
Style Checking With Scala.Meta

Mathieu Demarne
mathieu.demarne@epfl.ch

June 2015

1 Abstract

In many companies, code reviews are big parts of the day-to-day life of an engineer. Some
can argue that the time spent on someone else’s code is time that some cannot spent on
her or his own work. Code reviews usually allow to find two kinds of issues. The first kind
consists of high-level design errors compared to the specifications of the program while
the second type consists of style problems.
In this report, we argue that the search of the later kind of error can be automated, as
the set of style issues is usually well defined for a programming language. We propose
modifications to a linter tool called Obey, which allows to analyze Abstract Syntax Trees
of Scala code, raise warnings and suggest changes that can be automatically persisted.
Over the course of this project we worked jointly with Codacy, a company proposing au-
tomated code reviews, to have an industrial application which would allow users to define
their own set of rules. This report also presents the results of this real life testing.

Keywords: Style Checking, Automated Code Review, Code Inference, Metaprogram-
ming

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148021775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Introduction

Reviewing code is a required step for every engineer in the industry. It can even be a legal
requirement to deploy software. Unfortunately, reviewing code is hard. The reviewers
first have to focus on the programmer’s task, need to have in mind all the specifications of
the pieces of code to review, immerse themselves into the programming style of the other,
before being able to start reviewing. Moreover, reviewing is rarely quantified and corre-
sponds to time that the reviewers could instead spend on their own work. As an outcome,
reviewing code is sometimes neglected, done too fast or without the full attention that it
should receive, leading to undiscovered bugs which at best will be found in beta testing
and force to restart the deployment procedure.
In the past few years, the platforms allowing better control over a project development as
well as regression testing have grown in number and importance. For instance, Phabri-
cator [1] allows a better grip on merge requests, Jira/Crucible [2] makes reviewing code
an integral part of the development process rather than a work done when time permits,
and finally many platforms such as Travis, Shippable, Gitlab CI or even Jenkins offer
regression testing based on revision control [3].

The solution Codacy [4] provides is at the cross of those two areas. By fetching the
latest modifications done in a repository, the Codacy platform analyzes code statically,
produces warnings and gives a final grade to the code style. It is also flexible, allowing
the programmer or project owner to select from a large set of warning definitions. Most
recently, a prototype developed by the company also proposes to write custom rules. Co-
dacy currently supports a variety of languages such as Scala, JavaScript, PHP, Python
and CSS.
As a part of our effort with Obey, our linter tool developed on top of Scala.Meta [5], we
have worked jointly with Codacy to power code reviews of Scala projects.

We have also pushed the boundaries of the Obey project to propose transformation rules
that persist changes while keeping layout information and comments, a feature that might
interest ingineers in the future, both for style rules as well as to automate various migra-
tion processes.
Defining migration rules would allow to seamlessly move the code base of a project from
an old version of a framework or library to a new one. For instance, the Play Framework
[6] allows to develop high velocity web applications using Scala and Java and is under
constant development. As an outcome, versions are not always backward compatible, and
a few changes need to be done for each migration. This could be automated using Obey.

This report presents Obey in section 3, how we deal with persisting AST modifications
while preserving the original source code format in section 4 and the work we have done
jointly with Codacy in section 5. It also shows and comments use cases of the Obey
prototype in section 6.

2

3 Obey: A Linter Tool

Repository: github.com/mdemarne/Obey

Lint [7] is a program developed at Bell Labs in the eighties to identify suspicious and
non-portable constructs in the C programming language. The term lint-like became pop-
ular to designate programs running static analysis on source code and generating warnings.

3.1 Origins And Motivation

Generating warnings inside compilers allow little customization and makes the modifica-
tion of the applied rules a complicated task for programmers unfamiliar with the internal
steps of the compilation process.
Due to the rich syntax of Scala, adding custom warnings is becoming increasingly relevant.
A few tools have already been studied and developed in the past for such purpose, such as
Linter [8] or Abide [9]. However, they do not propose to fix the source code on behalf of
the programmer, a process which could be automated for small changes and style errors.
This report proposes the second version of a linter tool which can persist changes into
source code based on rules defined by the programmer: Obey. Obey has originally been
developed by A. Ghosn [10] and uses the internal representation of the Scala.Meta project
to reflect on syntactic as well as semantic information provided by the typer phase of the
Scala Compiler. Obey is partially inspired from Abide and proposes a minimalistic and
user-friendly interface. It is also easy to integrate with SBT projects.

3.2 Design

Obey defines a lightweight model composed of rules returning warning messages. The
rules themselves use the TQL library (Traversal Query Language) [11] to traverse the
tree. This allow to define clean and simple basic blocks. Obey runs as a Scala compiler
plugin, using the semantic information provided by the typer phase to reflect on trees in a
given context. Finally, the compiler plugin can be automatically added to a project using
an SBT AutoPlugin [12], which is presented in section 3.2.3.
The global design of Obey has gone through a few changes since its first version. This
section presents its main concepts, before focusing on the features and modifications that
have been added.

3.2.1 Interface

Obey allows to define rules by extending three basic Scala traits. All traits use the
same syntax, but are used to differentiate the way the rules are applied at runtime:

WarnRule defines rules which will be used to solely print warnings, but any modification
done by the rule will not be persisted.

StatRule defines rules which will be used to compute statistics. Statistics are displayed
after all the rules have been applied and are aggregated together. It is an extension
of WarnRule, and follows the same behavior, except for the way results are shown.

FixRule defines rules which will be used to modify the Abstract Syntax Tree. The results
can then be persisted using token inference. See section 4 for more details.

Each trait extends the following definition:

3

https://github.com/mdemarne/Obey

sealed trait Rule {

def description: String

def apply: Matcher[List[Message]]

}

The description explains the behavior of the rule, while the apply method corresponds
to the TQL code that will be used by the traverser during application. Note that apply

returns a Matcher, which is a construct specific to TQL, and contains a list of messages
as result.
Messages are basic blocks generated when a rule has been successfully applied. They are
treated differently depending of the type of the rule generating them, and are defined as
follow:

case class Message (

message: String,

originTree: scala.meta.Tree

)

A message returned after the application of a WarnRule or a FixRule will be reported
immediately after the analysis of a compilation unit (which contains the Abstract Syntax
Tree corresponding to one source file), while the results of a StatRule will be counted
once the whole compilation process has ended and displayed in a grid showing the number
of times a message with the same text description has been found. For an example on the
output of such rule, see section 6.
Finally, tags can be associated to rules in order to allow the programmer to select only a
specific subset to be applied. Tags are defined as annotations:

case class Tag (

tag: String,

others: String*

) extends StaticAnnotation

The following definition shows a simple rule that could be applied by Obey:

@Tag("Scala", "Style")

object EnforceTry extends WarnRule {

def description = "Use util.Try rather than try/catch"

def message(t: Term) = Message(description, t)

def apply = collect {

case t: Term.TryWithCases => message(t)

case t: Term.TryWithTerm => message(t)

}.topDown

}

For more details on the rules currently available, see section 3.4. For more details on the
TQL syntax, please refer to the report Traversal Query Language For Scala.Meta by E.
Beguet.

3.2.2 Compiler Plugin

The Obey compiler plugin runs after the typer phase of the Scala compiler, and is therefore
able to use semantic information while reflecting on Scala.Meta trees. The compiler
plugin stores the different flavors that an application of Obey should follow and output
the warnings using the compiler reporter. Using SBT, it is possible to simply add the
compiler plugin with the following command:

4

addCompilerPlugin("com.github.mdemarne"

% "obey-compiler-plugin_2.11.6" % "0.1.0-SNAPSHOT")

The compiler plugin also filters the rules to apply based on their specific tag using an
Optional Filtering Language (OFL), which was developed by A. Ghosn and is defined as
follow:

tag := [\w*]+.r

tags := { ~ tag ~ ([;,].r ~ tag).* ~ }

OFL := ("[+-]".r ~ tags).*

Below is an example of OFL which will apply all rules with the Scala tag, but not the
rules with the Dotty tag:

+ {Scala} - {Dotty}

Note that this OFL is case-insensitive. Moreover, the negative set has a higher importance
than the positive one.

The compiler plugin can receive the following options, passed to scalac at the command
line:

obeyRulesDir:<paths> specifies paths to folders containing compiled rules. It is possible
to specify multiple paths by separating them by ;.

obeyRulesJar:<paths> specifies paths to jars containing compiled rules. It is possible
to specify multiple paths by separating them by ; as well. Rules specified by both
commands will be loaded by the compiler plugin and applied together, regardless of
their origin.

warnings:<OFL> specifies the OFL syntax that will be used to filter warnings and statistic
rules.

fixes:<OFL> specifies the OFL syntax that will be used to filter fixing rules.

dryrun will tel Obey not to persist changes done on ASTs. This allows to let the pro-
grammer know which modifications will be applied to her or his code in a normal
run, and has mainly an informative role.

listRules will stop the compilation process and not apply Obey. Instead, it will output
all the rules that are selected.

The following example shows a valid combination of commands that will run a dry run of
fixing rules.

-Xplugin:obey:dryrun

-Xplugin:obey:fixes:+{Scala}-{Dotty}

-Xplugin:obey:obeyRulesJar:~/.ivy2/local/com.github. ...

3.2.3 SBT Plugin

The SBT plugin abstracts the logic of the compiler plugin away from the programmer. It
can be added to any SBT definition by specifying:

addSbtPlugin("com.github.mdemarne" %% "sbt-obey"

% "0.1.0-SNAPSHOT")

The plugin defines a set of settings that can be overidden in the build definition and
echoes the options that can be passed to the compiler plugin:

5

obeyRules specifies the OFL sentence for both fixing rules and warning rules. If speci-
fied, it will override the sentences given by obeyFixRules and obeyWarnRules (see
below).

obeyFixRules specifies the OFL sentence for fixing rules only.

obeyWarnRules specifies the OFL sentence for warning rules only. Note that this also
includes statistic rules.

obeyRulesDir specifies the directories of compiled rules.

obeyRulesJar specifies the jars containing compiled rules.

Below is an example of a valid build definition for a simple project:

lazy val root = (project in file(".")).

settings (

scalaVersion := "2.11.6",

ObeyPlugin.obeyRules := "+{Scala}-{Completeness,Dotty}",

) enablePlugins(ObeyPlugin)

Moreover, the SBT plugin allows to run Obey in different flavours, using dedicated com-
mands:

obey-list will list all the available rules.

obey-check will apply all warning rules and fixing rules and show the corresponding
warnings.

obey-fix will apply all fixing rules, show the corresponding warnings and persist changes
to source files.

obey-fix-dryrun will apply all fixing rules and show the corresponding warnings. It will
however not persist changes.

3.3 Implemented Rules

Obey as a plugin comes without a set of predefined rules. However, it is possible to fetch a
default set of rules that can be automatically added to any Scala project as a dependency:

libraryDependencies +=

"com.github.mdemarne" % "obey-rules" % "0.1.0-SNAPSHOT"

Those rules are ordered in packages and use default tags. There exists currently four
kind of packages: health contains eleven style rules, Statistics, one general statistic
rule, dotty contains a few rules for Dotty only, and finally transformations contains one
experimental rule that can help migrate actors defines as Scala Actors into Akka Actors
[13]. This experimental application is discussed in section 6.

3.4 Modifications Compared To The Previous Version

This section presents what has been changed since the first version of Obey:

• The rule behavior is clearly stated by WarnRule, StatRule and FixRule.

• The set of commands using Obey has been changed to reflect the clear separation
of rule behaviors.

6

• There is no more default rule automatically added to Obey. This gives to the
programmer the entire freedom to define her or his own set of rules. However, a
basic set of rule is available.

• It is possible to add rules defined in a local repository as well as in jars.

• Statistic rules have been added.

• When running an Obey command such as obey-check, the compilaton process
is stopped after the Obey phase. As an outcome, this might lead to unmatched
dependencies if non-Scala source files had to be compiled (this for instance is the
case for Java source files) as this is triggered by SBT independently. We filter out
those files to avoid having errors coming from javac – the java sources files are
simply not taken into account for Obey commands.

• Finally, by inferring tokens, Obey is able to persist modifications from Abstract
Syntax Trees while keeping the original layout and comments of a source file. See
section 4.

For more details on the Obey implementation, please refer to the Github repository of
the project or A. Ghosn technical report, Obey: Code Health for Scala.Meta, 2015.

7

4 Persisting AST Modifications

Obey allows to create rules that can modify the Abstract Syntax Tree representation of
a program. Unfortunately, using prettyprinters that do not take into account the initial
sources to persist those changes is not enough in most cases, as the original code usually
contains comments and formats that can play a crucial role in the maintainability of a
program.
In this report, we present a different approach based on token inference that allows to
keep the original layout.

4.1 General Approach

Scala.Meta uses specific tree definitions that define ASTs uniquely in term of strings and
AST nodes. By doing so, they are sensibly simpler to manipulate than the trees of scalac
and naturally suited for reflection.
Moreover, when parsed using the Scala.Meta parser, those trees contain a direct mapping
from AST nodes to the tokens generated by the Scala.Meta tokenizer, which allow to
retain more information about the layout of the original source code and ease the persis-
tence of the changes, as explained below. On the other hand, trees converted after the
typer phase of scalac do not contain such information.
When an AST is modified, the original token stream becomes outdated as well as the
source code originally linked to it. In order to persist modified trees after a run of Obey,
we need either to modify those tokens and reprint them, or operate at the string level
itself – in other words, we either infer the new tokens or prettyprint the changes.
The second approach is used for instance by Scala-Refactoring [14] and Scalariform [15].
Scala-refactoring is a library providing automated refactoring for Scala code and can
be integrated in an IDE such as Eclipse. In order to preserve the layout information,
Scala-Refactoring uses two prettyprinters, each having a specific task. The normal pret-
typrinter prints code using standard techniques, while the second one reuse the layout
that was present in the original code. This might be the case for instance if a method has
been extracted from one object to be placed into another. When reprinting the source
code, Scala-Refactoring then switches from one prettyprinter to the other based on the
nature of the piece of code that needs to be output. Conversely, Scalariform allows to
format source code automatically and works with its own parsers and produces strings.

Using Obey, there is no guarantee regarding the size and the locality of the changes
that an AST can undergo, on the contrary of refactoring tools such as Scala-refactoring.
Moreover, tokens contain more information regarding the articulations of the various parts
of the source code, and thus allow a better grip on the sections that need to be reprinted.
Using quasiquotes in Obey rules also allows to generate fragments of trees that are mapped
to their own token sequences, which can easily be merged with existing streams.
Following those remarks, we have developed an implementation of a token inferencer able
to produce tokens for changes while keeping as much as possible the layout and comments
of the original source. Token quasiquotes developed by M. Duhem [16] also allow to easily
generate those sequences, letting us design an implementation that is somewhat close to
a prettyprinter in its structure and layout.

4.2 Adding Layout Information In Converted Trees

Forked repository of Scalahost: github.com/mdemarne/scalahost

Scala.Meta adds a phase to the compiler that converts ASTs produced by the type-
checker into Scala.Meta trees. Those trees contain useful semantic information that can

8

https://github.com/mdemarne/scalahost

be used in reflection as well as in tools such as Obey. However, scalac does not keep track
of the original token stream themselves, although it maintains a mapping from nodes to
positions in source files. As an outcome, we have developed a simple procedure that parses
the original source file and merges its output with the converted tree, allowing to have
both semantic and syntactic information.
Unfortunately those two trees might differ as they are not produced by the same parsers
and as the typer phase is able to add more information. For instance, parsing source code
directly using Scala.Meta produces the follwoing representation of tuples:

Type.Tuple(List(Type.Name("A"), Type.Name("B")))

On the other hand, the converted tree might be desugared:

Type.Apply(

Type.Select(Term.Name("scala"), Type.Name("Tuple2")),

List(Type.Name("A"), Type.Name("B"))

)

As part of this project, we have developed a minimalist function merging converted and
parse trees covering a few of those corner cases. As work is currently on progress to directly
add semantic information on top of parse trees, this implementation is only temporary
and is somewhat rudimentary.

4.3 Inferring Tokens

Forked repository of Scalameta: github.com/mdemarne/scalameta

When a sub-tree is modified and placed back into the AST, its parent nodes are copied and
the tokens they contain become obsolete. As an outcome, the copy constructor lazily call
the token inference when the associated stream is accessed. This allow to easily propagate
changes at a low cost from leaves to root.
Let’s consider the following example:

def square(x: Double /* a square root */) = x * x

The AST for such a program looks like:

Defn.Def(

Nil, Term.Name("square"), Nil,

List(List(

Term.Param(Nil, Term.Name("x"), Some(Type.Name("Double")),

None)

)),

None,

Term.ApplyInfix(Term.Name("x"), Term.Name("*"), Nil,

List(Term.Name("x")))

)

We can now apply a simple transformation that will change x * x into Math.pow(x,2).
As an outcome,

Term.ApplyInfix(Term.Name("x"), Term.Name("*"), Nil,

List(Term.Name("x")))

is transformed into:

9

https://github.com/mdemarne/scalameta

Term.Apply(Term.Select(Term.Name("Math"), Term.Name("pow")),

List(Term.Name("x"), Lit.Int(2)))

When tokens are fetched, the inferencer will thus reuse the tokens linked to all other
sub-parts of the original Defn.Def, infer the tokens for the new Term.Apply and for the
parent definition itself. The inferred token stream for the Apply above will look like:

Math (0..4), . (4..5), pow (5..8), ((8..9), x (9..10), , (10..11),

2 (11..12),) (12..13)

As an outcome, the string corresponding to the token stream will still contain the comment
present in the original code, as it is associated with the Term.Param, which was left
unmodified:

def square(x: Double /* a square root */) = Math.pow(x, 2)

Since we want to lazily propagate changes, we never infer tokens for the tree as a whole.
The inference is thus indirect: when inferring tokens for a specific node, the inferencer
will lookup the token streams of the node’s children, which will be computed if required –
calling the inferencer once more. By doing so, the parent node does not need to know if its
children are left untouched or are modified. One drawback of this approach is that only
tokens are passed through the indirect recursion, while a prettyprinter could pass more
information regarding the context in which a node needs to be printed. This has proven
to be useful to put back parentheses in case of mixed infix operators. As an outcome, the
inferencer needs to lookup the parent of a node in order to check whenever a term needs
to be parenthesized, introducing a few more boilerplate code.
Our implementation of the inferencer follows the SLS specifications [17] with a few minor
simplifications regarding parentheses inference, due to the extra lookup explained above.

4.4 Preserving High-Level Comments

The technique presented above allows to infer tokens with fine granularity. One drawback
however is that comments embedded into token streams associated with modified nodes
will not be preserved. Even if this is negligible for small comments inside the code it-
self – especially since those comments might become outdated based on the modification
brought to the tree – Scala source code usually contain a lot of high-level notes present
at the root of the file (e.g. scaladoc describing the global behavior of a class). Such
comments are usually crucial for the programmer as they describe the general purpose
and behavior of the source file itself. In the internals of Scala.Meta, the root of a source
file is always a Source node containing the sequence of all top-level statements as well as
the high-level comments. Following this implementation, modifying any part of the tree
will force the inference of the top-level Source node and thus the high-level comments
will not be preserved using the technique described above. We have therefore developed
a special case using the original Source Node to preserve high-level comments under tree
transformation.
Our implementation takes into parameter the original Source tree and extracts its cor-
responding tokens. It then gets all top-level statements inside this original Source and
maps them to their corresponding statements in the new one, and replace them progres-
sively in the token stream representing the whole file. If more statements are present in
the modified Source, they will be added at the end of the file. On the other hand, if less
statements are present, the ones that were remove will simply be replaced by an empty
token stream in the global sequence.
This approach has the benefit of keeping the general, top-level comments, but does some
simplifications:

10

• The approach assumes that rules do not operate often directly on top-level state-
ments and does not shuffle them. This is due to the fact that the mapping between
the statements present in the original Source and the new one is done by a trivial
zip,
(i.e. originSource.stats zip modifiedSource.stats).

• Special indentation before the beginning of a statement might produce surpring
outputs when fully inferred. This is due to the fact that this indentation is not
contained in the statement itself. For instance, the sequence of tokens corresponding
to the class in the following source file:

class A

//_____^ <-- Note the spacing

will be:

Tokens(class (8..13), (13..14), A (14..15))

thus ignoring the original spacing at the beginning of the line.

4.5 Preserving Indentation

Preserving indentation is simple when a statement is moved at the same depth in the tree,
as it is then sufficient to take the original token stream as is. On the other hand, this is
not trivial when moving statements to a place where the layout should be different (for
instance, by refactoring the code and moving a statement inside an object into a class
inside the object itself).
In such cases, the indentation needs to be re-inferred, even if the original AST node was
left untouched by Obey. To execute such manipulation, the inferencer is based on the
following simplifications:

• The standard indentation is used, regardless of the one in the original code. A future
work could be to guess the indentation scheme used in the original source code and
use it to infer tokens with the proper formatting.

• It assumes that spaces are used for indentation in the original source file, as specified
by the Scala Style Guide [18]. If tabulations are used, the indentation scheme will
be partially mixed.

• When the token sequence corresponding to a node is on multiple lines, the last one
possesses only indentation that is not directly linked to its content. To illustrate
this assumption, let’s take a simple example:

class MyMath {

def square(x: Int) = {

x * x

}

}

In such a class, the indentation that is linked to the Term.Block containing the
body of the square function will lead to the following representation:

11

{

x * x

}

As shown, the brackets are not aligned. This is due to the fact that the first line of
the Term.Block starts at the opening bracket, while the last line ends at the closing
one. As an outcome, no indentation is present on the first line, while all others still
contain the indentation from the source file. In order to represent the content of
this Term.Block properly aligned, we can remove all the indentation present on the
last line to all other lines above. In our case, it corresponds to one shift to the left.
We will then get:

{

x * x

}

Using those two assumptions, the inferencer is able to properly re-indent the sequence of
tokens by shifting the lines to the right when required. Moreover, this approach will keep
the original layout inside unmodified nodes.

12

5 Style Checking With Codacy

Codacy home page: codacy.com

Codacy is a company proposing automated continuous static analysis for various pro-
gramming languages. It was founded in 2012 by Joao Caxaria and Jaime Jorge and has
receive founding from venture capital firms both from the United Kingdom and Spain.
The company is based in London.
We have worked jointly with Johann Egger from Codacy in order to have an industrial
use case of the way patterns are defined in Obey for style rules. The solution presented
in this section is the result of our direct collaboration.

5.1 Original Engine

When a project is configured to use the Codacy SaaS platform, each change done into
its repository triggers an analysis. The Codacy platform fetches the modifications and
generates warnings based on the entire code base.
While analyzing JavaScript code is relatively straightforward as it is not strongly typed,
semantic information on Scala code can be a non-negligible asset when applying style
rules. A simple example consists in analyzing all .get calls: using semantic information,
it is possible to determine when an internal Select is actually done on a Scala Option,
thus allowing to raise a warning.
Unfortunately getting semantic information has a price in resources, as the source code
has to go through a typechecker. For performance reasons, triggering the typechecker for
each analysis is not suitable at scale.
The original engine used for the analysis parses Scala source code using the Scala Reflect
toolbox [19] before converting them into Json. The analysis is then ran using rules defined
in JavaScript, which directly operate on top of the Json representation of the Scala code.
Users are able to select among a set of predefine rules that will be used to analyze their
projects:

Illustration 1: Codacy dashboard

As explained, this approach needs to translated Scala parse trees into Json prior to the
analysis, adding a small overhead in term of performance.

13

http://www.codacy.com

5.2 Proposed Approach

Running Obey rules directly on top of Scala trees removes the overhead of this translation
into Json. Moreover, working directly on ASTs allows a precise analysis even if they do
not contain semantic information.
The adaptation of the Obey model has been done in two phases. First of all, the parser
from Scala Reflect has been replace by the one proposed natively by Scala.Meta. Since
those trees are not converted to Json anymore, they are sent to the analyzer directly
as scala.meta.trees. Secondly, the analyzer itself filters out the rules to apply based
on the analysis configuration received from the server, apply them, formats their output
properly and creates a response object containing all warnings or potential parsing errors.
The adaptation from the Obey model has proven to be mostly straightforward. The major
modifications are:

• Tags do not exist anymore. Instead, each rule receives a unique identifier used by
the engine during filtering.

• The engine itself does not use a standard reporter to report errors. Instead, warnings
are mapped to line numbers, allowing to extract the faulty slices of code from the
original source files and display them nicely to the user.

• The analyzer is an isolated engine. It receives analysis requests using the HTTP
POST protocol and returns the results over HTTP as well. The Scala.Meta engine
had therefore to be integrated into this architecture.

A total of nine rules inspired both from the default package of Obey and of the patterns
present on the Codacy platform have been implemented for prototype testing:

1. We raise a warning when case classes with no parameter and no body could
instead be case objects.

2. Partial implementation (e.g. val x = ???) are detected.

3. Conventional try { ... } catch {...} can be replaced by the use of the util.Try
object, as it ensures that the user is properly considering error handling and strengthen
type checking.

4. The null literal is prohibited. It is instead suggested to use Options.

5. return is implemented as exception throwing and catching in bytecode. Moreover,
Scala ensures that the last statement in a method is automatically returned. We
raise a warning if such a keyword is found.

6. while loops are deprecated when using strict functional programming, and finding
some raises warnings as well.

7. We suggest that vars that are never re-assigned could be val instead.

8. Calling .get on an option will throw an exception. We therefore detect such calls.
The best option in such a case is to use functional constructs such as map and
flatMap.

Unfortunately parsing trees using the Scala.Meta parser does not allow us to have semantic
information, as we would have to analyse the project as a whole, which is not suitable in
term of performance. Due this lack of information, the two last rules are implemented
using small tricks. Rule 7 is implemented by considering variable names regardless of
their scope and might therefore fail to return warnings in some cases. Rule 8 on the other
hand checks that the call to .get does not take any parameter:

14

def apply = collect {

case Term.Apply(Term.Select(_, t @ Term.Name("get")), args)

if args.size == 0 =>

message(t) // generates a warning

case s @ Term.Select(_, t @ Term.Name("get"))

if s.parent.map(!_.isInstanceOf[Term.Apply])

.getOrElse(false) =>

message(t) // generates a warning

}.topDown

5.3 User-Defined Rules

Codacy also proposes a prototype of an interface allowing users to define their own warn-
ing patterns. This interface has been adapted to allow to define rules directly in Scala.
One drawback using rules defined in Scala directly is that they need to be compiled
prior to their application. To solve this issue, we have implemented a specific rule
builder which parses and compiles source code on-the-fly using virtual directories (see
scala.reflect.io.VirtualDirectory) and a dedicated compiler instance (using Global
from the Scala Compiler: scala.tools.nsc.Global). As an outcome, the builder only
needs to get the source code of the rule to build as a string and scala-library and
scalameta as library dependencies. The return type of the builder is a Try[Rule]. If an
error occurred a Failure containing the compilation error is returned instead.
As an outcome, the user can define and test its rules and save them directly in the inter-
face. Thanks to the builder, user-defined rules can then be seamlessly used throughout
the platform.
Below are a few screenshots of the prototype interface analyzing a piece of code from
Spark [20]. These illustrations are courtesy of Johann Egger and the Codacy team.

Illustration 2: Error detected by the rule builder

15

Illustration 3: Error detected by the parser during analysis

Illustration 4: The rule is applied and a warning is raised

Note that all errors are either directly coming from the Scala.Meta parser or the Scala
compiler.

5.4 Outcomes

The collaboration with Codacy shows that using the Obey model allows to define valuable
style rules. In the future, the development of TASTY [21] might allow to use semantic

16

information in style rules by analyzing serialized trees provided either by the user or
computed on-the-fly.
Nevertheless, applying rules in Scala rather than JavaScript reduces time overhead, while
using a typed language with powerful pattern matching fits more in the requirements of
such a program.
As an outcome, a next development step on the Codacy side will be to replace the current
engine with an evolution of the prototype using Scala.Meta and transfer all rules currently
implemented in JavaScript to TQL syntax.

17

6 Experimentations With Obey

Working jointly with Codacy already shows the value that can be brought by using the
Obey model for style rules. As an outcome, we focused our experimentation on other
areas. First of all, we wanted to show that our plugin implementation could run on large
projects. Finally, we wanted to draft a use case of Obey that will allow to migrate code
across versions of an underlying framework or library.

6.1 Collecting Statistics

We have ran Obey on the core code base of Scalaz [22], which is an extension of the Scala
library for functional programming. We have used our statistic rules to count the number
of various Scala constructs used throughout the system. As an outcome, we have found
very few vars – which is better when considering pure functional programming, as scalaz
does. The number of statements such as return and do or while is also small. The
following output shows the number of times a specific construct was detected:

[info] Compiling 249 Scala sources to ...

[info] Global Statistics:

[info] Type Count

[info] ==========================

[info] def 7812

[info] val 861

[info] trait 817

[info] class 479

[info] object 346

[info] partialFunction 194

[info] var 23

[info] list 18

[info] try/catch 17

[info] do-while 15

[info] potential Option.get 6

[info] set 6

[info] return 1

Running Obey on a large project was successful, although the compilation time was
greater by a factor of two. However, this project did not focus on performance, and as
an outcome the various steps of the rule application process could be optimized to reduce
this overhead.

6.2 Potential Use Case For Migration

github.com/mdemarne/Obey-migration-example

Scala Actors are deprecated and have been replaced by Akka Actors since the version
2.11.0 of the Scala Programming Language [23]. As an outcome, actors implemented using
the old toolkit need to be migrated. Using Obey, we have developed a small migration
plan for simple Actors. This allows to show the potential of Obey with migration rules
and the implementation of the token inference. Note that this rule however does not use
semantic information, hence some of its particular equality comparisons between names:

/* Changes "act" to "receive" */

val transformDef = (focus {

case Defn.Class(_, _, _, _, Template(_, parents, _, _)) =>

18

https://github.com/mdemarne/Obey-migration-example

parents.exists(p => p match {

case pp: Name => pp.value == "Actor"

case _ => false

})

} andThen (transform {

case t @ Defn.Def(_, nm, _, _, _, body1) if nm.value == "act" =>

val findPartialFunction = (collect {

case Term.Apply(

Term.Name("receive"),

(body2: Term.PartialFunction) :: Nil

) => body2

}).topDownBreak

findPartialFunction(body1).result.headOption match {

case Some(newBody) =>

t.copy(

name = Term.Name("receive"),

body = newBody,

decltpe = None

) andCollect ...

case None => t andCollect ...

}

}).topDownBreak).topDown

/* Changes the import clause */

val changeImport = (transform {

case s: Import if s.show[Code].contains("scala.actors._") =>

q"import akka.actor._"

...

}).topDown

def apply = transformDef + changeImport

This rule first focuses on all classes extending Actor, finds the act method it should
contain and the PartialFunction that is triggered when a message arrives. It then
renames the act method into receive, and move the PartialFunction to the root of
its body. One drawback of this approach is that other parts of the act function are not
preserved, but the rule could be extended to support more complicated constructs. The
snippets below show a part of such object:

import scala.actors._

/* Simple actor repeating what you send to it */

class Echo(times: Int) extends Actor {

def act {

while (true) {

receive {

/* Repeat Strings and Ints */

case s: String => repeatString(s)

case i: Int => repeatInt(i)

case x => println(s"Dunno what that is: $x.")

}

}

}

...

}

19

This is transformed as follow when the migration rule is applied:

import akka.actor._

/* Simple actor repeating what you send to it */

class Echo(times: Int) extends Actor {

def receive = {

/* Repeat Strings and Ints */

case s: String => repeatString(s)

case i: Int => repeatInt(i)

case x => println(s"Dunno what that is: $x.")

}

...

}

This code is compliant with the Akka syntax for Actors and compiles. Note that the
rule presented above will work for simple Actor definitions only, even if it could be ex-
tended, as explained.
However, it shows the potential of using Obey to define migration rules that could be au-
tomatically implemented, as well as the preservation of the original layout and comments
under transformation, thanks to token inference.

20

7 Future Work

7.1 Obey

Only some of the enhancements proposed by A. Ghosn were added to this second version
of Obey, as we focused mainly on token inference and the integration with Codacy. In
order to have an exhaustive list of potential improvements, we add here the enhancements
proposed in the report Obey: Code Health for Scala.Meta as well.
The potential enhancements are as follow:

• Allow a better rule distribution. Note that so far, we are able to distribute rule
using the obey-rules default package, but this one need to be added as a project
dependency, which mean that the rules will be available in the classpath of the
project. This could be avoided.

• Using a tag hierarchy to classify rules. If the set of available rules grows, a more
complex implementation of the tag system might be required.

• Specify the rule application order. There is so far no guarantee, as there is no way
to ensure that rules are loaded in the same order. Moreover, the current rule design
does not allow to distinguish them.

• Implement additional rules. Documentation on the Github page of the project has
been added in this direction.

• Run parts of the Obey model outside of the compiler plugin. For instance, there
is no need to trigger the compiler plugin with the obey-list command. Similarly,
rules that do not require semantic information could be run as standalone, using
the Scala.Meta parser.

• Add compatibility with other plugins. Some plugins add sources to compile using
dedicated procedures. For instance, the Play Framework translates web routes to
Java and compiles them using javac. As an outcome, stopping the compilation
procedure after the Obey phase does not prevent the compilation of those routes,
which returns an error since it is dependent of the output of the compilation of
the Scala source files. Even if the current Obey SBT plugin removes the .java files
from the sources when running commands such as obey-check, those do not include
the special Java files generated by Play. So far, we have not found a good way to
prevent it [24].

Moreover, a few enhancements could be done regarding token inference:

• Extract indentation from the original source file. So far, we assume an indentation
of two spaces.

• Preserve more comments: the way high-level comments are preserved could be ab-
stracted and generalized to inner nodes as well.

7.2 Codacy

Working with Codacy has been a great experience. However, rather than just returning
warnings, the style rules defined using the Obey model could propose changes. Those
changes could be shown to the user using token inference. A potential work that could
be done for the benefit of both Obey and Codacy would therefore be to propose a better
framework to show potential transformations to the user, leaving the choice to apply them
or not. Note that the persistence process could be automated as well, considering only
subparts of the modified tree.

21

8 Conclusion

In this report, we describe how we extended the definition of Obey by allowing to per-
sist changes brought to Abstract Syntax Tree while preserving the original layout. Our
experimentation has shown that Obey can scale on large code bases and preserve layout
and comments under transformation.
We also present the work done in collaboration with Codacy in order to have a use case
of Scala.Meta in the industry. The collaboration was successful, resulting in adoption of
Scala.Meta in Codacy’s core framework and enabling new functionality in Codacy’s code
review platform [25].

8.1 Acknowledgments

We would like to thank all the Codacy team for their precious time and collaboration.
This collaboration as well as the work done on Obey and Scala.Meta would also not have
been possible without the precious insights and the help of Eugene Burmako and Denys
Shabalin, who designed the core components of Scala.Meta.

22

References

[1] Phabricator: github.com/phacility/phabricator

[2] Crucible: atlassian.com/software/crucible/overview/code-quality-jira

[3] Various Continuous Integration platforms: travis-ci.org, shippable.com,
github.com/gitlabhq/gitlab-ci, github.com/jenkinsci

[4] Codacy home page: codacy.com

[5] Scala.Meta: scalameta.org

[6] Play Framework: playframework.com

[7] Lint, a C Program Checker , S.C. Johnson, 1978

[8] Linter: github.com/HairyFotr/linter

[9] Abide: github.com/scala/scala-abide

[10] Obey: Code Health for Scala.Meta, Adrien Ghosn and Eugene Burmako, 2015

[11] Traversal Query Language For Scala.Meta, Eric Beguet and Eugene Burmako, 2015

[12] SBT AutoPlugin: scala-sbt.org/0.13.5/api/index.html#sbt.AutoPlugin

[13] Akka: akka.io

[14] Scala-Refactoring, Mirko Stocker, 2010

[15] Scalariform: mdr.github.io/scalariform

[16] Token quasiquotes were originally defined in Martin Duhem Parsermacro project:
github.com/Duhemm/parsermacros

[17] Scala Language Specification, Martin Odersky, 2014

[18] Scala Style Guide: docs.scala-lang.org/style – scala-lang.org

[19] Scala Reflect Toolbox: scala-lang.org/api/2.11.0/scala-
compiler/index.html#scala.tools.reflect.ToolBox

[20] Spark: github.com/apache/spark

[21] TASTY : Serialized Typed Abstract Syntax Trees, see Martin Odersky presentation
at the San Francisco ScalaDays 2015: ”Scala – Where It Came From, Where It Is
Going”

[22] Scalaz: github.com/scalaz/scalaz

[23] Actor Migration Guide: docs.scala-lang.org/overviews/core/actors-migration-
guide.html

[24] See the question Stopping compilation after a compiler phase while using the Play
Framework on stackoverflow.com

[25] A quick look at Scalameta: blog.codacy.com/2015/06/04/a-quick-look-at-scalameta,
Johann Egger, 2015

23

https://github.com/phacility/phabricator
https://www.atlassian.com/software/crucible/overview/code-quality-jira
http://travis-ci.org/
http://shippable.com/
https://github.com/gitlabhq/gitlab-ci
https://github.com/jenkinsci
http://codacy.com/
http://www.scalameta.org
http://playframework.com/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.1841
https://github.com/HairyFotr/linter
https://github.com/scala/scala-abide
http://infoscience.epfl.ch/record/204804?ln=en
http://infoscience.epfl.ch/record/204789?ln=en
http://www.scala-sbt.org/0.13.5/api/index.html#sbt.AutoPlugin
http://akka.io/
http://scala-refactoring.org/documentation/
https://mdr.github.io/scalariform/
https://github.com/Duhemm/parsermacros
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://docs.scala-lang.org/style/
http://www.scala-lang.org/api/2.11.0/scala-compiler/index.html#scala.tools.reflect.ToolBox
http://www.scala-lang.org/api/2.11.0/scala-compiler/index.html#scala.tools.reflect.ToolBox
https://github.com/apache/spark
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
http://www.slideshare.net/Odersky/scala-days-san-francisco-45917092
https://github.com/scalaz/scalaz
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
https://stackoverflow.com/questions/30025596/stopping-compilation-after-a-compiler-plugin-using-play
https://stackoverflow.com/questions/30025596/stopping-compilation-after-a-compiler-plugin-using-play
http://blog.codacy.com/2015/06/04/a-quick-look-at-scalameta/

	Abstract
	Introduction
	Obey: A Linter Tool
	Origins And Motivation
	Design
	Interface
	Compiler Plugin
	SBT Plugin

	Implemented Rules
	Modifications Compared To The Previous Version

	Persisting AST Modifications
	General Approach
	Adding Layout Information In Converted Trees
	Inferring Tokens
	Preserving High-Level Comments
	Preserving Indentation

	Style Checking With Codacy
	Original Engine
	Proposed Approach
	User-Defined Rules
	Outcomes

	Experimentations With Obey
	Collecting Statistics
	Potential Use Case For Migration

	Future Work
	Obey
	Codacy

	Conclusion
	Acknowledgments

