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Abstract— This paper presents an overtaking decision al-
gorithm for networked intelligent vehicles. The algorithm is
based on a cooperative tracking and sensor fusion algorithm
that we previously developed. The ego vehicle is equipped
with lane keeping and lane changing capabilities, as well as
a forward-looking lidar sensor. The lidar data are fed to the
tracking module which detects other vehicles, such as the
vehicle that is to be overtaken (leading) and the oncoming
traffic. Based on the estimated distances to the leading and
the oncoming vehicles and their speeds, a risk is calculated
and a corresponding overtaking decision is made. We compare
the performance of the overtaking algorithm between the case
when the ego vehicle only relies on its lidar sensor, and the case
in which it fuses object estimates received from the leading car
which also has a forward-looking lidar. Systematic evaluations
are performed in Webots, a calibrated high-fidelity simulator.

I. INTRODUCTION

Overtaking other vehicles accounts among the leading
causes of motor vehicle accidents. They are known to have
a high risk for a fatal outcome. In 2013, there was a total
of 81000 accidents while overtaking in the USA [1]. These
accidents can be, among other reasons, due to a wrong driver’s
judgment or impaired visibility conditions.

It is well known that distances to remote objects and their
relative velocities can be estimated more accurately using
sensors than by bare eyes. Vehicles’ built-in intelligence can
therefore be a useful aid to human drivers in these situations.
However, there exist situations in which individual intelligent
vehicles cannot perform very well: no matter what sensor
technology is used, all sensors suffer from limited range, Field
Of View (FOV), or non line-of-sight conditions to some extent.
Hence, cooperation of vehicles by the means of exchanging
the sensing data or track estimates can be advantageous.

In this paper, we consider a sample scenario depicted
in Fig. 1. It introduces three types of cars: the ego (E),
the leading (L) and the oncoming (O) cars. The car E is
an intelligent vehicle which contains sensors enabling it to
perceive the environment and estimate its state. It processes
the information and, once it encounters a slower car ahead,
assesses the risk of overtaking and makes an overtaking
decision. The car L is any car that finds itself driving in front
of the car E, on the same lane at lower speed. It may be
equipped with sensors and may share its information with the
car E through communication. The car O is any car that drives
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Fig. 1. Example of an overtaking scenario.

on the passing lane of the car E, in the opposite direction.
It possesses no senors nor communication equipment, and it
represents a potential hindrance to the overtaking maneuver.

In this paper we present an algorithm which assesses the
overtaking risk and decides if the car E can overtake the car
L safely. The algorithm relies on information provided by
a tracking and fusion algorithm previously presented in [2].
The cars E and L run the tracking algorithm, each using a
forward-looking lidar sensor. The car E additionally fuses
the information received from the car L, if available. We
consider two cases: the case in which the car L cooperates
with the car E by communicating its information, and the
case in which it does not.

The rest of the paper is organized as follows: Sec. II
presents related work in the field. Sec. III summarizes the
cooperative tracking and fusion algorithm, whereas Sec. IV
presents the overtaking algorithm. Experimental evaluation is
provided in Sec. V, while Sec. VI concludes the paper.

II. RELATED WORK

Cooperative overtaking assistance systems are readily
studied in the literature. In [3] a system which predicts when
a potential lane-change is going to be performed by the driver
of the ego-vehicle, cooperatively exchanges information with
vehicles traveling in the opposite direction via the cellular
network, and provides the driver with an estimate of the
overtaking maneuver risk. It assumes that all oncoming
vehicles are cooperative. Another assistance system is based
on real-time video transmission [4]. This approach requires
a high communication bandwidth. A cooperative overtaking
assist system using an intelligent road surface is introduced
in [5]. It requires investments in the infrastructure.

In our approach overtaking assistance is based on the
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information obtained from on-board sensors, which is fed to
the target tracking algorithm. The cooperative fusion algo-
rithm is designed to minimize the communication bandwidth
requirements (instead of raw data, tracks are communicated).
One possible approach for multi-target tracking is a Probabil-
ity Hypothesis Density (PHD) filter, a generalization of the
single-target Bayes filter. Its two well known implementations
are based on a Gaussian Mixture (GM) model [6], and a
Sequential Monte Carlo (SMC) model [7]. Works on fusing
together the PHD intensities originating from different sources
exist: an approach for GM-PHD intensities is given in [8] and
for SMC-PHD intensities in [9]. Common for these works is
the assumption that there exist a unique FOV (area) that is
covered by all participating sensors simultaneously.

III. COOPERATIVE GAUSSIAN MIXTURE PHD FILTER

To perform cooperative tracking of multiple targets (i.e.,
cars) using laser sensors, we use the Cooperative Gaussian
Mixture PHD (C-GM-PHD) filter described in [2]. We
summarize here the algorithm for completeness.

A. Multiple target tracking using a lidar sensor

The tracking algorithm works in two phases. The first
phase pre-processes the laser point cloud with the aim to
detect objects that resemble cars. First, the clustering of the
point cloud is performed using the DBSCAN algorithm [10].
Then, lines and corners are fitted to clusters, and the one
with smaller RMS error is preserved for each cluster. Finally,
rectangles are fitted to lines and corners, and feature points
are extracted. The set of object measurements is generated,
where an object measurement is characterized using the center
and orientation of a fitted rectangle, z = [x, y, θ]>.

The second phase represents the tracking algorithm based
on the Gaussian Mixture Probability Hypothesis Density
(GM-PHD) filter [6]. We model a target state using a vector
x = [x, y, θ, v, ω]>, where x and y represent the center of the
tracked vehicle, θ its orientation, and v and ω its linear and
rotational speed. Targets’ state hypotheses are called intensity
and are modeled as a Gaussian Mixture. At time k − 1 the
intensity containing Jk−1 components with weights wk−1,
means mk−1 and covariances Pk−1, where the weight of a
Gaussian component represents the number of targets that
are represented using that component, has the form

Dk−1(x) =

Jk−1∑
i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1) (1)

The filter contains the predict and the update step, in
which we use an Unscented Kalman Filter to deal with
non-linearities. The motion model used in the predict step is
the constant turn-rate and constant velocity model. To obtain
the predicted intensity, the prior is multiplied by the proba-
bility of survival pS , which is a function of the hypothesis
state, and a birth intensity γk is added. It is given by
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The update step utilizes the set of measurements Zk and yields
a posterior intensity
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The parameters used in the update step are the clutter level
κk(z), the probability of detection pD,k(m

(i)
k|k−1) dependent

on the mean of the Gaussian component i (as a target can be
occluded or leave the sensor FOV), the observation model
Hk and the observation noise covariance Rk. The first sum in
(3) represents missed targets, and the second updated targets.

After the update step, the number of Gaussian components
increases quadratically. Therefore, all Gaussian components
with a very low weight are removed. Moreover, components
that are close to each other are merged together and approxi-
mated by a single component.

B. Cooperative fusion of PHD intensities

Vehicles located within the communication range of the
car E can share their PHD intensities, i.e., their estimates
about targets in their FOV (in this work, this is only the
car L). In the next paragraph, we explain how the car E
can fuse received PHD intensities with its own intensity,
hence increasing its FOV beyond the one of its sensors, and
decreasing uncertainty in the areas of overlapping FOVs.

Before fusion, we need to translate the received intensities
(states and covariances of the target hypothesis) to the
coordinate frame of the ego vehicle. This is done using
the Approximate Transformation method [11], which adds
uncertainties of frame poses to targets’ covariances. In order
to avoid data incest problem, we use a General Covariance
Intersection (GCI) algorithm, which offers a conservative way
of fusing two Gaussian mixtures [12]. It is shown in [8] that
GCI can be approximated to applying Covariance Intersection
(CI) pairwise to components from the two intensities. To
address the fact that the FOVs may not overlap entirely, we
apply CI intersection only to components whose Mahalanobis
distance from each other is less than TF . We take the Gaussian
components i and j from intensities D1 and D2 respectively;
the fused component would have the following mean m(12)

ij ,
covariance P (12)

ij and weight w(12)
ij :
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Fig. 2. A FSM defining the behavior of the ego car.
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and W is the fusion weight whose value we set to 0.5. We
keep track of components that have been fused, and we copy
the non-fused components to the result set (e.g., target that
are in the FOV of only one vehicle).

IV. OVERTAKING DECISION ALGORITHM

The behavior of the car E from Fig. 1 is defined by a Finite
State Machine (FSM) shown in Fig. 2. The car E drives freely
on the road at its target speed until the tracking module detects
a car driving on the same lane at a lower speed (leading car
L). The state of the car E is then changed to car following,
where the adaptive cruise controller is engaged. As described
in the remainder of this section, a risk for overtaking is
continuously computed as a function of the presence and
position of the car O, and the decision whether to start (or
eventually abort) the overtaking is based on a threshold.

A. State description

1) Free driving: the car E drives freely on the road at
target speed v0 while keeping centered in its lane.

2) Car following: The car E follows the car L (which is
driving on the same lane), maintaining a desired distance and
time headway.

3) Overtaking: the car E has determined that it is safe to
overtake the car L (the risk that there is an oncoming car O
on that lane is low enough). It changes lane and performs
overtaking at its desired speed v0.

4) Abort overtaking: the risk that the car O occupies the
overtaking lane has become significant, thus the car E aborts
the overtaking maneuver.

B. Decision algorithm (FSM state transitions)

The initial FSM state is free driving. Once the car L is
detected, the state is changed to car following.

In the car following state, the overtaking risk is constantly
computed. The risk is defined between 0 and 1, and it depends
on two factors: the probability that there is a car O on the

passing lane, and the comparison between the distance to
overtake and the distance traveled by the car O. The two
distances are estimated using the time to overtake and are
computed by taking into account the position and the velocity
of the ego, leading and oncoming vehicle. If the risk is
lower or equal to the defined threshold Tstart for at least five
consecutive simulation steps, the overtaking is initiated.

The risk is constantly computed in the overtaking state
as well. If the risk exceeds the Tabort thresholds for at least
two consecutive simulation steps, the state is changed to
abort overtaking. Otherwise, if the overtaking is successfully
finished (the car E gets ahead of the car L plus the safety
distance dsafe), the state is changed back to free driving.

In the abort overtaking state, the positions of cars E and L
are compared. If the car E is ahead of the car L, it accelerates
and changes lane back to its driving lane without taking into
consideration the safety distance. The state is then changed
back to free driving. Otherwise, it brakes and pulls behind the
car L, and the state is consequently changed to car following.

The subsections that follow provide details on how the
cars L and O are detected among all tracked vehicles and
how the overtaking risk is computed.

1) Detection of leading and oncoming vehicle: The track-
ing and fusion module (see Sec. III) feeds a list of tracked cars
to the controller. In order to detect in which lane the tracked
car is driving, a temporary coordinate system is placed at the
lane in which the car E is driving (see Fig. 3). The position
of the tracked car is expressed in that coordinate system, by
taking into account the lateral position of the car E in its
lane (cf. Sec. IV-C). Then, a number of samples are taken at
random from the normal distribution centered in the position
of the tracked car, with the covariance that is provided by the
tracker. This set of samples reflect the probability distribution
of the position of the tracked vehicle.

The number of samples falling on one lane over the total
number of samples defines the probability that the center of
the car is in that lane. However, when considering to overtake,
it is important to assess whether any part of the car is in the
lane. Thus, the probability P (i, l) of a tracked car i to be on
lane l is computed by taking into account all the particles
that fall in one lane extended by half of the vehicle width on
each of the sides. It is important to note that lane occupancy
probabilities defined in this way do not sum up to one (i.e.,
they do not represent a probability mass function).

Finally, in order to determine the direction of travel of the
tracked car, we use its velocity, as well as the car E velocity.

2) Overtaking risk computation: We define the risk to
overtake a vehicle given an oncoming vehicle i as a piecewise
function

ri =


0 if dexp,i − dover > dmargin

1− dexp,i−dover

dmargin
if dexp,i − dover > 0

1 otherwise
(13)

where dmargin is a margin distance, dexp,i is the expected
distance between the ego and the oncoming car i after
completed overtaking, and dover is the distance to be traveled
by the ego vehicle until the overtaking completion. The
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expected distance is easily computed from the tracked distance
to the oncoming vehicle di and its tracked velocity vO,i, as
well as the time that the car E needs to complete the overtake:

dexp,i = di − vO,i · tover (14)

The overtaking distance is computed as

dover =
1

2
aE · t2over + vE · tover (15)

The time to overtake tover can be computed from the quadratic
equation for the overtaking length L in the frame of the car L:

L =
1

2
aE · t2over + ∆v · tover (16)

where ∆v = vE− (vL +σvL) considers the standard deviation
of the leaders velocity, and L = d+ lL + dsafe is composed
of the distance between cars L and E, length of the car L, and
safety distance that is required between the car E and the L
before the car E can return back on its lane after overtaking.

Finally, the overtaking risk is defined considering all Ncars
cars detected by the tracker and probability of them occupying
the overtaking lane lE + 1

R = max
1≤i≤Ncars

(P (i, lE + 1) · ri) (17)

The overtaking decision is solely dependent on the risk. We
define a threshold Tstart to start overtaking if the risk is lower,
as well as Tabort to abort the overtaking if the risk is higher
than the threshold.

C. Lateral controller

To enable cars to drive on a particular lane (required in
FSM states free driving and car following), as well as perform
lane changes (states overtaking and abort overtaking), we use
pre-defined trajectories. Each lane is composed of waypoints,
and a vehicle implements a PI controller to compute the
steering angle based on the coordinates of itself and the next
waypoint. Changing lane is achieved by simply swapping the
used trajectory. While this approach is a simplification of a
potentially more realistic lane following and changing method,

it enables us to leverage a perfect positioning information
of the car in the lateral controller computations. The lateral
controller is the same for each state of the FSM.

D. Longitudinal controllers

Different FSM states use different controllers, as described
below.

In the free driving and overtaking states, the car E is
driven at maximum acceleration a until the desired speed v0
is reached, and with the constant speed afterwards.

In the abort overtaking state, we brake at half of the
maximum deceleration if the car E is positioned behind the
car L (overtaking is aborted and the car E pulls behind the car
L). Otherwise, the car E accelerates at maximum acceleration
and finishes the overtake ahead of the car L (though at high
risk).

The controller employed in the car following state is based
on the Adaptive Cruise Control (ACC) model. The ACC
provides an acceleration for a vehicle following another
vehicle in the lane, taking into account the desired velocity
and time gap. It was introduced by Kesting et al. in [13] and
it represents an improvement to the Intelligent Driver Model
(IDM) [14], which is known to brake too hard in some dense
traffic situations, for example due to lane changes of other
cars. The acceleration of the car given by the ACC model
aACC can be computed as

aACC =


aIDM if aIDM ≥ aCAH
(1− c)aIDM+

c[aCAH + b tanh(aIDM−aCAH
b

)] otherwise
(18)

where b and c are the deceleration and coolness parameters as
defined in Table I. aCAH is a Constant-Acceleration Heuristic
(CAH) which assumes that the velocity of the leading vehicle
will not abruptly change and is defined by

aCAH =


v2E ãL

v2L−2sãL
if vL(vE − vL) ≤ −2sãL

ãL − (vE−vL)2Θ(vE−vL)
2s

otherwise
(19)

where Θ is the Heaviside step function, s is the distance
to the car L, vE and vL the velocities of cars E and L (cf.
Fig. 1), aL the maximum acceleration of the car L, and
ãL = min(aL, aE) the effective maximum acceleration. The
IDM acceleration function is given by

aIDM = a

[
1−

(
vE
v0

)δ
−
(
s∗(vE,∆v)

s

)2
]

(20)

s∗ = s0 + vET +
vE∆v

2
√
ab

(21)

where the approaching rate is ∆v = vE−vL. Other parameters
and their respective values used for the E car are summarized
in Table I.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

A systematic experimental evaluation has been carried
out in Webots, a high-fidelity robotic simulator containing



TABLE I
CAR FOLLOWING MODEL PARAMETERS. FOR EXPLANATION AND

DISCUSSION REGARDING THE VALUES, SEE [13].

Parameter Value
Desired speed v0 90 km/h
Free acceleration exponent δ 100
Desired time gap T 0.1 s
Jam distance s0 5.0 m
Maximum acceleration a 2.7 m/s2

Desired deceleration b 6.0 m/s2

Coolness factor c 0.99

TABLE II
CHARACTERISTICS OF CAR SENSORS AND COMMUNICATION DEVICES.

Parameter Value
Lidar range 140 m
Lidar FOV 110 deg
GNSS noise σx, σy 0.1 m
GNSS noise σv 0.01 m/s
Compass noise (σθ, σω) (0.1 deg, 0.1 deg/s)
Communication radius 100 m
Communication delay 80 ms

automotive modules developed in our laboratory.1 Three
Citroën C-ZERO cars have been placed on an infinitely long,
straight road with four lanes. The car E is placed behind the
car L, both facing one direction, whereas the car O faces the
opposite direction and finds itself on the passing lane of the
car E. The longitudinal positions of the three cars are random
in each experimental run, but their configuration remains as
explained.2 Our algorithm could easily be adapted for curved
roads by computing the distance in the road (curvilinear)
coordinate system.

The cars E and L are traveling with target speeds v0
of 90 km/h and 50 km/h, respectively. They are equipped
with a forward facing Ibeo LUX lidar sensor, generic GNSS
and compass sensors achieving RTK performance, and a
communication transceiver. Communication is achieved by
simple messages implemented in the simulator environment
using constant delay and message loss. The characteristics
of integrated devices are listed in Table II. The car O travels
at target speed of 30 km/h and is not equipped neither with
sensing nor communication devices. Using higher traveling
speeds would require using sensors with larger range.

The vehicle model implemented in Webots uses the throttle,
brake, and steering angle as inputs. The input steering angle
(provided by the lateral controller) is transferred to the wheels
using a Webots built-in PID controller. We use the Citroën
C-ZERO engine model3 to map the required acceleration
(provided by the longitudinal controller) to the throttle input
of the Webots car library, and we assume a linear brake
response in the case of deceleration. The simulation step is
80 ms, equivalent to the sampling frequency of the lidar.

1For more details see http://disal.epfl.ch/RO2IVSim.
2A video showcasing different experiments can be viewed at

http://disal.epfl.ch/NetworkedIV
3Provided by PSA Groupe.

B. Tracking parameters

In the C-GM-PHD filter, we empirically determine the
sensor standard deviation to be σz = [σx, σy, σθ]

> =
[1 m, 1 m, 45 deg]> (this includes the point cloud
pre-processing noise). To make our filter conservative,
the ego state estimation noise needed for the Approximate
Transformation is intentionally not set exactly to the values
used in the simulator (cf. Table II). Instead, it equals to
[σx, σy, σθ, σv, σω]> = [1 m, 1 m, 0.5 deg, 1 m/s, 0.5 deg/s]>.
The clutter model is assumed to be Poisson with mean of
10 clutter measurements per sensor surveillance area. The
probability of detection and survival are respectively set to
0.98 and 0.99. The occlusion model, as well as the values
of other parameters intrinsic to the C-GM-PHD filter are the
same as in our previous work [2].

C. Experimental results

The experiments are conducted using six different pa-
rameter settings. While keeping the value of Tstart at some
small, positive value (we chose 0.01), we vary Tabort ∈
{0.2, 0.5, 0.8}. For each value of Tabort, we launch the
experiment with and without cooperative fusion. Without
fusion, the car E tracks targets using only its lidar, thus having
shorter range and more occluded FOV. For each of the six
settings we perform 500 simulation runs with different random
initial positions to obtain statistically significant results.

An overtaking attempt is defined as an event in which
the car E starts changing the lane. It can be finished by a
successful overtake, an abort or a crash.

Fig. 4a shows the duration of overtaking maneuver,
measured from the moment the first overtaking attempt is
made (excluding experiments that resulted in crashes). Long
durations represent overtaking maneuvers whose first attempts
have been aborted, as in these cases the car E had to wait
for the risk to diminish before starting and successfully
completing the second overtaking attempt. It can be seen that
the duration decreases with increased risk threshold Tabort.
This is due to overtakes that are less likely to be aborted,
for the price of accepting more risk. We can also see that
experiments which use fusion outperform the ones without
fusion algorithm: since, when using fusion, the car E suffers
less from occlusions and can see further away, it aborts the
overtaking attempt less frequently and therefore saves time.

The percentage of aborted overtakes is given in Table III.
Aborts are split in two categories, the ones in which the car E
brakes and pulls behind the car L, and the ones in which the
car E keeps accelerating and successfully finishes the risky
maneuver. There are significantly less aborts of the second
type in the case of fusion than in the case of no fusion. Their
number also decreases with the increasing Tabort, as the car E
allows for higher risk before aborting. Due to larger sensor
range in the fusion case, there are slightly more aborts of the
first type than in cases without fusion. These facts lead us
to the conclusion that cooperative fusion might contribute to
road safety, as it reduces the number of occasions in which
the overtaking car enters risky situations. Fig. 4b supports this
conclusion, by showing the actual risk at which the overtaking



(a)

(b)

Fig. 4. Boxplots showing for different values of Tabort (a) overtake duration
from the moment of the first overtaking attempt, (b) overtaking risk at abort
(note: the risk is always higher or equal than the abort threshold Tabort).
Each box aggregates 500 runs minus the number of crashes and represents
the upper and lower quartiles, the red line in the box marks the median, the
bars extend to the most extreme data points not considered outliers, and the
red crosses show outliers.

TABLE III
PERCENTAGE OF ABORTED AND CRASHED OVERTAKES.

Risk
0.2 0.5 0.8

No fuse Fuse No fuse Fuse No fuse Fuse
Abort

behind L
(%)

2.47 3.58 2.24 4.25 2.93 3.18

Abort in
front of L

(%)
16.29 0.42 9.39 0.21 7.53 0.21

Crash (%) 1.62 0.00 1.01 0.00 2.65 0.81

maneuver was aborted. It is always significantly lower in the
case of fusion, independent from the chosen value of Tabort.

Overtakes resulting in a crash between the car E and
the car O are listed in Table III as well. Data show that
cooperative fusion successfully reduces the number of crashes
with the oncoming car, which is indeed its intended purpose.
As expected, the highest number of crashes are recorded for
Tabort = 0.8.

VI. CONCLUSION

We presented a novel overtaking decision algorithm for
intelligent vehicles which relies on the C-GM-PHD filter.
By using information provided by the filter, the algorithm
assesses the risk of overtaking (i.e., the risk of an oncoming
car being on the passing lane within the collision distance

from the ego car). We compared the cases in which the
leading car cooperates with the ego car by sharing its track
estimates, and in which it does not. The overtaking algorithm
showed good performance and the added value of cooperative
fusion was evident from the experimental data. The number
of risky maneuvers was significantly reduced when the ego
car benefited from the higher sensor range, less occlusions
and higher tracking confidence. Due to lower risk, the number
of crashes between the ego and the oncoming car was also
lower. When the cooperative fusion algorithm was used, a
smoother and safer vehicle operation was noticeable.

As future work, one could consider more complex eval-
uation scenarios, such as those characterized by additional
traffic traveling on multiple lanes in different directions, or
having different traffic participants in addition to cars (e.g.,
trucks, bikes). Moreover, the tracking algorithm would need
to be extended to address the object detection problem in
more complex scenarios.
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