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Abstract

I We propose a new framework for surprise-driven learning that can be used
for modeling how humans and animals learn in changing environments. It
approximates optimal Bayesian learner, but with significantly reduced
computational complexity.

I This framework consists of two components: (i) a confidence-adjusted
surprise measure to capture environmental statistics as well as subjective
beliefs, (ii) a surprise-minimization learning rule, or SMiLe-rule, which
dynamically adjusts the balance between new and old information for belief
update.

Confidence-Corrected Surprise

I Assume that the world is governed by a set of (unknown) true parameters θ∗. We model

our knowledge of the world by a joint distribution p(X, θ) = p(X|θ)π0(θ), where

p(X|θ) determines how likely data sample X is to be generated, if the model parameter is

θ. π0(θ) denotes our current belief about the model parameters.

I We define the confidence-corrected surprise Scorr(X;π0) of a data sample X, for a subject

with the current belief π0(θ), as a KL divergence between the prior belief π0(θ) and the

scaled likelihood p̂X(θ) = p(X|θ)∫
p(X|θ)dθ

, i.e.,

Scorr(X;π0) = DKL[π0(θ)||p̂X(θ)] =

∫
Θ
π0(θ) ln

π0(θ)

p̂X(θ)
dθ. (1)

I Eq (1) is a subjective, model-dependent, measure of surprise. It is calculated before

inference or learning occurs. Moreover, it decreases with the confidence of subject in her

belief, represented by the entropy H(π0).

Surprise Minimization: the SMiLe Rule

I After receiving a data sample X, we update our belief from the prior π0(θ) to the

posterior q(θ). We refer to such a mapping as a learning rule L, i.e., q = L(X, π0).

I Surprise minimization as a learning strategy: the internal model of the world is modified

such that a data sample X is perceived as less surprising under the posterior than under the

prior, i.e., Scorr(X; q) ≤ Scorr(X, π0).

I The impact function ∆Scorr(X; L) = Scorr(X;π0)− Scorr(X; q) quantifies how much

the data sample X has impacted the internal model.

I For a given data sample X, the impact function is maximized by the learning rule L that

maps the prior π0(θ) to the posterior q(θ) = p̂X(θ).

I As this posterior q = p̂X discards all previously learned information, it amounts to a valid

though meaningless solution.

I To avoid overfitting to the last data sample we limit our search to posteriors q that are not

too different from the prior, i.e.,

min
q:DKL[q||π0]≤B

Scorr(X; q) ⇒ qγ(θ) =
p(X|θ)γπ0(θ)1−γ

Z(X; γ)
(2)

I We call Eq (2) Surprise Minimization Learning (SMiLe). It is reminiscent of Bayes

rule except for γ that modulates the relative contribution of the likelihood and the prior to

the posterior.

I Highly surprising data may signal a fundamental change in the context and should result in

larger belief shifts. As such the bound B should increase with the level of surprise Scorr:

B(X) =
mScorr(X;π0)

1 + mScorr(X;π0)
Bmax(X), (3)

I Here, m is a subject-specific parameter that describes an organism’s propensity toward

changing its belief and Bmax(X) = DKL[p̂X||π0].

I Note that there is a unique relationship between B and γ where

DKL[qγ||π0] = B, (B > B′⇒ γ > γ′) (4)
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(A) A given data sample X

(green dot) results in higher

confidence-corrected surprise

for the blue as compared to

the red model, because π0 in

red is wider than in the blue

model. (B) Solutions to the

(constraint) optimization.

The objective function, i.e., the posterior surprise (black) is a parabolic landscape over γ.

The boundary B constrains the range of γ and thus the set of admissible posteriors.

Surprise-Modulated Belief Update

After receiving a new data sample X, we evaluate the surprise Scorr(X;π0),
Eq (1), which sets the bound B, Eq (3), and allows us to solve for γ,
Eq (4). We then update our belief using SMiLe, Eq (2).
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The SMiLe rule for this task becomes a

delta-rule with a weight factor γ that in-

creases with surprise.

µ̂n = γXn + (1− γ)µ̂n−1 (5)

γ =

√
mScorr(Xn)

1 + mScorr(Xn)
(6)

Scorr(Xn) =
(Xn − µ̂n−1)2

2σ2
x

(7)

Our results show that the SMiLe rule outperforms delta-rule with any fixed learning rate.

Maze-Exploration Task
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P 1- The task is to quickly adjust the model param-

eters (state transition probabilities) while explor-

ing two environments A and B, that are unex-

pectedly switched in a Markovian fashion. Both

environments consist of 16 rooms but differ in

topology. Neighboring rooms are connected and

accessible through doors.

When the environment is switched, the sudden

increase in surprise (green) causes the param-

eter γ (magenta) to increase. This is equiva-

lent to discounting previously learned informa-

tion and results in a quick adaptation to the

new environment (see the estimation errors in

yellow and black). Following a change point,

model uncertainty (cyan) increases indicating

the current model of topology is inaccurate.
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The matrix of estimated transition proba-

bilities using SMiLe (C&D), 100 time steps

after a switch, resembles that of the present

environment (A&B). For the naive Bayesian

learner (which assumes there is only a single

stable environment), the probabilities are

estimated by averaging over the true pa-

rameters of both environment (E&F).
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(A) Already after less than 1000 time steps the estimation error of SMiLe rule (black)

drops below 0.002. Only after 10000 time steps, the online EM algorithm (cyan), which

benefits from knowing the true hidden Markov model of the task, achieves the same level

of accuracy. While the solution of SMiLe in the long run is not as good, our algorithm

benefits from a reduced computational complexity and simpler implementation. (B) The

inferred probability of being in environment A (cyan) used in the online EM algorithm and

the confidence-corrected surprise (black) used in the SMiLe.
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