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Summary

Surprise is informative because it drives attention [1] and modifies learning [2]. Correlates of surprise
have been observed at different stages of neural processing, and found to be relevant for learning and
memory formation [3]. Although surprise is ubiquitous, there is neither a widely accepted theory that
quantitatively links surprise to observed behavior, such as the startle response, nor an agreement on how
surprise should influence learning speed or other parameters in iterative statistical learning algorithms.

Building on and going beyond earlier surprise measures [1, 4–6], we propose a novel information
theoretic measure for calculating surprise in a Bayesian framework so as to capture uncertainty of the
world as well as imperfections of the subjective model of the world, two important aspects of surprise.
The principle of future surprise minimization leads to a learning rule that can be interpreted as a
surprise modulated belief update suitable for learning within changing environments.

Importantly, we do not need an assumption about how quickly the world changes. We apply our
surprise-modulated learning rule to an exploration task in a maze-like environment and to a dynamic
decision making task. Our results are consistent with the behavioral finding that surprising events
induce humans and animals to learn faster and to adapt more quickly to changing environments [7–9].

Additional Detail

Information content [5, 10] captures the inherent unexpectedness of a piece of data for a given set of
models (uncertainty of the world), whereas Bayesian surprise [1,4] measures the change in belief caused
by a new data point (observer dependent). These are two complementary approaches for calculating
surprise. The former is about data and the latter is about a model. In our approach both aspects are
combined with a third aspect: if we are uncertain about what to expect, receiving a low-probability
data sample is less surprising than in a situation when we are almost certain about the world. A surprise
minimizing learning (SMiLe) rule is derived by solving a constrained optimization problem defined as
follows: the objective is to maximally reduce surprise when facing the same data again in the not so
distant future, under the constraint that the posterior belief (after the update step) is not too different
from the prior.

The resulting SMiLe rule balances the influence of newly acquired data with prior knowledge where
the balance depends on surprise. In case of a fundamental change in the world signaled by surprising
samples, data acquired before the change is valued as less informative about the current state of
the world. A simultaneous increase of the influence of newly acquired data on learning leads to a
fast adaptation of the model to an environmental change. While in a stationary environment our
algorithm approaches the known Bayesian update rule, it also allows the model to react to changes in
the environment.

In summary, surprising data increases the uncertainty we have about our current model of the
world and gives a bigger influence to newly acquired data on belief update. The interaction between
surprise and uncertainty is important for modeling the behavior of humans and animals in changing
environments. The surprise signal could be broadly transmitted in the brain by a neuromodulator
with widespread axonal ramifications (e.g., norepinephrine released from locus coeruleus neurons) and
influence synaptic plasticity rules.
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Figure 1: A. Average error in estimating the true state transition probabilities in environments A (black)
and B (yellow) in a maze exploration task in which a subject (say a rat) is exposed to two n × n grid worlds
A and B. The environment switches between A and B every 1000 trials, starting with A. The surprise signal
helps the rat to quickly adapt after each switch. B. Model uncertainty (cyan) described as the entropy of
the current belief decreases as the rat learns about either A or B except at and shortly after the switching
points. C. Surprise signal (green), plotted as a running average over 10 trials, decreases as the rat learns more
about the environments, except at switching points. Surprise-minus-running-average-of-surprise (amplitudes
magnified ×20, magenta) indicates the change points where the model uncertainty increases.
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