS tools.

Although the computational patterns make it possible to generate aData starvation
limits computa-

tional throughput
highly parallel hardware module, the execution performance still de-

pends on the data access pattern, dependency between accesses and

even latency of the operations. For instance, in the matrix multiplica-

tion, if matrices A and B are stored in row-major order, the columns of B

1In the code, two map patterns actually iterate through all the elements of output
matrix. The value is each element is computed, by the nestedzipWith andreduce
patterns, as the dot-product between the corresponding row A and column of B
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Figure 5.2: Each result cell of the matrix multiplication is computed using two parallel computational
patterns: zipWith andreduce. Here, thezipWithperforms element-wise multiplication of the rows of
matrix A with the columns of matrix B . Thereduce sums all the results from thezipWith to compute
the cell value.

need separate strided accesses that will underutilize the bus-bandwidth

and significantly diminish the performance of the module2. So, despite

the parallelism available in the computation, performance of the mod-

ule will remain fixed due to data starvation. Therefore, while the pattern-

based approach can vary the amount of parallelism (e.g., loop unrolling)

exploited to generate multiple implementations of the hardware mod-

ule (i.e., variants), the performance does not improve; Figure 5.3 (single

module design) provides experimental evidence of this effect of data

starvation where further parallelization consumes additional resources

but does not deliver better performance.

In such counterintuitive situations, we may still improve performance Balance computa-
tional throughput
with communication
bandwidth with multi-
ple modules

by parallelizing computations across multiple hardware modules, simi-

lar to parallelizing a computation across multiple CPUs, and improve

the aggregate throughput. Since parallelizing computations results in

the need for synchronization, to achieve this on FPGA, the designer

must identify synchronization requirements in the application and

build custom synchronization schemes. Sometimes, there are even less

obvious needs for synchronization, such as false sharing [Bolosky and

Scott, 1993] due to mismatches between the widths of the system bus

2We are using a simplistic implementation of matrix multiplication here to illustrate
the idea. An optimized implementation is also considered later.
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Figure 5.3: The design with only a single module performs poorly due to data starvation. Further
parallelization will consume additional resources, but not deliver better performance. The design with
multiple modules is able achieve higher aggregate bandwidth and, therefore, better performance.

and the datatype in the computation. Moreover, to efficiently paral-

lelize computation across modules, there is also a need for good work

partitioning schemes. All these issues make the task of manually par-

allelizing the computation tedious, error prone and, above all, hard to

accomplish without hardware design expertise.

This work presents a new approach to automatically parallelize applica-Overview of
the approach tions that are composed using computational patterns. The approach

includes, (1) automatic extraction of synchronization requirements in

the kernel when parallelized across multiple hardware modules, (2) de-

sign space exploration using Integer Linear Programming (ILP) to find

the set of module variants that obtain the best performance for a given

application, and (3) automatic generation of the complete system using

the selected module variants along with all the essential synchroniza-

tion hardware. We perform this automation by leveraging the properties

of the computational patterns, specifically how data is consumed and

produced, and properties of the system architecture, such as the data-

allocation strategy and width of the system-bus. By employing this

approach on the matrix multiplication kernel, we are able to exploit
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the parallelism in the outer-most level map pattern to parallelize the

computation across multiple modules and achieve better performance,

as shown in Figure 5.3.

In the rest of this chapter, Section 5.2 takes a look at the modifications Outline

that will be needed to the hardware generation flow from Chapter 4

to automatically generate systems where operations are parallelized

across multiple modules. Section 5.3 explains the properties of the com-

putational patterns, and Section 5.4 discusses how our methodology

uses these properties to parallelize kernels composed from patterns

across multiple hardware modules. We demonstrate the benefit of the

approach in Section 5.5 by presenting the performance improvements

we achieve on seven different applications. Finally, Section 5.6 reviews

the key insights from this work.

5.2 Modifications to the Hardware Generation Flow

The toolchain developed in Chapter 4 needs to be modified to support

multi-module hardware generation. In this section, we will first review

the overall flow and then discuss where modifications are needed.

Figure 5.4 illustrates, in a more simplified form, how the hardware gen- Reviewing the hard-
ware generation floweration flow in Chapter 4 was implemented. In this flow, application

programs are first compiled by a high-level compiler into parallel and

serial kernels. The parallel kernels contain one or more parallel compu-

tational patterns, such as map,reduce,zipWith andforeach, that have

well understood properties, such as the nature in which it produces or

consumes data or the parallelism in its operation; matrix multiplica-

tion is an example of such a parallel kernel. The toolchain leverages

these properties to automatically infer the suitable optimizations for

each patterns in the kernel and then utilizes an HLS tool, in our case

Vivado HLS [Xilinx, 2013a], to generate a highly parallel hardware mod-

ule. Additionally, it can vary the amount of parallelism exploited in

the generated hardware to create multiple implementations, which are

called variants, for each kernel. After the variants for the parallel kernels

in the application are generated, one variant is selected per kernel and

then connected within a system architecture template using wide, high-

bandwidth buses to complete the system design. This template provides

shared memories, clock and control circuitry, and a (soft-core) proces-

sor. Figure 5.5 shows the system design for the matrix multiplication
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Figure 5.4: The Delite compiler decomposes the high-level application into parallel and sequential
patterns, and an associated control-flow graph. The parallel patterns undergo hardware synthesis to
generate hardware modules and become part of the hardware design. The sequential patterns and the
schedule generated from the control-flow graph are generated as a software program that runs on a
(soft-core) processor in the system.

application. The (soft-core) processor in this system design is used to

execute the sequential kernels in the application and for orchestrating

the execution of the hardware modules. Our toolchain automatically

generates software for this processor from the sequential kernels and

the application’s control-flow information.

The hardware system generated in Chapter 4 only used a single hard-Modifying the hard-
ware generation flow

for multi-module
parallelization

ware module for each parallel kernel in the application. In order to

generate systems where one or more of these kernels are parallelized

across multiple hardware modules (i.e., multi-module systems), this

hardware generation flow needs to be modified as indicated in Fig-

ure 5.4. When the computation is parallelized across multiple modules,

these modules will need to share data structures. Therefore, to avoid

data races, these modules need to perform synchronization and guard

accesses to these shared data structures. To achieve this automatically,
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Figure 5.5: The hardware system generated for the matrix multiplication has the hardware module
implementing the multiplication and a (soft-core) processor for the scheduling the hardware module
and executing the sequential patterns, if any. The data for the computation is stored in the shared
memory that is accessed over the wide system bus. Each hardware kernel also has a local memory used
for buffering input data and holding intermediate results.

during hardware generation, we need to analyze the accesses to data

structures and selectively modify some accesses to use appropriate

synchronization schemes. During the hardware system generation, to

facilitate synchronization between modules, additional synchroniza-

tion hardware, e.g., hardware mutexes, needs to be included in the

system. Since these systems can now use multiple variants for each

parallel kernel, the system generation process must decide the exact

number and types of variants for each kernel that would maximize the

application performance. To optimally leverage these multiple mod-

ules, we need to develop workload partitioning schemes and integrate

them into the generated hardware modules. Moreover, to support this

workload partitioning scheme, the software generation flow must also

be modified to initialize additional data structures that are used in the

scheme before starting the hardware modules. Furthermore, some tasks

that were previously performed by the hardware modules, such as allo-

cating shared data structures and updating their metadata, will now be

done in software; this change is required because these tasks need to be

done only once during the execution of the hardware module and we

do not want to replicate these tasks across multiple modules.
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Figure 5.6: In themap andzipWithpatterns, the output collection is stored in sequential locations. The
reduceuses a binary operation that is associative and commutative and, therefore, the operations can
be reordered. And, the foreach can update the values of an existing collection in any order but the
operations can be parallelized.

5.3 Data Access Properties of Parallel Patterns

As we saw in Chapter 4, the parallel kernels extracted by the Delite com-Data Access Proper-
ties of Parallel Com-
putational Patterns

piler contain one or more computational patterns, such asmap,zipWith,

reduce andforeach. These patterns, as described in Section 4.3.2, pro-

vide certain guarantees regarding the nature of their computation and

how they produce or consume data. As explained before, the map and

zipWithpatterns always use a pure (side-effect free) function to create

a fresh collection. Additionally, as illustrated in Figure 5.6, the result

values in both map andzipWith are stored in sequential locations with

the result from the i th computation being stored to the i th location.

The reduce pattern computes a single element by applying a binary

function that is both associative and commutative to the elements in

a collection. We levearge this property to reorder the elemental op-

erations in reduce and still produce the correct result. The foreach

pattern is typically used to modify values in an existing collection by

applying an impure function (with side-effects) to each element, such

as to change all the negative numbers in an existing array and set them

to zero. Unlike the map andzipWith,foreach can update the values of

the result collection in any order. However, we restrict the programming

model to ensure that the operations in theforeach can be executed in

parallel without problems3.

3The user has the responsibility to ensure that performing the operations inforeach
in parallel will not produce incorrect results.
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These computational patterns make it easy to identify the parallelism

in the application and expose it to the HLS tool. But, as illustrated

in Section 5.1 with the matrix multiplication, the performance of the

resulting hardware module still depends on aspects such as the data

access pattern, interdependencies between accesses, and latency of the

operations. In the next section, we will see how the properties of these

patterns can be leveraged to parallelize computations across multiple

modules.

5.4 Parallelizing Computation Across Multiple Mod-

ules

The key focus of this work is to overcome the problem of low perfor-

mance from a single hardware module by parallelizing computation

across multiple modules. In this section, we discuss this approach and

detail how we leverage the properties of the computational patterns

and that of the system architecture to automate this process.

5.4.1 Identifying Synchronization Requirements

To parallelize kernels across multiple modules, we identify how each

kernel uses and produces data and utilize synchronization schemes to

guarantee correct use of shared data structures. Since these kernels are

composed of computational patterns, we utilize the properties of these

patterns to infer how data is consumed and produced in the kernel. We

use this knowledge in conjunction with the properties of the system,

such as data allocation strategy and width of system-bus, to correctly

identify the synchronization requirements between the modules.

Synchronization Rules for Simple Patterns

In the case of kernels with a single pattern, if this is areduce, it operates Synchronization rules
for kernels with single
patterns

on a collection to compute a single new result. When parallelized, mul-

tiple modules update this result, as shown in Figure 5.7(a); therefore,

we need to use a mutex, to avoid data races. If, however, the kernel

has a map, zipWith or a foreach pattern, each elemental operation

uses distinct elements from the input collection(s) to compute inde-

pendent elements in the output collection. Hence, one might naïvely
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Figure 5.7: Synchronization rules for simple patterns: a) In kernels with a single pattern, we can have
have data races either due to shared output variable or false sharing. To prevent these races, we need to
use mutexes for all writes. b) When a map orzipWith is “fused” with areduce, the data from the former
is directly consumed by thereduce. Therefore, only the output fromreduceneeds to use a mutex.

assume that there is no need for any synchronization. However, this

would be incorrect if there is a mismatch between the size of datatype

used and the width of system bus; since the latter is typically much

larger in order to maximize data bandwidth, this can create false shar-

ing problems [Bolosky and Scott, 1993]. False sharing occurs because

each elemental update to the output collection will need to perform a

read-modify-write operation which will give rise to data races if multiple

modules update the same bus-word simultaneously. This is shown in

Figure 5.7(a). Some bus protocols provide data masks to selectively

update specific bytes in a bus-word, however, we can have collections

of datatypes that are smaller than a byte making such schemes insuf-

ficient. To illustrate with an example, if an output from a foreach is a

collection of boolean values, the modules will need to update single

bits in this collection and this is only possible with a read-modify-write

operation. If another module is simultaneously updating another bit in
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Figure 5.8: Synchronization rules for nested patterns: When computational patterns are nested inside
another pattern, the synchronization rules for the pattern at the outermost level is exactly the same
as in the simple case. However, for inner level patterns, synchronization is only needed when it is a
foreachpattern that updates a data structure with global scope.

the same data-bus word, they can inadvertently overwrite each other’s

results. Therefore, a mutex is necessary to make this read-modify-write

operation atomic.

Synchronization Rules for Fused Patterns

While generating parallel kernels, the Delite compiler sometimes fuses Synchronization rules
for kernels with fused
patterns

multiple patterns together so that they can execute in parallel. For

instance, as we saw in Section 4.3.3, if we compute the minimum and

maximum from the same collection, the tworeducepatterns might get

fused into a single kernel to compute both the minimum and maximum

values in parallel. If the fused patterns are completely independent, they

each retain the synchronization requirements they had in the simple

case. The exception to this is when amaporzipWith is fused withreduce

and the latter directly consumes the data from the former. In this case,

as shown in Figure 5.7(b), if the output of themaporzipWithnever write

into the shared memory, only the output from thereducewould need

to use a mutex. We see an example of such a fused pattern in the matrix

multiplication where during the dot-product computation thereduce

pattern directly consumes the data from thezipWith. However, in that

specific case, the fused operation is nested within other patterns and

therefore has slightly different rules as we will see next.
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Synchronization Rules for Nested Patterns

When computational patterns are nested, such as in matrix multipli-Synchronization
rules for kernels

with nested patterns
cation where the dot-product is nested inside mappatterns, the outer-

most pattern retains the same synchronization requirements as they

would have had in the single pattern case. As shown in Figure 5.8, if

the inner-level pattern is either a map, zipWith or a reduce, the new

data it produces is visible only within the execution context of a single

computation of the outer-level pattern and hence disjoint. Therefore,

when this kernel is parallelized across multiple hardware modules, data

produced by the inner-level patterns in different modules is completely

disjoint (i.e., located at different bus addresses) and does not need syn-

chronization. However, to guarantee this, the data allocation strategy we

use ensures that data created by the inner-level patterns from different

modules never share the same data-bus word. Thus, in the matrix multi-

plication, the fusedzipWith andreduce that calculate the dot-product

at the inner-level do not need any synchronization. However, when

the result matrix is updated by the outer-level map pattern, the differ-

ent modules need to synchronize using a mutex. This is advantageous

since it enables the inner-level computation that executes more often to

progress in parallel without any synchronization overheads. If, however,

the inner-level pattern is a foreach, it can update any collection that

was allocated before and, therefore, the potential exists for data races

between theforeachpatterns in different modules that write to same

collection. As a result, foreach patterns, even when they are nested

inside other patterns, need to use a mutex for synchronization if they

write to a collection that is visible outside the outermost pattern (i.e., a

collection with a global scope).

5.4.2 Reducing Synchronization Requirements

Synchronization, while needed for correct execution, serializes opera-

tions across the modules and, therefore, diminishes performance ben-

efits of parallelization. Hence, it is better to reduce synchronization

requirements as much as possible.

When a kernel with a reduce pattern at the outermost level is paral-Reducing synchro-
nization require-

ments for reduce
lelized across multiple modules, a straightforward optimization is to

provide each module with a local data structure to hold partial results.

This permits the different modules to operate in parallel and synchro-
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Figure 5.9: Vector addition is used as an example to illustrate the opportunities to reduce synchroniza-
tion overheads. a) The write from each hardware module updates sequential locations; therefore, the
modules can only have false sharing at the edges of their respective sequential ranges. A hardware
mutex is used to make updates to these edge elements atomic. b) The access range of each module is
aligned to data-bus width and the work unit size is chosen appropriately to eliminate the need to use
synchronization hardware.

nization is only needed at the end of the computation when the different

partial results are combined and written to the shared data structure.

This optimization is possible because the elemental computation in

reduce is both associative and commutative; the order in which the

operations are performed and later combined does not matter.

If the parallel operation is a map or a zipWith pattern, we know that Reducing synchroniza-
tion requirements for
map, zipWith and
foreach

the i th elemental operation will utilize the i th element(s) of the input

collection(s) to produce the i th result in the output collection. We uti-

lize this knowledge while partitioning the kernel’s computation so that

each module is given a contiguous range (from i th to (i +n)th) of the

computation; this ensures that the same module writes n sequential

values in the output collection. Therefore, the writes from different

modules can interfere with each other only on the edges of their re-

spective sequential ranges, avoiding synchronization for the non-edge

writes. Unlike the map and zipWith, the foreach can update a preal-
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located collection in any order and is, therefore, not compatible for

this optimization. We overcome this problem with additional compiler

analysis to identify if the collection written to by theforeach is updated

sequentially and selectively apply this optimization. Figure 5.9 (a) illus-

trates the benefit of this optimization by considering the case of vector

addition implemented with azipWithpattern. In this case, since each

module updates a sequential range of locations, the only possibility

for false sharing arises at the boundaries of these ranges when differ-

ent modules need to write to the same data-bus word. Therefore, the

writes to the other locations do not need any synchronization. This

optimization is utilized in the matrix multiplication example to reduce

the synchronization requirements of the outermost mappattern.

A special situation arises when the writes from the patterns are sequen-

tial and we can statically determine that an output collection is accessed

starting from a memory address that is aligned to the data-bus width;

this is sometimes possible forarray andvectordatatypes when they

do not have runtime determined variables used in their access. In this

case, by controlling the work assigned to each module, we can ensure

that last memory address written to by the different modules aligns

with the end of the data-bus word. In such a case, the results from

different modules never overlap, thereby avoiding the need for any syn-

chronization between them. Figure 5.9 (b) illustrates this case, again,

using vector addition.

These relaxed synchronization rules are used in our high-level com-

piler to identify synchronization requirements and correctly parallelize

kernels across multiple modules.

5.4.3 Generating the Complete System

The synchronization requirements determined by the high-level com-

piler are used to generate hardware modules that correctly acquire

mutex locks while updating shared data structures and, therefore, can

execute in parallel. Furthermore, the toolchain described in Section 5.3

produces multiple variants (hardware implementations) for each par-

allel kernel by varying the degree of parallelism (i.e., loop-unrolling

and pipelining) exploited in the variant. The additional ability to paral-

lelize computations across multiple modules further widens the design

space making it hard to find the optimum system configuration, which
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Figure 5.10: Multiple hardware modules can be used to improve the performance of matrix multiplica-
tion. The system uses a mutex to synchronize these modules while writing to the result matrix in the
shared memory. Each module connects to this mutex using separate request and grant lines.

is the number and types of variants used per parallel kernel, in the final

system design.

We utilize the performance and resource estimates from the HLS tool to Design Space Explo-
rationguide the design space exploration. To find the optimum configuration,

we model this as an Integer Linear Programming (ILP) problem and

use an ILP solver, as done by Graf et al. [Graf et al., 2014]. In the ILP

formulation, we try to maximize the performance of the application

while ensuring that at least one variant is selected for each parallel ker-

nel and the design fits on the FPGA device. However, this modeling is

approximate since it is based only on static analysis and it assumes that

each extra hardware module provides the performance improvement as

indicated in the HLS estimates; the latter implies that external factors,

such as maximum system bandwidth and contention between modules

over shared data, do not significantly affect performance. To make this

assumption reasonable, we address the bandwidth problem with an ILP

constraint to ensure that the total bandwidth used by all modules of a

given kernel is less than the maximum bandwidth of the system bus.

For overcoming the contention problem, we use the information about

the synchronization requirements to identify kernels where the com-

putation at the innermost level of nesting 1) performs ‘locked’ updates

to shared datastructures and 2) contains no high-latency operations
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(e.g., reads from external memory). Since such kernels are likely to have

contention when parallelized, we add a constraints to ensure that we

only use one hardware module for these kernels. With these additional

constraints, the ILP solver finds the optimal configuration of the system

design for the application based on the model.

The configuration found by the ILP solver is used to select the hardwareSystem Generation

modules and integrate them into a system-level template that connects

them to the other shared components (as done in toolchain described

in Section 5.3). For instance, Figure 5.10 shows the automatically gener-

ated system for matrix multiplication with the kernel parallelized across

two modules. To automatically add hardware mutexes and connect

them to the different modules, we utilize the synchronization infor-

mation for each kernel. While connecting the hardware mutexes, we

use the performance estimates from the HLS tool to provide a higher

priority to kernel variants that achieve higher performance; this ensures

that the high performance variants are given priority when multiple

modules contend to acquire mutex locks.

5.4.4 Managing the Multiple Modules

Now that we can generate complete systems where the kernel compu-

tations are parallelized across multiple hardware modules, we need a

work sharing scheme to partition the work among these modules. In

our toolchain, the Delite compiler represents the work for each compu-

tational pattern as iterations over a sequential index range. Therefore,

we could statically divide this range into parts that are assigned to sep-

arate hardware modules. But, the processing times can vary widely

due to conditional and data-dependent operations within the kernel.

Additionally, for each kernel, we can have hardware modules with dif-

ferent processing performance. To tolerate this variability, we employ

a dynamic load balancing scheme with a central task-pool [Korch and

Rauber, 2004] to distribute the work. To implement this, we store the

iteration index range for the outermost pattern, which is parallelized

across the modules, in a shared data structure (task-pool). During ex-

ecution, each module dynamically updates this index range, taking

away a small portion of the work for execution. Since the modules that

finish faster take away portions more frequently, we achieve the load

balancing.
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1 // A and B are input matrices and
2 // C is the output matrix computed as A*B
3 // Furthermore, D is matrix of precomputed values of C and
4 // D_valid indicates if the value if D is valid.
5 // rows_A is the number of rows in matrix A and
6 // cols_D number of columns in D
7 val C = (0::rows_A, 0::cols_D){ (i,j) =>
8 // Compute the dot-product only when D_valid(i,j) is zero
9 if( D_valid(i,j) == 0 ) {

10 // Compute the elements of C as a dot-product
11 // between rows of A with columns of B
12 (A.getRow(i) * B.getCol(j)).sum
13 } else {
14 // The precomputed value in D(i,j) as the result of
15 // the dot-product computation
16 D(i,j)
17 }
18 }

Figure 5.11: Modified matrix multiplication. This application computes matrix C by multiplying
matrices A and B. However, if matrixD_valid indicates that the precomputed results of some cells
exists in matrixD, it copies these values directly fromD.

To illustrate the benefit of this scheme, consider the application in Fig-

ure 5.11, which is a slightly modified variant of the matrix multiplication

example we saw earlier. In this application, the matrix D holds pre-

computed results for some cells in C and values in Dvali d state if the

corresponding cells in D hold valid data. Therefore, for cells where the

entry in Dvali d is one, the multiplication result can be directly copied

over from the matrix D , thereby, avoiding the costly dot-product com-

putation. Hence, the processing time for different rows of C can vary

significantly based on the number of zeros in Dvali d making static work

partitioning suboptimal. Figure 5.12 compares the execution times for

computing matrix C when it is parallelized across multiple modules

(ranging from one to four) with static and dynamic workload partition-

ing schemes. Here, the execution time remains fixed with static work-

load partitioning because the Dvali d matrix we used has zero entries

only in the first quarter of its rows resulting in a unfair work distribu-

tion that put all the heavy computation on the same hardware module.

With dynamic workload partitioning, however, the modules take away
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Figure 5.12: The static workload partitioning is inefficient because the computational workload in the
kernel is data dependent. In the specific example used, the static partitioning scheme assigns all the
heavy computation to the same hardware module eliminating all the benefits of parallelization. In
the dynamic partitioning, the modules take away smaller portions of computation and compete with
each other to complete the task leading to a more fairer work distribution among the modules and,
as a result, achieve better execution time. The contention over access to the shared task-pool in the
dynamic partitioning scheme results in a small overhead compared to the ideal parallelization.

smaller units of work each time and compete to complete the execu-

tion. This results in a fairer workload distribution and, consequently, a

smaller execution time. But, since all the modules need to access and

update the task-pool dynamically, the accesses to this task-pool must

be guarded using a mutex and this results in a slight increase in the

execution time compared to the ideal speed-up indicated in the figure.

We augmented the toolchain described in Chapter 4 using these con-

cepts to automatically generate designs that parallelize computation

across multiple modules.

5.5 Evaluation Results

In order to illustrate the benefits of parallelizing computation across

multiple modules, we select seven applications from linear algebra,

signal processing and graph processing domains.
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5.5.1 Evaluation Setup and Methodology

All the applications were written in OptiML [Sujeeth et al., 2011]. Al- Hardware Setup and
Methodologythough OptiML is primarily a language for machine learning, it supports

a rich set of datatypes and operations that are sufficient to develop these

benchmark applications. The applications were compiled using our

toolchain that was augmented with the ideas presented in Section 5.4

and generated into hardware designs. The toolchain used Vivado HLS

2013.4 [Xilinx, 2013a] to synthesize parallel kernels in the application

into hardware modules and Vivado Design Suite [Xilinx, 2013b] to con-

nect these hardware modules within a system design template and gen-

erate the FPGA bitstream. The generated bitstreams were executed on

the Xilinx VC707 development board that houses a XC7VX485T device

and has 1GB of DRAM. Each application’s performance was measured

with hardware counters during execution and the resource consump-

tion values are from the post-implementation reports generated by

Vivado Design Suite.

In order to evaluate the benefits of our approach, we compared the per-

formance obtained by utilizing only a single hardware module for each

parallel kernel (single module design) with that of the multi-module

design. We used the toolchain described in Chapter 4 to automatically

generate single module designs. Then, we used the modified toolchain

that was extended with the ideas presented this chapter to generate the

multi-module designs. Note that for both cases we started from exactly

the same application specifications written in OptiML. Furthermore, in

each case, the toolchain automatically generated the hardware design

after performing the design space exploration and determining the con-

figurations that maximized the application performance by using up to

80% of the resources on the FPGA.

5.5.2 Evaluating with Application Benchmarks

We used the following applications to evaluate our approach: Applications used for
benchmarking

1. Matrix Multiplication–unoptimized (MMuopt) is a linear algebra

application that multiplies two square floating-point matrices

with 250,000 elements each. This is the running example we have

used throughout this chapter.
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Table 5.1: Parallel operations and computational patterns in each application

Application Parallel Ops. Map ZipWith Reduce Foreach
MMuopt 3 3 1 1 0
MMopt 3 3 1 1 1
ACorr 5 6 1 5 0
PRank 6 5 0 3 0
PFrnd 6 4 0 0 5
TCount 3 6 0 1 0
BFS 9 6 0 1 3

2. Matrix Multiplication–optimized (MMopt) is a more optimized

version of the matrix multiplication that buffers the columns of

the second matrix and uses the buffered data to compute multiple

cells of the result matrix.

3. 1-D Autocorrelation (ACorr) is a signal processing application that

computes the autocorrelation of a 20,000-element floating-point

vector.

4. PageRank (PRank) is a popular graph algorithm used in search

engines that iteratively computes the weights of each node in the

graph based on the weights of nodes in its in-neighbor set (nodes

with edges leading to it). We used a graph with 1,000,000 nodes.

5. Potential Friends (PFrnd) uses the principle of triangle comple-

tion in graphs to recommend new connections (friends) for each

node. We used a 15,000-node graph.

6. Triangle Counter (TCount) counts the number of triangles in a

graph with 1,000,000 nodes.

7. Breadth First Search (BFS) computes the distance of every node

in a 1,000,000 node-graph from a given source node.

Since we did not have a mechanism to read data from an external source,

the generation of test data (e.g., input matrices, vector and arbitrary

graphs) was made a part of the application. But, this did not affect the

results since the time needed for data generation is insignificant com-

pared to total execution time. Table 5.1 lists the number of parallel ker-

nels and the computational patterns in each application. Performance

results for these designs are shown in Figure 5.13 and their resource

consumptions are reported in Table 5.2.
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Figure 5.13: The figure shows the relative performance of the designs with a single module per kernel
and those with multiple modules per kernel. Since the HLS generated modules in these applications do
not fully utilize the bandwidth of the system bus, parallelizing kernels across multiple modules always
achieves higher performance.

Comparing Single-Module and Multi-Module Designs

Across all applications, as expected, the performance obtained by ex- Performance com-
parison between the
linear algebra applica-
tions

ploiting multi-module parallelism was better than that of the single

module design. This is because the hardware modules in these single

module designs had low effective parallelism, either due to irregular or

strided access patterns, or due to the long latency of the computation;

hence, they did not fully utilize the system-bus bandwidth. The highest

performance improvement was for MMuopt where the performance

of the single module design was limited due to the strided access pat-

tern, as discussed in the Section 5.1. The multi-module parallelization

improved the aggregate data bandwidth to this kernel and, thereby, its

performance, as shown in Figure 5.3; the optimizations discussed in

Section 5.4.2 reduced the synchronization needed in the outer-levelmap

of the matrix multiplication kernel and aided to deliver this increased

performance. In MMopt, the overall performance of the matrix multi-

plication improved because buffering the columns of the second matrix
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Table 5.2: Percentage utilization of resource in each application

Apps.
Single Module Design (%) Multi-Module Design (%)

LUTs FFs BRAMs DSPs LUTs FFs BRAMs DSPs
MMuopt 13.60 6.65 14.56 1.79 82.10 37.88 59.42 21.07
MMopt 15.26 7.49 14.56 1.79 71.60 3.70 48.35 16.25
ACorr 29.62 15.97 18.45 4.07 69.42 36.77 46.50 8.00
PRank 44.36 22.35 23.79 7.57 67.08 30.56 53.20 3.39
PFrnd 63.27 31.40 18.54 14.71 80.62 34.48 51.84 4.32
TCount 51.92 28.04 13.40 14.25 89.07 34.56 58.06 2.36
BFS 65.65 29.82 32.04 0.32 73.45 33.64 63.50 1.18

reduced the total data read for the computation; yet, the multi-module

design achieved better performance due to the parallelization and the

resulting improvement in bandwidth utilization.

In the ACorr, the kernels have very regular access patterns. However,Performance com-
parison between

the signal process-
ing application

implementations

due to the long latency of the floating point operations, the data band-

width used by the single module design was lower than the available bus

bandwidth. Multi-modules designs improved the bandwidth utiliza-

tion, and the optimization discussed in Section 5.4.2 enabled the most

critical kernels, which contained fusedzipWith-reduce operations, to

operate in parallel with very little synchronization overhead.

In the graph applications, PRank, PFrnd, TCount and BFS, the perfor-Performance com-
parison between

the graph process-
ing applications

mance improvements were again due to improved data access band-

width to critical kernels with irregular access patterns. Additionally,

the optimizations discussed in Section 5.4.2 were able to remove all

the synchronization requirements for the most critical kernel in PRank

and significantly reduced the synchronization requirements for TCount,

improving their performances. In PFrnd and BFS, the ILP solver cor-

rectly allocated more resources to the most critical kernels in these

applications and achieved 8× and 3.7× improvements, respectively, for

these kernels. But, as a side-effect, the resources allocated to the less

critical kernels reduced and their performance degraded, diminishing

the overall improvement to 3.9× and 1.8×, respectively as seen in Fig-

ure 5.13. These results demonstrate the performance benefits of the

multi-module parallelization approach proposed in this work.

Considering resource consumption, the exact values of resources used

varied significantly due to the timing and resource optimizations done
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by the FPGA tool. However, as seen in Table 5.2, the single kernel designs

were not able to achieve better performance, in spite of having unused

resources. In comparison, the ability to use multiple modules in our

approach enabled the ILP solver to find better design points that made

better use of the FPGA resources.

5.6 Discussion

FPGAs can be customized into application-specific architectures and Key insights

leverage spatial parallelism to deliver high performance for some ap-

plications. But, to achieve high performance from these devices, ap-

plication developers need to correctly parallelize computation across

multiple modules and carefully balance the computational through-

put with data bandwidth. Additionally, developers need to identify

synchronization requirements in the application and build custom syn-

chronization schemes, which is both tedious and error prone and above

all, hard to achieve without hardware design expertise. Therefore, au-

tomated techniques to parallelize applications on FPGAs are vital to

enable application developers without hardware design knowledge to

benefit from this device. In this chapter, we developed techniques to

parallelize operations composed from computational patterns across

multiple hardware modules. In order to achieve this, we leveraged the

properties of the computational patterns and system architecture to

detect synchronization requirements and to automatically generate

hardware that uses synchronization primitives where needed to cor-

rectly parallelize computation. Moreover, we also identify cases where

these synchronization requirements can be relaxed or entirely avoided.

This results in a new ability to generate complete computing systems

that are several times more efficient than those previously achieved.

Most importantly, this completely automated method liberates the ap-

plication developer from any understanding of the hardware platform.
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6 Conclusions

Microsoft is introducing FPGAs in data centers and Intel is packaging Making FPGAs pro-
grammable to the
masses

FPGAs with high-end processors: there is today a unique window of

opportunity for reconfigurable technology in the general computing

world. To facilitate the rapid adoption and successful deployment of

this technology, we need to enhance the ability of the application pro-

grammers to build applications targeting FPGAs without any hardware

design experience. Domain-specific languages that are tuned to specific

application domains offer abstraction from low-level hardware details

and make it easier to write applications. Additionally, the toolchain can

leverage domain-awareness to perform optimization as well as auto-

mate the generation of a complete hardware design solution, thereby,

reducing the need for hardware design expertise. Therefore, develop-

ment of tools based on domain-specific languages can play a big role in

improving the adoption of FPGAs in different domains. However, there

has been only a limited adoption of this approach, primarily due to

the high cost and effort needed to develop such tools. The techniques

presented in this thesis will considerably reduce the effort needed to

develop such tools and, therefore, pave the way to a more widespread

adoption of FPGAs in many new application areas.

6.1 Summary

In Chapter 3, we illustrated how language embedding and type-directed Reducing the effort to
build domain-specific
tools

staging can be used to cost-efficiently develop domain-specific tools.

We demonstrated these ideas by using an example of developing a tool

to optimize and generate hardware designs for simple matrix expres-
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sions. In this work, language embedding enabled us to quickly develop

a DSL (e.g., the MatrixDSL we developed to specify matrix expressions)

and type-directed staging enabled us to develop a compiler for pro-

grams written in this DSL. In our approach, we developed the toolchain

by composing reusable optimization modules which could be easily

reused to reduce the incremental effort needed to develop new tools. Ad-

ditionally, we integrated with external tools, such as LegUp and FloPoCo,

when possible to further bring down the development effort.

Applications from many domains can be represented using a small num-Using computational
patterns to create
hardware systems

ber of computational patterns [Asanovic et al., 2006, McCool et al., 2012].

Therefore, in Chapter 4, we developed a methodology to generate hard-

ware implementations by decomposing high-level DSL applications

into computational patterns. In this approach, we leveraged the proper-

ties of these patterns to perform optimizations and hardware-software

partitioning to produce high-performance hardware systems. We de-

veloped a tool based on this approach and integrated it into the Delite

compiler infrastructure [Sujeeth et al., 2014] to synthesize complete

hardware systems for OptiML [Sujeeth et al., 2011] applications. We

also demonstrated that this tool could automatically perform optimiza-

tions and explore the design space to generate high-quality hardware

designs targeting two different implementation targets. These auto-

matically generated designs were up to two orders of magnitude better

in performance compared to the unoptimized designs and were more

energy-efficient compared to a commercial muti-core CPU.

In Chapter 5, we extended the methodology developed in Chapter 4Improving the par-
allelism of hard-

ware systems cre-
ated from compu-
tational patterns

to automatically parallelize the computation across multiple hardware

modules. This enabled the designs to better exploit the spatial paral-

lelism of the FPGA to overcome performance bottlenecks, e.g., data star-

vation caused by non-sequential data access patterns and long memory

access latency, that considerably diminished application performance.

To achieve this, we exploited the data access properties of the compu-

tational patterns to automatically identify and reduce synchronization

requirements among the multiple hardware modules. We extended the

toolchain developed in Chapter 4 based on this idea to automatically

generate hardware systems that parallelize computations across mul-

tiple hardware modules. These systems included hardware primitives

to perform synchronization and used dynamic workload partitioning

schemes to deliver performance improvements. Our evaluation results

102



6.2. Benefits of the Approach

show that multi-module parallelization improved the utilization of the

FPGA and delivered better performance compared to the designs with-

out this parallelization (i.e., designs produced by the tool in Chapter 4).

6.2 Benefits of the Approach

Both MatrixDSL we used in Chapter 3 and OptiML we used in Chapters 4 Improved productivity
and accessibility non-
hardware-designers

and 5 have syntaxes that are customized to the specific application do-

main. For instance, their syntaxes supported domain-specific datatypes

(e.g.,matrices andvectors) as well as operations on these datatypes

that made it easier for users to develop applications. Additionally, both

the DSLs enabled users to start from a purely functional specifications

that did not include any low-level hardware details, yet they produced

high-quality hardware designs. These DSLs illustrate how our method-

ology can be used to provide a convenient interface to elicit application

specifications from users without hardware design expertise.

In Chapter 3 we showed that domain knowledge can be leveraged to Improved design
qualityperform optimizations (e.g., utilizing rules of matrix algebra to perform

matrix level optimizations) to produce significantly better quality re-

sults. Later, in Chapters 4 and 5 we showed that by mapping domain

operations into computational patterns we can generate high-quality

hardware circuits to implement them. To achieve this, the domain

operations were decomposed into a set of computation patterns that

captured the essential properties of the computation. Then, by lever-

aging the properties of the patterns, we could automatically perform

optimizations and parallelize the computation on the FPGA to achieve

a high performance and very good energy efficiency.

The methodology presented in Chapters 4 and 5 utilized domain knowl- Complete hardware
solutionedge to automatically select a system design template for the hardware

design. This system design template provided a clear strategy to inte-

grate together different parts of the application, including those that

were generated as hardware circuits or mapping into software, to au-

tomatically produce a complete hardware system. Additionally, the

template included connections to board-level components and ports

(e.g., external memory, UART and JTAG) to ensure that the hardware

design could be directly implemented on the target FPGA board. For

instance, the tool we developed uses variants of a system design tem-

plate to automatically generate designs targeting VC707 and ZC706
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development boards; the VC707 has a Virtex7 device and the ZC706

contains a Zynq device where the FPGA was integrated with hardened

ARM processor and memory controller.

Another strength of our proposed approach is its extensibility. As weExtensibility

demonstrated in Chapter 3. the ideas of language embedding and type-

directed staging can be used to cost-efficiently develop DSLs and com-

pilers for these DSLs. This can make it easier to extend the approach to

new application domains that can benefit from FPGAs. To support new

application domains, there might be a need to add new computational

patterns to represent that operations in this domain. But, as proposed

in Chapter 4, one can leverage the properties of these new patterns

to generate efficient hardware circuits for them. Additionally, if these

patterns provide guarantees on how it consumes and produces data,

the ideas presented in Chapter 5 can be used to create multi-module

designs from these patterns to benefit from the spatial parallelism in

FPGA.

6.3 Future Work

Driven by energy and performance limitations, today, the world is turn-New domains and
target devices ing to FPGAs to meet the computational needs of future applications;

Catapult [Putnam et al., 2014] from Microsoft and Xeon+FPGA [Gupta,

2015] from Intel are fine examples of this trend. In this regard, this work

addresses the vital issue of making tomorrow’s computing infrastructure

programmable to application developers. But, additional work needs to

be done to evaluate how well this approach can be extended to new ap-

plication domains and target devices. For instance, on the Xeon+FPGA

the applications must be partitioned between a powerful CPU and an

FPGA device and on the Catapult, there are multiple interconnected

FPGAs that can be used to accelerate applications.

To successfully develop applications for sophisticated targets, users willIntegrated debug-
ging infrastructures need capable infrastructures to easily debug applications; this includes

debugging both application functionality and its performance. As noted

in Chapter 2, there are some efforts on developing debugging facilities

for specific HLS tools. It might be interesting to probe how such a

facility can be cost-efficiently developed for domain-specific hardware

synthesis tools.
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6.3. Future Work

In typical computing systems, the performance and efficiency of the Application-specific
memory systemsmemory system are critical. Our results from Chapter 4 demonstrated

how the superior memory system in the CPU gave it an edge over our

FPGA designs. Our focus in the work was on generating application-

specific computing units and did not investigate how memory systems

can be customized for specific applications. There has been some

work done in this area [Parashar et al., 2010, Chung et al., 2011], but

these efforts do not fully automate the creation of application-specific

memory systems. This may be another useful direction to explore in

the future.

Reconfigurable technology in the form of FPGAs or similar fabrics can

make computing systems faster and more energy-efficient. However,

there are still serious hurdles that need to be surmounted before FPGAs

can become an integral part of a standard computing system. This

thesis represents a step toward the removal of a crucial obstacle by

making reconfigurable computing systems easy to program.
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