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ABSTRACT
Multisocket multicores feature hardware islands - groups of
cores that communicate fast among themselves and slower
with other groups. With high speed networking becoming
a commodity, clusters of hardware islands with fast net-
works are becoming a preferred platform for high end OLTP
workloads. While behavior of OLTP on multisockets is well
understood, multi-machine OLTP deployments have been
studied only in the geo-distributed context where network is
much slower. In this paper, we analyze the behavior of differ-
ent OLTP designs when deployed on clusters of multisockets
with fast networks.

We demonstrate that choosing the optimal deployment
configuration within a multisocket node can improve perfor-
mance by 2 to 4 times. A slow network can decrease the
throughput by 40% when communication cannot be over-
lapped with other processing, while having negligible impact
when other overheads dominate. Finally, we identify oppor-
tunities for combining the best characteristics of scale-up
and scale-out designs.

1. INTRODUCTION
Online Transaction Processing (OLTP) systems typically

run on the highest performing servers of the day that feature
many processing cores with large main memory and stor-
age capacities. Until recently, such machines had uniform
processor topologies with a constant communication latency
between any pair of CPU cores regardless of their location.
With multisocket multicores, however, communication la-
tency between two cores can differ by an order of magnitude
depending on their location [7]. Soon, with dozens of cores
on the same chip, the communication latencies within a chip
will also become non-uniform.

At the same time, fast network interconnects are reaching
main memory bandwidths. Technologies such as Remote
Direct Memory Access (RDMA) allow applications to access
memory on a remote machine without involving either the
operating system or the processor. High speed fabrics that
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support RDMA, such as Infiniband and converged Ethernet
with bandwidths up to 100Gbps, are already standard in
supercomputers and high-end appliances.

Abundant parallelism and fast commodity networks are
leading to the emerging class of commodity cluster com-
puting platforms that will offer performance comparable to
today’s large shared memory machines. These platforms
achieve high compute density at low power budget and cost
by eliminating unnecessary system components using highly
customized system-on-a-chip (SoC) nodes. Individual nodes,
containing only processing cores, memory, and I/O inter-
faces communicate using low-latency interconnect fabrics [8].
Data management on these platforms is an area of ongo-
ing research with promising proposals for general purpose
distributed system architectures [10, 17].

OLTP systems are typically designed to either scale out or
scale up. Scale-out systems employ shared-nothing designs
that run on clusters of machines and offer very high per-
formance for easily partitionable workloads due to explicit
data partitioning [26]. Scale-up systems typically use shared-
everything designs that focus on minimizing the number and
duration of critical sections [9, 14, 28]. None of the designs,
however, attempts to scale across both dimensions at the
same time due to conflicting requirements.

A recent study in the multisocket multicore environment
shows that different deployment configurations are optimal
for different types of workloads and hardware topologies
[21]. Here we investigate whether multisocket topology mat-
ters when choosing deployment configuration in the clus-
ter environment. In distributed deployments, distributed
transactions are a major source of overheads. The faster
communication, however, has a potential to significantly re-
duce the messaging overhead. Hence, we quantify the impact
of fast communication on different workloads and deploy-
ment configurations. Finally, we evaluate how suitable the
state-of-the-art scale-up OLTP designs are for the distributed
deployments.

This paper presents an analysis of distributed OLTP de-
ployments using established workloads. We compare scale-up
and scale-out deployments of traditional and main-memory-
optimized designs on different hardware platforms. We vary
the communication channel to isolate the impact of network
on different deployments depending on the workload proper-
ties. Overall, we quantify the challenges and opportunities
for OLTP designs on clusters with fast interconnects.

Our experiments show the following:
1. Cluster deployments still benefit from choosing the

optimal configuration within a node as scale-up deploy-
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ments improve throughput by 2 to 4 times compared
to the fine-grained scale-out ones. Furthermore, careful
placement of threads to cores improves throughput by
10% to 60%.

2. Using a fast network increases throughput by a factor
of 1.2 to 2 times for read-only workloads. When run-
ning update-heavy workloads, however, other overheads
(i.e., logging for the traditional systems and increased
contention for the in-memory optimized systems) dom-
inate execution and overshadow any performance gains
from fast communication.

3. Main-memory optimized designs exploit locality within
an instance and achieve 1.2 to 1.8 times higher through-
put in scale-up deployments when compared to the
fine-grained scale-out ones. However, their concurrency
control protocols are sensitive to delays in commit pro-
cessing, causing reduction in throughput by a factor of
3.5, even if only 1% of the transactions are distributed.

The aforementioned experimental findings lead to the fol-
lowing insights. In order to use the full potential of clusters
with fast interconnects, transaction processing systems need
to scale up and out at the same time. Scale-up techniques
are necessary but insufficient for scale-out deployments. To
scale up without compromising the scale out dimension, con-
currency control protocols need to become robust to the
inter-node communication delays. At the same time, coor-
dination protocols between the nodes cannot afford to add
any overheads in the critical path of transaction execution.

2. RELATED WORK
Non-uniformity in multisockets. A recent study ana-

lyzes the different transaction processing systems on modern
multisocket hardware [21]. They conclude that there is no
single optimal configuration for all combinations of work-
load properties and hardware topology. Multimed [25] treats
multisocket multicore as a distributed system and uses mid-
dleware software and replication to improve scalability of
shared-everything systems. A lot of recent work has focused
on data analytics and analyzing the impact of memory band-
width bottlenecks on the performance of join and sorting
algorithms [1, 4, 15, 19]. This analysis is complementary as
we take the network into account in addition to inter-socket
communication for OLTP workloads.

Impact of network. As today’s applications store more
and more data, distributed data processing architectures are
proliferating. They are typically deployed on commodity
machines in datacenters and are using commodity ethernet
networks. Even though conventional wisdom is that the net-
work is a bottleneck in distributed data analytics, a recent
study demonstrates that CPU is the bottleneck and that
optimizing network performance can only improve median
job completion time by 2% [18]. One recent proposal has
demonstrated significant improvements in performance by
focusing on improving CPU efficiency instead of network
and disk I/O [6]. Specific data processing operations, such
as joins have been a popular target with multiple studies
analyzing the impact of network and proposing holistic so-
lutions that balance network delays with CPU overheads
to improve performance [5, 20, 23]. We also believe that
transaction processing systems need to take the holistic view
when optimizing for clusters with fast networks.

Datacenter OLTP. Finally, with the rise of web-scale ap-
plications, distributed transaction protocols have attracted a

lot of attention both in the industry and academia, especially
around weaker models such as eventual consistency [29]. A
recent study characterizes the consistency trade-offs from the
application perspective and analyzes when weaker consistency
models are appropriate [3]. When they are not applicable,
and strong consistency guarantees are required, deterministic
execution is an appealing choice. A recent study explores dif-
ferent classes of workloads to quantify when are deterministic
distributed transaction processing systems preferable to the
traditional ones [22]. It would be interesting to extend these
studies to clusters with significantly faster network compared
to the datacenter deployments.

3. SETUP AND METHODOLOGY
Distributed OLTP deployments. We use two state-

of-the-art open-source OLTP systems. We choose Shore-MT
as the representative traditional storage manager1 and Silo
as the main-memory optimized one2. Both of these systems
use scale-up designs that we extend with a thin distributed
transaction layer. We implement different communication
mechanisms to execute distributed transactions using the
standard two phase commit (2PC) protocol. Distributed
transactions in our deployment fit into predefined transaction
classes and are one shot [26] with local and remote transaction
parts known apriori, which removes the need for more than
one message in the first phase of 2PC. Local transaction site
acts as a coordinator in the 2PC protocol. Unless noted
otherwise, we bind threads to cores and allocate memory in
the local memory node when possible to improve locality.

Hardware Platforms. We use two different hardware
platforms: a cluster and a large multisocket server. Our clus-
ter consists of 8 machines with 2 Intel Xeon X5660 processors
each, connected using 10Gbps Ethernet network. Each ma-
chine has 48GB of RAM that we use for both data and
log files through memory mapped disks. All experiments
are run using Ubuntu 12.04.4 LTS (kernel version 3.2.0-34)
and the software is compiled using GCC 4.6.3 with maxi-
mum optimizations. The large multisocket server has 8 Intel
Xeon E7-L8867 processors connected in a twisted cube topol-
ogy ensuring that each pair of processors is at most 2 hops
away. The server has 192GB of main memory. We run all
experiments using Red Hat Enterprise version 6.7 (kernel
version 2.6.32) and compile the system using GCC 5.1.0 with
maximum optimizations.

Workloads. We use a microbenchmark and TPC-C [27].
In the microbenchmark, the data is logically partitioned into
a number of sites where each site holds a range of rows. It
comes in two flavors: read-only and update. Each transaction
in the microbenchmark reads or updates N rows, and belongs
to one of the two types:

• Local transactions pick randomly N rows located in
the local site

• Multisite transactions pick randomly one row lo-
cated in the local site and the remaining N − 1 rows
uniformly from the whole dataset. Multisite transac-
tions are distributed if some of the input rows happen
to be located in the remote instance.

To characterize the impact of more complex transactions,
we use Payment and NewOrder transactions from the TPC-C
benchmark that comprise 88% of the benchmark mix. Both

1https://sites.google.com/site/shoremt/
2http://github.com/stephentu/silo
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Figure 1: The impact of granularity on different deployments while running TPC-C.
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Figure 2: The impact of thread binding on different
deployments while running TPC-C.

of them are read-write transactions that access data either
from the local or the remote warehouse. The benchmark
specifies that 15% of the Payment and 10% of the NewOrder
transactions access remote warehouses. We partition the
data using the well known scheme, where the data associated
with a particular warehouse is placed in the same instance
and the Item table is replicated in every instance.

4. HARDWARE ISLANDS IN A CLUSTER
The network poses much higher communication overheads

across the cluster of machines compared to a single multi-
socket which potentially overshadows the impact of multi-
socket topology in cluster deployments. In this section, we
use a cluster of machines and different workloads to quantify
the impact of multisocket topology on the performance of
different deployments. As we require TCP/IP communica-
tion channel for cluster deployment, we use the traditional
OLTP system.

4.1 TPC-C
In all experiments, we choose a configuration for a machine

and deploy it across all machines in the cluster. We use scale-
out (one per core), scale-up (one per machine), and hybrid
(one per socket) deployment configurations with 12, 1, and 2
instances per machine, respectively. We scale dataset sizes
to 1 warehouse per core for TPC-C and 10 000 rows per core
for the microbenchmark.

The impact of instance granularity. We start by ana-
lyzing scalability of TPC-C as we increase the number of ma-
chines from 1 to 8. We plot the throughput for both Payment

Figure 1 (left) and NewOrder Figure 1 (right) transactions.
On a single server, the larger instances perform better for
Payment transactions, while the smaller ones perform better
for NewOrder transactions. The difference stems from the
type of write operations done by a transaction. For Payment
transactions, larger instances profit from constructive sharing
of a single log whereas each scale-out instance needs to write
its own log and issue expensive system calls. On the other
hand, the NewOrder transactions perform many insertions to
the OrderLine, Order, and NewOrder tables, which require a
lot of synchronization among threads in the same instance.
Also, the scale-up deployment greatly benefits from the fact
that it does not need to execute any distributed transactions.

When we increase the number of servers, smaller instances
scale better than the scale-up deployment which requires
executing distributed transactions when deployed over mul-
tiple servers. Scale-out deployments scale better than the
hybrid ones for NewOrder, while the situation is reversed
for Payment. All configurations scale linearly for NewOrder,
while scalability is poorer for Payment. The difference in
scalability comes from the type of updates performed by each
transaction. Namely, Payment transactions update one row
from the Warehouse table, which limits the number of concur-
rent transactions in the system to the number of warehouses.
In contrast, NewOrder updates a row from the District

table, that has 10 rows for each warehouse, thus permitting
10 times more concurrent transactions. Distributed transac-
tions holding locks on the updated rows until the end of the
second phase of the 2PC protocol lead to lower concurrency
in Payment, which severely limits scalability.

Impact of thread binding. Careful thread binding is
an important prerequisite for achieving predictable high per-
formance on multisockets as it maximizes locality and avoids
thread migrations [21]. In this experiment we investigate
whether thread binding has any impact on performance of
cluster deployments. We use 2 servers and either bind the
instances to specific cores or sockets, or leave the placement
to the operating system. We repeat the experiments with
both Payment and NewOrder transactions.

The left hand side of Figure 2 shows throughput for the
Payment transaction with solid bars representing threads
placed by the operating system and striped bars representing
manual binding with each core-sized scale-out instance on
a separate core and each scale-up socket-sized instance on
a separate socket. We run the experiment three times and
show standard deviation on the bars. Binding instances to
sockets improves performance of the scale-up deployment
by 8%. This effect is more pronounced for the scale-out
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Figure 3: The cost of local and multisite transactions for different deployment configuration as the number
of rows updated increases.

deployment, where binding instances to cores improves per-
formance by 60% and reduces variability from 11.7% to 1.2%.
The NewOrder transaction is much more predictable with
standard deviations of less than 1% in all cases. Still, bind-
ing the instances improves performance by 13.5% and 12.9%
respectively for scale-out and scale-up deployments.

4.2 Microbenchmarks
In easily partitionable TPC-C benchmark, each distributed

transaction involves at most two instances, all transactions
involve updates, and the percentage of distributed trans-
actions is fixed. To better quantify the costs of arbitrary
distributed transactions we perform a sensitivity analysis us-
ing microbenchmarks. The cost of a transaction is expressed
as the time it takes to execute a single transaction. We
use a 4 machine cluster and measure the cost of local and
multisite transactions, in read-only and update versions, as
we increase the number of rows accessed from 2 to 100. With
the higher number of rows per transactions, multisite trans-
actions require data from multiple instances and thus have
to exchange more messages to complete a single transaction.
We plot results in Figure 3.

Read-only case.The scale-out deployment has the low-
est cost since each instance runs single-threaded and, hence,
pays no thread synchronization overhead. Larger instances
have higher costs due to these overheads. The cost trend is
reversed for the multisite case where scale-out instances have
significantly higher costs compared to the larger ones. The
increase in cost is primarily due to the number of messages
needed for a multisite transaction. Since these transactions

are read-only, we use the optimized version of the 2PC pro-
tocol that requires only one roundtrip per participating site.
For every deployment configuration, after the number of rows
surpasses the number of instances in the system, every mul-
tisite transaction involves all instances in the system. This
results in the flattening lines as the distributed transaction
overheads become constant.

Update case. For the local transactions, the increase
in cost is linear with the number of rows per transaction
with larger instances having higher cost. The differences
between configurations are more pronounced due to the
higher synchronization overhead involved in the operations
that modify data. In the multisite case, while the number
of instances involved in a transaction increases at the same
rate as in the read-only case, the costs increase faster. This
effect is due to the higher communication costs (as update
transactions require both rountrips in the 2PC protocol) and
increased contention since locks are held until the end of a
transaction. Even though scale-up and hybrid deployments,
with multiple threads per instance, use optimized logging,
their cost trends do not flatten out for higher number of rows
due to increased contention. The increase is higher for the
scale-up deployment because of more threads in the instance.

Summary. For the workloads that access many rows,
overheads such as communication, logging and additional
contention, make distributed transactions 2-4x more expen-
sive for the fine-grained scale-out deployments compared to
the coarser ones. When the number of instances required in
a distributed transactions is small, as it is the case for the
TPC-C, the optimal configuration depends on the trade-off
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TPC-C.
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Figure 5: The impact of communication channel on
read-only microbenchmarks.

between the overheads of thread synchronization and the
opportunities for constructive sharing within an instance.
Finally, adjusting the placement of the individual instances
within a machine can significantly improve performance, es-
pecially for scale-out deployments, by improving locality.

5. THE IMPACT OF NETWORK
Network communication is a significant component of

the cost of distributed transactions. Its performance de-
pends on two factors: the hardware channel and the software
stack. With high-speed low latency interconnects that enable
RDMA-based messaging that bypasses the operating system,
communication overheads significantly diminish. This po-
tentially makes distributed transactions much cheaper and
particular system designs more appealing. In this section, we
quantify the impact of network performance on the through-
put of different distributed deployments across various work-
loads and communication mechanisms.

5.1 TPC-C
We first use TPC-C to isolate the impact of different

components of the communication channel on the distributed
transactions. We compare three communication mechanisms:
1) TCP/IP over Ethernet network, 2) TCP/IP in a single
machine, and 3) shared memory communication in a single
machine. The first case represents today’s mainstream option.
The second case is the scenario with the fastest possible way
of communication that still employs unmodified TCP/IP
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Figure 6: The impact of communication channel on
update microbenchmarks.

software stack. We use shared memory communication to
emulate the best RDMA scenario where accessing remote
machine’s memory has the same latency as accessing local
memory. We use a dataset with 12 warehouses (1.8GB) and
compare scale-out and scale-up deployments. For the first
setting, we use two servers and deploy half of the instances (6
scale-out and 1 scale-up) on each server, while for the other
two settings we deploy all instances on the same server.

The left hand side of Figure 4 shows throughput for the
Payment transaction. Faster communication increases the
performance of Payment transactions for both configurations.
The magnitude of the increase depends on the size of the
instance and the workload type. However, faster communica-
tion does not change the relative performance: the scale-up
configuration has higher throughput than the scale-out one.
The right hand side of Figure 4 shows experiment for the
NewOrder transactions. In this case, communication speed
has a negligible impact on the performance since NewOrder
does many more operations per transaction than Payment
and the cost of messaging is amortized.

5.2 Microbenchmarks
To better understand the impact of communication la-

tency on the cost of distributed transactions depending on
the type of operations, we run a series of experiments with
microbenchmarks using TCP/IP and shared memory commu-
nication mechanisms. In all graphs, the dark bars show the
case when we use TCP/IP for communication and the white
bars represent shared memory. We use a single server and a
dataset with 12 sites (120 000 rows) and compare scale-out
and scale-up deployments over 12 cores. We study read-only
and update cases separately and repeat the experiments with
only local transactions and with a mix containing 20% multi-
site transactions. Also, we repeat microbenchmarks for 2 and
20 rows to assess the impact of 1) the different percentage of
multisite transactions that are executed as distributed trans-
actions and 2) the different number of instances involved in
the execution of a single distributed transaction.

Read-only case. Figure 5 plots the results of the experi-
ment for the read-only transactions with the 2 rows case (left)
and 20 rows (right). In all cases, the deployments that use
shared memory communication have higher throughput than
the ones using TCP/IP. Since the read-only transactions are
short, higher static communication overheads in the TCP/IP
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Figure 7: The impact of communication channel on distributed deployments of the main memory system.

case lead to noticeable difference in throughput for local
only transactions. In order to fully exploit fast network, we
need to avoid expensive system calls required for TCP/IP
communication. For both types of transactions, we observe
that the communication channel has a significant impact
on relative performance of two deployments. Namely, in
the presence of multisite transactions, scale-out deployment
has higher performance than the scale-up one for shared
memory communication, while the situation is reversed for
TCP/IP. The impact of communication is higher for heav-
ier transactions since every distributed transaction involves
all instances which means scale-out configuration needs to
exchange messages with 11 instances, compared to only one
instance in the scale-up case. However, even in that case,
fast network communication makes scale-out configurations
faster than the scale-up one for all scenarios.

Update case. We plot the result of the update exper-
iment in Figure 6. The impact of communication is less
pronounced compared to the read-only case as distributed
update transactions are significantly more expensive than
their read-only counterparts. The difference comes from the
ability to overlap logging and communication overheads. For
example, transactions that update 2 rows generate less log,
hence, they cannot overlap static communication overheads
as effectively as the larger transactions. This effect is par-
ticularly evident in the presence of distributed transactions
where the choice of communication mechanism has almost
no effect on the throughput for the 20 row case.

Summary. The impact of network communication de-
pends on the type of operations performed by distributed
transactions. For the read-only transactions, communication
has direct impact proportional to the number of instances
involved in a transaction. On the other hand, the impact
of network on the update workloads is much smaller due to
other factors that dominate the cost of distributed update
transactions. In the traditional system, the communication
can be overlapped with logging or other processing. Further-
more, constructive sharing among threads makes scale-up
instances preferable for many update workloads.

6. MAIN MEMORY SYSTEM
Each node in a cluster is a multisocket multicore with a

large main memory and is connected to other nodes using low
latency network. This section investigates how distributed
deployments of the scale-up main-memory-optimized design
compare to the scale-out deployments of the same system.
We use Silo main memory OLTP system and approximate

the cluster using the multisocket multicore server with each
socket representing a node.

Distributed main memory system. Silo uses opti-
mistic concurrency control (OCC) protocol that scales well
on multicores as it avoids any centralized synchronization
points. In order to adapt Silo for distributed deployment,
we split its commit processing into two phases: 1) the vali-
dation phase that we perform at the end of the first phase
of 2PC and 2) the actual commit that we perform in the
second phase. Between these two phases, the updated rows
are locked and any transactions attempting to read them is
aborted.

We deploy a distributed version of Silo using a shared
memory communication channel as well as UNIX domain
sockets. The dataset has 8 million rows and is partitioned
equally among all instances in the deployment. We compare
scale-out deployments with one instance per processor core
(80 instances) and scale-up deployment with one instance per
processor socket (8 instances). We distinguish the behavior
of the distributed deployment for the read-only and update
workloads and identify the factors that cause differences
between the two.

Read-only case. We start with the read-only microbench-
mark for 2 and 20 rows for local only transactions and a mix
with 20% multisite transactions and plot the results in Fig-
ure 7 (left and middle). In both cases, the fine-grained scale-
out deployment has higher throughput for local transactions
due to better locality of data accesses and absence of thread
synchronization. For the experiment with the lightweight
transactions, the choice of communication channel can reverse
the relative performance of different deployments. Namely,
scale-out deployment has higher throughout because of the
locality of data accesses for the local transactions in both
cases. However, with higher overhead sockets, especially
for the case of heavier transactions in scale-out deployment,
the relative performance reverses and scale-up deployment
performs better. For the heavier transactions, scale-up de-
ployment has higher throughput for multisite transactions in
both cases due to fewer instances that participate in a single
transaction causing lower communication overheads.

Update case. To quantify the impact of updates, we
run a microbenchmark that updates 2 rows and compare
two settings: 1) only local transactions and 2) 1% multisite
transactions. We plot the results in Figure 7 (right). We
use significantly smaller percentage of multisite transactions
compared to the previous experiment since distributed up-
date transactions have much higher cost. In contrast to the
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Figure 8: Increasing the duration of commit process-
ing in distributed transactions significantly increases
abort rates.

read-only distributed transactions, the update ones increase
contention due to prolonged commit phase that leads to
abort rates of 11.5% for 1% of multisite transactions. While
the pessimistic choice to abort transactions attempting to
update locked row has a negligible effect when running only
local transactions as the commit phase is very short, its
impact is much bigger in the presence of distributed trans-
actions. Communication channel has much lower impact on
the update transactions compared to the read-only ones. For
all combinations of deployment configuration and commu-
nication mechanisms, even small percentage of distributed
transactions significantly affects contention. The increased
contention leads to abort rates of 8% to 11.5% with slightly
lower abort rates when using UNIX domain sockets.

Sensitivity analysis. In order to characterize the differ-
ent effect of the read-only and update distributed transactions
on the throughput, we distinguish the impact of communica-
tion overheads and increased contention. We use a modified
microbenchmark on a deployment that has only 2 instances,
each using a single core. We vary the percentage of dis-
tributed transactions from 0 to 100%. The dataset contains
200 000 rows evenly split between the instances. We use
two microbenchmarks: 1) the one that reads 2 rows and 2)
the one that reads 1 row and updates 1 row. For the local
transactions, both rows are chosen from the local instance.
For the distributed transactions, one row is chosen from the
local and the other is chosen from the remote instance. In
the read-only case, distributed transactions will incur only
the communication overheads. In the read-write case, we
choose the row that is updated from the local instance and
the row that is read from the remote instance. In both cases,
distributed transaction have the same communication over-
heads since the remote fragment is read-only and does not
require any processing in the second phase. However, for the
read-write case, the update row is locked until the remote
fragment is processed causing any concurrent requests for
that row to conflict.

We plot the normalized throughput of both microbench-
marks as well as the abort rates for the read-write one in
Figure 8. For small percentages of distributed transactions,
the relative throughputs of the read-only and the read-write
microbenchmarks follow the same trend as long as abort rates
are negligible. However, with 10% or more of distributed
transactions in the workload, the throughput of read-write

microbenchmark starts dropping faster. At the same time,
abort rates steadily increase reaching 55% when all transac-
tions are distributed while the throughput plummets to 6%
of the peak.

Summary. For the read-only distributed transactions,
communication is the main overhead. Hence, distributed
transactions affect the coarser grained configurations less
since they potentially involve fewer instances in the execution
of a transaction. The impact of distributed transactions is
much higher for the transactions that contain updates. Main-
memory optimized systems achieve high performance by
accessing only a small number of short critical sections in the
critical path of transaction execution. Adding communication
step in the middle of the commit processing of the efficient
OCC protocol increases abort rates significantly and has
detrimental effect on performance.

7. CONCLUSIONS
The current state-of-the-art transaction processing system

designs either focus on scaling up or scaling out. In this
paper, we analyze different deployments of the traditional
and main-memory-optimized designs and characterize the
impact of communication latency, multisocket topology, and
workload properties on throughput. We show that the fast
communication improves throughput for the read-only work-
loads while having negligible impact for the update ones
where other overheads, i.e., logging for the traditional system
and increased contention for the main memory one, dominate.
Regardless of the network performance, optimal configura-
tion for the cluster deployment of the OLTP designs requires
taking into account the topology of a multisocket node as
well as the workload characteristics.

Challenges. Inadequacies of the state-of-the-art concur-
rency control and coordination protocols stem from scale-up
and scale-out design requirements respectively. On the one
hand, concurrency control protocols for main memory op-
timized scale up designs need to minimize the duration of
any critical sections so as not to introduce any scalability
bottlenecks. This makes them sensitive to delays introduced
in the critical path of transaction execution. On the other
hand, coordination protocols aim to minimize the number of
messages between nodes in the distributed system as com-
munication latencies dominate all other delays in the system.
However, this allows them to add significant local processing
overhead that is prohibitive for lean main memory optimized
systems.

Opportunities. In order to be applicable to clusters with
fast networks, concurrency control protocols need to become
resilient against communication delays and the coordination
protocols need to become more lightweight to capture the
best of both worlds. One approach for making concurrency
control protocols more amenable to distributed execution is
using techniques such as controlled lock violation to shorten
commit processing by tracking dependencies [13]. This opti-
mistic approach may lead to a chain of aborts. However, such
behavior is restricted to the situations where there are many
read/write conflicts on the hot data. A complementary set
of techniques rely on application semantics to enable phase
reconciliation and knowing transaction write-set apriori to
increase concurrency [12, 16]. Similar ideas that rely on
application semantics to relax coordination requirements in
distributed deployments have shown good results in datacen-
ter deployments [2, 24]. We believe that the judicious use



of semantic information from the application enables design
of resilient concurrency control and lightweight coordina-
tion protocols required for efficient rack-scale OLTP designs.
Two recent proposals leverage RDMA and modern hard-
ware, namely non-volatile RAM and hardware transactional
memory, to achieve good scalability for easily partitionable
workloads, such as TPC-C, on clusters with fast networks [11,
30]. They present a good initial step toward designing effi-
cient systems for arbitrary transaction processing workloads
that scale up and out.
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