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 In the operation of continuous processes, many tasks require the knowledge of 

plant steady state at various operating points. This is for example the case in the 
context of kinetic modeling, response surface modeling and real-time optimization. If 
the computational techniques are in principle straightforward, the time needed to 
reach steady state represents the main limiting factor. This work proposes a novel way 
of speeding up the estimation of plant steady state through the use of feedback control 
and rate estimation. It must be emphasized here that rate estimation requires only 
some structural information of the plant and no rate model. Generally speaking, the 
context of the present investigation corresponds to industrial practice, where there is 
significant plant-model mismatch, which typically calls for the use of measurements 
to feed data-driven techniques. 

 
 We will illustrate the fast estimation of plant steady state in the context of static 

optimization of continuous reactors. Real-time optimization (RTO) is typically 
implemented via some iterative scheme that uses steady-state plant measurements. 
The cost and constraints of the optimization problem are functions of the input and 
output steady-state values. At the kth iteration, the constant inputs uk are usually 
applied to the plant in open loop and, once steady state is reached, the outputs y̅k are 
measured and the cost and constraint values are evaluated. However, depending on 
the dominant time constant of the plant, the time necessary to reach steady state may 
be rather long. Hence, it would be useful to be able to speed up convergence to steady 
state, or at least speed up the estimation of plant steady state. This will be done in this 
work through combination of feedback control (to speed up a specific part of the 
plant) and rate estimation (to estimate the steady-state values of the remaining part of 
the plant so that the cost and constraint functions can be evaluated). 

 
 For this, let us consider a time-invariant dynamic system with the inputs u and 

the state variables x and z that can be described by the differential equations: 
  ẋ(t) = f(x(t),u(t))     x(0) = x0 
  ż(t) = h(x(t),u(t)) – Ω(x(t),u(t)) z(t) z(0) = z0 
 

 The particular structure of this dynamic system can be exploited when the slow 
and fast states z and x are associated with slow and fast dynamics, respectively, and 
the slow states do not affect the fast states. The idea is to use feedback control to 
speed up the convergence of the fast states x to x̅ and the inputs u to u̅, provided that 
the states x are accessible, and then compute the steady-state values z̅ of the slow 
states as: 
  z̅ = Ω-1(x̅,u̅) h(x̅,u̅) 
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This computation relies on nonparametric estimation of the rates h(x̅,u̅) and 
Ω(x̅,u̅) using measurements and structural information of the plant. Note that z̅ can be 
estimated long before the state variables z converge to their steady-state values.  
 

RTO is implemented via a two-layer approach. In the inner layer, feedback 
control is used to rapidly drive x to the setpoints xsp by manipulating the inputs u and 
rate estimation is used to compute z̅ from x̅ and u̅. In the outer (optimization) layer, 
the RTO algorithm computes optimal values for the setpoints xsp. The inner layer is 
described in more detail next for chemical reactors: 

• The objective of the control scheme is to drive the fast states x, typically some 
reactant concentrations, to their constant setpoints in the shortest possible time 
after a step change in the setpoints xsp. This time is shorter than the time needed 
by the open-loop plant to reach steady state after a step change in the inputs u, 
typically inlet flowrates. Multivariable control is implemented via input-output 
feedback linearization [1], pole placement or optimal control and typically 
involves the measurement or estimation of x. Note that the gains to control the 
fast states (reactant concentrations) x are typically lower than those necessary to 
control both the fast (reactant) concentrations x and the slow (product) 
concentrations z, thereby making the control scheme with x less sensitive to 
measurement noise. Also note that the separation into slow and fast states 
assumes that the rates f(x,u) are independent of the slow (product) 
concentrations z. 

• The rate estimation relies on the knowledge of the stoichiometry and the inlet 
concentrations, and on measurements of flowrates, reactor temperature, volume, 
and some of the concentrations at steady state. The rates are computed through 
numerical differentiation of the reaction variants using a Savitzky-Golay filter 
[1]. These reaction variants are easily computed from measured concentrations 
[2]. It will also be shown that the proposed Savitzky-Golay filter is the optimal 
convolution filter for rate estimation. 

 
 A simulated homogeneous CSTR [3] is used to illustrate the implementation of 

“fast static RTO” and address the following questions: (i) how to best combine 
feedback control and rate estimation, (ii) which controlled and manipulated variables 
to choose, (iii) how to eliminate the slow states in the objective and constraint 
functions, and (iv) how to deal with measurement noise in this measurement-based 
RTO algorithm. 
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