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Abstract

Modulation instability as the main limit to the sensing distance of distributed fiber sensors

is throughly investigated in this thesis in order to obtain a model for predicting its charac-

teristics and alleviating its effects. Starting from Maxwell’s equations in optical fibers, the

nonlinear Schrödinger equation describing the propagation of wave envelope in nonlinear

dispersive media is derived. As the main tool for analyzing modulation instability, the non-

linear Schrödinger equation is numerically evaluated using the split-step Fourier method

and its analytical closed-form solutions such as solitons are utilized to validate the numerical

algorithms. As the direct consequence of the nonlinear Schrödinger equation, self-phase

modulation is utilized to measure the nonlinear coefficient of optical fibers via a self-aligned

interferometer.

The modulation instability gain is obtained by applying a linear stability analysis to the

nonlinear Schrödinger equation assuming a white background noise as the seeding for the

nonlinear interaction. The gain spectrum of modulation instability is expressed by hyperbolic

functions for lossless fibers and by Bessel functions with complex orders for fibers with

attenuation. An approximate gain spectrum is presented for lossy fibers based on the gain

in lossless optical fibers. The accuracy of the analytical results and approximate formulas is

evaluated by performing Monte Carlo simulations on the nonlinear Schrödinger equation.

Moreover, the gain spectrum of modulation instability in several optical fibers of different types

and lengths are experimentally observed to demonstrate its expected characteristics such as

symmetric spectral sidebands, higher-order modulation instability, and power-dependence

bandwidth.

The impact of background noise on the onset and evolution of modulation instability

is analytically investigated and experimentally demonstrated. Power depletion due to the

nonlinear process of modulation instability is modeled by integrating its gain spectrum using

Laplace’s method. Based on the depletion power, a critical power for modulation instability

is proposed by introducing the notion of depletion ratio. The model is verified by numerical

simulation and experimental measurement. An optimal input power for the distributed

fiber sensors is proposed to maximize the output optical power and thus, the far end signal-

to-noise ratio. The corresponding depleted power and maximal output power are derived

analytically using optimization. Furthermore, the recurrence phenomenon of Fermi-Pasta-
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Abstract

Ulam is experimentally observed and numerically simulated, proving the accuracy of the

numerical techniques employed in this dissertation.

A standard Brillouin optical time-domain analyser serves as the experimental test bench

for the proposed model. As the physical phenomenon behind the experiment, stimulated

Brillouin scattering is described based on a pump-probe interaction mechanism through

an acoustic wave. A 25 km standard single-mode fiber is employed as a nonlinear medium

with anomalous dispersion at the pump wavelength 1550 nm. The evolution of pump power

propagating along the fiber is mapped using the Brillouin interaction with the probe lightwave.

The measured longitudinal power traces are processed to extract the impact of modulation

instability on the pump power.

It is experimentally demonstrated that distributed fiber sensors with orthogonally-polarized

pumps at different wavelengths suffer less from modulation instability. As the scalar mod-

ulation instability of each pump reduces, vector modulation instability occurs because of

interaction between the pumps; however, the overall performance improves. A version of the

coupled nonlinear Schrödinger equations known as the Manakov system is shown to describe

the behavior of two-pump distributed fiber sensors employing standard optical fibers with

random birefringence. The excellent agreement between the experimental measurement

and numerical simulation indicates that the performance limit of two-pump distributed fiber

sensors with orthogonal polarizations is determined by polarization modulation instability.

Keywords: nonlinear fiber optics, nonlinear Schrödinger equation, distributed fiber sensors,

Kerr effect, modulation instability, stimulated Brillouin scattering, vector modulation instability,

Manakov system, dispersion, polarization, parametric process, split-step Fourier method, gain

spectrum, white noise.
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Résumé

L’instabilité de modulation, en tant que limite majeure à la portée des capteurs répartis à

fibre optique, est traitée de façon approfondie dans cette thèse, dans le but d’obtenir un

modèle prédisant ses caractéristiques et permettant d’en minimiser les effets. En partant

des équations de Maxwell adaptées au cas de la fibre optique, l’équation de Schrödinger non

linéaire en est déduite, qui décrit la propagation de l’enveloppe des ondes dans les milieux non

linéaires dispersifs. Elle est résolue de manière numérique en utilisant la méthode de Fourier

à pas fractionnaires (« split-step »), qui tient le rôle de principal outil d’analyse de l’instabilité

de modulation. Les solutions analytiques de l’équation de Schrödinger non linéaire, telles que

les solitons, sont utilisées pour valider les algorithmes numériques. Puis, l’auto-modulation

de phase, conséquence naturelle de cette équation, est exploitée par l’intermédiaire d’un

interféromètre auto-aligné, afin de mesurer le coefficient non linéaire des fibres optiques

utilisées.

Le gain de l’instabilité de modulation est obtenu en effectuant une analyse de stabilité

linéaire de l’équation de Schrödinger non linéaire, un bruit de fond blanc étant considéré

comme initiateur de l’interaction non linéaire. Pour des fibres sans pertes, le spectre de gain

de l’instabilité de modulation s’exprime à l’aide de fonctions hyperboliques, tandis que pour

les fibres avec atténuation, il sera représenté par des fonctions de Bessel d’ordre complexe.

Un spectre de gain approximatif est déduit pour des fibres avec atténuation, basé sur la

solution obtenue dans des fibres optiques supposées sans perte. La précision des résultats

analytiques et des expressions approximées est évaluée à l’aide de simulations de type Monte

Carlo sur l’équation de Schrödinger non linéaire. De plus, les spectres de gain de l’instabilité de

modulation ont pu être mesurés expérimentalement sur plusieurs types de fibres optiques de

longueurs différentes, afin de mettre en évidence les caractéristiques prédites, telles que des

bandes latérales spectralement symétriques, de l’instabilité de modulation d’ordre supérieur

et une dépendance de la bande passante envers la puissance optique.

L’impact du bruit de fond sur la naissance et l’évolution de l’instabilité de modulation est

analytiquement étudié et démontré expérimentalement. L’amenuisement de la puissance

optique, comme conséquence du processus non linéaire d’instabilité de modulation, est

modélisé en évaluant l’intégrale du spectre de gain par le biais de la méthode de Laplace. En

se basant sur cette érosion de l’intensité de l’onde, une puissance critique pour l’instabilité
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Résumé

de modulation est proposée, en introduisant la notion de taux d’érosion. Ce modèle est

validé par simulation numérique, ainsi que par des mesures expérimentales. Une puissance

d’entrée optimale pour les capteurs à fibre optique répartis est proposée, afin de maximiser la

puissance optique en sortie et, par conséquent, le rapport signal-sur-bruit en sortie de fibre.

La puissance perdue par transfert spectral et la puissance maximale de sortie sont dérivées de

façon analytique par optimisation. Par ailleurs, le phénomène de récurrence de Fermi-Pasta-

Ulam est observé expérimentalement et simulé numériquement, ce qui fournit une preuve de

l’exactitude des techniques numériques employées dans ce travail de thèse.

Un capteur réparti, basé sur la diffusion Brillouin et sur un schéma standard de temps

de vol d’une impulsion, sert de banc d’essai expérimental pour le modèle proposé. En tant

que phénomène physique à la base de l’expérience, la diffusion Brillouin stimulée est décrite

comme un mécanisme d’interaction entre une pompe et une sonde par l’intermédiaire d’une

onde acoustique. Une fibre unimodale standard, d’une longueur de 25 km, est utilisée comme

milieu non linéaire et possède une dispersion anormale à la longueur d’onde de la pompe,

soit 1550 nm. Une représentation de l’évolution de la puissance de pompe lors de sa propaga-

tion le long de la fibre est obtenue grâce à l’interaction Brillouin avec le signal continu de la

sonde. Les graphes de la puissance en fonction de la distance sont analysés pour en extraire

l’impact de l’instabilité de modulation sur la puissance de la pompe.

Au vu des expériences, il a pu être prouvé que les capteurs répartis sont plus robustes face

à l’instabilité de modulation, si on utilise deux pompes à des longueurs d’onde distinctes

et polarisées orthogonalement. L’instabilité de modulation scalaire de chaque pompe di-

minue, tandis qu’apparaît l’instabilité de modulation vectorielle due à l’interaction croisée

entre les deux signaux de pompes. Une version des équations de Schrödinger non linéaires

couplées, aussi connue sous la dénomination de système de Manakov, est utilisée pour dé-

crire le comportement des capteurs à fibre répartis, à deux pompes et utilisant des fibres

optiques standard avec une faible biréfringence aléatoire. L’excellent accord entre mesures

et simulations numériques indique que la limite de performance, pour des capteurs répartis

à deux pompes polarisées orthogonalement, est majoritairement dictée par l’instabilité de

modulation vectorielle.

Mots-clés : optique non linéaire, équation de Schrödinger non linéaire, capteurs à fibre

optique répartis, effet Kerr, instabilité de modulation, diffusion Brillouin stimulée, instabilité de

modulation vectorielle, système de Manakov, dispersion, polarisation, processus paramétrique,

méthode de Fourier à pas fractionnaires, spectre de gain, bruit blanc.
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Introduction

Distributed Fiber Sensors
Facilities and structures such as buildings, bridges, dams, pipelines, etc. are continuously

subject to stresses, strains and temperature variations that produce flaws. Tiny cracks that

may appear due to heavy loads or temperature differences, over times will lead to failure.

Manual checks are time-consuming and can cover only the easy-to-see parts of structures

while most of damages start from inside and grow invisibly. Since the standard optical fibers

used in telecom are sensitive to environmental factors like strain and temperature, structural

health monitoring (SHM) can take the advantage of existing optical communication networks

to establish a distributed sensing system for inspecting the health conditions of structures [1].

Changes in environment induce tiny alteration in optical fiber characteristics resulting in

the scattering of light propagating in the fiber. Three optical scattering phenomena most often

used in optical fiber sensors are Rayleigh, Raman and Brillouin scattering. Rayleigh scattering

causes light to scatter elastically in all directions due to the sub-wavelength variations of

refractive index [2]. Raman scattering is an inelastic process in which light is scattered by

thermally activated molecular vibrations [3]. Brillouin scattering is due to the interaction

between light waves and thermal sound waves causing a frequency shift in light [4]. Based

on each scattering process, several implementations for distributed fiber sensors have been

proposed among which, Raman-based distributed temperature sensing (DTS) [5], Brillouin

optical time-domain analysis (BOTDA) [6], and Rayleigh-based phase-sensitive optical time-

domain reflectometry (φOTDR) [7] are most utilized depending upon applications.

The huge amount of research having been carried out in the past three decades has focused

on two main paths: increasing the sensing distance and enhancing the spatial resolution.

In order to achieve further distance, it is required to launch high power lightwave into the

sensing fiber to compensate the fiber loss for obtaining a sufficient signal-to-noise ratio (SNR)

at the most remote sensing point. However, increasing optical power gives rise to undesired

nonlinear phenomena resulting in measurement distortion. The main source of distortion

in distributed fiber sensors is the depletion of optical power [8] due to the nonlinear effects

such as modulation instability (MI) [9] and stimulated Raman scattering (SRS) [10]. The

exciting power of modulation instability has been shown experimentally to be less than that of

stimulated Raman scattering [10]. Modulation instability also induces a visibility reduction in
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φOTDR, leading to loss of sensitivity at certain sensing positions [11]. Furthermore, in Brillouin

optical time-domain reflectometry (BOTDR), MI contaminates the detected signal imposing

an upward offset in the measured Brillouin frequency shift (BFS) that biases the extracted

temperature or strain along the fiber [12]. Therefore, it can be stated with all confidence that

modulation instability has the most detrimental impact on the performance of distributed

fiber sensors. Hence, this work is meant to cope with modulation instability in optical fibers.

Modulation Instability
Observation of nonlinear phenomena in optical fibers is conveniently possible thanks to

the high energy confinement, long-range guidance and low attenuation of optical fibers [3].

Among these nonlinear effects, modulation instability fundamentally covers a broad range of

applications, from producing soliton pulses [13] to supercontinuum generation [14], while

imposing a limitation on other applications such as coherent transmission systems [15] and

coherent detection processes [16], because it alters the spectrum of lightwave dramatically.

Modulation instability is the break-up of an intense optical wave traveling in a nonlinear

dispersive waveguide to a train of soliton-like pulses originating from residual minute modu-

lations caused by intensity fluctuations [17]. MI in optical fibers has been treated theoretically

by Hasegawa and Brinkman [18] and was experimentally observed for the first time in 1985 by

Tai, Hasegawa, and Tomita using a mode-locked pulse laser [19]. Later in 1989, modulation

instability of a continuous-wave (CW) laser was observed by Itoh, Davis, and Sudo [20]. In the

frequency domain, MI generates two symmetric spectral sidebands around the laser central

wavelength, resulting in a power exchange between the central frequency and the spectral

components of the sidelobes as light propagates along the fiber [19].

Because of the cross-phase modulation (XPM) between two wavelengths [21, 22] or two

polarization modes in high-birefringence (Hi-Bi) fibers [23, 24], modulation instability can

occur in optical fibers having normal dispersion. Nonetheless, it is widely accepted that for

a monochromatic light, no MI occurs in normal dispersion [3]. On the contrary, anomalous

dispersion along with self-phase modulation (SPM) causes instability for optical waves in

a relatively broad spectral band around the light central wavelength [19]. Hence, standard

optical fibers having anomalous dispersion in the telecommunication window at 1550 nm

are subject to modulation instability and thus, the performance of a broad range of fiber-

optic systems, such as optical communication systems, optical signal processing methods, or

distributed fiber sensors can be degraded by the distortion induced by modulation instability.

Although non-zero dispersion shifted fibers (DSF) with normal dispersion can be used to

avoid modulation instability, most of existing fiber networks utilize standard single-mode

fibers (SMF) and replacing them by DSFs requires a huge investment. It must be also noted

that using DSFs can enhance other nonlinear phenomena such as four-wave mixing (FWM),

because of lower dispersion favoring phase matching when compared to standard SMFs [3].

Therefore, modulation instability is unavoidable in most of the existing fiber-optics systems

and thus, it must be dealt with properly from both experimental and analytical perspectives.

MI can be theoretically approached either by analysing a FWM framework [25] or by solv-

ing the nonlinear Schrödinger equation (NLSE) [26], which are essentially equivalent. The

2
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Akhmediev breather formalism provides exact analytical solutions for the NLSE, describing

the temporal evolution of optical pulses propagating in a dispersive Kerr medium [27, 28]. This

formalism addresses the issues of pump depletion [29] and recurrence phenomenon [30] and

can be effectively used to explain solitons and rogue waves in fiber optics [30, 31]. However, the

analytical solution does not include the attenuation and another approach to the NLSE must

be taken for dissipative systems. The method of linear stability analysis is the tool that can

be efficiently utilized to analyze the nonlinear Schrödinger equation [18]. In this technique,

a small perturbation modulates the stationary solution of the NLSE, and its evolution along

the fiber is determined by linearizing the nonlinear equation [3, 32]. This resulted close-form

solution also includes the effect of fiber attenuation. Such a solution of the NLSE is especially

appropriate for conditions in which there are no multiple optical tones interacting coherently

together [33], as it is the case of having only noise-seeded modulation instability; hence the

linear stability analysis of the NLSE is considered as the approach to MI in this work, because

distributed fiber sensors mainly use single-wavelength optical pulses.

There have been few attempts to obtain a critical power for modulation instability, limited

to special conditions such as specific pulse shapes [34, 35] or noise characteristics [10]. An

analytical formula is given in [36] for the critical length corresponding to the distance at which

pump depletion is maximal. The result has been improved using the Akhmediev breather

formalism in [28]. However, their analysis is focused on the interaction between coherent

tones and not on the noise covering the whole MI spectrum. Therefore, a more general analysis

of the critical power for modulation instability is needed.

Thesis Objective
The aim of this dissertation is to investigate the behavior of modulation instability in fiber-

optic systems theoretically and experimentally in a way that its effect on the evolution of

optical power propagating in the medium can be modeled and predicted accurately. In such

a model, depletion of power as the most effective consequence of modulation instability in

distributed fiber sensors must be taken into account. Moreover, since the model is used for

long distance optical fiber systems, attenuation cannot be ignored and so the model must

deal with the fiber attenuation properly.

It must be noted that by modulation instability in distributed fiber sensors, we mean a

parametric amplification starting from the background noise propagating with the optical

wave. Therefore, considering all the noise spectral components interacting with the lightwave

is indispensable in order to have an accurate estimation of power exchange in noise-seeded

modulation instability. Additionally, the model must take an appropriate approach to the

randomness inherent in the background noise.

Based on the proposed model, explicit and easy-to-use mathematical expressions are

expected to be provided for characterizing the system performance. The proposed analytical

formulas must also be able to provide insight for designing optical fiber systems to prevent

the consequences of modulation instability. The model should also propose techniques for

mitigating modulation instability in the existing fiber-optic systems which is another goal for

this thesis.
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Outline of the Dissertation
The present work is organised as follows:

Chapter 1 provides some preliminary background needed for understanding electromag-

netic wave propagation in a medium. A particular attention is given to optical fibers as a

cylindrical waveguide and their optical properties. The propagation features of the fundamen-

tal mode in optical fibers is investigated regarding the use of SMFs in this work. A glance is also

cast at the nonlinear phenomena in optical fibers in general and the Kerr effect in particular.

Chapter 2 is devoted to the nonlinear Schrödinger equation as the fundamental tool for

modeling the wave propagation in a nonlinear dispersive medium. Starting from Maxwell’s

equations in an optical fiber, we derive the NLSE describing the evolution of wave envelope

experiencing dispersion and intensity-dependent refractive index. The split-step Fourier

method is studied and used to solve the the nonlinear Schrödinger equation numerically.

Moreover, analytical solutions of the NLSE, e.g. solitons are employed to validate the numerical

algorithm. A self-aligned interferometer based on the phenomenon of self-phase modulation

is utilized to measure the nonlinear coefficients of several optical fibers of different types.

Chapter 3 investigates the gain spectrum of the nonlinear phenomena originating from

the Kerr effect. Applying a linear stability analysis to the nonlinear Schrödinger equation

with proper initial phase conditions and noise characteristics leads to the gain formula for

different scenarios such as modulation instability, optical parametric amplification (OPA); to

do so, the spectral samples of white noise are proved to be uncorrelated in Appendix A. The

MI gain spectrum for lossy and lossless optical fibers is analytically derived and numerically

verified using the Monte Carlo simulation. Finally, modulation instability gain spectrum is

experimentally observed in different kinds of optical fibers to verify its characteristics expected

from theory.

Chapter 4 presents the main results of this work. First, the longitudinal evolution of optical

power traveling in optical fibers is analyzed and then, the impact of background noise level

on the power evolution is investigated. The depleted power due to modulation instability

is calculated analytically using Laplace’s method of integration described in Appendix B. A

model is proposed for the critical power of modulation instability based on the notion of

depletion ratio corresponding to the power transferred from the pump to the MI spectral

bands. An optimal input power for an optical fiber sensor is proposed in order to maximize

the output pump power and thus, to achieve the maximum SNR at the far end of the sensing

fiber. A BOTDA experimental test bench is employed to verify the theoretical results. For

understanding the working principles of the experiment, a thorough analysis of stimulated

Brillouin scattering (SBS) is provided.

Chapter 5 deals with the impact of vector modulation instability in a recently proposed

BOTDA scheme employing two optical pumps with orthogonal polarizations at different

wavelengths. A theoretical model for analyzing this scheme is presented based on a version

of the coupled nonlinear Schrödinger equations referred to as the Manakov system which is

extensively used for optical fibers with randomly varying birefringence. The model is verified

by the experimental results obtained from a BOTDA with two orthogonally-polarized pumps.

The last chapter is devoted to the conclusions.
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1 Preliminaries

Nonlinear fiber optics can be seen as perturbations in the well-ordered world of linear fiber

optics. Therefore, understanding nonlinear effects in optical fiber systems needs basic knowl-

edge of ordinary fiber optics and thus electromagnetism. In this chapter, several aspects

of general electromagnetic optics, indispensable for the rest of this dissertation, are briefly

discussed. For further details on each subject, appropriate references are cited throughout the

text.

1.1 Maxwell’s Equations
Classical electrodynamics was established by the Scottish mathematical physicist James Clerk

Maxwell (1831–1879) in the second half of the nineteenth century, first by publishing the

seminal article “A Dynamical Theory of the Electromagnetic Field” in 1865 [37] and then by

writing a two-volume book named “A Treatise on Electricity and Magnetism” in 1873 [38].

Electromagnetic fields are represented through the Lorentz force law explaining the force F

[N] experienced by an electric charge q [C] moving with velocity v [ m
s ] as follows [39]:

F = qE+qv×B, (1.1)

where × denotes the vector cross product and E [ V
m ] and B [ Wb

m2 ] are the electric and magnetic

fields, respectively. In order to take field-matter interactions into account it is necessary to

introduce two auxiliary vector fields D [ C
m2 ] and H [ A

m ] associated to the electric and magnetic

fields, respectively via the following relations [39]:

D = ε0E+P, (1.2a)

H =µ−1
0 B−M, (1.2b)

where P and M are the polarization and magnetization fields. The vector fields P and M

indicate the response of matter to the applied electromagnetic fields and thus depend on the

material and are given via the constitutive relations P = P(E,B) and M = M(E,B). The vacuum

permittivity in Eq. (1.2a) is given by ε0 = 8.8542×10−12 F
m and the vacuum permeability in

Eq. (1.2b) is expressed by µ0 = 4π×10−7 H
m . It should be noted that in vacuum there is no

polarization or magnetization; so the corresponding constitutive relations are D = ε0E and

5
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B =µ0H. The general form of Maxwell’s equations governing the four electromagnetic vector

fields E, D, H and B independent from matter are given by the following dynamical partial

differential equations [39]:

∇×E =−∂t B, (1.3a)

∇×H = J+∂t D, (1.3b)

∇·D = ρ, (1.3c)

∇·B = 0, (1.3d)

where ∂t = ∂
∂t denotes the time derivative. ∇× and ∇· are the curl and divergence operators,

respectively. The source of electromagnetic fields is electric charges expressed by the scalar

field of electric charge density ρ [ C
m3 ] and the vector field of electric current density J = ρv [ A

m2 ].

The principle of electric charge conservation dictates a continuity equation on the electric

charge and current densities as follows:

∇· J+∂tρ = 0. (1.4)

Each of Maxwell’s equations is a mathematical expression for a physical law in electromag-

netism. Eq. (1.3a) explains Faraday’s law of induction; while Eq. (1.3b) is Ampère’s circuital

law with Maxwell’s extension. Eqs. (1.3c) and (1.3d) are Gauss’s laws in electricity and mag-

netism, respectively. Besides establishing a mathematical framework for different physical

laws, Maxwell contributed fundamentally in electromagnetism by adding the so-called dis-

placement current ∂t D to Ampère’s law in Eq. (1.3b). This term makes Maxwell’s equations

compatible with the principle of charge conservation given in Eq. (1.4). It can be simply seen

that the continuity equation is the direct result of Eqs. (1.3b) and (1.3c). For every vector fields

A the vector identity ∇· (∇×A) = 0 always holds; so taking the divergence of Eq. (1.3b) and

using Eq. (1.3c) result in

∇· (∇×H) =∇· J+∇· (∂t D) =∇· J+∂t (∇·D)

=∇· J+∂tρ = 0, (1.5)

which is exactly the continuity equation given in Eq. (1.4). Having modified Ampère’s law by

adding the displacement current, Maxwell predicted the existence of electromagnetic waves

traveling at the speed of light. Nevertheless, electromagnetic waves were experimentally

demonstrated by the German physicist Heinrich Hertz (1857–1894) in 1887, a few years after

Maxwell’s death [40].

1.1.1 Poynting’s Theorem

The principle of energy conservation in electromagnetism is mathematically stated by Poynt-

ing’s theorem due to the English physicist John Henry Poynting (1852–1914). The starting

point for deriving the theorem is the vector identity ∇· (A×B) = B · (∇×A)−A · (∇×B) valid

for every vector fields A and B. Applying this vector identity to the so-called Poynting vector

6



1.1. Maxwell’s Equations

S = E×H and using Eqs. (1.3a) and (1.3b) lead to

∇·S =∇· (E×H) = H · (∇×E)−E · (∇×H) = H · (−∂t B)−E · (J+∂t D)

=−(H ·∂t B+E ·∂t D+E · J). (1.6)

So the differential form of Poynting’s theorem is expressed by

∇·S+H ·∂t B+E ·∂t D+E · J = 0. (1.7)

To obtain the integral form of the theorem, Eq. (1.7) is integrated over a finite volume V

surrounded in a closed surface ∂V . Thus,∫
V
∇·Sdv +

∫
V

H ·∂t Bdv +
∫

V
E ·∂t Ddv +

∫
V

E · Jdv = 0. (1.8)

The divergence theorem associates the volume integral to its corresponding surface integral

as follows:∫
V
∇·Sdv =

∮
∂V

S ·da. (1.9)

Substituting Eq. (1.9) in Eq. (1.8) results in the integral form of Poynting’s theorem as follows:

−
∮
∂V

S ·da =
∫

V
H ·∂t Bdv +

∫
V

E ·∂t Ddv +
∫

V
E · Jdv . (1.10)

The Poynting vector has the unit of W
m2 and so its magnitude represents the intensity of

electromagnetic fields. The left-hand side of Eq. (1.10) explains the incident power entering

the surface, while the right-hand terms show the power saved in magnetic and electric fields

and also dissipated in the volume, respectively [39].

1.1.2 Boundary Conditions

Maxwell’s equations in their differential forms cannot be applied to the interface of two

different media due to the discontinuity of electromagnetic fields at the boundary. Applying

the integral form of Maxwell’s equations to the boundary of medium 1 and medium 2 provides

a set of boundary conditions explaining the behaviour of electromagnetic fields at the interface

of the media. Suppose that n12 is a unit vector directing from medium 1 to medium 2; four

boundary conditions corresponding to four Maxwell’s equations are given below

n12 × (E2 −E1) = 0, (1.11a)

n12 × (H2 −H1) = Js , (1.11b)

n12 · (D2 −D1) = ρs , (1.11c)

n12 · (B2 −B1) = 0, (1.11d)

where ρs [ C
m2 ] is the surface charge density and Js [ A

m ] is the surface current density. Eq. (1.11a)

guarantees the continuity of the tangential component of E and Eq. (1.11d) implies that the

7
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normal component of B is continuous across the interface. Based on Eq. (1.11b) the tangential

component of H is continuous across the surface if no surface current exists. Moreover, If

there is no surface charge on the interface, according to Eq. (1.11c) the normal component of

D is continuous.

1.1.3 Electromagnetic Potentials

The wave nature of electromagnetic fields can be described by attributing two potential

functions, i.e. an electric scalar potential and a magnetic vector potential to the fields. These

potentials satisfy the wave equation regardless of the charge and current densities. Since every

vector field A satisfies the identity ∇ · (∇×A) = 0 and from Eq. (1.3d) we have ∇ ·B = 0, the

magnetic field can be expressed by B =∇×A where A [ Wb
m ] is called magnetic vector potential.

Substituting the potential representation of magnetic field in Faraday’s law of induction given

by Eq. (1.3a) results in

∇× (E+∂t A) = 0. (1.12)

On the other hand, for any scalar field φ the vector identity ∇× (−∇φ) = 0 holds, where

∇φ denotes the gradient of the scalar field φ. Comparing this identity with Eq. (1.12) leads

to the expression E+ ∂t A = −∇φ, where φ [V] is called electric scalar potential. This way,

electromagnetic fields can be expressed in terms of the potential functions as follows:

E =−∇φ−∂t A, (1.13a)

B =∇×A. (1.13b)

Therefore, instead of calculating electromagnetic fields directly it is possible to calculate the

scalar and vector potentials first and then by use of Eqs. (1.13a) and (1.13b) the fields can

be obtained. As an example consider the free space where D = ε0E and B = µ0H. Maxwell’s

equations are simplified to:

∇×E =−∂t B, (1.14a)

∇×B =µ0J+ε0µ0∂t E, (1.14b)

∇·E = ρ

ε0
, (1.14c)

∇·B = 0. (1.14d)

Substituting Eqs. (1.14) in Eqs. (1.13) results in the following coupled equations governing the

scalar and vector potentials.

∇2A− 1

c2 ∂
2
t A−∇(∇·A+ 1

c2 ∂tφ) =−µ0J, (1.15a)

∇2φ+∂t (∇·A) =− ρ

ε0
, (1.15b)
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1.2. Constitutive Relations

where the constant c = 1p
ε0µ0

is the speed of light in vacuum which is 299792458 m
s and is often

approximated by c ≈ 3×108 m
s . The Laplacian ∇2 is defined as ∇·∇φ for the scalar potential

and as ∇(∇ ·A)−∇× (∇×A) for the vector potential. Since the divergence of the magnetic

potential is arbitrary and it does not affect the fields we can set it so that Eqs. (1.15) become

uncoupled. Such a condition given below is called the Lorenz gauge [39].

∇·A =− 1

c2 ∂tφ (1.16)

Applying the Lorenz gauge to Eqs. (1.15) we obtain the following set of uncoupled inhomoge-

neous wave equations for the scalar and vector potentials:

∇2A− 1

c2 ∂
2
t A =−µ0J, (1.17a)

∇2φ− 1

c2 ∂
2
tφ=− ρ

ε0
. (1.17b)

As it is clear from Eqs. (1.17), electric and magnetic potentials have a wave nature propagating

with the speed of light and are generated by charge and current densities, respectively.

1.2 Constitutive Relations

The response of matter to the electromagnetic fields is determined by the constitutive relations

expressing the polarization P and magnetization M of the material in the presence of the

electromagnetic fields E and B. Most of materials used in optical devices such as silica have

so little magnetic properties that their magnetization can be safely neglected [41]; therefore,

M = 0 and thus B =µ0H. However, the situation for the polarization density is totally different.

In its general form the constitutive relation P = P(E) is extremely complicated and beyond our

need, so we apply several assumptions on the nature of the material to simplify the expressions.

Locality, causality and time invariance of the response are widely accepted throughout the

classical treatment of field matter interactions. With these assumptions the polarization

density is given by

P(r, t ) = ε0

∫ t

−∞
χ(r, t − t ′;E)E(r, t ′)dt ′, (1.18)

where the electric susceptibility χ(r, t ;E) is the impulse response of the material to the electric

field. The position vector r in the argument of χ shows the inhomogeneity of the medium

which is responsible for the spatial nonconformity of the material and the time parameter

t represents the dynamics of the material response which shows the dispersion effect. The

upper limit of the integral is set to the observation time t to guarantee the causality principle;

while by assuming χ(r, t ;E) = 0 for t < 0, it can be extended to +∞ which is assumed hereafter.

In its general form χ is a function of E indicating the nonlinearity of the response; however,

this nonlinearity emerges when high-intensity fields are applied to the medium, so the electric

9
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susceptibility can be expanded using the Taylor series as follows:

χ(E) =
∞∑

n=1
χ(n)En−1 =χ(1) +χ(2)E+χ(3)E2 + . . . , (1.19)

where χ(n) is an n+1 order tensor. Substituting Eq. (1.19) into Eq. (1.18) results in the following

constitutive relation:

P(r, t ) = ε0

∞∑
n=1

∫ +∞

−∞
χ(n)(r, t − t ′)En(r, t ′)dt ′

= ε0

∫ +∞

−∞
χ(1)(r, t − t ′)E(r, t ′)dt ′+ε0

∫ +∞

−∞
χ(2)(r, t − t ′)E2(r, t ′)dt ′

+ε0

∫ +∞

−∞
χ(3)(r, t − t ′)E3(r, t ′)dt ′+ . . . . (1.20)

The first term on the right-hand side of Eq. (1.20) is the linear response of the material while

the other terms are responsible for the nonlinearities in the material response. Therefore, the

polarization density can be decomposed to its linear and nonlinear parts ad follows:

P = PL +PNL, (1.21)

where the linear part of the polarization field is simply given by

PL(r, t ) = ε0

∫ +∞

−∞
χ(1)(r, t − t ′)E(r, t ′)dt ′. (1.22)

For the nonlinear part of the polarization density it is usually assumed that the second and the

third nonlinear coefficients are dominant and the higher-order nonlinearities are negligible.

Therefore, the nonlinear polarization density is expressed by

PNL(r, t ) = ε0

∫ +∞

−∞
χ(2)(r, t − t ′)E2(r, t ′)dt ′+ε0

∫ +∞

−∞
χ(3)(r, t − t ′)E3(r, t ′)dt ′. (1.23)

Materials like fused silica used in fiber optics that have an inversion center as one of their

symmetry elements are called centrosymmetric and they lack any even-order nonlinearities;

so, χ(2n) = 0 and the main part of their nonlinear response is third order [2]. Denominating the

first- and third-order susceptibilities as χL =χ(1) and χNL =χ(3), the constitutive relation can

be given by

P = PL +PNL = ε0

∫ +∞

−∞
χL(r, t − t ′)E(r, t ′)dt ′+ε0

∫ +∞

−∞
χNL(r, t − t ′)E3(r, t ′)dt ′. (1.24)

Another assumption that is pertinent, especially in standard optical fibers, is the homogeneity

of medium resulting in the position independent susceptibilities, i.e. χL(r, t) = χL(t) and

χNL(r, t) = χNL(t). Strictly speaking, optical fibers are not homogeneous because the core

and cladding have different refractive indices. However, they are piecewise homogenous

that means it is possible to break the medium into a few homogenous regions with clear
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boundaries. Maxwell’s equations are solved in each homogeneous region and then appropriate

boundary conditions are applied to obtain the electromagnetic fields in the whole medium.

It is worth mentioning that some media such as photonic crystal fibers must be treated as

inhomogeneous media [42]. With the assumption of homogeneity Eq. (1.24) is rewritten as

P(r, t ) = PL +PNL = ε0

∫ +∞

−∞
χL(t − t ′)E(r, t ′)dt ′+ε0

∫ +∞

−∞
χNL(t − t ′)E3(r, t ′)dt ′. (1.25)

Most of materials like silicon, silica, etc. behave as a dielectric at optical frequencies and so

there are no free electric charge and current interacting with fields. Therefore, we can set

charge and current densities to zero, i.e. ρ = 0 and J = 0. It is important to note that in some

cases like plasmons where there are free charges the electric charge and current must be taken

into account [43].

1.2.1 Linear Response
Generally speaking, the nonlinear response of a material compared to its linear response is

so tiny that it can be considered as a perturbation. It means that we can analyze an electro-

magnetic system first in the linear regime and then add nonlinearities to the linear solution as

perturbations, the approach that is taken throughout this work. Considering only the linear

response of the medium the constitutive relation can be expressed by the convolution operator

as follows:

P(r, t ) = ε0

∫ +∞

−∞
χL(t − t ′)E(r, t ′)dt ′ = ε0χL(t )∗E(r, t ). (1.26)

Therefore, the electric flux density can be given by

D(r, t ) = ε0E+P = ε0E(r, t )+ε0χL(t )∗E(r, t ) = ε0(δ(t )+χL(t ))∗E(r, t ), (1.27)

where δ(t) denotes the Dirac delta function. Since the medium is free of charge we have

∇·D = 0; considering Eq. (1.27) it can be easily seen that ∇·E = 0 and thus, Maxwell’s equations

in a linear, homogenous and source-free medium are reduced to

∇×E =−∂t B, (1.28a)

∇×B = 1

c2 ∂t
(
(δ(t )+χL(t ))∗E

)
, (1.28b)

∇·E = 0, (1.28c)

∇·B = 0. (1.28d)

Decoupling Eqs. (1.28) results in the following uncoupled homogenous wave equations:

∇2E(r, t ) = 1

c2 ∂
2
t

(
(δ(t )+χL(t ))∗E(r, t )

)
, (1.29a)

∇2B(r, t ) = 1

c2 ∂
2
t

(
(δ(t )+χL(t ))∗B(r, t )

)
. (1.29b)
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Eqs. (1.29) are often represented in the frequency domain. To do so, the pair of Fourier and

inverse Fourier transforms are defined by

x̂(ω) =F [x(t )] =
∫ +∞

−∞
x(t )e iωt dt , (1.30a)

x(t ) =F−1[x̂(ω)] = 1

2π

∫ +∞

−∞
x̂(ω)e−iωt dω, (1.30b)

where ω [ rad
s ] is the angular frequency and is equal to 2π f , where f [Hz] is the frequency.

Based on this definition of Fourier transform, the time derivative ∂t is replaced by the factor

−iω in the frequency domain. Taking the Fourier transform of the wave equation given in

Eq. (1.29a) leads to the following Helmholtz equation:

∇2Ê(r,ω)+ ω2(1+ χ̂L(ω))

c2 Ê(r,ω) = 0. (1.31)

The relative permittivity of the medium is defined as εr(ω) = 1 + χ̂L(ω) and the material

refractive index is represented by n =p
εr. So the Helmholtz equation can be expressed in

terms of refractive index by

(∇2 + ω2n2

c2

)
Ê(r,ω) = 0. (1.32)

According to Eq. (1.32), in a linear homogeneous medium the electromagnetic fields propagate

with velocity c
n . Since the refractive index is frequency dependent, the propagation speed

changes with frequency; it is a linear phenomenon called dispersion and is responsible for

making rainbows in the sky.

1.2.2 Kramers–Kronig relations

Causality in physical systems induces some properties on the susceptibility of materials. For

instance, the response function χ(t) = 0 for t < 0. It means that χ̂(ω) is a complex function

with nonzero real and imaginary parts, i.e. χ̂(ω) = χ̂r(ω)+ i χ̂i(ω) whose real and imaginary

parts indicate the phase and amplitude responses, respectively; so, a material is lossy when

χ̂i(ω) 6= 0. Unlessχ(t ) is a Dirac delta function, χ̂(ω) cannot be purely real. Therefore, a physical

system is lossless if its response is instantaneous. In other words, any physical system that has

dynamics suffers from energy dissipation. Causality adds also a more important property on

the response function which is analyticity, i.e. χ̂(ω) is an analytic complex function. Analyticity

implies that the real part of a function can be obtained from its imaginary part and vice versa.

The useful tool for explaining the Kramers–Kronig relations is the Hilbert transform defined as

w(p) =H [v(p)] = 1

π
p.v.

∫ +∞

−∞
v(q)

p −q
dq , (1.33)

where p.v. denotes the Cauchy principal value. It can also be proved that H −1 = −H . As

examples, the Hilbert transform of cos(p) is sin(p) and thus, that of sin(p) is −cos(p). For an

analytic function χ̂(ω) = χ̂r(ω)+ i χ̂i(ω) that decays as fast as or faster than |ω|−1, its imaginary
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part is the Hilbert transform of its real part, i.e. χ̂i(ω) =H [χ̂r(ω)], known as the Titchmarsh

theorem [44]. Therefore, a version of the Kramers–Kronig relations is given by

χ̂i(ω) = 1

π
p.v.

∫ +∞

−∞
χ̂r(ω′)
ω−ω′ dω′, (1.34a)

χ̂r(ω) = 1

π
p.v.

∫ +∞

−∞
χ̂i(ω′)
ω′−ω dω′. (1.34b)

Moreover, the susceptibility χ(t ) is a real-valued function, i.e. χ∗(t ) =χ(t ) and so its Fourier

transform has the Hermitian symmetry, i.e. χ̂∗(−ω) = χ̂(ω). Therefore, the real part of χ̂ is

an even function or χ̂r(ω) = χ̂r(−ω) and its imaginary part is an odd function or χ̂i(−ω) =
−χ̂i(ω). These symmetries make it possible to calculate the integral in Eqs. (1.34) over positive

frequencies. This way, another version of the Kramers–Kronig relations is expressed as

χ̂i(ω) = 2

π
p.v.

∫ ∞

0

ωχ̂r(ω′)
ω2 −ω′2 dω′, (1.35a)

χ̂r(ω) = 2

π
p.v.

∫ ∞

0

ω′χ̂i(ω′)
ω′2 −ω2 dω′. (1.35b)

One application of the Kramers-Kronig relations is to calculate one part of the susceptibility

from the measurement of the other part. For instance, suppose that the refractive index of a

fictitious material is measured at different frequencies by a refractometry method and so the

real part of its susceptibility χr = (n −1)2 is obtained as follows:

χ̂r(ω) = χ0

1+τ2
0ω

2
, (1.36)

where χ0 is the low frequency susceptibility and τ0 is a fitting parameter obtained by measure-

ment. The imaginary part of the material susceptibility is obtained via the Kramers-Kronig

relation or actually by taking the Hilbert transform of the absorption spectrum as follows:

χ̂i(ω) =H [χ̂r(ω)] = χ0τ0ω

1+τ2
0ω

2
. (1.37)

Therefore, the normalized susceptibility of the material is given by

χ̂(ω) = χ̂r(ω)+ i χ̂i(ω) =χ0
1+ iτ0ω

1+τ2
0ω

2
= χ0

1− iτ0ω
. (1.38)

The response function of the material is obtained by taking the inverse Fourier transform of

χ̂(ω), that is

χ(t ) = χ0

τ0
e−

t
τ0 . (1.39)

Eq. (1.39) shows that τ0 is actually the decay time of the response. Fig. 1.1 shows an example

of such a susceptibility versus frequency when its low-frequency value is χ0 = 4. For more on

the theory and applications of the Kramers-Kronig relations in optics see [44].
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Figure 1.1 – Real and imaginary parts of a hypothetical material’s susceptibility versus frequency.

1.3 Monochromatic Waves

Time harmonic analysis of dynamical systems such as Maxwell’s equations is a strong tool

for describing oscillatory phenomena and gives an insight to their spectral behavior. Time-

harmonic fields are intertwined with the notion of wave envelope. The envelope function of a

wave is a curve outlining the wave’s extremes. So it varies smoothly and slowly with respect

to the wave oscillation. Since the variation of the envelope function is much lower that the

optical frequency (≈ 1014 Hz), it is widely accepted in optics to use the envelope analysis even

in ultrafast phenomena [45]. In the case of monochromatic or time-harmonic waves that

oscillate harmonically with a single frequency ω, the fields are given by

E(r, t ) =ℜ[E(r)e−iωt ] = 1

2

(
E(r)e−iωt +E∗(r)e iωt

)
= 1

2
E(r)e−iωt +c.c., (1.40a)

H(r, t ) =ℜ[H(r)e−iωt ] = 1

2

(
H(r)e−iωt +H∗(r)e iωt

)
= 1

2
H(r)e−iωt +c.c., (1.40b)

where c.c. denotes the complex conjugate of the previous terms. To obtain the flow of energy

it is necessary to calculate the average of the Poynting vector S = E×H as follows:

〈S〉 = 1

4

〈
(Ee−iωt +E∗e iωt )× (He−iωt +H∗e iωt )

〉
= 1

4

〈
E×H∗+E∗×H+E×He−2iωt +E∗×H∗e2iωt 〉= 1

4
(E×H∗+E∗×H)

= 1

2
(Sc +S∗

c ) =ℜ[Sc], (1.41)
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1.3. Monochromatic Waves

where 〈〉 denotes the time average operation and Sc is called the complex Poynting vector. The

wave intensity I [ W
m2 ] is defined as the magnitude of the averaged Poynting vector and thus

calculated by taking the real part of the complex Poynting vector,

I = |〈S〉| = |ℜ[Sc]|. (1.42)

1.3.1 Uniform Plane Waves

The wavefront of an electromagnetic propagation is defined as the locus of points having the

same phase. The wave is categorized based on the shape of this locus, for instance plane,

spherical, parabolic, etc. Among them, the plane wave is the most useful, especially for long

distance propagation or far-field approximation. In plane waves, the propagation direction

is determined by a wave vector k and so for any position vector r the phase variation due

to propagation is given by e i k·r. Moreover, if the wave is monochromatic with frequency

ω, the phase variation due to oscillation is expressed by e−iωt and thus the phase term is

represented as e i (k·r−ωt ). The simplest type of plane waves is the uniform plane wave whose

electromagnetic fields have constant amplitudes so that they can be expressed by

E(r, t ) =ℜ[E0e i (k·r−ωt )] = 1

2
E0e i (k·r−ωt ) +c.c., (1.43a)

H(r, t ) =ℜ[H0e i (k·r−ωt )] = 1

2
H0e i (k·r−ωt ) +c.c., (1.43b)

where E0 and H0 are constant vectors. Rigorously speaking, uniform plane waves do not

exist because they need infinite energy. Moreover, the medium in which uniform plane waves

propagate must be boundless like the free space and ideal, i.e. linear, homogeneous, isotropic,

source-free and lossless. However, uniform plane waves provide an acceptable approximation

for wave propagation in a broad variety of conditions. This approximation transforms the

differential equations of Maxwell into vector equations by changing the space differential

operator ∇ to the vector form i k and replacing the time derivative ∂t by the scalar −iω. This

way, Maxwell’s equations given in Eqs. (1.28) can be rewritten as

k×E0 =ωµ0H0, (1.44a)

k×H0 =−ωε0εrE0, (1.44b)

k ·E0 = 0, (1.44c)

k ·H0 = 0. (1.44d)

Eqs. (1.44c) and (1.44d) demonstrate that the electromagnetic fields are orthogonal to the

propagation direction, i.e. E0 ⊥ k and H0 ⊥ k. Eqs.( 1.44a) and (1.44b) show that E0 ⊥ H0 and

the triplet (E0,H0,k) makes a right-handed trihedral so that E0 ×H0 is in the direction of k.

The wave vector can be derived from Eqs. (1.44) as k = ω
c
p
εrk̂ where k̂ is the unit vector in the

direction of k; and thus the Poynting vector is

Sc = 1

2
E0 ×H∗

0 = 1

2
|E0||H0|k̂ = 1

2
nε0c|E0|2k̂, (1.45)
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2a

2b

n1

n2

(r, ) 

Figure 1.2 – The cross section of an optical fiber along with a step-index profile.

where the refractive index is given by n = p
εr. In this case the complex Poynting vector is

a real vector and according to Eq. (1.42) the intensity of an optical signal in a medium with

refractive index n, in terms of its electric field envelope E, is given by

I = 1

2
nε0c|E|2. (1.46)

This is a general formula for defining optical intensity and thus optical power and energy in

optical systems.

1.4 Wave Propagation in Optical Fibers
Standard optical fibers are cylindrical dielectric waveguides made of silica (SiO2). They consists

of a core with refractive index n1 and a cladding with refractive index n2. The cladding is

usually made of pure silica with n2 = 1.457 measured at He-Ne laser’s wavelength 632.8 nm.

The core refractive index is raised by doping germania (GeO2), phosphorus pentoxide (P2O5),

and alumina (Al2O3). Silica’s refractive index can be also decreased by other dopants such as

boron trioxide (B2O3) and fluorine (F). The slight difference between the core and cladding

refractive indices is given by

∆= n2
1 −n2

2

2n2
1

≈ n1 −n2

n1
, (1.47)

where the approximation is obtained by assuming n1+n2 ≈ 2n1. Fig. 1.2 depicts a typical cross

section of an optical fiber. The standard value of cladding diameter is 2b = 125 micron while

the core diameter 2a varies for different fibers. The refractive index profile shown in Fig. 1.2 is

a step-index profile widely used in standard single-mode fibers. Other refractive index profiles
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1.4. Wave Propagation in Optical Fibers

are used to modify the propagation properties of optical fibers. Fig. 1.3 shows two different

refractive index profiles for two most common optical fibers: standard single-mode fiber

(SMF) and dispersion shifted fiber (DSF).

a)
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ex
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Figure 1.3 – Refractive index profile of single-mode optical fibers @ 1550 nm: a) Standard SMF and b) DSF.

In order to obtain refractive index values at desired wavelengths, one can use a semi-

empirical formula, namely, the Sellmeier equation, which is widely used in refractometry,

n2(λ) = 1+∑
k

Ak

1− (λk
λ )2

, (1.48)

where Ak is a Sellmeier coefficient andλk is a resonance wavelength. The sellmeier coefficients

are given in Table 1.1 for silica and germania along with their resonance wavelengths in micron

[46].

SiO2 GeO2

A1 0.6961663 0.80686642
A2 0.4079426 0.71815848
A3 0.8974794 0.85416831

λ1 0.0684043 0.068972606
λ2 0.1162414 0.15396605
λ3 9.8961610 11.841931

Table 1.1 – Sellmeier Coefficients.

As an example, the refractive index of pure silica at the telecom wavelength of 1.55 µm

is obtained from Eq. (1.48) as n2 = 1.444. Considering the linear response of material and

low doping percentage, the relative permittivity εr = n2 of germania-doped silica can be

represented by a linear combination of each component’s permittivity so that for its refractive

index we have n2 = xn2
g + (1− x)n2

s where x is germania’s mole fraction. For instance, in a

standard optical fiber with the core refractive index of n1 = 1.449 at 1550 nm, the dopant

percentage must be 3.2% which is rather low. The refractive index of a standard single-mode

fiber (SMF-28TM in compliance with ITU-T Recommendation G.652) is shown in Fig. 1.4 for

17



Chapter 1. Preliminaries

the core and cladding. As it is clear from the figure, the refractive index of silica reduces by

increasing wavelength (decreasing frequency) in the desired spectral bands of fiber usage; in

other words, dn
dλ is negative or equivalently, dn

dω is positive.

1.26 1.36 1.46 1.53 1.565 1.625 1.675
1.442

1.444

1.446

1.448

1.45

1.452

Wavelength   [ µm]

In
de

x

 

 

Core
Cladding

C−band

1550 nm

L−band

U−band

O−band

E−band

S−band

Figure 1.4 – Refractive index of the core and cladding of a standard SMF versus wavelength.

The main advantage of optical fibers that makes it the best communication channel for long-

haul telecommunications is low attenuation at infrared (IR) wavelengths. The main sources of

loss in optical fibers are the Rayleigh scattering in near-IR (0.78−3 µm) due to irregularities

in the structure of amorphous silica, the absorption due to the electronic transition between

the valence band and conduction band in ultra-violet (UV), and the vibration of Si-O and

Ge-O bonds near 9 and 11 µm, respectively, in mid-IR (3−50 µm). An extrinsic source of

absorption at 1.38µm is the OH vibration and there have been extensive efforts to reduce water

in manufacturing processes and nowadays, low water-peak optical fibers are commercially

available. A simple mathematical model for the uniform loss of an optical signal after travelling

in a fiber of length L is an exponential function given by

PL = P0e−αL , (1.49)

where P0 and PL are input and output powers, respectively. α is called the power attenuation

coefficient and its minimum value happens to be ≈ 5×10−5 m−1 at 1550 nm. The typical unit

for fiber attenuation is dB
km and the following relation can be used for unit transformation:

α [m−1] = ln(10)αdB ×10−4 [dB/km], (1.50)

where αdB is the fiber attenuation coefficient in dB
km and at 1550 nm it is around 0.2 dB

km .
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1.4. Wave Propagation in Optical Fibers

1.4.1 Cylindrical Wave Equation

Since the optical fiber waveguide has a cylindrical structure it is convenient to use the cylin-

drical coordinates system for solving the Helmholtz equation given in Eq. (1.32). In this

coordinate system the vector field E is expressed by (Er ,Eϕ,Ez ) that can be easily transformed

to the Cartesian coordinate system by applying the following matrix transformation:Ex

Ey

Ez

=

cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1


Er

Eϕ
Ez

 , (1.51)

where x = r cosϕ, y = r sinϕ and (Ex ,Ey ,Ez ) is the Cartesian representation of the field. The

z-component of the field is the same in both coordinate system and thus, by considering the

wave propagation in the z direction, it is possible to write the field in terms of its transverse

and longitudinal components as follows:

E = E⊥+Ez ẑ, (1.52)

in which E⊥ is either (Er ,Eϕ) or (Ex ,Ey ). In both coordinate systems the vector Laplacian

operator can be written as follows:

∇2E =∇2E⊥+ (∇2Ez )ẑ, (1.53)

where ∇2E⊥ is perpendicular to the z direction and ∇2Ez is a scalar Laplacian operator. Sub-

stituting Eq. (1.53) in the Helmholtz equation results in the following uncoupled equations for

transverse and longitudinal components of the vector field:

∇2Ê⊥(r,ω)+ ω2n2

c2 Ê⊥(r,ω) = 0, (1.54a)

∇2Êz (r,ω)+ ω2n2

c2 Êz (r,ω) = 0. (1.54b)

On the other hand, It can be deduced from Maxwell’s equations that all the transverse com-

ponents of electromagnetic fields can be obtained from their longitudinal components Ez

and Hz ; so it is enough to obtain the longitudinal components of the fields. Moreover, Hz

satisfies the same equation as Ez and thus it is sufficient to solve the scalar Helmholtz equation

given in Eq. (1.54b) and then applying the boundary conditions at the core-cladding surface.

In both Cartesian and cylindrical coordinate systems the scalar Laplacian operator can be

decomposed to a transverse Laplacian and a longitudinal operator as follows:

∇2 =∇2
⊥+∂2

z , (1.55)

in which ∇2
⊥ is ∂2

x +∂2
y in the Cartesian system and ∂2

r + 1
r ∂r + 1

r 2 ∂
2
ϕ in the cylindrical system. A

typical way to solve the Helmholtz equation is the separation of variables, i.e. the electric field

component Êz (r,ω) is decomposed to a transverse function F⊥ and a longitudinal propagation
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Êz (z,ω) so that

Êz (r,ω) = F⊥Êz (z,ω), (1.56)

where F⊥ can be either F⊥(x, y) or F⊥(r,ϕ). Applying Eq. (1.55) and Eq. (1.56) to the Helmholtz

equation in Eq. (1.54b) yields

∇2
⊥F⊥
F⊥

+ ∂2
z Êz

Êz
+n2k2 = 0, (1.57)

in which k = ω
c is the wave number in vacuum. In a homogeneous waveguide where n is

position-independent, Eq. (1.57) implies that all its three terms must be independent of the

coordinate variables; assuming a propagation constant β for the z component, we have

(∂2
z +β2)Êz = 0, (1.58a)

(∇2
⊥+n2k2 −β2)F⊥ = 0. (1.58b)

The solution of Eq. (1.58a) has the form of e iβz , while Eq. (1.58b) has the solution of Jm(ur )e i mϕ

in the core and Km(wr )e i mϕ in the cladding, where Jm is the ordinary Bessel function of the

first kind and Km is the modified Bessel function of the second kind in which the integer m is

the order of Bessel functions. u =
√

n2
1k2 −β2 and w =

√
β2 −n2

2k2 are transverse propagation

constants in the core and cladding, respectively [47]. Since u and w must be real numbers,

the propagation constant satisfies

n2k <β< n1k (1.59)

β is the actual propagation constant in the fiber and so the effective refractive index is given

by neff = β
k . According to Eq. (1.59), it is clear that n2 < neff < n1. Normalizing u and w to the

core radius a as U = au and W = aw results in the normalized frequency V , defined as

V ,
√

U 2 +W 2 = ka
√

n2
1 −n2

2 = kaNA, (1.60)

where NA ,
√

n2
1 −n2

2 = n1
p

2∆ is referred to as the numerical aperture of the fiber. For

example, NA is 0.12 for SMF-28TM at 1550 nm. In order to obtain the propagation constant β,

the characteristic equation given in Eq. (1.61) must be solved for U or W (note that U 2 +W 2 =
V 2). This equation actually relates the propagation constant to the frequency and so the

dispersion relation β=β(ω) can be obtained by solving the characteristic equation(
J ′m(U )

U Jm(U )
+ K ′

m(W )

W Km(W )

)(
n2

1

n2
2

J ′m(U )

U Jm(U )
+ K ′

m(W )

W Km(W )

)
= m2

(
1

U 2 + 1

W 2

)(
n2

1

n2
2

1

U 2 + 1

W 2

)
,

(1.61)

where prime denotes derivative. In order to have the propagation characteristics of a fiber such

as phase and group velocities, group delay and group velocity dispersion it is indispensable to
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1.4. Wave Propagation in Optical Fibers

solve Eq. (1.61). However, it is a transcendental equation that has no closed-form solution and

must be solved by numerical methods. Next section is devoted to the solution of this equation

for the fundamental mode of the fiber in which m = 1.

1.4.2 Fundamental Mode

The propagation modes in optical fibers can be categorized into transverse electric (TE),

transverse magnetic (TM), hybrid EH and hybrid HE modes. Actually, every hybrid mode

consists of two degenerate modes (modes with the same dispersion relation). The fundamental

mode in optical fiber is HE11 which is a hybrid mode containing two degenerate modes. The

cutoff frequency for the fundamental mode is theoretically zero and so it can potentially

propagate at all wavelengths. The cutoff frequency of the first higher modes is given by the

first zero of the Bessel function J0 which is Vc = 2.405. Using the formula of the normalized

frequency, the cutoff wavelength for an optical fiber to be in its single-mode regime is given by

λc = 2πNA

Vc
a. (1.62)

For instance, the cutoff wavelength of an optical fiber with the core radius a = 4 micron and

numerical aperture NA = 0.12 is λc = 1.25 micron obtained from Eq. (1.62). So for all wave-

lengths longer than 1.25 micron, the fiber is in its single-mode state and only the fundamental

mode propagates in the fiber.

Conventional optical fibers have very low difference between the core and cladding refrac-

tive indices so that the ratio n1
n2

is close to unity. In the weakly guiding approximation, n1
n2

≈ 1,

different modes have the same propagation constant and can be rearranged to a set of linearly

polarized (LP) modes. For example, the two-fold fundamental mode HE11 makes LP01, while

the next mode LP11 consists of TE01, TM01, and HE21 with the cutoff frequency of Vc = 2.405;

or LP21 includes EH11 and HE31 with the cutoff frequency Vc = 3.832. It should be noted

that this approximation is not applicable for silica-air guiding structures such as hollow-core

fibers because the difference between the air and silica refractive indices is not negligible

[46]. Considering the weakly guiding approximation, the fundamental mode LP01 has two

linear polarizations: horizontal polarization LPx
01 with electric field (Ex ,0,Ez ) and vertical

polarization LPy
01 with field (0,Ey ,Ez ). The spatial variation of the transverse components Ex

and Ey can be expressed by

F⊥(r,ϕ) =
J0(ur ) 0 ≤ r ≤ a

J0(ua)
K0(ua) K0(wr ) r > a

. (1.63)

It is clear that the transverse distribution of the fundamental mode is independent from the

azimuthal angle ϕ and thus has a circular symmetry. It is useful to approximate Eq. (1.63) with

the following Gaussian distribution [48]:

F⊥(r,ϕ) ≈ exp

(
− r 2

ρ2

)
, (1.64)
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where ρ is a parameter obtained by fitting Eq. (1.64) into Eq. (1.63) and can be expressed in

terms of the normalised frequency as follows [48]:

ρ

a
≈ 0.65+1.619V − 3

2 +2.879V −6. (1.65)

As an example, for SMF-28TM with V = 1.91 at 1550 nm, Eq. (1.65) results in ρ = 1.32a = 5.3 µm.

An important parameter related to the transverse distribution of fields is the effective area

defined as [3],

Aeff ,

(Ï +∞

−∞
|F⊥(x, y)|2dxdy

)2

Ï +∞

−∞
|F⊥(x, y)|4dxdy

=

(∫ 2π

0

∫ ∞

0
|F⊥(r,ϕ)|2r dr dϕ

)2

∫ 2π

0

∫ ∞

0
|F⊥(r,ϕ)|4r dr dϕ

. (1.66)

Substituting the Gaussian distribution given in Eq. (1.64) in the effective area definition yields

Aeff =πρ2. (1.67)

Since the mode effective area is πρ2, the parameter ρ is called the mode field radius and so 2ρ

is the mode field diameter (MFD). For a standard SMF at C-band the effective area is about

85 µm2, while for a typical DSF it is around 50 µm2 showing that the energy is more confined

in DSFs than SMFs. The propagation characteristics of the electromagnetic mode traveling in

the fiber are completely determined by the characteristic equation given in Eq. (1.61). Once

the equation is solved, the dispersion relation β=β(k) is known and so the effective refractive

index neff = β
k and the group index ng = dβ

dk are obtained. This way the phase and group

velocities are calculated as follows:

vp = ω

β
= ck

β
= c

neff
, (1.68a)

vg = dω

dβ
= cdk

dβ
= c

ng
. (1.68b)

Fig. 1.5 shows how the effective and group refractive indices versus wavelength in a standard

SMF. It is clear from Fig. 1.5a that the effective refractive index is between the core and cladding

indices and the longer the wavelength is, the closer to the cladding index the effective index

will be. The group index plotted in Fig. 1.5b has a minimal point at around 1310 nm which

means at this wavelength the group velocity is maximal. The figure also shows that the group

index is larger that the effective index or equivalently the group velocity is less than the phase

velocity. It can be mathematically deduced following the definition of effective and group

indices,

ng = dβ

dk
= d(kneff)

dk
= neff +k

dneff

dk
= neff +ω

dneff

dω
= neff −λ

dneff

dλ
, (1.69)

where the minus sign in the right-hand side of the expression is due to dω
ω = −dλ

λ , because

ωλ = 2πc. It is evident from Fig. 1.5a that dneff
dλ is negative and thus, Eq. (1.69) implies that
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Figure 1.5 – Refractive index of a SMF-28TM versus wavelength: a) Effective index laid between the core
and cladding indices and b) Group index.

ng > neff and so vg < vp. Another important concept related to the group velocity is the

dispersion parameter D defined as

D ,
d

dλ

(
1

vg

)
= 1

c

dng

dλ
. (1.70)

The dispersion parameter is normally given in ps
nm.km and it can be expressed in terms of

effective index using Eqs. (1.69) and (1.70),

D = 1

c

dng

dλ
= 1

c

d

dλ

(
neff −λ

dneff

dλ

)
=−λ

c

d 2neff

dλ2 . (1.71)

The dependence of the effective and group indices on wavelength is due to two causes: first

the wavelength dependence of the material refractive index, and second the characteristic

equation given in Eq. (1.61); the former is called the material dispersion Dm and the latter the

waveguide dispersion Dw so that the total dispersion is D = Dm +Dw.

Fig. 1.6 shows the dispersion coefficients of a standard SMF obtained by solving the charac-

teristic equation numerically and considering the material dispersion through the Sellmeier

equation given in Eq. (1.48). The wavelength at which the dispersion parameter is null is called

the zero-dispersion wavelength (ZDW) which is around 1310 nm for SMF-28TM, evidenced

from Fig. 1.6. The zero-dispersion wavelength is a critical parameter for a variety of fiber optic

applications from telecommunications to optical signal processing. Therefore, manipulating

the dispersion profile of optical fibers is a key point in designing and manufacturing fibers.

In order to modify the dispersion parameter of an optical fiber, one needs to play with the

waveguide dispersion of the fiber through the refractive index profile. The most common

dispersion-managed single mode fibers are dispersion-shifted fibers (DSF) and dispersion-

compensating fibers (DCF). Fig. 1.7 shows the dispersion parameter of three common fibers,

namely, standard SMF, DSF, and DCF. For standard SMFs the dispersion parameter in the

C-band is positive (≈ 17 ps
nm.km at 1550 nm) which is called anomalous dispersion. DCFs are

usually made to compensate the anomalous dispersion of SMFs in the C-band and so they
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Figure 1.6 – Dispersion coefficient of a standard SMF versus wavelength including the material, waveguide
and total dispersions.

have negative dispersion parameter (≈−42 ps
nm.km at 1550 nm) called normal dispersion. The

zero-dispersion wavelength of DSFs is in the C-band (λZD ≈ 1550 nm) to provide specific

propagation features for optical waves in special applications.

1.5 Nonlinear Fiber Optics

In silica glass where the inversion symmetry holds, the second order nonlinearity χ(2) is zero

and so the third order nonlinearity χ(3) is dominant. The main contribution of χ(3) is in

the intensity-dependent refractive index which is assumed to be isotropic. Therefore, the

nonlinear polarization in Eq. (1.25) can be approximated as

PNL(r, t ) = ε0

∫ +∞

−∞
χNL(t − t ′)E3(r, t ′)dt ′ ≈ ε0|E(r)|2

∫ +∞

−∞
χNL(t − t ′)E(r, t ′)dt ′

= ε0|E(r)|2(χNL(t )∗E(r, t )
)
. (1.72)

Eq. (1.72) can be treated linearly and so by taking its Fourier transform we have

P̂NL(r,ω) = ε0|E(r)|2χ̂NL(ω)Ê(r,ω). (1.73)

Considering both linear and nonlinear polarizations and the definition of εr as D̂ = ε0εr Ê, we

find

D̂ = ε0Ê+ P̂ = ε0Ê+ P̂L + P̂NL = ε0(1+ χ̂L + χ̂NL|E|2)Ê, (1.74)
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Figure 1.7 – Dispersion parameter for different types of optical fibers, standard SMF, DSF, and DCF versus
wavelength.

and so εr = 1 + χ̂L + χ̂NL|E|2. The linear part of εr defines the linear refractive index as

n0 = √
1+ χ̂L and since its nonlinear part is much smaller that the linear part, the follow-

ing approximation can be made:

n =p
εr =

(
1+ χ̂L + χ̂NL|E|2

) 1
2 = (

1+ χ̂L
) 1

2

(
1+ χ̂NL|E|2

1+ χ̂L

) 1
2 = n0

(
1+ χ̂NL|E|2

n2
0

) 1
2

≈ n0

(
1+ χ̂NL

2n2
0

|E|2
)
= n0 + χ̂NL

2n0
|E|2 (1.75)

Using the definition of intensity in Eq. (1.46), the refractive index in Eq. (1.75) can be expressed

in terms of field intensity as follows:

n = n0 +n2I = n0 + χ̂NL

n2
0ε0c

I , (1.76)

where n2 is called the Kerr coefficient and its typical value for fused silica is 2.2−3.2×10−20 m2

W .

Since the susceptibility χ̂NL is a complex number, the refractive index is also complex as

n = n0 +nr
2I + i ni

2I . Considering the propagation term e i nkz , we have

e i nkz = e i kz(n0+nr
2 I+i ni

2 I ) = e−ni
2 I kz e i n0kz e i nr

2 I kz . (1.77)

The first exponential function on the right-hand side of Eq. (1.77) shows an intensity-dependent

gain or loss in propagation depending on the sign of ni
2. This term represents scattering pro-

cesses such as stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS).
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The last term in Eq. (1.77) shows an intensity-dependent phase modulation which is the

origin of a variety of nonlinear processes including self-phase modulation (SPM), cross-phase

modulation (XPM), modulation instability (MI), optical parametric amplification (OPA), and

four-wave mixing (FWM).

1.5.1 Kerr Effect
By the Kerr effect we mean the modification of real-valued refractive index linearly pro-

portional to optical intensity. Therefore, the imaginary part of the Kerr coefficient is usu-

ally neglected in dealing with the quasi-instantaneous nonlinear processes originated from

intensity-dependent phase modulation. The origin of the Kerr effect is the electric polarization

caused by the nonlinear response of bound electrons to an intense electric field. It is worth

mentioning that the Kerr effect can be modified by adding dopants to silica. An empirical

expression for GeO2-doped fibers is given by [46],

n2 = 2.507+0.505∆ [×10−20 m2/W], (1.78)

where ∆ is the relative refractive index difference. An important parameter in nonlinear fiber

optics closely related to the Kerr coefficient is the nonlinear coefficient γ [ W−1

km ] defined as [3],

γ, k
n2

Aeff
= ω

c

n2

Aeff
= 2π

λ

n2

Aeff
. (1.79)

The nonlinear coefficient γ depends not only on the dopant through the Kerr coefficient n2

but also upon the mode field distribution via the effective area Aeff. Table 1.2 presents the

important parameters of four different types of optical fibers, namely, standard SMF, DSF,

DCF, and highly non-linear fiber (HNLF) [46]. It is clear from the table that as the dopant

Fiber SMF DSF DCF HNLF

α [dB/km] 0.2 0.2 0.4 0.7
Aeff [µm2] 85 50 20 12
γ [W−1/km] 1.8 2.7 5.0 15

Table 1.2 – Characteristics of Optical Fibers @ 1550 nm.

increases to make a larger contrast between the core and cladding refractive indices and thus

have smaller effective area, both attenuation and nonlinear coefficients increase. Modeling

the propagation of light in optical fibers in the presence of the Kerr nonlinearity leads to

a nonlinear partial differential equation (PDE) called the nonlinear Schrödinger equation

(NLSE) which is thoroughly dealt with in the next chapter.
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2 Nonlinear Schrödinger Equation

In this chapter we will see how Maxwell’s equations result in the nonlinear Schrödinger equa-

tion (NLSE) in optical fibers and which characteristics such an equation imposes on the

lightwave propagating in the fiber. First, the complete derivation of the scalar NLSE in optical

fibers is presented using the results of the previous chapter. In this analysis the important

approximation of slowly varying envelope (SVE) is introduced. Then, several solutions for

the NLSE in different propagation regimes are provided. Different combinations of disper-

sion and nonlinearity are considered and for each of them available analytical solutions are

discussed. As a numerical method for solving the NLSE in its general form, the well-know

split-step Fourier method is thoroughly investigated. Finally, The experimental results of an

interferometric method for measuring the nonlinear coefficient of optical fibers based on the

nonlinear phenomenon of self-phase modulation (SPM) are presented.

2.1 Nonlinear Wave Equation
The general form of wave equation in nonlinear optics can be derived from Maxwell’s equations

in a nonmagnetic (B =µ0H), isotropic , source-free (ρ = 0 amd J = 0) medium given by [41]

∇×E =−∂t B, (2.1a)

∇×B = 1

ε0c2 ∂t D, (2.1b)

∇·D = 0, (2.1c)

∇·B = 0, (2.1d)

where the electric flux density can be expressed as D = ε0E+P. Taking the curl of Eq. (2.1a)

and substituting from Eq. (2.1b) we have the following general equation:

∇2E−∇(∇·E) = 1

c2 ∂
2
t E+ 1

ε0c2 ∂
2
t P. (2.2)

Now consider the intensity-dependant nonlinear effect expressed by

D = ε0E+P = ε0E+PL +PNL = ε0
(
δ(t )+χL(t )+χNL(t )|E|2)∗E, (2.3)
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Chapter 2. Nonlinear Schrödinger Equation

where ∗ denotes the time convolution. The second term in the left-hand side of Eq. (2.2)

hampers the wave equation to be solved analytically. In almost all works in nonlinear optics

this term is neglected [2], even though there are a few arguments against removing the term

from the equation [49]. It is pointed out that in realistic cases the term ∇(∇ · E) is even

larger than the terms due to nonlinearity kept in the equation [50]. However, we accept this

approximation by the following argument based on Gauss’s law in Eq. (2.1c):

∇·D = 0 ⇒ ∇·D =∇· (ε0
(
δ(t )+χL(t )+χNL(t )|E|2)∗E

)
≈ ε0

(
δ(t )+χL(t )+χNL(t )|E|2)∗∇·E = 0. (2.4)

Accepting the controversial approximation in Eq. (2.4) leads to ∇·E = 0 and thus, ∇(∇·E) = 0.

This way, the general wave equation in Eq. (2.2) reduces to the following simpler one:

∇2E = 1

c2 ∂
2
t E+ 1

ε0c2 ∂
2
t P. (2.5)

Taking the Fourier transform of Eq. (2.5) and using Eq. (2.3) with the assumption of slow

variation for |E|2 compared to E, result in

∇2Ê(r,ω)+ ω2

c2

(
1+ χ̂L(ω)+ χ̂NL(ω)|E|2)Ê(r,ω) = 0. (2.6)

Considering the vacuum wavenumber k = ω
c and the refractive index n =√

1+ χ̂L, Eq. (2.6)

can be written as

∇2Ê+k2(n2 + χ̂NL|E|2
)
Ê = 0. (2.7)

Eq. (2.7) is a nonlinear Helmholtz equation that models the intensity dependent refractive

index. In order to solve this equation we use the results from the previous chapter. In

single-mode fibers, weakly guiding approximation leads to the two orthogonally polarized

modes (Ex ,0,E z) and (0,Ey ,Ez ). In the scalar wave propagation either x-polarization or

y-polarization is taken into account; here we consider the x-polarization. Moreover, the

longitudinal component Ez is neglected compared to the transverse components. Therefore,

the electric field can be expressed as

Ê(r,ω) = F⊥(x, y)Ê(z,ω)x̂, (2.8)

where F⊥(x, y) is the transverse distribution of the field, Ê(z,ω) is its longitudinal variation,

and x̂ is the unit vector in the horizontal direction. Substituting Eq. (2.8) in Eq. (2.7) results in

(∇2
⊥F⊥)Ê +F⊥∂2

z Ê +k2(n2 + χ̂NL|F⊥|2|E |2)F⊥Ê = 0. (2.9)

It has been proved in the previous chapter that ∇2
⊥F⊥ = (β2 −n2k2)F⊥; so Eq. (2.9) reduces to

(∂2
z +β2)F⊥Ê +k2χ̂NL|F⊥|2F⊥|E |2Ê = 0. (2.10)
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2.1. Nonlinear Wave Equation

Multiplying Eq. (2.10) by F∗
⊥ and taking its integral over the transverse plane results in

(∂2
z +β2)Ê

Ï
|F⊥|2dxdy +k2χ̂NL|E |2Ê

Ï
|F⊥|4dxdy = 0. (2.11)

According to the definition of effective area given in the previous chapterÏ
|F⊥|4dxdy = 1

Aeff

(Ï
|F⊥|2dxdy

)2

. (2.12)

Substituting Eq. (2.12) in Eq. (2.11) results in

(∂2
z +β2)Ê +k2 χ̂NL

Aeff
|E |2Ê

Ï
|F⊥|2dxdy = 0. (2.13)

We consider a normalization for the electric field from which the optical power can be calcu-

lated directly. Such normalization takes the optical intensity and mode area into account as

follows:

A = E

√
nε0c

2

Ï
|F⊥|2dxdy (2.14)

It is easily seen that

|A|2 = 1

2
nε0c|E |2︸ ︷︷ ︸
Intensity

Ï
|F⊥|2dxdy︸ ︷︷ ︸
Surface

, (2.15)

so |A|2 denotes optical power; in other words, P (z, t) = |A(z, t)|2. Substituting Eq. (2.14) in

Eq. (2.13) results in the following expression:

(∂2
z +β2 +2nkγ|A|2)Â = 0, (2.16)

in which γ= k n2
Aeff

where n2 = χ̂NL

n2ε0c . In order to proceed in solving Eq. (2.16) more restrictions

must be put on the equation that is dealt with in the following section.

2.1.1 Slowly Varying Envelope

The evolution of wave packets or in fact wave envelopes propagating in a medium is of great

importance in almost all applications of signal transmission. A strong tool giving an insight

to such evolution is the slowly varying envelope (SVE) approximation. This approximation

takes advantages of slow variation of the wave envelope compared to its phase variation

due to the temporal oscillation or spatial propagation. Suppose that the optical field has a

central frequency ω0 and a propagation constant β0 obtained from the dispersion relation

β0 =β(ω0); this way the field can be expressed by A(z, t )e i (β0z−ω0t ) and its Fourier transform is

given by Â(z,ω−ω0)e iβ0z . Since the envelope varies slowly compared to the field oscillation,

the frequency detuningΩ=ω−ω0 is normally much less than the optical frequency ω0, i.e.

|Ω|¿ω0. According to Eq. (2.16) the second derivative of the envelope is needed and so it is

29
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derived as follows:

∂2
z

(
Â(z,Ω)e iβ0z)= e iβ0z(∂2

z +2iβ0∂z −β2
0

)
Â(z,Ω). (2.17)

Using the result of Eq. (2.17) in Eq. (2.16) leads to(
∂2

z +2iβ0∂z +β2 −β2
0 +2nkγ|A|2)Â = 0, (2.18)

By the slowly varying envelope approximation we mean

|∂2
z A|¿β0|∂z A|, (2.19)

so that we can neglect the second-order derivative compared to the first-order one. Removing

∂2
z from Eq. (2.18) and dividing the equation by 2β0 we have

(
i∂z +

β2 −β2
0

2β0
+ nk

β0
γ|A|2)Â = 0. (2.20)

The coefficients of Eq. (2.20) can be approximately evaluated as nk ≈β0 and β+β0 ≈ 2β0, so

that the equation can be simplified to

i∂z Â+ (β−β0)Â+γ|A|2 Â = 0. (2.21)

Eq. (2.21) is in fact the nonlinear Schrödinger equation in the frequency domain and in order

to convert it to the time domain, it is necessary to consider the dispersion relation β=β(ω)

in detail. The dispersion relation can be expanded using a Taylor series around the central

frequency ω0 as follows:

β(ω) =
∞∑

m=0

βm

m!
(ω−ω0)m , (2.22)

where the dispersion coefficient βm is given by d mβ
dωm |ω=ω0 . Therefore, the coefficient β−β0 in

Eq. (2.21) is represented versus the frequency detuningΩ=ω−ω0 via

β−β0 =
∞∑

m=1

βm

m!
Ωm . (2.23)

The time derivative ∂t is represented by −iΩ in the frequency domain and the term Ωm in

Eq. (2.23) can be written as i m(−iΩ)m , soΩm represents the time derivative i m∂m
t in the time

domain. Taking the inverse Fourier transform of Eq. (2.21) and using Eq. (2.23) result in

i∂zA+
∞∑

m=1
i m βm

m!
∂m

t A+γ|A|2 A = 0. (2.24)

Eq. (2.24) is the general form of the scalar nonlinear Schrödinger equation in a lossless medium

with instantaneous intensity-dependant refractive index. To include the fiber attenuation in
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the equation we can simply add a damping term proportional to the field envelope with the

damping coefficient of α
2 (note that α is the power attenuation coefficient) as follows:

i∂zA+
∞∑

m=1
i m βm

m!
∂m

t A+ i
α

2
A+γ|A|2 A = 0. (2.25)

Eq. (2.25) is the nonlinear Schrödinger equation for lossy fibers and is its most general form

we deal with in this dissertation. The equation can be generalized to include other effects

such as delayed response of silica due to the Raman and Brillouin contribution to the Kerr

coefficient [3].

2.1.2 Normalization of the NLSE

In order to solve the nonlinear Schrödinger equation both analytically and numerically, it

is convenient to normalize the variables and functions. The first step is to remove the loss

term from the NLSE in lossy media and normalizing the envelope by defining the normalized

envelope U (z, t ) so that

A(z, t ) =
√

P0e−
α
2 zU (z, t ), (2.26)

where P0 is the input peak power so that |U (0,0)| = 1. It can be easily calculated that

∂z A =
√

P0e−
α
2 z

(
∂z − α

2

)
Uz . (2.27)

Substituting ∂z A from Eq. (2.27) in the lossy NLSE given in Eq. (2.25) results in the following

form of the equation:

i∂zU +
∞∑

m=1
i m βm

m!
∂m

t U +γe−αz P0|U |2U = 0. (2.28)

According to Eq. (2.28) the difference between lossless and lossy equations is in the coefficient

of the nonlinear term. In the lossless case (α= 0), the coefficient is γP0 which is a constant;

whilst in the lossy case, it equals γP0e−αz which is a function of the variable z. Such a dif-

ference makes a distinction in solving the equation with and without attenuation. Another

modification to the NLSE can be the normalization of the independent variables. The position

variable is normalized to the nonlinear length of the fiber defined as LNL = 1
γP0

. In the case

of time, it is more convenient to attach to the reference frame traveling with the envelope

group velocity vg = 1
β1

; moreover, time can also be normalized to an arbitrary parameter T0

representing for instance, pulse duration. Therefore, the following transformation for time

and space are utilized:

ζ,
z

LNL
= γP0z, (2.29a)

τ,
t − z/vg

T0
= t −β1z

T0
. (2.29b)
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Changing the variables (z, t ) to (ζ,τ) in Eq. (2.28) results in the following NLSE with normalized

variables:

i∂ζU +
∞∑

m=2

i mβm

m!T m
0 γP0

∂m
τ U +e−

α
γP0

ζ|U |2U = 0. (2.30)

Note that by the transformations in Eqs. (2.29), the series in Eq. (2.30) starts from the group

velocity dispersion β2 compared to Eq. (2.28) starting with β1. In standard SMFs working at

1550 nm, the group velocity dispersion (GVD) coefficient is dominant and all higher order

dispersion coefficients can be safely neglected. In this case Eq. (2.30) is reduced to

i∂ζU − sgn(β2)
LNL

2LD
∂2
τU +e−LNLαζ|U |2U = 0, (2.31)

where sgn(β2) denotes the sign of the group velocity dispersion and LD = T 2
0

|β2| is the dispersion

length. Since the parameter T0 is arbitrary, it can be chosen as
√ |β2|

γP0
so that LD = LNL and

thus,

i∂ζU − sgn(β2)

2
∂2
τU +e−LNLαζ|U |2U = 0. (2.32)

Throughout this dissertation we deal with standard SMFs working at the C-band where the

GVD coefficient is dominant and so Eq. (2.32) is here the adopted form of the NLSE. The GVD

coefficient β2 [ ps2

km ] can be expressed in terms of the dispersion parameter D [ ps
nm.km ] as follows:

β2 =−λ
ω

D =− λ2

2πc
D. (2.33)

For instance, in a standard SMF at 1550 nm where the dispersion parameter is ≈ 17 ps
nm.km , the

GVD coefficient is ≈−22 ps2

km . It is evident from Eq. (2.32) that the sign of β2 plays a role in the

behavior of the NLSE. As we will see later light evolves differently in a nonlinear medium with

normal (β2 > 0) or anomalous (β2 < 0) dispersion.

2.2 Solutions for the NLSE

There have been extensive efforts to find analytical solutions for the nonlinear Schrödinger

equation in different conditions [51, 52]. Several solutions such as solitons [53] and breathers

[54] have been obtained depending on initial conditions. However, in general case there is

no analytical solution and thus, exploiting numerical methods is indispensable. In order to

validate the employed numerical algorithm we need to compare it with some analytical results.

The simplest temporal solution to the NLSE in a lossless medium is the fundamental soliton

that can be utilized as a criterion for verifying numerical results. Before solving the NLSE, two

pulse shapes commonly used in optics, i.e. Gaussian and hyperbolic secant are introduced

and compared. For a temporal or spectral pulse x(s) where s can be time or frequency, the
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root-mean square (RMS) width σs is defined as [55]

σ2
s =

∫ +∞

−∞
(s −µs)2|x(s)|2d s∫ +∞

−∞
|x(s)|2d s

, where µs =

∫ +∞

−∞
s|x(s)|2d s∫ +∞

−∞
|x(s)|2d s

. (2.34)

For a temporal pulse x(t) and its Fourier transform x̂(ω) there is a fundamental relation

between their RMS widths known as Heisenberg’s uncertainty principle which is derived using

the Cauchy–Schwarz inequality and is given by [55]

σtσω ≥ 1

2
. (2.35)

Another definition for temporal and spectral width which is commonly used in optics is the

full-width at half-maximum (FWHM) duration [41]. The FWHM of a pulse x(s) is the distance

between the positions at which |x(s)|2 = 1
2 |xmax|2. The Gaussian and hyperbolic secant pulse

shapes and their Fourier transforms are expressed as

x(t ) = e
− t2

2T 2
0 , x̂(ω) =p

2πT0e−
T 2

0 ω
2

2 , (2.36a)

y(t ) = sech

(
t

T0

)
, ŷ(ω) =πT0sech

(
πT0ω

2

)
. (2.36b)

An interesting point about these two pulse shapes is that their Fourier transform has the same

shape as their temporal function. Table 2.1 shows different parameters of the Gaussian and

sech pulses given in Eqs. (2.36). It is clear from the table that for the Gaussian pulse σtσω = 1
2 ;

Pulse σt σω TFWHM ΩFWHM

Gaussian T0p
2

1
T0

p
2

2
p

ln2T0
2
p

ln2
T0

sech πT0

2
p

3
1

T0
p

3
2ln

(p
2+1

)
T0

4ln
(p

2+1
)

πT0

Table 2.1 – Temporal and Spectral Widths.

in fact, it is the only pulse satisfying equality in Heisenberg’s uncertainty principle. In the case

of sech pulse, σtσω = π
6 which is certainly greater than 1

2 . On the other hand, TFWHMΩFWHM

is equal to 4ln2 ≈ 2.773 for the Gaussian pulse, and 8
π ln2(

p
2+1) ≈ 1.978 for the sech pulse.

Another interesting point about these two signals is that although σtσω of the Gaussian pulse

is less than that of the sech pulse, its TFWHMΩFWHM is larger. Fig. 2.1 compares the temporal

and spectral shapes of the Gaussian and sech pulses for the FWHM temporal width of unity

(TFWHM = 1). Using such pulses, certain solutions of the NLSE are presented in the coming

sections.
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Figure 2.1 – Comparison of the Gaussian and sech pulses with TFWHM = 1; a) Temporal intensity, b) Spectral
intensity.

2.2.1 Propagation in Linear and Dispersive Media
If the nonlinear term in the NLSE is neglected, only remains the dispersion effect and Eq. (2.28)

reduces to

i∂zU +
∞∑

m=1
i m βm

m!
∂m

t U = 0. (2.37)

Taking the Fourier transform of Eq. (2.37) and substituting ∂t by −iΩ result in

i∂zÛ +Û
∞∑

m=1

βm

m!
Ωm = 0. (2.38)

Eq. (2.38) is a first-order linear differential equation and its solution is

Û (z,Ω) = Û (0,Ω)e i z
∑∞

m=1
βm
m! Ω

m
(2.39)

The temporal shape of pulses can be obtained by taking the inverse Fourier transform of

Eq. (2.39) which depends on the initial pulse shape U (0, t ). It is clear from the expression that

propagation does not affect the spectrum of the traveling signal, i.e. |Û (z,Ω)|2 = |Û (0,Ω)|2.

However, the temporal shape can dramatically change in a linear dispersive medium. As

an example, suppose that a Gaussian pulse given in Eq. (2.36) is launched into a standard

SMF where the second-order dispersion coefficient is dominant. According to Eq. (2.39) the

propagating pulse has the following Fourier transform at position z:

Û (z,Ω) =p
2πT0e−

T 2
0
2 Ω

2
e i z(β1Ω+ β2

2 Ω
2) =p

2πT0e iβ1zΩe−
Ω2

2 (T 2
0 −iβ2z). (2.40)

The temporal pulse is obtained by taking the inverse Fourier transform of Eq. (2.40) as follows:

U (z, t ) = 1√
1− i β2z

T 2
0

e
− (t−β1 z)2

2(T 2
0 −iβ2 z) . (2.41)
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This way the pulse intensity is given by

|U (z, t )|2 = 1√
1+ (β2z

T 2
0

)2
e

− (t−β1 z)2

T 2
0

(
1+

(
β2 z

T 2
0

)2)
. (2.42)

It is deduced from Eq. (2.42) that the propagating pulse remains Gaussian, but its temporal

width increases while its spectral shape does not change. The following broadening factor

determines the amount of increase in the temporal width of the pulse at the output of a fiber

of length L:

TL

T0
=

√
1+

(
L

LD

)2

, (2.43)

where LD = T 2
0

|β2| is the fiber dispersion length. For example, a Gaussian pulse with the FWHM

of 30 ps and the peak power of 100 mW is launched at the input of a 40-km long fiber with

the GVD of −22 ps2

km . Fig. 2.2a compares the input and output of the fiber and shows clearly

the temporal broadening due to propagation; while it is implied from Fig. 2.2b that the pulse

spectrum remains unchanged during propagation.
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Figure 2.2 – Comparison of the input and output of a fiber of 40 km with β2 =−22 ps2

km for a Gaussian pulse
with the FWHM of 30 ps; a) Temporal intensity, b) Spectral intensity.

2.2.2 Propagation in Nonlinear and Nondispersive Media

A medium with pure nonlinearity gives a direct insight to the main contribution of the Kerr

effect in optical fibers, i.e. self-phase modulation (SPM). Therefore, it is essential to analyze a

non-dispersive Kerr medium in details. In such a medium all the dispersion coefficients βm

are null for m ≥ 2 and thus Eq. (2.30) is simplified to

i∂ζU +e−
α
γP0

ζ|U |2U = 0. (2.44)

35



Chapter 2. Nonlinear Schrödinger Equation

Although Eq. (2.44) is a nonlinear differential equation, it is integrable and can be solved

analytically [56]. The key point in solving the equation is to show that the field intensity

|U (ζ,τ)| is independent of position ζ. It can be demonstrated as follows:

=0︷ ︸︸ ︷(
i∂ζU +e−

α
γP0

ζ|U |2U
)

U∗−
=0︷ ︸︸ ︷(

i∂ζU +e−
α
γP0

ζ|U |2U
)∗

U =

iU∗∂ζU +e−
α
γP0

ζ|U |4 − (−iU∂ζU
∗+e−

α
γP0

ζ|U |4) =

i
(
U∗∂ζU +U∂ζU

∗)= i∂ζ (U∗U ) = i∂ζ|U |2 = 0.

(2.45)

Since ∂ζ|U |2 = 0, it is evident that |U | can be treated as a constant with respect to ζ. Rearranging

Eq. (2.44) gives the following well-known differential equation

∂ζU

U
= i |U |2e−

α
γP0

ζ, (2.46)

whose right-hand side is purely exponential with respect to ζ and can be integrated analytically.

Assuming a general initial pulse U (0,τ) and integrating over the interval [0, z] lead to

U (ζ,τ) =U (0,τ)exp

(
iγP0|U |2 1−e−

α
γP0

ζ

α

)
. (2.47)

Transforming the variables according to Eq. (2.29) with T0 of unity, the solution is expressed by

U (z, t ) =U (0, t −β1z)e iγP0|U (0,t−β1z)|2 1−e−αz

α . (2.48)

There are several important points in Eq. (2.48) to which attention must be paid. Firstly,

the pulse shape is not affected by a purely Kerr medium because |U (z, t)| = |U (0, t −β1z)|.
Secondly, the field experiences a phase modulation proportional to the intensity of the field

itself; that is why it is called the self-phase modulation (SPM). Thirdly, for a fiber of length L

the induced phase is proportional to the effective length of the fiber defined as [3]

Leff =
1−e−αL

α
. (2.49)

It is easily seen that for lossless fibers whereα= 0, we have Leff = L. Moreover, the maximum of

effective length is given by 1
α which can be obtained by letting L go to infinity. As an example,

for standard fibers with α= 0.2 dB
km , the maximum effective length is ≈ 21.7 km. According to

Eq. (2.48) the nonlinear phase experienced by a normalized optical field U is given by

ΦNL = γP0|U |2Leff = |U |2 Leff

LNL
. (2.50)

Since the field is normalized, the maximum phase shift is given by γP0Leff = Leff/LNL; for

example for a very long fiber (Leff ≈ 21 km) with γ = 1.5 W−1

km , an optical pulse with a peak

power 100 mW experience a nonlinear phase shift of around π rad. Although SPM does not
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Figure 2.3 – Numerical comparison of the normalized input and output of a 10-km fiber with γ= 1.8 W−1

km
and α = 0.2 dB

km for a Gaussian pulse with the FWHM of 1 ns and the peak power of 1 W; a) Temporal
intensity, b) Spectral intensity.

affect the temporal shape of optical pulses, it can change their spectrum substantially. For

example, suppose a Gaussian pulse with a peak power 1 W and a FWHM 1 ns is launched

into a 10-km long fiber with α = 0.2 dB
km and γ = 1.8 W−1

km . Fig. 2.3 compares the normalized

input and output pulses in the time and frequency domains. As it is clear from Fig. 2.3a,

the pulse shape remains unchanged in propagation whilst Fig. 2.3b shows the oscillatory

behaviour of the spectrum due to SPM [57]. The fluctuations of the spectrum due to self-phase

modulation, described numerically in Fig. 2.3b can also be observed experimentally. To do

so, an experiment illustrated in Fig. 2.4 has been carried out using a 10.6-km dispersion-

shifted fiber (DSF) with α= 0.24 dB
km and γ= 2.9 W−1

km . The output of a continuous-wave (CW)

laser at 1551 nm is modulated using a semiconductor optical amplifier (SOA) driven by a

pulse generator. The modulated light is amplified by an erbium-doped fiber amplifier (EDFA)

and its peak power is regulated by a variable optical attenuator (VOA) and monitored by a

calibration setup, then launched into the fiber. The output spectrum is measured by an optical

spectrum analyser (OSA). Fig. 2.5 shows the measured spectrum at the output of the fiber.

EDFA

LD

Pulse
Generator

PC

FUT

OSA

VOA

PD

99:1

Coupler

3 dB

A�enuator

Osc.

SOA

Figure 2.4 – Scheme of the experimental setup for SPM measurement. LD: laser diode, PC: polarization
controller, SOA: semiconductor optical amplifier, EDFA: erbium-doped fiber amplifier, VOA: variable optical
attenuator, FUT: fiber under test, OSA: optical spectrum analyzer, PD: photo-detector, Osc.: Oscilloscope.

The oscillatory behavior of the spectrum is obvious from the figure; we can also see that by

boosting the peak power the number of spectral extrema increases because of inducing more

phase due to SPM. It should be noted that the zero-dispersion wavelength of the used fiber

is located around 1562 nm so that the fiber has normal dispersion at the laser wavelength of
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Figure 2.5 – Experimental observation of spectral oscillations due to self phase modulation.

1551 nm. Therefore, there is no modulation instability (MI) to affect the spectrum of light and

hamper the observation of SPM-induced spectral fluctuations. It is also worth mentioning

that the asymmetry in the measured spectrum is due to the asymmetry in the generated pulses

because the SPM-induced phase is highly dependent on the pulse shape.

2.2.3 Propagation in Nonlinear and Dispersive Media

When both dispersion and nonlinearity exist in a medium, they interact with each other

and based on their magnitude and characteristics, different phenomenon can be observed.

Unfortunately, there is no analytical solution for the NLSE in its general form, yet in some

special cases it is possible to have closed-form solutions providing an insight on how the

interaction of dispersion and nonlinearity takes place. In this section, the special case of

soliton propagation is investigated as a solution to the NLSE. Solitons are referred to the pulses

that keep their temporal and spectral shapes unchanged during the propagation in a nonlinear

dispersive medium. In fact, dispersion and nonlinearity interact in a way that the effect of one

is exactly compensated by the other’s. Suppose a lossless fiber with the nonlinear coefficient

γ> 0 and the GVD coefficient β2 in the anomalous regime, i.e. sgn(β2) < 0, so that Eq. (2.32)

reduces to

i∂ζU + 1

2
∂2
τU +|U |2U = 0. (2.51)

In this case, if a hyperbolic secant pulse is launched into the fiber, i.e. U (0,τ) = sech(τ), a

solution to Eq. (2.51) can be expressed by U (ζ,τ) = sech(τ)e iζ/2 referred to as the fundamental
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soliton; the traveling soliton is given by

U (z, t ) = sech

(
t −β1z

T0

)
e i

γP0
2 z , (2.52)

where T0 =
√ |β2|

γP0
is the pulse width. It is seen that the width of soliton depends upon the peak

power of pulse so it is important to have a lossless medium in order to keep the peak power

unchanged and so the pulse width. Another interesting point about the fundamental soliton

is its self-phase modulation which is proportional to half the peak power. The input pulse can

be N sech(τ) where N is an integer; in the case of integers higher than 1, higher-order solitons

propagate in the fiber. For instance, when N = 2, the second-order soliton is given by [3]

U (ζ,τ) = 4
cosh(3τ)+3e4iζ cosh(τ)

cosh(4τ)+4cosh(2τ)+3cos(4ζ)
e i ζ2 . (2.53)

It should be noted that in contrast to the fundamental soliton, higher-order solitons alter their

shape periodically with period π
2 LNL. Fig 2.6a shows the propagation of the fundamental

a) b)

Figure 2.6 – Spatiotemporal distribution of solitons in optical fibers for a) Fundamental soliton, b) Second-
order soliton.

soliton in optical fibers. It is clear that the shape of the pulse preserves during the propaga-

tion which makes it a promising candidate for optical communications in dispersive media.

However, because of attenuation the pulse power dissipates and its shape deviates from the

initial one and thus it should be used in low dissipation regime or with amplification. Fig. 2.6b

illustrates the spatiotemporal distribution of the second-order soliton showing the periodic

change of the pulse shape during propagation. Solitons are among very rare solutions of

the nonlinear Schrödinger equation and they propagate in very special conditions. However,

their importance is in providing analytical solutions; in other words, numerical algorithms for

simulating the NLSE can be evaluated using solitons. All the numerical methods used in this

work have been verified in this way.
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2.3 Split-Step Fourier Method
As we have seen in the previous sections, analytical solutions for the nonlinear Schrödinger

equation are available for very specific conditions. In real optical systems however, practical

conditions make systems so complicated that they cannot be described by analytical solutions.

Therefore, numerical methods are indispensable for simulating real conditions in an optical

system. For the special case of nonlinear fiber optics, the most used numerical algorithm is

the split-step Fourier method [3]. This algorithm simulates the propagation of light in optical

fiber step by step considering either dispersion or nonlinearity [58]. In other words, the fiber is

treated as a dispersive but linear in the frequency domain; and nonlinear but non-dispersive

in the time domain. The reason for commuting from time to frequency lies in the fact that the

NLSE’s solution is known for pure nonlinearity in the time domain and for pure dispersion in

the frequency domain. It can be summarized in the following two expressions assuming two

positions zn and zn+1 on the fiber for the NLSE given in Eq. (2.28):

Dispersion: Û (zn+1,Ω) = Û (zn ,Ω)e i (zn+1−zn )
∑∞

m=1
βm
m! Ω

m
, (2.54a)

Nonlinearity: U (zn+1, t ) =U (zn , t )e iγP0|U |2 e−αzn −e−αzn+1
α . (2.54b)

The idea behind the split-step Fourier method is depicted in Fig. 2.7 where an optical fiber

of length L is divided into uniform pieces of length ∆z. The effect of dispersion is calculated

by the dispersion operator D̂ in the frequency domain, described in Eq. (2.54a); while the

nonlinearity operator N given in Eq. (2.54b) is responsible for simulating the Kerr effect in

the time domain. The fast Fourier transform (FFT) algorithm and its inverse are utilized for

commuting from time to frequency to speed up the numerical computation [59]. It can

0 z1 z2 z3 z4 L z∆z ∆z ∆z ∆z ∆z

D̂1

N1

N2

D̂2

D̂3

N3

N4

D̂4

D̂5

N5

Figure 2.7 – Illustration of the split-step Fourier method; D̂ stands for the dispersion operator and N for
the nonlinear operator.

be proved that the accuracy of the split-step Fourier method illustrated in Fig. 2.7 is of the

second order of the step size, i.e. (∆z)2 [3]. This accuracy can be easily increased to the third

order (∆z)3 without increasing the computational cost by symmetrizing the algorithm [60].

Fig. 2.8 shows the mechanism of the symmetric split-step Fourier method. The only difference

with the ordinary algorithm is the initial and final half-steps which reduce the error in the

method. It is evident that the smaller the step size ∆z is, the less the calculation error will

be. However, by decreasing the step size the processing time increases. Therefore, there is a
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0 z1 z2 z3 z4 L z∆z ∆z ∆z ∆z ∆z

D̂1

N1

D̂2

N2

D̂3

N3

D̂4

N4

D̂5

N5

D̂6

Figure 2.8 – Illustration of the symmetric split-step Fourier method

trad-off between the numerical error and consumed time [61]. As a rule of thumb, a step size

less than the dispersion length LD and the nonlinear length LNL is a good choice. To make

sure that the selected step size does not make systematic error, it is necessary to compare the

time energy and spectral energy before and after propagation using Parseval’s theorem given

by [55]∫ +∞

−∞
|x(t )|2dt = 1

2π

∫ +∞

−∞
|x̂(ω)|2dω. (2.55)

Additionally, specific analytical solutions such as solitons can be used to verify the validity

of numerical algorithms. Finally, it should be noted that the split-step Fourier method is

trustworthy as long as the slowly varying envelope approximation is valid. Therefore, in

situations like few-cycle pulses other numerical methods such as finite-difference time domain

(FDTD) must be applied directly to Maxwell’s equations. As an example of using the split-

step Fourier method, consider a 25-km standard SMF with α = 0.2 dB
km , β2 = −22 ps2

km , and

γ= 1.6 W−1

km . A gaussian pulse with the peak power of 1 W and the FWHM of 30 ps is launched

into the fiber. The output of the fiber has been calculated by running a split-step program

in MATLABr. Fig. 2.9 compares the input and output of the fiber in the time and frequency

domains. As it is evident from the figure, the interaction of dispersion and the Kerr effect
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Figure 2.9 – Propagation of a Gaussian pulse in an optical fiber evaluated by the split-step Fourier method:
a) Temporal evolution, b) Spectral evolution.
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can change the temporal and spectral shapes of the pulse substantially compared to the

conditions where there is either dispersion or nonlinearity. Fig. 2.9a shows that how a single

pulse propagating in a nonlinear dispersive medium can be broken up to multiple pulses;

while Fig. 2.9b demonstrates the emergence of spectral components in the pulse due to

nonlinearity.

2.4 SPM-Based Measurement of Nonlinear Coefficient
The Kerr effect or the intensity-dependent refractive index causes only self-phase modulation

(SPM) on a monochromatic wave in a non-dispersive medium; so SPM is the the result of pure

Kerr effect and can be used to measure the nonlinear coefficient of a medium efficiently. This

phenomenon broadens the spectrum of optical pulses while it does not affect their temporal

shape except adding a phase proportional to optical intensity. Self phase modulation was

first observed in CS2 (carbon disulfide that is a colorless liquid) in 1967 [62]. Then, it was

demonstrated in an optical fiber whose core was filled with CS2 in 1974 [63]. The thorough

analysis and demonstration of SPM in silica-core fibers was carried out in 1978 by Stolen and

Lin [57]. The induced phase on an optical pulse due to SPM is in proportion to its shape and

thus, in order to have a uniform phase modulation a rectangular pulse must be used. The

induced phase by a rectangular pulse is given by

ΦNL = γP0Leff. (2.56)

Since the induced phase is proportional to the nonlinear coefficient, it is possible to obtain

the nonlinear coefficient of a fiber by measuring the amount of self-phase modulation. A

typical instrument of measuring phase is an interferometer that translates the phase differ-

ence to intensity that can be easily detected. Here we use a self-aligned interferometer for

measuring the nonlinear coefficient of different types of optical fibers [64]. The scheme of a

self-aligned interferometer for measuring the nonlinear coefficient is shown in Fig. 2.10. The

main advantage of this technique for measuring the Kerr effect is that it can be applied to all

types of optical fibers with normal and anomalous dispersions because the measurement is

carried out on optical pulses in time domain; while other methods are based on the spectral

measurement and thus can only be used for fibers with normal dispersion that do not suffer

from spectral broadening due to modulation instability. The working principle of the self-

Mirror

50:50

PD

PC

Delay

R2:1-R2

FUT

Coupler 1 Coupler 2
Isolator

Osc.

FM

99:1

Coupler

PD Osc.

Lens Faraday

Rotator

EDFA VOA

LD

Pulse
Generator

PC

SOA

Figure 2.10 – Scheme of a self-aligned interferometer for nonlinear coefficient measurement. LD: laser
diode, PC: polarization controller, SOA: semiconductor optical amplifier, VOA: variable optical attenuator,
PD: Photo-detector, Osc.: oscilloscope, FUT: fiber under test, FM: Faraday mirror
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aligned interferometer is explained in Fig. 2.11 [65]. An optical pulse is generated and boosted,

then split into two pulses via the first coupler. The two pulses are combined together in the

second coupler but with different delays and coupling ratios. Two pulses travel through the

fiber under test (FUT) and then reflect from a Faraday mirror. After traveling back through

the same path, they are detected by a photo-detector and acquired via an oscilloscope. Since

the forward and backward pulses experience the same delay arm (self-aligned), three pulses

are measured in the oscilloscope so that the middle pulse is the interference of two pulses.

Since the two interfering pulses travel the same length, they have the same linear phase due

to propagation; while they experience different nonlinear phase from SPM because of their

different power levels. This way, it is possible to measure the induced nonlinear phase without

any contribution of propagation phase.

R1 R2
To FUT

From FUT

To PD

Delay

PC

From laser

Coupler 1 Coupler 2

Figure 2.11 – Illustration of the interferometry setup. The forward traveling pulses are depicted in blue
while the returning signals are drawn in red.

The polarization controller in one of the interferometer’s arms is essential to maximize

the interference of the two optical pulses by matching their polarization state. Moreover,

the Faraday mirror used at the end of the FUT, reflects the orthogonal state of the incident

polarization and thus, the optical pulse traveling in the fiber experiences two orthogonal po-

larizations. This way, all polarization effects due to random birefringence and environmental

perturbations are cancelled [66]. As it is illustrated in the experimental setup of Fig. 2.10, the

Faraday mirror includes a collimating lens, an ordinary mirror and a Faraday rotator. The

Faraday rotator is an optically active medium working based on the magneto-optic effect. As

light propagates through the Faraday rotator, its plane of polarization rotates and the angle of

rotation is determined by the length of the medium, in this case 45°. Moreover, the plane of

polarization in a Faraday mirror rotates in the same direction regardless of the propagation

direction. Therefore, the backward wave also experiences a polarization plane rotation of

45° and thus the final rotation will be 90°. It must be noted that this argument is true for

linear (planar) polarizations, while the Faraday mirror has no effect on circular polarizations.

Actually, circular polarizations are eigenstates of a Faraday rotator. However, the ordinary

mirror alters the handedness of circular polarizations and thus transforms a circular polar-

ization to its orthogonal state. An elliptic polarization can be expressed in terms of a linear

and a circular polarization, so the linear part of the reflected polarization state is transformed

to its orthogonal counterpart by the Faraday rotator and its circular part is changed to an
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Figure 2.12 – Function of the Faraday mirror in reflecting the orthogonal polarization state of the incident
wave: a) Incident and reflected states of polarization (SOP), b) Stokes representation of the Faraday mirror
on the Poincaré sphere.

orthogonal one by the ordinary mirror. This way, every polarization state reflected from the

Faraday mirror is orthogonal to its corresponding incident polarization.

Fig. 2.12 describes the function of the Faraday mirror used in this experiment. A righthanded

(clockwise) elliptic polarization state depicted in Fig. 2.12a enters the Faraday mirror and the

corresponding reflected one is a lefthanded (counterclockwise) elliptic polarization illustrated

in the figure. As it is clear, the major axes of the two ellipses are perpendicular and the

handedness of the polarization states is opposite. Fig. 2.12b demonstrates how the Faraday

mirror works using the Stokes representation of the state of polarization (SOP) on the Poincaré

sphere. The incident polarization state is rotated by 45° as it passes through the Faraday rotator.

It is equivalent to a 90° rotation around the S3 axis on the Poincaré sphere as it is shown in

Fig. 2.12b; in fact, the Faraday rotator keeps S3 unchanged. Then, the ordinary mirror reflect

the incident light by altering its handedness and thus, by changing S3 to −S3 while keeping

S1 and S2 fixed. On the poincaré sphere it is represented by a reflection against the equator

plane. Travelling again through the Faraday rotator, the reflected light experiences another

45° rotation in the same direction and equivalently, a rotation of 90° around the S3 axis of the

Poincaré sphere. This way, the final point on the Poincaré sphere is the antipodal of the initial

one, demonstrating a polarization state orthogonal to the initial one.

2.4.1 Mathematical Analysis of the Self-Aligned Interferometer

In this section, the thorough analysis of the self-aligned interferometer for measuring the

nonlinear coefficient is presented. This analysis demonstrates that the optimal ratio for the

first coupler is 50%. Before analyzing the setup it is essential to describe the behaviour of a

coupler in the field domain. Fig. 2.13 describes the output fields of a coupler with power ratio

R versus its input fields. Such a description can be easily proved by applying the conservation

of energy to input and output ports. It is clear that in a coupler with power ratio R, an

input optical field is split into two branches with field ratios
p

R and −i
p

1−R showing a 90°
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Figure 2.13 – Output ports of a coupler with power ratio R versus its inputs in the field domain.

phase difference. In order to analyze the self-aligned interferometer illustrated in Fig. 2.10, we

consider the two interfering pulses as SL (short-long) and LS (long-short) showing that the

first pulse travels through the short path and reflects back via the long path while the opposite

holds for the second. Therefore, the following phase shifts experienced by the optical pulses

can be defined:

1. ΦD: Phase shift due to the delay in the long arm of the interferometer made by a 90-m

long SMF.

2. ΦPC-SL andΦPC-LS: Phase shifts induced by the polarization controller (PC) in the short

arm of the interferometer. It should be noted that although both pulses passes the same

PC, they undergo different phase shifts depending on their input state of polarization.

This way, the PC provides a degree of freedom on the phase difference between the two

pulses.

3. ΦLN = 2n0kL: Linear phase shift due to traveling twice across the FUT. n0 is the linear

refractive index, k = 2π
λ is the wavenumber and L is the fiber length.

4. ΦNL-SL, φNL-LS: Nonlinear phase shifts acquired by each pulses which are obviously

different because of different power levels.

5. ΦFM: Phase shift due to reflection on the Faraday mirror.

The optical field of each interfering pulse at the input of the photo-detector can be expressed

by

ASL = i Aine−αL(1−R1)
√

R2(1−R2)e−iΦSL , (2.57a)

ALS =−i Aine−αLR1

√
R2(1−R2)e−iΦLS , (2.57b)

where Ain is the input field of the first coupler; the phase shifts induced on the interfering

pulses are given by

ΦSL = 2n0kL+ΦFM +ΦD +ΦPC-SL +ΦNL-SL, (2.58a)

ΦLS = 2n0kL+ΦFM +ΦD +ΦPC-LS +ΦNL-LS. (2.58b)

The interference of the two middle pulses is given by

Aout = ASL + ALS = i Aine−αL
√

R2(1−R2)
(
(1−R1)e−iΦSL −R1e−iΦLS

)
, (2.59)
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so that the intensity of the pulse detected by the photo-detector is obtained as

Pout = |Aout|2 = |Ain|2e−2αLR2(1−R2)|(1−R1)e−iΦSL −R1e−iΦLS |2
= Pine−2αLR2(1−R2)

(
1−2R1(1−R1)(1+cos(ΦSL −ΦLS))

)
. (2.60)

It can be easily seen that the visibility of Pout or its maximum to minimum ratio is optimal

when R1 = 1
2 meaning that the first coupler must be 50:50. Using such a coupler leads to the

following detected pulse:

Pout = Pine−2αLR2(1−R2)sin2
(
ΦSL −ΦLS

2

)
. (2.61)

By using Eqs. (2.58) it is seen that the phase difference is given by only the nonlinear phase

due to SPM and the phase induced by the polarization controller as follows:

ΦSL −ΦLS =ΦPC-SL −ΦPC-LS +ΦNL-SL −ΦNL-LS. (2.62)

The polarization controller provides a degree of freedom that can be exploited by calibrating

the PC in a linear regime (low power pulses) so that the detected pulse is maximal. It means

that the phase difference induced by the PC is π rad; substituting Eq. (2.62) after calibration in

Eq. (2.61) results in

Pout = Pine−2αLR2(1−R2)cos2
(
ΦNL

2

)
, (2.63)

whereΦNL =ΦNL-SL−ΦNL-LS is the phase difference experienced by two interfering pulses due

to SPM. Eq. (2.63) indicates that when the nonlinear phase difference is π rad, the two pulses

interfere destructively and thus they cancel out. Therefore, as the input power increases,

the system transforms from the linear to nonlinear regime and the detected middle pulse

decreases from its maximum to zero. The nonlinear phase difference due to SPM can be

written

ΦNL =ΦNL-SL −ΦNL-LS = γLeff

1

2
R2Pin︸ ︷︷ ︸
Phigh

− 1

2
(1−R2)Pin︸ ︷︷ ︸

Plow

 , (2.64)

where Phigh and Plow are easily measured by the calibration circuit shown in Fig. 2.10 at

the input of the FUT. Moreover, it is clear from Eq. (2.64) that the second coupler must be

unbalanced unless the nonlinear phase is zero; in the experiment a 90:10 coupler has been

used.

2.4.2 Experimental Results
After calibrating the polarization control in the linear or low-power regime, the peak power of

the input pulse is increased to induce the phase difference on the two interfering pulses so

that they cancel completely; at such a condition, according to Eq. (2.61) the nonlinear phase
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difference is π rad and so by measuring the low and high powers at the input of the FUT we

can calculate the nonlinear coefficient using Eq. (2.64) as follows:

γ= π

Leff
(
Phigh −Plow

) . (2.65)

It is worth mentioning that the nonlinear coefficient measured in this way for standard optical

fibers with random birefringence has a correction factor due to averaging over the polarization

states of light that change randomly during the propagation. It has been shown theoretically

[67] and experimentally [68] that such a correction factor must be 8
9 so that the nonlinearity

versus the Kerr coefficient is given by

γ= 8

9

2π

λ

n2

Aeff
. (2.66)

This experiment has been done for a variety of fibers, including standard single-mode fiber

(SMF), dispersion-shifted fiber (DSF), and dispersion-compensating fiber (DCF) with different

lengths. As an example, Fig. 2.14 shows the measured pulses for a 4-km DCF. The input pulse

of 6-ns duration is plotted in Fig. 2.14a and the middle pulse resulted from the interference of

two optical pulses is plotted in Fig. 2.14b. It shows clearly that the interference pulse is null at
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Figure 2.14 – Acquired pulses of the self-aligned interferometer for measuring the nonlinear coefficient of
optical fibers a) Input pulse, b) Interfering pulse.

its middle part demonstrating a π phase shift due to SPM. It should be noticed that the tail

and head parts of the interference pulse are not zero because the generated pulse is obviously

not a perfect rectangle. Moreover, the input pulse shown in Fig. 2.14a is not symmetric and

thus, the induced SPM is different in its head and tail as it is evident in the interference pulse

shown in Fig. 2.14b. Table 2.2 represents the measured value of the nonlinear coefficient of

different fibers available in the laboratory [65]. Several spools of optical fibers with different

lengths have been measured using the self-aligned interferometric method. The measured

nonlinear coefficients lie clearly in the typical range of γ for different kinds of optical fibers.

The optical fiber in the last row of Table 2.2 is a special step-index optical fiber with the core

diameter of around 5 micron and thus its effective area is about 4 times less than a standard

SMF, so its nonlinear coefficient must be 4 times higher than a typical SMF.
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Type Length [km] γ [W−1/km]

SMF 11.1 1.6
SMF 25.4 1.0
SMF 25.5 1.8

DSF 8.7 3.1
DSF 10.6 2.9
DSF 13.1 2.3
DSF 25.6 3.3

DCF 4.0 4.5
DCF 4.6 4.4

Special 4.8 4.0

Table 2.2 – Measured Nonlinear Coefficients.

Since fiber manufacturers use different types of refractive index profile with different

amounts of dopants even for one kind of optical fiber, it is not surprising to see different

values for γ. For instance, the nonlinear coefficient of standard SMFs can vary in a range of

1 to 2 W−1

km depending on their refractive index profile [46], which is in accordance with the

measured nonlinearity in Table. 2.2. The measured values of the nonlinear coefficient for

different optical fibers given in Table. 2.2 are useful for analyzing any experiments involving

the Kerr effect, especially for modeling the phenomenon of modulation instability (MI) in

optical fibers which is the subject of the following chapters.
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3 Modulation Instability Gain

The aim of this chapter is to derive the analytical form of modulation instability (MI) gain in

optical fibers. Starting from the phase matching formalism of four-wave mixing (FWM) in

both degenerate and non-degenerate cases, we proceed to the linear stability analysis of the

nonlinear Schrödinger equation (NLSE) to investigate the small-signal behavior of a dispersive

Kerr medium driven by a strong continuous-wave (CW) optical pump. Based on this analysis,

the signal and idler fields are rigorously derived for two considerably different cases of lossless

and lossy optical fibers. By using such fields, the gain of optical parametric amplification (OPA)

which is inherently the same as MI is obtained for the phase-sensitive and phase-insensitive

regimes. Moreover, using the characteristics of noise as a random process it is demonstrated

that the gain of noise-seeded modulation instability is the sum of signal and idler gains. The

gain spectrum of modulation instability in both lossless and lossy fibers is analytically derived

and an appropriate approximation for the case of lossy fibers is presented. The MI gain

spectrum in all cases are plotted and compared with the numerical results obtained from

a Monte Carlo simulation of the NLSE solved by the split-step Fourier method. Finally, the

modulation instability gain spectra, experimentally measured for different optical fibers are

presented.

3.1 Dispersion Coefficients

Since the Kerr effect is a third-order nonlinear process, it leads to a four-wave mixing between

frequency components of optical signals. Therefore, the conservation of photon energy ~ω
leads to a symmetrical frequency band around a central frequency and thus the conservation

of photon momentum ~β(ω) indicates that only even components of the propagation constant

participate in the phase-matching condition. It will be mathematically proved when analysing

the MI gain. Therefore, separating the propagation constant to even and odd functions

is helpful in the analysis of the processes originating from the Kerr effect. Consider the

propagation constant β at frequency ω=ω0 +Ω, where ω0 is the central frequency andΩ is

the frequency detuning so that Ω¿ω0. The Taylor expansion of the propagation constant
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Chapter 3. Modulation Instability Gain

around the central frequency can be written as

β(ω0 +Ω) =
∞∑

m=0

βm

m!
Ωm =β0 +

∞∑
m=1

βm

m!
Ωm =β0 +δβ

=β0 +
∞∑

m=1

β2m−1

(2m −1)!
Ω2m−1 +

∞∑
m=1

β2m

(2m)!
Ω2m

=β0 +δβo +δβe, (3.1)

in which β0 =β(ω0) is the propagation constant at the central frequency and the dispersion

coefficient βm is given by d mβ
dωm |ω=ω0 . Besides, δβo and δβe denote the odd and even parts of

the dispersion relation, respectively. Since δβe has a critical role in the Kerr effect processes, it

is important to analyze it further. From a practical point of view when using standard SMFs in

the C-band, the group-velocity dispersion β2 is dominant and we can neglect higher order

coefficients; so δβe = β2

2 Ω
2. However, when DSFs are used in the C-band, β2 is so low that

β4 must also be taken into account which means δβe = β2

2 Ω
2 + β4

24Ω
4. It should be noted

that for a pump wavelength around the zero-dispersion wavelength of an optical fiber, the

group-velocity dispersion coefficient β2 is approximated by the third-order dispersion as

follows [69]:

β2 ≈ (ω0 −ωZD)β3, (3.2)

where ωZD shows the zero-dispersion frequency. Moreover, the third-order dispersion coeffi-

cient is given by the dispersion slope of the fiber via the following relation [70]:

β3 =
(
λ2

2πc

)2
dD

dλ
, (3.3)

in which D is the dispersion parameter and dD
dλ is the dispersion slope provided by fiber

manufacturers. For instance, the nominal value of dispersion slope for an SMF at its zero-

dispersion wavelength is 0.07 ps
nm2km [69].

3.1.1 Phase Matching in FWM

In the process of four-wave mixing (FWM) four photons interact together, two of them are

annihilated and the other two are created. The four-wave mixing is the mechanism behind the

two-pump parametric amplification and oscillation; so the terms of pump, signal and idler

are adopted from the literature on parametric processes [69]. If ω1 and ω2 are the frequencies

of the annihilated photons and ωs and ωi are those of the created photons, the principle of

energy conservation dictates ω1 +ω2 = ωs +ωi. Such a relation forces a symmetry on the

frequency diagram of the process illustrated in Fig. 3.1, where 2Ωp indicates the frequency

difference between the pumps andΩ is the frequency detuning of the signal and idler around

the central frequency ω0. The phase mismatch between the created and annihilated photons
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ωs ω1 ω0 ω2 ωi ω

Ω Ω

Ωp Ωp

Figure 3.1 – Frequency diagram of the FWM process.

can be derived as follows:

∆β= (
β(ωs)+β(ωi)

)− (
β(ω1)+β(ω2)

)
=β(ω0 −Ω)+β(ω0 +Ω)−β(ω0 −Ωp)−β(ω0 +Ωp)

= (
β0 −δβo(Ω)+δβe(Ω)

)+ (
β0 +δβo(Ω)+δβe(Ω)

)
− (
β0 −δβo(Ωp)+δβe(Ωp)

)− (
β0 +δβo(Ωp)+δβe(Ωp)

)
= 2

(
δβe(Ω)−δβe(Ωp)

)
(3.4)

Eq. (3.4) indicates that only the even terms of dispersion are effective in the phase matching of

the FWM process. The phase mismatch in Eq. (3.4) can be obviously expressed as β2(Ω2 −Ω2
p)

for SMFs and β2(Ω2 −Ω2
p)+ β4

12 (Ω4 −Ω4
p) for DSFs in the C-band.

3.1.2 Phase Matching in Degenerate FWM

In a medium with third-order nonlinearity it is possible to have four-wave mixing using

only one pump. In this process two pump photons at the same frequency are annihilated

and two photons at signal and idler frequencies are created. Therefore, the principle of

energy conservation indicates that ωs +ωi = 2ω0 and thus its frequency diagram is like what is

depicted in Fig. 3.2. It is worth mentioning that degenerate FWM must not be confused with

ωs ω0 ωi ω

Ω Ω

Figure 3.2 – Frequency diagram of the degenerate FWM process.

the three-wave mixing process that occurs in media with second-order nonlinearity where

ωs +ωi = ω0. Similar to FWM, the phase mismatch between the generated and destroyed
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photons are obtained as follows:

∆β=β(ωs)+β(ωi)−2β(ω0) =β(ω0 −Ω)+β(ω0 +Ω)−2β(ω0)

= (
β0 −δβo(Ω)+δβe(Ω)

)+ (
β0 +δβo(Ω)+δβe(Ω)

)−2β0

= 2δβe(Ω) (3.5)

Eq. (3.5) shows that only the even part of the dispersion relation is effective in the phase

matching condition of the process. Again the phase mismatch can be written in terms of

dispersion coefficients as β2Ω
2 for SMFs and β2Ω

2 + β4

12Ω
4 for DSFs in the C-band. The

degenerate FWM process is the mechanism behind single pump optical parametric amplifiers

and modulation instability that will be thoroughly investigated in the following sections.

3.2 Linear Stability Analysis

Linear systems are known to be stable in a sense that any bounded input cannot result

in an unbounded output. However, it is not the case for nonlinear systems which means

that a nonlinear system may or may not be stable. Therefore, stability analysis is critical

in investigating nonlinear systems and thus for the nonlinear Schrödinger equation (NLSE)

too. The idea behind the stability analysis is to add a small perturbation to the stationary

solution of the nonlinear system and follow the perturbation behavior during the system

evolution. Since the perturbing signal is assumed to be small compared to the stationary

solution, the nonlinear system’s behavior is linearized and so it is called linear stability analysis

[3]; moreover, the system function in such conditions is considered as the small-signal gain.

As seen in the previous chapter, the nonlinear Schrödinger equation is given by

i∂zU +
∞∑

m=1
i m βm

m!
∂m

t U +γP0e−αz |U |2U = 0. (3.6)

The stationary solution is independent of time and thus considering ∂t = 0, Eq. (3.6) results in

the following time-independent equation:

i dzU +γP0e−αz |U |2U = 0. (3.7)

Considering the boundary condition U (z = 0) = 1 for the normalized envelope U , the following

stationary solution for Eq. (3.7) is obtained:

U (z) = e iγP0
1−e−αz

α . (3.8)

The stationary solution given in Eq. (3.8) represents the self-phase modulation (SPM) of the

optical field. Such a solution is an equilibrium point for the nonlinear Schrödinger equation.

An immediate question is that whether this equilibrium point is stable or unstable. For linear

equations every solution or in fact every equilibrium point is stable but for nonlinear equations

it depends on the type of nonlinearity and equation coefficients. For the NLSE it is seen that the

stability of the solution depends on the sign of dispersion coefficients. In the case of instability,
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3.2. Linear Stability Analysis

the process is called modulation instability that happens in the anomalous dispersion regime.

In order to analyse the stability of the solution in Eq. (3.8), the linear stability analysis is applied

by adding a perturbing signal to the steady-state solution and substituting in Eq. (3.6). If the

normalized perturbing signal is ε(z, t ) so that |ε|¿ 1, the perturbing solution of the NLSE will

be given by

U (z, t ) =U (z)(1+ε(z, t )) = e iγP0
1−e−αz

α (1+ε(z, t )). (3.9)

By substituting Eq. (3.9) in the NLSE of Eq. (3.6), it can be derived that ε(z, t) satisfies the

following nonlinear equation:

i∂zε+
∞∑

m=1
i m βm

m!
∂m

t ε+γP0e−αz (1+ε)(ε+ε∗+|ε|2) = 0, (3.10)

where ε∗ is the complex conjugate of ε. Since |ε|¿ 1, higher order terms of ε can be neglected

and the linearized perturbation equation is obtained as follows:

i∂zε+
∞∑

m=1
i m βm

m!
∂m

t ε+γP0e−αz (ε+ε∗) = 0. (3.11)

Eq. (3.11) is linear and thus it can be solved in the Fourier domain. Considering a single pump

scenario illustrated in Fig. 3.2, the perturbation contains a signal at frequency detuning −Ω
and an idler atΩ represented by

ε(z, t ) = f (z)e iΩt +h(z)e−iΩt , (3.12)

where f and h denote the signal and idler, respectively. The derivatives of the perturbation

needed for Eq. (3.11) are given by

∂ε

∂z
= df

dz
e iΩt + dh

dz
e−iΩt , (3.13a)

∂mε

∂t m = (iΩ)m f e iΩt + (−iΩ)mhe−iΩt . (3.13b)

Substituting Eq. (3.12) and Eqs. (3.13) in the linear perturbation equation results in

i∂zε+
∞∑

m=1
i m βm

m!
∂m

t ε+γP0e−αz (ε+ε∗)

=
[

i
df

dz
+δβ(−Ω) f +γP0e−αz ( f +h∗)

]
e iΩt

+
[

i
dh

dz
+δβ(Ω)h +γP0e−αz (h + f ∗)

]
e−iΩt = 0, (3.14)
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in which δβ(±Ω) is defined in Eq. (3.1). The following two coupled equations governing the

signal and idler are immediately inferred from Eq. (3.14):

i
df

dz
+δβ(−Ω) f +γP0e−αz ( f +h∗) = 0, (3.15a)

i
dh

dz
+δβ(Ω)h +γP0e−αz (h + f ∗) = 0. (3.15b)

Moreover, the dispersion coefficients can be expressed in terms of the odd and even parts so

that δβ(Ω) = δβe(Ω)+δβo(Ω) and δβ(−Ω) = δβe(Ω)−δβo(Ω). This way, the coupled equations

are rewritten as

i
df

dz
+ (δβe −δβo) f +γP0e−αz ( f +h∗) = 0, (3.16a)

i
dh

dz
+ (δβe +δβo)h +γP0e−αz (h + f ∗) = 0. (3.16b)

In order to solve Eqs. (3.16) two initial conditions are necessary. The initial values of signal

and idler, i.e. f (0) and h(0) are normally available and the initial values of signal and idler

derivatives are obtained from Eqs. (3.16) as follows:

f ′(0) = i (δβe −δβo +γP0) f (0)+ iγP0h∗(0), (3.17a)

h′(0) = i (δβe +δβo +γP0)h(0)+ iγP0 f ∗(0). (3.17b)

Linear stability analysis provides a set of coupled equations for signal and idler as represented

in Eqs. (3.16). By solving those equations the signal and idler fields and so the gains can be

obtained. However, when the medium is considered to be lossless so that the attenuation

coefficient is null, solving Eqs. (3.16) will be much simpler that the case of considering a lossy

medium. Moreover, the simplicity of solution gives insight into the evolution of the process so

the next section is devoted to the stability analysis of lossless optical fibers.

3.2.1 Lossless Fibers

Neglecting attenuation in optical fibers, i.e. α= 0, reduces the signal and idler equations given

in Eqs. (3.16) to the following:

i
df

dz
+ (δβe −δβo +γP0) f +γP0h∗ = 0, (3.18a)

i
dh

dz
+ (δβe +δβo +γP0)h +γP0 f ∗ = 0. (3.18b)

Uncoupling Eqs. (3.18) by taking their second derivative leads to the following second-order

ordinary differential equations for signal and idler:

d 2f

dz2 +2iδβo
df

dz
+ [
δβe(δβe +2γP0)− (δβo)2] f = 0, (3.19a)

d 2h

dz2 −2iδβo
dh

dz
+ [
δβe(δβe +2γP0)− (δβo)2]h = 0. (3.19b)
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3.2. Linear Stability Analysis

Eqs. (3.19) are second-order linear differential equations with constant coefficients and thus,

they can be solved in terms of exponential or hyperbolic functions with initial conditions as

follows:

f (z) = e−iδβoz
(

f (0)cosh(g z)+ f ′(0)+ iδβo f (0)

g
sinh(g z)

)
, (3.20a)

h(z) = e iδβoz
(
h(0)cosh(g z)+ h′(0)− iδβoh(0)

g
sinh(g z)

)
, (3.20b)

where the exponent g is given by

g 2 = (γP0)2 − (γP0 +δβe)2 =−δβe(2γP0 +δβe). (3.21)

Note that g 2 can be positive or negative depending on the even-order dispersion coefficients

and the input power; when g 2 is positive or equivalently g is real, the hyperbolic functions

represent an exponential amplification or actually the system is unstable. However, for nega-

tive g 2 or imaginary g , the hyperbolic functions modify to ordinary sine and cosine and thus,

there will be no amplification and in fact the system is stable. The condition for instability or

amplification can be simply deduced from Eq. (3.21) to be as follows:

δβe < 0 < 2γP0 +δβe. (3.22)

Substituting the initial values f ′(0) and h′(0) from Eqs. (3.17) into Eqs. (3.20) results in

f (z) = e−iδβoz
(

f (0)cosh(g z)+ i
(γP0 +δβe) f (0)+γP0h∗(0)

g
sinh(g z)

)
, (3.23a)

h(z) = e iδβoz
(
h(0)cosh(g z)+ i

(γP0 +δβe)h(0)+γP0 f ∗(0)

g
sinh(g z)

)
. (3.23b)

Eqs. (3.23) can be rearranged to be expressed in terms of signal and idler initial conditions as

follows:

f (z) = e−iδβoz
(

f (0)

[
cosh(g z)+ i

γP0 +δβe

g
sinh(g z)

]
+h∗(0)

[
i
γP0

g
sinh(g z)

])
,

(3.24a)

h(z) = e iδβoz
(
h(0)

[
cosh(g z)+ i

γP0 +δβe

g
sinh(g z)

]
+ f ∗(0)

[
i
γP0

g
sinh(g z)

])
. (3.24b)

Eqs. (3.24) are the most general forms of signal and idler fields in a dispersive Kerr medium.

Depending on their initial conditions several systems can be extracted from these fields such

as optical parametric amplification (OPA) in phase-sensitive (PS) or phase-insensitive (PI)

scenarios and also modulation instability (MI).

3.2.2 Optical Parametric Amplification

In the case of phase-insensitive OPA, a small signal along with a strong pump is launched

into a fiber, while at the input there is no idler. Therefore, the initial conditions are given by
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f (0) = 1 and h(0) = 0 leading to the following signal and idler fields obtained from Eqs. (3.24):

f (z) = e−iδβoz
(
cosh(g z)+ i

γP0 +δβe

g
sinh(g z)

)
, (3.25a)

h(z) = e iδβoz
(
i
γP0

g
sinh(g z)

)
. (3.25b)

The signal and idler intensity gains can be simply calculated by taking the absolute square of

the fields as follows [71]:

Gs = | f (z)|2 = cosh2(g z)+ (γP0 +δβe)2

g 2 sinh2(g z) = 1+ (γP0)2

g 2 sinh2(g z), (3.26a)

Gi = |h(z)|2 = (γP0)2

g 2 sinh2(g z). (3.26b)

It is clearly seen from Eqs. (3.26) that Gs −Gi = 1. According to Eq. (3.21), the maximum of g 2

occurs when δβe =−γP0. In such a condition g = γP0 and the maximal signal and idler gains

are given by 1+ sinh2(γP0z) and sinh2(γP0z), respectively. When the frequency detuning is

null and so the phase mismatch is zero, according to Eq. (3.21), g is zero and the signal and

idler gains are obtained from Eqs. (3.26) as 1+ (γP0z)2 and (γP0z)2, respectively. In the case

of phase-sensitive OPA, we assume that the initial signal and idler have the same amplitude

but different phase shift so that f (0) = 1 and h(0) = e−iΦ. Substituting these initial values in

the general form of the fields given by Eqs. (3.24) and taking its absolute square result in the

following gain function:

G = | f (z)|2 = |h(z)|2 =Gs +Gi −2
√

GsGi sin

(
Φ− γP0 +δβe

g
tanh(g z)

)
, (3.27)

where the signal and idler gains are given in Eqs. (3.26). It is evident from Eq. (3.27) that the

gain depends on the initial phase difference between the signal and idler and it can fluctuate

as the optical wave propagates along the fiber because the sine term in the expression depends

on position z. The maximum and minimum of the phase-sensitive gain are obtained when

the sine term in Eq. (3.27) is −1 and +1, respectively. Such gains are called in-phase and

quadrature and are expressed as

GP =Gs +Gi +2
√

GsGi =
(√

Gs +
√

Gi
)2, (3.28a)

GQ =Gs +Gi −2
√

GsGi =
(√

Gs −
√

Gi
)2. (3.28b)

It can be easily seen from Eqs. (3.28) and Eqs. (3.26) that GPGQ = (Gs −Gi)2 = 1. Fig. 3.3 shows

several parametric gains in an OPA at an arbitrary frequency detuning where δβe =−γP0

2 . The

phase-insensitive signal and idler gains are plotted in Fig. 3.3a showing an exponential growth

versus the interaction length. Different phase-sensitive gains originating from different initial

phase differences are depicted in Fig. 3.3b. It is evident that phase-sensitive gains are bounded

between two curves corresponding to the in-phase and quadrature gains given in Eq. (3.28).
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Figure 3.3 – OPA gain versus fiber length for δβe =−γP0
2 : a) Phase insensitive b) Phase sensitive.

3.2.3 Modulation Instability Gain

In noise-seeded modulation instability the initial conditions are determined by the noise at

signal and idler frequencies. Any type of noise such as the thermal or quantum noise travelling

with the pump signal can be a source of fluctuation on the pump intensity and as a result of

modulation instability can lead to a huge oscillation on a continues-wave (CW) lightwave.

The main source of noise is the amplified spontaneous emission (ASE) generated by erbium-

doped fiber amplifiers (EDFA). Assuming a flat spectrum for the ASE in the spectral band of

modulation instability, we can attribute the whiteness property to the noise. It means that the

temporal samples of the noise at different instances are uncorrelated. However, we need the

spectral samples at the signal and idler frequencies. It has been proved in Appendix A that the

Fourier transform of a white noise is also white and so its frequency samples are uncorrelated.

This way, the initial conditions f (0) and h(0) in Eqs. (3.24) are two zero-mean uncorrelated

random variables with normalized variance, i.e.

E
[

f (0)
]= E

[
h(0)

]= 0, E
[

f (0)h(0)
]= 0, E

[| f (0)|2]= E
[|h(0)|2]= 1, (3.29)

where E denotes the expected value. Moreover, Eqs. (3.24) can be written as a linear combina-

tion of the initial conditions in a compact way

f (z) = e−iδβoz( f (0)A(z)+h∗(0)B(z)
)
, (3.30a)

h(z) = e iδβoz(h(0)A(z)+ f ∗(0)B(z)
)
, (3.30b)

in which the signal and idler fields A and B are given by

A(z) = cosh(g z)+ i
γP0 +δβe

g
sinh(g z), (3.31a)

B(z) = i
γP0

g
sinh(g z). (3.31b)
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It has been seen in the previous section that Gs = |A(z)|2 and Gi = |B(z)|2. Taking the absolute

square of f (z) given in Eq. (3.30a) results in

| f (z)|2 = | f (0)|2|A(z)|2 +|h(0)|2|B(z)|2 +2ℜ[
f (0)h(0)A(z)B∗(z)

]
, (3.32)

in which ℜ represents the real part. The modulation instability gain or noise gain Gn is

obtained by taking the ensemble average of Eq. (3.32) and using the characteristics of the

initial conditions in Eq. (3.29) as follows:

Gn = E
[| f (z)|2]= E

[| f (0)|2]|A(z)|2 +E
[|h(0)|2]|B(z)|2 +2ℜ[

E
[

f (0)h(0)
]

A(z)B∗(z)
]

=Gs +Gi = 1+2Gi = 2Gs −1. (3.33)

Eq. (3.33) demonstrates that the modulation instability gain is the sum of the signal and idler

gains. Since the signal and idler in noise-seeded MI are uncorrelated noise samples, their

gains sum up incoherently to construct the MI gain which is equal to

Gn = 1+2
(γP0)2

g 2 sinh2(g z). (3.34)

The modulation instability gain is in fact the gain experienced by the noise propagating with

the pump lightwave. Considering that Gs À 1, the MI gain in Eq. (3.33) can be approximated

as Gn ≈ 2Gs which means the noise gain is 3 dB higher than the signal gain. Moreover, the

noise figure (NF) of a phase-insensitive OPA, defined as the ratio of the input to output signal-

to-noise ratios (SNR), can be calculated as follows:

NF,
SNRin

SNRout
=

Sin
Nin

Sout
Nout

= Nout

Nin

Sin

Sout
= Gn

Gs
= 2Gs −1

Gs
= 2− 1

Gs
. (3.35)

Eq. (3.35) proves this well-known fact that the noise figure of phase-insensitive optical para-

metric amplifiers in the high-gain regime (Gs À 1) is 2 (3 dB) [69, 72].

3.3 Modulation Instability in Lossy Fibers

Opposite to the modulation instability gain in lossless optical fibers, the MI gain formula

for lossy fibers is rather complicated. it can be expressed in terms of modified Bessel [73],

Hankel [74], ordinary Bessel [75], or Whittaker [76] functions all with complex-valued orders

which make them difficult to calculate. In this section we expand the approach taken by

Michel E. Marhic [75] to obtain the MI gain based on the Bessel functions and then an approx-

imate formula for the gain is investigated. The general form of coupled equations for signal

and idler are given in Eqs. (3.16). Uncoupling the equations by taking the second derivative

results in the following second-order differential equation for f (z):

d 2f

dz2 + (α+2iδβo)
df

dz
+ [
δβe(δβe +2γP0e−αz )− (δβo)2 − iα(δβe −δβo)

]
f = 0. (3.36)
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3.3. Modulation Instability in Lossy Fibers

It is evident that by letting α= 0 in Eq. (3.36), the case of lossless fiber given in Eq. (3.19a) is

obtained. Solving Eq. (3.36) is not as simple as the lossless case because one of the coefficients

of the equation is not a constant and depends on the variable z. In order to simplify the

equation the function u(z) is defined as

u(z) = e( α2 +iδβo)z f (z). (3.37)

Therefore, the first and second derivatives of f are expressed in terms of u as

df

dz
= e−( α2 +iδβo)z

[
du

dz
−

(α
2
+ iδβo

)
u

]
, (3.38a)

d 2f

dz2 = e−( α2 +iδβo)z
[

d 2u

dz2 −2
(α

2
+ iδβo

) du

dz
+

(α
2
+ iδβo

)2
u

]
. (3.38b)

Using the expressions in Eqs. (3.38), it can be seen that Eq. (3.36) reduces to the following

simplified second-order differential equation:

d 2u

dz2 =
[(α

2
+ iδβe

)2
−2δβeγP0e−αz

]
u. (3.39)

Since the phase mismatch is given by ∆β= 2δβe, Eq. (3.39) can also be written as

d 2u

dz2 =
[(
α+ i∆β

2

)2

−∆βγP0e−αz
]

u. (3.40)

Although Eq. (3.40) looks simpler than Eq. (3.36), it is not straightforward to solve because its

coefficient still depends on the variable z. In order to proceed in solving the equation we need

to define the variable x in terms of z so that

x2 = 4γP0∆β

α2 e−αz . (3.41)

Considering Eq.( 3.41), we have d x
d z =−α

2 x and thus the first and second derivatives of u are

obtained as

du

dz
=−α

2
x

du

dx
, (3.42a)

d 2u

dz2 = α2

4

(
x2 d 2u

dx2 +x
du

dx

)
. (3.42b)

Substituting Eqs. (3.41) and (3.42) in Eq. (3.40) leads to the following fundamental equation

governing u:

x2 d 2u

dx2 +x
du

dx
+ (x2 −ν2)u = 0 (3.43)

in which ν = 1+ i ∆βα . Eq. (3.43) is the general form of Bessel’s differential equation whose

solutions can be expressed in terms of the Bessel functions of the first kind Jν and J−ν. Con-
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sidering the two initial conditions u(x0) and u′(x0) where x0 = 2
α

√
γP0∆β is obtained from

Eq. (3.41), the general solution of Bessel’s equation is given by [77]

u(x) = 1

W (Jν(x0), J−ν(x0))

[(
u(x0)J ′−ν(x0)−u′(x0)J−ν(x0)

)
Jν(x)

+ (
u′(x0)Jν(x0)−u(x0)J ′ν(x0)

)
J−ν(x)

]
, (3.44)

where the Wronskian of Jν and J−ν is defined and obtained as follows [77]:

W (Jν(x0), J−ν(x0)),

∣∣∣∣∣Jν(x0) J−ν(x0)

J ′ν(x0) J ′−ν(x0)

∣∣∣∣∣
= Jν(x0)J ′−ν(x0)− J−ν(x0)J ′ν(x0) =−2sin(πν)

πx0
. (3.45)

According to Eq. (3.37) we have f (z) = e−( α2 +iδβ0)z u(x0e−
α
2 z ) and thus, the initial conditions

for f can be written as:

f (0) = u(x0), (3.46a)

f ′(0) =−
(α

2
+ iδβo

)
u(x0)− α

2
x0u′(x0). (3.46b)

On the other hand the initial condition f ′(0) can be expressed in terms of f (0) and h(0) using

Eq. (3.17) and thus, u′(x0) is given by

u′(x0) =−α+ i (∆β+2γP0)

αx0
f (0)− 2iγP0

αx0
h∗(0). (3.47)

Using the initial condition in Eq.( 3.47) and the Wronskian in Eq.( 3.45), the function f can be

expressed in terms of the initial conditions as

f (z) = e−iδβoz( f (0)A(z)+h∗(0)B(z)
)
, (3.48)

where the signal and idler field gains A(z) and B(z) are obtained as

A(z) = πγP0e−
α
2 z

iαsin(πν)

{(
1+ ∆β− iα

2γP0

)[
J−ν(x0)Jν

(
x0e−

α
2 z)− Jν(x0)J−ν

(
x0e−

α
2 z)]

− i

√
∆β

γP0

[
J ′−ν(x0)Jν

(
x0e−

α
2 z)− J ′ν(x0)J−ν

(
x0e−

α
2 z)]}

, (3.49a)

B(z) = πγP0e−
α
2 z

iαsin(πν)

[
J−ν(x0)Jν

(
x0e−

α
2 z)− Jν(x0)J−ν

(
x0e−

α
2 z)]. (3.49b)

Since the envelope U in the nonlinear Schrödinger equation given by Eq. (3.6) is normalized

to e−
α
2 z , the signal and idler intensity gains are obtained from Gs = e−αz |A(z)|2 and Gi =
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e−αz |B(z)|2 for which the following relation is proved:

Gs = e−αz +Gi. (3.50)

In order to prove Eq. (3.50) it is sufficient to demonstrate that |A(z)|2 = 1+|B(z)|2, but it is not

straightforward from Eqs. (3.49). Therefore, another approach is adopted to prove the useful

expression given in Eq. (3.50). Starting from the identity d | f (z)|2
d z = d( f f ∗)

d z = f d f ∗
d z + f ∗ d f

d z and

using the signal and idler coupled equations in Eqs. (3.15), the coupled equations governing

the signal and idler intensities are obtained as follows:

d | f (z)|2
d z

= 2γP0e−αzℑ[
f (z)h(z)

]
, (3.51a)

d |h(z)|2
d z

= 2γP0e−αzℑ[
f (z)h(z)

]
, (3.51b)

where ℑ denotes the imaginary part. Eqs. (3.51) imply that d | f (z)|2
d z = d |h(z)|2

d z whose integration

from 0 to z results in

| f (z)|2 −| f (0)|2 = |h(z)|2 −|h(0)|2. (3.52)

By setting the initial conditions f (0) = 1 and h(0) = 0, Eqs. (3.30) result in f (z) = e−iδβoz A(z)

and h(z) = e iδβoz B(z). Substituting theses expressions in Eq. (3.52) leads to |A(z)|2 = 1+|B(z)|2
which is the proof of Eq. (3.50). The idler gain can be simply obtained from Eq. (3.49b) as

follows:

Gi = e−αz |B(z)|2 =
(
πγP0e−αz

αsinh
(
π
∆β
α

))2∣∣∣∣J−ν(x0)Jν
(
x0e−

α
2 z)− Jν(x0)J−ν

(
x0e−

α
2 z)∣∣∣∣2

. (3.53)

It is worth mentioning that the value of sin(πν) in deriving Eq. (3.53) is calculated based on

ν= 1+ i ∆βα as sin(π(1+ i ∆βα )) =−i sinh(π∆βα ). In the case of signal gain it is not necessary to

calculate it directly from the signal field in Eq. (3.49a) and it can be simply obtained from the

idler gain using Gs = e−αz +Gi. Moreover, the modulation instability gain is given by the sum

of signal and idler gains so, Gn = e−αz +2Gi. This way, the general formula for modulation

instability gain in lossy optical fibers in terms of fiber characteristics α and γ, input power P0

and phase mismatch ∆β is given by

Gn = e−αz+2

(
πγP0e−αz

αsinh
(
π
∆β
α

))2

∣∣∣∣J−1−i ∆β
α

(
2

α

√
∆βγP0

)
J

1+i ∆β
α

(
2

α

√
∆βγP0e−αz

)
− J

1+i ∆β
α

(
2

α

√
∆βγP0

)
J−1−i ∆β

α

(
2

α

√
∆βγP0e−αz

)∣∣∣∣2

. (3.54)

Numerical evaluation of Eq. (3.54) is extremely difficult because the Bessel functions with

complex-valued orders like ν=±1± i ∆βα are hard to evaluate. For instance, MATLABr is not
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Chapter 3. Modulation Instability Gain

able to calculate such functions; however, stronger mathematical softwares like Mathematicar

evaluates the Bessel functions with complex orders. To avoid the complexity of evaluating

Eq. (3.54) it is necessary to approximate the expression by a simpler one. One straightforward

method is the modification of the MI gain in lossless fibers to include the attenuation coeffi-

cient α by changing the position variable z to its effective value zeff = 1−e−αz

α and multiplying

by the attenuation factor e−αz . Therefore, the approximated MI gain for lossy optical fibers is

expressed as

Gn ≈ e−αz
(
1+2

(γP0)2

g 2 sinh2(g zeff)

)
, (3.55)

in which the exponent g is given by

g 2 = (γP0)2 −
(
γP0 + ∆β

2

)2

=−∆β
(
γP0 + ∆β

4

)
. (3.56)

When the attenuation coefficient is zero, zeff = z and the approximate in Eq. (3.55) becomes

exactly equal to the MI gain in lossless fibers given in Eq. (3.34). In order to give an insight to

the validity of such a simple approximation a theorem is proved to show that the exact value

of the MI gain in Eq. (3.54) at zero phase mismatch is equal to its approximate value obtained

from Eq. (3.55). In other words,

lim
∆β→0

Gn = e−αz (
1+2(γP0zeff)

2) . (3.57)

To demonstrate this theorem it is sufficient to prove that the idler gain in Eq. (3.53) tends to

e−αz (γP0zeff)
2 when∆β and so x0 go to zero. The Bessel functions are approximated as follows

when their arguments x and the imaginary part of their orders ∆β
α tend to zero [77]:

J−1−i ∆β
α

(x) ≈ 1

Γ
(
−i ∆βα

) ( x

2

)−1−i ∆β
α

, (3.58a)

J
1+i ∆β

α

(x) ≈ 1

Γ
(
2+ i ∆βα

) ( x

2

)1+i ∆β
α

, (3.58b)

in which Γ is the Gamma function defined as

Γ(s) =
∫ ∞

0
t s−1e−t dt . (3.59)

Substituting the approximate relations of Eqs. (3.58) in the idler gain of Eq. (3.53) results in

Gi ≈
(
πγP0e−αz

αsinh
(
π
∆β
α

))2∣∣∣∣ e
α+i∆β

2 z −e−
α+i∆β

2 z

Γ
(
−i ∆βα

)
Γ

(
2+ i ∆βα

) ∣∣∣∣2

. (3.60)
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Using the properties of the gamma function, it can be seen that [77]

∣∣∣∣Γ(
−i
∆β

α

)
Γ

(
2+ i

∆β

α

)∣∣∣∣2

= π2 + (
π
∆β
α

)2

sinh2 (
π
∆β
α

) (3.61)

Substituting Eq. (3.61) in Eq. (3.60) leads to

Gi ≈ e−αz (γP0)2

α2 +∆β2

∣∣∣∣e i∆β
2 z −e−αz− i∆β

2 z
∣∣∣∣2

. (3.62)

As ∆β tends to zero, the idler gain in Eq. (3.62) approaches to

Gi ≈ e−αz (γP0)2
(

1−e−αz

α

)2

= e−αz (γP0zeff)
2, (3.63)

which is obviously the expected approximate idler gain and thus the result in Eq. (3.57) is

established.

3.4 MI Gain Spectrum

In this section the gain spectrum of modulation instability is investigated. It is shown that the

MI gain spectrum includes two symmetric sidebands around the central frequency and its

bandwidth depends on the dispersion characteristic of the fiber as well as the input power.

In order to evaluate the theoretical model for modulation instability gain in lossless and

lossy optical fibers as well as its approximate, the Monte Carlo simulation on the nonlinear

Schrödinger equation is carried out. For every ensemble sample of the input noise, the NLSE

is solved by the split-step Fourier method to evaluate the propagation along the fiber and

then the output spectrum are averaged to reduce the variance and obtain the expected value

of spectrum. For standard single-mode fibers in the telecom band at 1550 nm where the

group-velocity dispersion β2 is dominant, the linear phase mismatch ∆β given by Eq. (3.5)

can be expressed as β2Ω
2 in which Ω=ω−ω0 is the frequency detuning around the pump

frequency ω0. Replacing ∆β by β2Ω
2 in the MI gain given by Eq. (3.34) for a lossless fiber with

length L and anomalous dispersion results in the following gain spectrum:

Gn(Ω) = 1+
sinh2

(
2γP0L

√(
Ω
Ωc

)2
(
1−

(
Ω
Ωc

)2
))

2
(
Ω
Ωc

)2
(
1−

(
Ω
Ωc

)2
) , (3.64)

whereΩc denotes the cutoff frequency in which the exponent g is null and

Ωc =
√

4γP0

|β2|
. (3.65)
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It can be calculated from Eq. (3.64) that the maximal gain which is equal to 1+2sinh2(γP0L)

occurs at the following frequency:

Ωmax =±Ωcp
2
=±

√
2γP0

|β2|
. (3.66)

It can also be deduced from Eq. (3.64) that the gain atΩ= 0 andΩ=±Ωc is equal to 1+(γP0L)2

which is a quadrature dependance on the pump power and fiber length.
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Figure 3.4 – MI gain spectrum for a 10-km lossless SMF with different input powers, quantum-level

background noise and typical parameters β2 =−22 ps2

km and γ= 1.8 W−1

km .

Fig. 3.4 plots the MI gain spectrum for an SMF with different levels of input power, 100, 200

and 300 mW, and compares the numerical and analytical solutions. While the analytical results

(dashed red lines) are obtained directly from the MI gain formula in Eq. (3.64), the numerical

results (continuous blue lines) have been obtained by applying a Monte Carlo simulation

to the nonlinear Schrödinger equation, solved by using the split-step Fourier method. It

is evident that the simulation and the theoretical gain are in perfect agreement. The small

discrepancy between theory and simulation observed outside the main MI sidelobes, for the

case of 300 mW input power is due to the higher-order modulation instability [78], which

is neglected in the analytical model and only occurs at rather high power levels. It is also

clearly seen from Fig. 3.4 that the MI bandwidth and the frequency of maximal gain increase

by boosting the pump power. For lossy optical fibers the exact gain spectrum is obtained from

Eq. (3.54) by changing ∆β to −|β2|Ω2 for anomalous dispersion as follows:

Gn(Ω) = e−αz+2

(
πγP0e−αz

αsinh
(π|β2|

α Ω2
))2

∣∣∣∣J−1+i
|β2 |
α
Ω2

(
2iΩ

α

√
|β2|γP0

)
J

1−i
|β2 |
α
Ω2

(
2iΩ

α

√
|β2|γP0e−αz

)
− J

1−i
|β2 |
α
Ω2

(
2iΩ

α

√
|β2|γP0

)
J−1+i

|β2 |
α
Ω2

(
2iΩ

α

√
|β2|γP0e−αz

)∣∣∣∣2

. (3.67)

64



3.4. MI Gain Spectrum

As mentioned before, it is not straightforward to plot the gain formula in Eq. (3.67) by

MATLABr; therefore we use Mathematicar for plotting the analytical formula while the

numerical simulation of the NLSE for obtaining the gain is performed in MATLABr to which

the analytical results are imported from Mathematicar for comparison.
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Figure 3.5 – Comparison of MI gain spectrum between a 10-km lossless SMF and a 10-km lossy one with

α= 0.2 dB
km at the input power of 200 mW and typical parameters β2 =−22 ps2

km and γ= 1.8 W−1

km . Perfect
agreement between the NLSE simulation and the analytical solution is also demonstrated for both cases.

Fig. 3.5 compares the MI gain spectrum in a 10-km lossy fiber with that of a lossless fiber

showing clearly how the power attenuation decreases the gain value and shrinks its band-

width. Moreover, the gain spectrum of the lossy fiber is plotted from the analytical formula

given in Eq. (3.67). The perfect agreement between the numerical simulation and analytical

result demonstrates the accuracy of the MI gain formula for lossy optical fibers expressed

by Eq. (3.67). It is worth noting that the negative baseline level (–2 dB) for the lossy case is

simply a consequence of the attenuation of the 10-km fiber which is equal to 10×0.2 = 2 dB.

In order to avoid the complexity of the gain formula in Eq. (3.67) for further analytical results

it is essential to provide a simpler form for the gain spectrum. An approximate formula similar

to Eq. (3.64) is derived from the approximate gain in Eq. (3.55) as follows:

Gn(Ω) ≈ e−αz

1+
sinh2

(
2γP0Leff

√(
Ω
Ωc

)2
(
1−

(
Ω
Ωc

)2
))

2
(
Ω
Ωc

)2
(
1−

(
Ω
Ωc

)2
)

 , (3.68)

in which the effective length Leff of the fiber is given by 1−e−αL

α . The approximate gain formula in

Eq. (3.68) is clearly much simpler that the exact one in Eq. (3.67). Moreover, its only difference

with the lossless gain in Eq. (3.64) is in the attenuation factor e−αz and the effective length Leff.

Fig. 3.6 compares the exact value of gain obtained by numerical simulations with its ap-

proximate value resulted from Eq. (3.68). Firstly, it is clear from the plots that the approximate
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Figure 3.6 – MI gain spectrum for a 10-km lossy SMF with different input powers, quantum-level back-

ground noise and typical parameters α= 0.2 dB
km , β2 =−22 ps2

km and γ= 1.8 W−1

km . Comparison between the
NLSE simulation and the analytical approximation.

and exact values of the gain at the central frequency, where the phase mismatch is null, is

identical; the fact that has been proved in the previous section as a sign for the accuracy of

this approximation. Moreover, it is important to notice that the differences between the exact

and approximate gains are mostly in the bandwidth of the MI gain and not in the peak gain

value. Actually, the approximate gain predicts a wider spectral band because it neglects the

power attenuation in the cutoff frequency; while considering the effective length instead of

the length in its exponent leads to a correct gain value in the approximation.

3.5 Experimental Observation of MI Spectrum
This section is devoted to experimental measurements of the modulation instability spectrum

in different optical fibers. The results show that in the small-signal gain regime the spectrum

is the same as what the theory predicts which has two symmetric sidebands; while in the

high-power regime, higher order modulation instability produces more sidebands which are

not included in the analytical gain. Moreover, the highly nonlinear interaction can be achieved

by further increasing the input peak power leading to a supercontinuum-like spectrum. The

experimental setup is illustrated in Fig. 3.7. The CW light generated by a distributed feed-back

(DFB) laser diode at 1551.7 nm is converted to a pulse train by an electro-optical modulator

(EOM). The modulating pulse train with a repetition period of 500 ns and a pulse duration

of 6 ns is generated by an HP 8131A pulse generator to drive the EOM. The light pulses are

boosted by a low-noise erbium-doped fiber amplifier (EDFA) and are attenuated by a variable

optical attenuator (VOA). A 99:1 coupler is used to split the light into two branches, the 1%

branch for monitoring the peak power and the 99% one for launching the light into the fiber

under test (FUT). For monitoring the input peak power, a power calibration unit comprising a

fixed 3-dB attenuator, a DC-coupled photo-detector and an oscilloscope are utilized; the fixed

attenuator prevents the photo-detector from saturation. Before launching the light pulses

into the fiber a circulator is used to measure the back-scattering from the fiber, especially to
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monitor the stimulated Brillouin scattering (SBS) to avoid power depletion due to SBS. The

forward and backward spectra are measured using an optical spectrum analyser (OSA) with a

resolution of 0.01 nm. The peak power of the pulse launched into the FUT is proportional to

the pulse voltage acquired by the oscilloscope; this way, for each level of input peak power, the

forward and backward spectra are captured by the OSA.

EDFA
Bias

Pulse

Generator

VOA

MZMPC

At.

OSA

PD Osc

1:99

Power Calibration Unit 

FUT

OSA

Isolator

LD

Figure 3.7 – Experimental setup for measuring MI spectrum. LD: laser diode, PC: polarization controller,
MZM: Mach-Zehnder modulator, VOA: variable optical attenuator, PD: photo-detector, Osc: oscilloscope,
FUT: fiber under test, At.: 3-dB fixed attenuator, OSA: optical spectrum analyzer.

Figure 3.8 plots the output spectrum of a 25.4 km long standard SMF for different levels of

input peak power. We can see the onset of modulation instability at powers around 100 mW

and by increasing the optical power the gain grows in value and expands in frequency. Until

200 mW, only the first-order modulation instability is evident but for more input power, the

second-order MI is clearly shown. At higher powers around 500 mW the nonlinear interaction

between all frequency components are considerable and so the spectrum looks like a flat

but band-limited super continuum. However, in low-power or small signal conditions the

spectrum looks like what is expected from theory.
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Figure 3.8 – MI spectra measured for different levels of input power in a standard SMF with L = 25.4 km

and γ= 1.0 W−1

km .

The same results for an 11.1 km long standard SMF are depicted in Fig. 3.9. It is evident from
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Chapter 3. Modulation Instability Gain

the figure that the input power for MI onset is more than 200 mW which is higher than the

previous fiber’s MI onset power because the current fiber is shorter in length. It demonstrates

experimentally how critical the interaction length given by Leff is in the onset of modulation

instability. For this fiber also other phenomena like second-order MI for powers more than

500 mW and high interaction regime at around 1 W are evident from the plots in Fig 3.8.
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Figure 3.9 – MI spectra measured for different levels of input power in a standard SMF with L = 11.1 km

and γ= 1.6 W−1

km .

An 8.7 km long DSF is used to measure the modulation instability spectrum which is shown

in Fig. 3.10. Since the fiber’s zero-dispersion wavelength is 1500 nm, the dispersion coefficient

is less than that of standard SMFs and thus the MI spectrum in DSFs is wider which is evident

from the figure. For instance, at the power level of around 300 mW, the frequency of maximal

gain happens to be around 80 GHz for the DSF while it is about 35 GHz for the utilized SMFs.

Although the fiber length is shorter than the 11.1 km SMF, the MI onset power is less because

the nonlinear coefficient of DSFs is higher than that of SMFs.
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Figure 3.10 – MI spectra measured for different levels of input power in a DSF with L = 8.7 km and

γ= 3.1 W−1

km .
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3.5. Experimental Observation of MI Spectrum

Fig. 3.11 shows the MI spectrum measured at the output of a 4.8 km long special fiber. The

fiber’s refractive index profile is a step index with the core diameter of around 4 µm and so

the effective area is one quarter of a typical standard SMF. Therefore, this fiber’s nonlinear

coefficient is four times bigger than that of a standard SMF. Actually, its measured nonlinear

coefficient is γ= 4.0 W−1

km ; for the detail see the previous chapter. As it is evident from the figure,

the MI onset power is around 150 mW which is quite low for a step-index fiber with the length

of 4.8 km. This is exactly because of its higher nonlinear coefficient due to the lower effective

area. The fluctuations in the MI spectra of this fiber can be a result of fluctuations in phase

matching conditions due to non-uniformity of the fiber’s structure.
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Figure 3.11 – MI spectra measured for different levels of input power in a special fiber with L = 4.8 km and

γ= 4.0 W−1

km .
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Figure 3.12 – Back scattered spectra measured from the 11.1 km long standard SMF for different levels of
input power showing the Brillouin backscattering of the pump and the Rayleigh backscattering of the MI
spectrum.

In the experimental setup illustrated in Fig. 3.7 there is a possibility to measure the backscat-

tered light from the fiber under test. It is important to monitor the back reflection, especially
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Chapter 3. Modulation Instability Gain

for avoiding high levels of stimulated Brillouin scattering that can deplete the pump hugely

and decrease the Kerr interaction in the fiber substantially. Fig. 3.12 depicts the measured

spectra back scattered from the 11.1 km long standard SMF. The central component in the

spectra shows the Rayleigh backscattering while the narrow-band Stokes and anti-Stokes com-

ponent at around 11 GHz illustrate a combination of the stimulated and spontaneous Brillouin

scattering processes. It is evident from the figure that the stimulated Brillouin backscattering

at the highest input peak power (≈ 1 W) is still less than the Rayleigh backscattering. The main

reason for that is the short pulse duration (≈ 6 ns) that enhances the Brillouin critical power

substantially. Moreover, the modulation instability spectra seen in the back reflection for high

powers are the Rayleigh backscattering of the forward travelling MI spectra. The modulation

instability spectrum that has been obtained analytically in this chapter and demonstrated

experimentally is utilized in the following chapter to make a model for the MI characteristics

of an optical fiber such as the depletion length due to MI and the critical power for the onset

of modulation instability.
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4 MI Critical and Optimal Power

A critical power for a nonlinear process is intuitively defined as the power below which

nonlinear effects can be neglected. Critical powers for nonlinear inelastic scattering processes

in optical fibers, namely stimulated Raman scattering (SRS) and stimulated Brillouin scattering

(SBS) were proposed for the first time by R. G. Smith in 1972 [79]. The analysis by Smith led to

the following well-known formulas for critical powers of forward SRS PcritR and backward SBS

PcritB:

PcritR = 16Aeff

gRLeff
, (4.1a)

PcritB = 21Aeff

gBLeff
, (4.1b)

where Aeff is the mode effective area and Leff is the fiber effective length. gR and gB denote the

Raman and Brillouin gain in the medium, respectively. These formulas have been widely used

in fiber optics, even though there are controversies on their accuracy [80, 81]. For instance,

pump depletion along with low fiber attenuation is taken into account for SRS in [82] and for

SBS in [83], leading to critical powers less than in Eqs. (4.1b) which means the estimations

proposed by Smith are an upper bound for critical powers. This chapter is devoted to finding

a similar formula for the critical power of modulation instability (MI). First we investigate

the behaviour of pump power along the fiber using the numerical analysis of the nonlinear

Schrödinger equation; especially the recurrence phenomenon and the impact of background

noise on the pump power evolution are analyzed. Then, a mathematical model for the critical

power of modulation instability is presented by using the MI gain spectrum derived in the

previous chapter and by introducing the notion of depletion ratio. Additionally, the model

is extended to obtain the maximal output power and its corresponding optimal input power

in a fiber-optic system suffering from modulation instability. For validating the model an

experiment is carried out in which a Brillouin distributed fiber sensor is utilized to measure

the power evolution and MI behaviour along an optical fiber. Moreover, a quick analysis of

pump-probe interaction in distributed fiber sensors due to stimulated Brillouin scattering

is provided for understanding the working principles of the experimental setup. Finally the

results of experimental measurement are analyzed and compared with the theoretical model

and numerical simulation for evaluating the accuracy of the proposed model.
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Chapter 4. MI Critical and Optimal Power

4.1 Power Evolution
As a high power CW or quasi-CW lightwave propagates in an optical fiber, the power transfers

gradually from the pump to the frequency bands around the light wavelength due to the

process of modulation instability originating from the noisy fluctuations on the pump intensity.

This power transfer, called pump depletion, decreases the pump power drastically and it is the

most detrimental effect in many distributed fiber sensors [12, 9, 11]. Therefore, monitoring

the power evolution along an optical fiber is important for investigating the performance of

distributed sensors. This section is devoted to the analysis of pump power as the lightwave

propagates along an optical fiber. Assume that a CW lightwave of power P0 generated by a

narrow-band laser at frequency ω0 is launched into an optical fiber of length L. The power

at pump frequency along the fiber is denoted by P (z) where z is the position along the fiber

varying from 0 to L. Obviously, we have P (0) = P0 which is the input pump power. In a linear

system where there is no nonlinear interaction, the only cause affecting the pump power is the

linear loss due to absorption and scattering which is represented by the attenuation coefficient

α. Therefore, in the ideal linear situation, the power evolution is given by the exponential

function P0e−αz . In real conditions where there is inevitable nonlinear interaction, the power

along the fiber can be far away from the ideal exponential decay. This gap is caused by the

pump depletion due to nonlinear effects like modulation instability. In order to quantify such

a difference between the ideal and real conditions a local depletion ratio is defined as follows:

r (z),
depleted power

ideal power
= P0e−αz −P (z)

P0e−αz = 1− P (z)

P0e−αz . (4.2)

Since there is no other coherent source except the pump we can assume that P (z) is always

less than P0e−αz and so the depletion ratio in Eq. (4.2) is positive. On the other hand, its

maximum is 1 and so, 0 ≤ r (z) ≤ 1. In order to get rid of the attenuation factor in the power

evolution, the normalized pump power along the fiber is defined as

p(z),
actual power

ideal power
= P (z)

P0e−αz . (4.3)

Clearly, we have p(z)+r (z) = 1. In the linear regime where there is no pump depletion, p(z) = 1

for every position z along the fiber; while any deviation from the constant function implies

the existence of depletion due to nonlinear phenomena. In order to investigate the power

evolution along the fiber or the variations of p(z), several numerical simulations have been

carried out.

Fig. 4.1 depicts the pump power evolution along a lossless standard SMF for several levels

of input power. As the pump propagates along the fiber, its power transfers to MI sidebands

and so it decreases. It is clear from the figure that by increasing the input power, the pump

depletion due to MI starts at earlier positions and evolves faster. Besides showing pump deple-

tion, the oscillatory behavior of the pump power propagating through the fiber is evident from

the figure. This phenomenon, which is responsible for transferring power from signal back

to pump, is called the Fermi-Pasta-Ulam (FPU) recurrence [84] and it has been theoretically

studied and experimentally demonstrated in optical fibers [85, 86, 87]. Since the background
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Figure 4.1 – Pump power evolution along a lossless SMF of 25 km with γ= 1.8 W−1

km and β2 =−22 ps2

km , in the

presence of noise with a power spectral density of −121 dBm
Hz . Each plot is normalized to its corresponding

input pump power.

noise plays the role of signal in modulation instability and it is not in coherence with the

pump, full recurrence cannot happen and so the oscillation of power in Fig. 4.1 damps.
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Figure 4.2 – Pump power evolution along an SMF of 25 km with α= 0.2 dB
km , γ= 1.8 W−1

km and β2 =−22 ps2

km ,

in the presence of noise with a power spectral density of −121 dBm
Hz . The vertical axis shows p(z) meaning

that the pump power is normalized to P0e−αz to discard the effect of the fiber attenuation on the curves.

Fig. 4.2 shows the power evolution in a lossy optical fiber. To discard the effect of loss for

the sake of visibility, the normalized power which is the pump power divided by P0e−αz is

plotted in the figure. Compared to the lossless case in Fig. 4.1, the fiber attenuation delays

the occurrence of modulation instability and reduces the strength of FPU recurrence. For

example, the pump power starts to deplete at position 15 km along the lossless fiber for the

input power of 100 mW, while the propagation in the lossy fiber remains in the linear regime

and thus no depletion occurs.
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Chapter 4. MI Critical and Optimal Power

4.1.1 Impact of Background Noise on the MI Evolution
It is worth mentioning that modulation instability and optical parametric amplification are in

essence the same process, both being originated by the Kerr effect; for this reason sometimes

the two terms are interchangeably used in the literature [88]. However if the focus is placed

on the subtle differences, it should be noticed that in OPA a deterministic signal and the

background noise within the OPA spectral band are amplified via energy transfer from a high-

power pump to a signal and idler through a four-photon mixing process [89]. Spontaneous

modulation instability is however solely seeded by the background noise present in the spectral

band of MI, so that the background noise plays the simultaneous roles of signal and idler

for modulation instability [90]; it is therefore essential to take into account the randomness

inherent in noise when analyzing modulation instability. The strong impact of the background

noise level on the MI evolution has been shown theoretically [91, 92] and experimentally

[93, 94, 95]; thus neglecting this effect would certainly lead to a discrepancy between the

experimental data and any theoretical model [10]. Since the modulation instability process is

seeded by the background noise in its spectral band, the noise strength which is determined by

its power spectral density (PSD) must have a critical role in the onset of modulation instability

and thus, the evolution of pump power during the process. In order to demonstrate it the

simulations in Fig. 4.2 have been redone for the same fiber and input powers but with a noise

PSD of 10 dB
Hz more; the results are plotted in Fig. 4.3. It is evident from the comparison of the

two figures that the noise level has a considerable effect on the MI evolution and thus, the

pump depletion. For instance, when the input power is 150 mW, the amount of depletion at

the fiber end (L = 25 km) is 15% for the noise PSD of −121 dBm
Hz from Fig. 4.2, while it is more

than 65% from Fig. 4.3 for the noise level of −111 dBm
Hz .
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Figure 4.3 – Pump power evolution along an SMF of 25 km with α= 0.2 dB
km , γ= 1.8 W−1

km and β2 =−22 ps2

km ,

in the presence of noise with a power spectral density of −111 dBm
Hz . The vertical axis shows p(z) meaning

that the pump power is normalized to P0e−αz to discard the effect of the fiber attenuation on the curves.

From another perspective, we can see that 50% of depletion in the case of 200-mW input

power occurs after 22-km propagation in fiber while for the higher noise level it happens by

less than 14 km propagation. In order to see the impact of noise on the pump power depletion,
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4.2. Modeling the MI Critical Power

the output pump power of a 10 km long standard SMF is numerically simulated versus its

input power for different levels of noise power spectral density and it is plotted in Fig. 4.4. A

broad range of noise levels has been considered spanning from the quantum noise PSD ~ω0
2 ,

which is around −161 dBm
Hz at 1550 nm, up to −101 dBm

Hz using the power step of 10 dB
Hz . The

figure self-explains how strong the noise level influences the onset and behavior of modulation

instability. It is evidently seen from the figure that increasing the noise level seeds more MI

and thus, reduces the output pump power as a consequence of the increased pump depletion.

Therefore, the input pump power for which modulation instability starts to be significant

crucially depends on the noise level present in the system.
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Figure 4.4 – Output pump power versus input power for an SMF of length L = 10 km with α = 0.2 dB
km ,

γ = 1.8 W−1

km and β2 = −22 ps2

km for different levels of noise power spectral density. The pump power is

normalized to e−αL to remove the effect of the fiber attenuation on the curves.

4.2 Modeling the MI Critical Power
This section is devoted to obtaining a mathematical model for the critical power of noise-

seeded modulation instability. The model is based on the modulation instability gain spectrum

derived in the previous chapter. The idea behind it is to obtain the amount of pump depletion

by simply calculating the power transferred from the pump to the MI spectral band. The

strength of this approach is in taking all frequency components of the nonlinear interaction

into account. The transferred power is simply calculated by integrating over the entire mod-

ulation instability spectrum; in doing so there are two issues to which attention should be

paid. First, the available analytical gain spectrum is obtained in small signal gain or actually

undepleted pump power regime. Therefore, the model should be used in low depletion condi-

tions. In distributed sensors it is tried to avoid strong pump depletion and thus, assuming the

system to be in the low depletion regime is plausible. Secondly, the MI gain spectrum is not

analytically integrable and thus there is no closed-form exact value for the depleted power.

Therefore, it is essential to approximate the spectral integral; to do so, Laplace’s method of

integration is utilised which has a high accuracy in evaluating the integrals involving exponen-

tial functions. The essentials of Laplace’e method are described in Appendix B. As it has been
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seen in the previous chapter, the modulation instability or noise gain at the end of an optical

fiber of length L with an attenuation coefficient α and an input power P0 can be approximated

by

Gn ≈ e−αL(
1+Gp

)= e−αL
(
1+2

(γP0)2

g 2 sinh2(g Leff)

)
, (4.4)

where the exponent g is given in terms of the fiber nonlinear coefficient γ and the linear phase

mismatch ∆β as follows:

g 2 = (γP0)2 −
(
γP0 + ∆β

2

)2

. (4.5)

The gain in Eq. (4.4) is divided into two parts: the unitary term demonstrating the existence

of noise independent from the pump wave and the net gain Gp which is responsible for the

power transferred from the pump into the MI sidebands. According to the previous chapter,

when the second order dispersion is dominant, i.e. the linear phase mismatch ∆β is given by

β2(ω−ω0)2, the net gain can be expressed as

Gp(ω) =
sinh2

(
2γP0Leff

√(
ω−ω0
Ωc

)2
(
1−

(
ω−ω0
Ωc

)2
))

2
(
ω−ω0
Ωc

)2
(
1−

(
ω−ω0
Ωc

)2
) , (4.6)

in whichΩc is given by
√

4γP0

|β2| . Assume that Sn(ω) in W
Hz denotes the one-sided power spectral

density of the background noise traveling with the pump. The power transferred or depleted

from the pump into the modulation instability sidebands can be obtained by the following

spectral integral:

PMI = 1

2π

∫ ∞

0
Sn(ω)e−αLGp(ω)dω= e−αL

2π

∫ ∞

0
Sn(ω)Gp(ω)dω. (4.7)

The integral in Eq. (4.7) can be calculated over the spectral lobes of the MI gain from ω0−mΩc

toω0+mΩc where m is a positive integer showing the number of spectral sidebands taken into

account for calculating the depleted power. Since most of power is in the first side lobes of the

MI symmetric spectrum, m can be set to 1 with fairly acceptable accuracy. However, the larger

m the more accurate the approximation will be; ideally, m should tend to infinity. Moreover, in

a real system, the main source of noise launched into optical fibers comes from the amplified

spontaneous emission (ASE) generated in optical amplifiers, such as the commonly-used

erbium-doped fiber amplifiers (EDFA). Since the MI spectral width is quite narrow (less than

1 nm) compared to the ASE linewidth (more than 30 nm), the noise spectral density can be

assumed to be flat or white and so it is independent of frequency. Therefore, the MI power in
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Eq. (4.7) is calculated by

PMI = e−αL

2π

∫ ∞

0
Sn(ω)Gp(ω)dω≈ e−αLSn

2π

∫ ω0+mΩc

ω0−mΩc

Gp(ω)dω. (4.8)

The second integral in Eq. (4.8) can be modified by normalizing and centering the frequency

variable through x = ω−ω0
Ωc

,

∫ ω0+mΩc

ω0−mΩc

Gp(ω)dω=Ωc

∫ +m

−m
Gp(x)dx, (4.9)

where the net gain Gp(x) is obtained from Eq. (4.6) and is given by

Gp(x) =
sinh2

(
2γP0Leff

√
x2(1−x2)

)
2x2(1−x2)

. (4.10)

Substituting Eq. (4.9) in Eq. (4.8) and letting m go to infinity result in

PMI = e−αLSnΩc

2π
lim

m→∞

∫ +m

−m
Gp(x)dx = e−αLSnΩc

2π

∫ +∞

−∞
Gp(x)dx. (4.11)

It is interesting to note that the net gain function Gp(x) is a real-valued nonnegative and even

function for all real numbers, as explained hereafter. It is clearly seen that Gp(−x) =Gp(x) and

thus, the function is even. For x where |x| < 1, it is evident from Eq. (4.10) that Gp(x) is real

and positive. For x equal to 0 and ±1, the function acquires the value of 2(γP0Leff)
2 which is

obviously positive. However, for x where |x| > 1, it is not clear and the following argument is

needed; when |x| > 1, it is true that 1− x2 < 0, so
√

x2(1−x2) = i
√

x2(x2 −1) where the term√
x2(x2 −1) is a real number and i denotes the imaginary unit. On the other hand, for the

hyperbolic and trigonometric sine functions the identity sinh(i u) = i sin(u) always holds. So,

sinh
(
2γP0Leff

√
x2(1−x2)

)
= sinh

(
2iγP0Leff

√
x2(x2 −1)

)
= i sin

(
2γP0Leff

√
x2(x2 −1)

)
, (4.12)

and accordingly,

sinh2
(
2γP0Leff

√
x2(1−x2)

)
= i 2 sin2

(
2γP0Leff

√
x2(x2 −1)

)
=−sin2

(
2γP0Leff

√
x2(x2 −1)

)
. (4.13)

Therefore, the net gain Gp(x) in Eq. (4.10) for the variable x where |x| > 1, is written as

Gp(x) =
sinh2

(
2γP0Leff

√
x2(1−x2)

)
2x2(1−x2)

=
−sin2

(
2γP0Leff

√
x2(x2 −1)

)
−2x2(x2 −1)

=
sin2

(
2γP0Leff

√
x2(x2 −1)

)
2x2(x2 −1)

. (4.14)
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Eq. (4.14) clearly demonstrates that Gp(x) for |x| > 1 is a real-valued nonnegative function.

Therefore, the integral in Eq. (4.11) for calculating the depleted power is a positive number

well-defined as

I =
∫ +∞

−∞
Gp(x)dx =

∫ +∞

−∞

sinh2
(
2γP0Leff

√
x2(1−x2)

)
2x2(1−x2)

dx. (4.15)

The integral in Eq. (4.15) has no analytical solution, so to obtain a closed-form solution, it is

necessary to approximate it. Since the integral involves the hyperbolic sine function which

is an exponential form, Laplace’s method is a promising approximation for calculating it.

Actually, the same method has been used to derive accurate critical powers for the SRS and

SBS processes [96, 97]. The method and its proof have been explained in Appendix B. Consider

two non-exponential real functions f (x) and g (x) so that f has its maximum at x0 where g (x0)

is positive. Laplace’s method states that for a positive number s, the following approximation

is held [98]:

∫ +∞

−∞
g (x)e s f (x)dx ≈ g (x0)e s f (x0)

√
2π

s| f ′′(x0)| , (4.16)

where f ′′(x0) is the second derivative of f at x0. Since f has a maximum at x0, the exponential

function e s f (x) has a sharp peak at x0. The same thing happens for the hyperbolic function

in Gp(x). The maximum of Gp occurs at x2
0 = 1

2 and its first zero happens to be at x2 =
1
2 + 1

2

√
1+ (

π
γP0Leff

)2, showing how sharp the gain function is, especially when γP0Leff À 1;

so Laplace’s method is appropriate to be applied to the integral in Eq. (4.15). In order to

use Laplace’s theorem, the following exponential approximation is first considered for the

hyperbolic sine:

sinh2(u) =
(

eu −e−u

2

)2

≈ e2u

4
, for u À 1. (4.17)

Gp(x) has its two equal maxima at x0 =± 1p
2

where Gp(x0) = 2sinh2(γP0Leff) ≈ e2γP0Leff

2 is a good

approximation assumingγP0Leff À 1. Therefore, the integral in Eq. (4.15) can be approximated

by

I =
∫ +∞

−∞
Gp(x)dx ≈

∫ +∞

−∞

exp
(
4γP0Leff

√
x2(1−x2)

)
8x2(1−x2)

dx. (4.18)

The integral in Eq. (4.18) by analogy with Laplace’s formula in Eq. (4.16) leads to the following

definitions for the parameter s and functions f and g :

f (x) =
√

x2(1−x2), (4.19a)

g (x) = 1

8x2(1−x2)
, (4.19b)

s = 4γP0Leff. (4.19c)
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For x0 = ± 1p
2

, it is easily seen that f (x0) = g (x0) = 1
2 and f ′′(x0) = −4. Applying Laplace’s

method to Eq. (4.18) and considering two equal maxima at ± 1p
2

, we have the following approx-

imate closed-form value for I :

I =
∫ +∞

−∞
Gp(x)dx ≈ 2g (x0)e s f (x0)

√
2π

s| f ′′(x0)| =
p
πe2γP0Leff

2
√

2γP0Leff
. (4.20)

Substituting Eq. (4.20) in the MI depleted power given by Eq. (4.11) and considering the cutoff

frequencyΩc =
√

4γP0

|β2| result in

PMI = Sne2γP0Leff−αL

2
√

2π|β2|Leff

. (4.21)

Eq. (4.21) is a closed-form formula for the power in the modulation instability sidebands

depleted from pump. On the other hand, setting a depletion ratio R at the position L along the

fiber, i.e. r (L) = R, the MI power can be obtained based on Eq. (4.2) as

PMI = P0e−αLR. (4.22)

Combining Eq. (4.21) and Eq. (4.22) leads to the following expression:

Sne2γP0Leff = 2P0R
√

2π|β2|Leff. (4.23)

Eq. (4.23) is a transcendental equation that can be considered for either P0 or Leff as its variable.

For a fixed input power P0, the effective length obtained from Eq. (4.23) corresponds to a

fiber length where there is R% depletion due to modulation instability. The fiber length

corresponding to the calculated effective length is named depletion length [99] and is given

by LD = −α−1 ln(1−αLeff). On the other hand, if we consider the input power P0 as the

variable and the fiber length as a parameter, Eq. (4.23) gives an input power of an optical

fiber for which there is R% depletion at the position L corresponding to the effective length

Leff = α−1(1− e−αL). The power obtained so is called critical power [100] and is denoted by

Pcrit. Defining the critical gain or exponent σcrit = 2γPcritLeff, Eq. (4.23) can be rewritten as

eσcrit = R
√

2π|β2|
Snγ

p
Leff

σcrit. (4.24)

Eq. (4.24) can be easily solved by simple numerical approaches like the bisection method to

obtain the critical exponent σcrit and thus, the critical power Pcrit by the following expression:

Pcrit = σcrit

2γLeff
. (4.25)

Since the critical exponent in Eq. (4.24) depends on the effective length through the termp
Leff in the equation, the critical power in Eq. (4.25) is not exactly in inverse proportion to the

effective length. However, for long optical fibers the effective length Leff =α−1(1−e−αL) can
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be approximated by L∞ =α−1 and so Eq. (4.24) modifies to the the following expression:

eσcrit = R
√

2πα|β2|
Snγ

σcrit, (4.26)

whose solution σcrit is independent from fiber length. As an example, consider a standard

SMF with typical parameters α = 0.2 dB
km , β2 = −22 ps2

km and γ = 1.8 W−1

km . Substituting all the

numerical parameters in Eq. (4.26), taking its logarithm and expressing the noise power

spectral density Sn in dBm
Hz instead of W

Hz , result in the following equation for σcrit:

σcrit − ln(σcrit) = ln(R)−
(

Sn

10
+9

)
ln(10)+ ln(2)

2
. (4.27)

For a tolerable depletion ratio R and a noise power spectral density Sn the critical exponent

σcrit and thus, the critical power Pcrit are calculated from Eq. (4.27) independent from fiber

length; for instance, if a system tolerates a maximum depletion of 10%, i.e. R = 0.1, and the

background noise level launched into the fiber is −121 dBm
Hz , Eq. (4.27) is reduced to σcrit −

ln(σcrit) = 5.18, whose solution is 7.15. So, for a 25-km standard SMF the critical input power

that induces at most 10% of depletion at the fiber end can be simply calculated from Eq. (4.25)

to be around 135 mW. This value actually agrees very well with experimental observation

reported in the literature [95]. It should be clarified that the depletion ratio in this case is 10%

only at the end of the fiber (25 km), and it is certainly lower at shorter distances along the fiber.

In order to evaluate the accuracy of the model, the analytical solutions given by Eq. (4.24) and

Eq. (4.26) are compared with the numerical simulation of the nonlinear Schrödinger equation

(NLSE). It should be noted that by simulating the NLSE all aspects of its corresponding real

system including the pump depletion and fiber length are taken into account. However,

Eq. (4.24), called Model I, neglects the effect of pump depletion in the modulation instability

gain and Eq. (4.26), called Model II, removes the effect of fiber length in addition to neglecting

the pump depletion.

Fig. 4.5 plots the critical gain σcrit versus the fiber length calculated in three ways: the
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Figure 4.5 – Critical gain versus fiber length obtained from the NLSE, Model I and Model II for a) R = 10%
and b) R = 20%, using two values of noise PSD: −121 and −141 dBm

Hz .
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simulation of the NLSE, the solution of Model I in Eq. (4.24), and the solution of Model II in

Eq. (4.26). Two levels of ASE noise, namely −141 and −121 dBm
Hz , along with two depletion

ratios, i.e. 10% and 20%, are assumed in the figure to describe howσcrit varies with the amount

of tolerable depletion R and the noise power spectral density Sn. As it is evident from Fig. 4.5,

all four samples have the same behavior. In short length regime the NLSE and Model I are in

good agreement since the undepleted pump approximation is accurately valid; while Model II

has a discrepancy since the effective length approximation (i.e. assuming Leff =α−1 = 21.7 km)

is not accurate in short ranges, where Leff is clearly shorter than α−1. On the other hand, in

long fibers the solution of the analytical model differs from the simulation of the NLSE due

to the loss of accuracy of the undepleted pump approximation for long propagation lengths

leading to more nonlinear interaction. However, Model II approximates the solution of Model I

asymptotically in long distances. Actually, it is worth mentioning that the constant critical

gain obtained from Model II determines in all cases a safe and relatively accurate limit on the

peak power to avoid a certain amount of MI depletion, keeping in mind that the real critical

power could be slightly higher for a real system. It should also be noticed that since the MI

gain is here calculated using the undepleted pump approximation, the lower the depletion

ratio, the more accurate the model is and thus the obtained value for σcrit. This is evident

when comparing Fig. 4.5a with Fig. 4.5b. Since the variation of σcrit with respect to fiber length

turns out to be negligible when compared to the effect of other factors such as noise and

tolerable depletion ratio, a constant critical gain σcrit can be calculated with an acceptable

approximation by using Eq. (4.26) independently from the fiber length.

4.2.1 Optimal Input and Maximal Output Power

Since the maximum sensing distance and performance of Brillouin distributed fiber sensors

are determined by the signal-to-noise ratio (SNR) at the far end of the sensing fiber [101], it

is critical to obtain the maximum achievable power at the fiber end and its corresponding

optimal input pump power. As long as there is no depletion due to nonlinear interactions such

as modulation instability and stimulated Raman and Brillouin scattering, the pump power

follows the exponential decay and thus, at the output of a sensing fiber of length L, the pump

power is P0e−αL where P0 is the input pump power. Therefore, in the linear regime, as P0

increases the output power and thus the SNR increase proportionally. However, nonlinearity,

especially modulation instability depletes the pump power and surprisingly the increase in the

input pump power can lead to a decrease in the output pump power and thus a degradation in

the sensing distance and system performance. To show this behaviour, a numerical simulation

on the power evolution has been done for a 10 km fiber and the result is depicted in Fig. 4.6.

It is clearly seen from the figure that by increasing the input pump power from 150 mW

to 200 mW and then even to 250 mW where the nonlinearity is still negligible, the output

power increases. However, further increase of the input power slightly raises the output power

until reaching the input power of 275 mW; after that the output power starts to decrease

substantially. For instance, the output powers corresponding to the input powers of 250 mW

and 300 mW are the same and equal to 147 mW. So the optimal input power is around 275 mW

and its corresponding output power which is 152 mW is the maximum achievable power at
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Figure 4.6 – Pump power evolution along a standard SMF of length L = 10 km with α= 0.2 dB
km , γ= 1.8 W−1

km

and β2 =−22 ps2

km for different levels of input power around the optimal pump power 275 mW. The noise

PSD is −121 dBm
Hz .

the fiber end. In this section we find the maximal output power and its corresponding optimal

input power based on the analytical model proposed in the previous part. Assume a fiber of

length L with characteristics α, β2 and γ in a system with a noise power spectral density of Sn.

If P (z) denotes the actual power along the fiber, the input and output pump powers can be

expressed by P0 = P (z = 0) and PL = P (z = L). On the other hand, if PMI represents the power

transferred to the MI sidebands, the actual output power can be expressed as

PL = P0e−αL −PMI, (4.28)

where P0e−αL is the ideal output power obtained from attenuation assuming no nonlinearity.

An analytical formula for PMI has been proposed in Eq. (4.21) using Laplace’s method; its

substitution in Eq. (4.28) results in

PL =
(

P0 − Sne2γP0Leff

2
√

2π|β2|Leff

)
e−αL . (4.29)

Eq. (4.29) represents the output power PL versus the input power P0. The optimal input

power corresponding to the maximal output power is simply derived via the following simple

optimization equation:

dPL

dP0
= 0. (4.30)

Moreover, since the depleted power is an exponential function of the input power, its derivative

with respect to P0 is proportional to the depleted power itself; in other words, Eq. (4.21) gives

dPMI

dP0
= (2γLeff)PMI. (4.31)
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Taking the derivative of Eq. (4.29) with respect to P0 and solving Eq. (4.30) lead to the following

optimal input power in terms of fiber and system characteristics:

Popt = 1

2γLeff
ln

( √
2π|β2|

Snγ
p

Leff

)
. (4.32)

Corresponding to the optimal input power given in Eq. (4.32), the maximal output power is

obtained from Eq. (4.29) to be

Pmax = e−αL

2γLeff

[
ln

( √
2π|β2|

Snγ
p

Leff

)
−1

]
= e−αL

2γLeff
ln

( √
2π|β2|

eSnγ
p

Leff

)
. (4.33)

The depleted pump power transferred to the MI spectral band at the optimal condition is

simply given by

Pdep = e−αL

2γLeff
, (4.34)

where all the powers satisfy Pmax +Pdep = Popte−αL . Fig. 4.7 plots the output pump power

versus the input power of a standard SMF with length 10 km obtained by numerical simulation.

It clearly shows the optimal input power in which the output power is maximal. Moreover,

the depleted power is shown to be the difference between the ideal exponential decay and

the actual nonlinear condition. Applying the fiber and system characteristics to Eq. (4.32)

and Eq. (4.33) results in Popt = 436 mW and Pmax = 253 mW which are in agreement with

the numerical simulation in Fig. 4.7. In addition, since the optimal input power occurs at
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Figure 4.7 – Output pump power versus input pump power for a standard SMF of length L = 10 km with

α= 0.2 dB
km , γ= 1.8 W−1

km and β2 =−22 ps2

km ; the noise PSD is −141 dBm
Hz . The optimal input power, maximal

output power and depleted power are shown.

the first maximal point deviated from the ideal straight line in Fig. 4.7, the corresponding

depletion ratio
Pdep

Popte−αL happens to be very low. For the example of Fig. 4.7 it is around 8%; in

practice, considering an upper bound of 20% is relatively safe. The optimal input power given
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in Eq. (4.32) is plotted in Fig. 4.8 versus the fiber length for different levels of background noise

PSD. The figure demonstrates the asymptotic behavior of optimal input power for long fibers

where Leff ≈ L∞ =α−1, so that the asymptote is given by

lim
L→∞

Popt = α

2γ
ln

(√
2π|β2|α
Snγ

)
. (4.35)

For instance, the optimal power for a long SMF where the noise PSD is −121 dBm
Hz is calculated

from Eq. (4.35) to be ≈ 96 mW which is also clear from Fig. 4.8. It is also evident from the figure
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Figure 4.8 – Optimal input power versus fiber length for different levels of background noise PSD: −161

(quantum noise), −141, −121 and −101 dBm
Hz . Fiber characteristics are α = 0.2 dB

km , γ = 1.8 W−1

km and

β2 =−22 ps2

km .

that by increasing the level of background noise PSD, the optimal input power reduces; in

fact, according to Eq. (4.32) the optimal power decreases linearly by the noise power spectral

density when Sn is expressed in decibel.

4.3 Brillouin Optical Time Domain Analysis
For validating the model proposed in the previous section an experiment has been done based

on the Brillouin distributed sensing whose implementation setup and working principles

are presented in this section. Brillouin distributed optical fiber sensors are among the most

common distributed sensors for measuring environmental quantities such as temperature

and strain [102, 103]. There are several techniques for implementing Brillouin distributed

sensors like Brillouin optical time-domain reflectometry (BOTDR) which is based on the

linear phenomenon of spontaneous Brillouin scattering [104, 105], and Brillouin optical time-

domain analysis (BOTDA) based on the nonlinear process of stimulated Brillouin scattering

(SBS) [6, 106]. The SBS process’s narrow-band spectral response can be exploited to induce

gain or loss on a specific frequency and thus, it provides a promising tool for measuring

the longitudinal variations of parameters such as chromatic dispersion [107], parametric

gain [108], power evolution along the fiber [109]. Therefore, it makes sense to use a BOTDA
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system for analyzing the longitudinal behaviour of modulation instability to validate the

proposed model in this work.

Before going to the details of a BOTDA sensor, it is necessary to review the phenomenon of

stimulated Brillouin scattering. The existence of an inelastic scattering of light waves due to

their interaction with sound waves was predicted by the French physicist Léon Brillouin (1889-

1969) [110] and the Russian physicist Leonid Mandelstam (1879–1944) [111] independently in

the 1920s. Such a scattering referred to as the Brillouin scattering can happen spontaneously by

thermally-excited acoustic phonons in a medium or might be stimulated by the acoustic wave

originating from the electrostriction of medium because of high-intensity incident light [2].

Therefore, the spontaneous Brillouin scattering is linearly proportional to the incident light;

whilst the stimulated Brillouin scattering (SBS) varies nonlinearly with respect to the intensity

of optical waves due to the nonlinear phenomenon of electrostriction. SBS was experimentally

observed for the first time by Chiao et al. in 1964 using a pulsed ruby laser as a light source

and two crystals namely, quartz (SiO2) and sapphire (Al2O3) as media [112]. The Brillouin

frequency shift (BFS) measured by a Fabry-Pérot interferometer in the experiment is 29.7 GHz

for quartz and 62.1 GHz for sapphire at the laser wavelength of 694 nm. Ippen and Stolen

demonstrated the SBS process in optical fibers employing a pulsed xenon-ion laser as a

pump and a single-mode silica fiber with a core diameter of 3.8 µm as a medium [113]. The

measured BFS is 32.2 GHz at 535 nm showing that the velocity of sound must be around

5.89 km
s at that acoustic frequency in the fiber. A thorough mathematical description of both

stimulated Brillouin scattering and stimulated Raman scattering (SRS) has been carried out by

Shen and Bloembergen using both classical electromagnetism and quantum mechanics [114].

Here, the classical approach to the stimulated Brillouin scattering based on the acoustic

wave propagation is presented in details. In this approach the source of acoustic wave is the

electrostrictive force originating from the interference of two counter-propagating optical

waves called pump and probe.

4.3.1 Pump-Probe Interaction in Stimulated Brillouin Scattering

Suppose a medium for light propagation such as an optical fiber with density ρ0 + ρ̃, where ρ0

is the average density of the medium and ρ̃ is its fluctuation around ρ0. It is shown that the

density fluctuation ρ̃(z, t ) is governed by the following wave equation in a one-dimensional

propagating medium such as optical fibers [2]:

∂2ρ̃

∂t 2 − v2 ∂
2ρ̃

∂z2 −Γ ∂
∂t

∂2ρ̃

∂z2 =−ε0γe

2

∂2〈 Ẽ 2〉
∂z2 , (4.36)

where v is the acoustic velocity in the medium and Γ is a damping coefficient expressed in

terms of the thermodynamic parameters of the medium such as shear and bulk viscosities.

ε0 is the vacuum permittivity and γe is the electrostrictive constant. The right-hand side of

Eq. (4.36) is the electrostrictive source of acoustic wave in which 〈 Ẽ 2〉 shows the time average

of the total electric field in the medium obtained from the superposition of the forward electric

field Ẽp called the pump and the backward field Ẽs called the probe. The forward and backward
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fields are given by

Ẽp(z, t ) = Ep(z, t )e i (kpz−ωpt ) + c.c., (4.37a)

Ẽs(z, t ) = Es(z, t )e i (−ksz−ωst ) + c.c., (4.37b)

where c.c. denotes the complex conjugate of previous terms. In Eqs. (4.37), Ep and Es are

slowly varying envelopes of the pump and probe fields; kp = nωp

c and ks = nωs
c are the pump

and probe wavenumbers oscillating at pump frequency ωp and probe frequency ωs, respec-

tively. The electrostriction term in the right side of Eq. (4.36) is obtained using the expressions

in Eqs. (4.37) as follows:

−ε0γe

2

∂2〈 Ẽ 2〉
∂z2 = ε0γe

2
(kp +ks)2EpE∗

s e i (kp+ks)z−i (ωp−ωs)t + c.c., (4.38)

It is seen from Eq. (4.38) that the electrostrictive source in the acoustic wave equation is a

traveling wave with frequencyΩ=ωp −ωs and wavenumber q = kp +ks. The idea behind the

pump-probe approach is to fix the pump frequency and then sweep the probe frequency so

that the frequency detuningΩ changes and q follows it according to

q = kp +ks =
nωp

c
+ nωs

c
= n

c
(2ωp −Ω). (4.39)

Therefore, the acoustic wave is a forward traveling wave with frequencyΩ and wavenumber q

that can be expressed by

ρ̃(z, t ) = ρe i (qz−Ωt ) + c.c. (4.40)

Substituting Eqs. (4.38), (4.39) and (4.40) in Eq. (4.36) results in the following spectrum for the

acoustic wave:

ρ = γeε0EpE∗
s

v2 − ( vc
n

Ω
2ωp−Ω

)2 − iΓΩ
. (4.41)

The phase-matching condition in which the acoustic wave phase is in quadrature with both

pump and probe phases is obtained when Eq. (4.41) is purely imaginary regardless of Ep and

Es. Therefore,

v2 − ( vc

n

Ω

2ωp −Ω
)2 = 0. (4.42)

Eq. (4.42) has two solutions, one represents the Stokes frequency ΩS and the other is the

anti-Stokes frequencyΩA of the stimulated Brillouin scattering given by

ΩS = 2v
c
n + v

ωp, (4.43a)

ΩA = 2v
c
n − v

ωp. (4.43b)
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As it is clear from Eqs. (4.43), there is a slight difference between the Stokes and anti-Stokes

Brillouin frequency shifts. This frequency difference can also be derived using the relativistic

Doppler effect [115]. Since the acoustic velocity v is negligible compared to the speed of light

in fibers, i.e. v ¿ c
n , the Brillouin frequency shift ΩB can be attributed to both Stokes and

anti-Stokes components by approximating Eqs. (4.43) as follows:

ΩB = 2nv

c
ωp. (4.44)

In optical fibers where the acoustic velocity is around v = 5900 m
s and the effective refractive

index is n = 1.446, the Brillouin frequency shift for a pump wavelength at 1550 nm is obtained

from Eq. (4.44) to be approximately 11 GHz. The spectrum in Eq. (4.41) can be simplified by

using the approximation 2ωp −Ω≈ 2ωp justified byΩ¿ωp. This way,

ρ = γeε0EpE∗
s

v2
(
1− Ω2

Ω2
B

)− iΓΩ
. (4.45)

Another approximation that can be applied to Eq. (4.45) is Ω2
B −Ω2 = (ΩB +Ω)(ΩB −Ω) ≈

2ΩB(ΩB −Ω), because the frequency detuningΩ varies in the order of Brillouin bandwidth ΓB,

which turns out to be ¿ΩB, around the Brillouin frequency shiftΩB and thus,Ω≈ΩB. This

approximation leads to the following normalized Brillouin gain spectrum:

g (Ω) = 1

1+2i Ω−ΩB
ΓB

, (4.46)

in which the phonon decay rate ΓB is given by

ΓB =
(

2nωp

c

)2

Γ= 16π2n2

λ2
p

Γ. (4.47)

For single mode fibers at the telecom wavelength of 1550 nm, ΓB
2π ≈ 27 MHz. Therefore, the

phonon decay time is Γ−1
B ≈ 6 ns. Moreover, Eq. (4.47) indicates that the Brillouin bandwidth

is in quadratic proportion to the pump frequency while the Brillouin frequency shift increases

linearly with the pump frequency according to Eq. (4.44). In order to see the longitudinal

evolution of pump and probe, it is more convenient to consider their intensity I or power

P defined by P = AeffI = nε0c
2 |E |2 Aeff, where Aeff is the mode effective area. Using the wave

equations describing the pump and probe propagation coupled through the acoustic wave,

it can be demonstrated that the coupled equations governing the intensity or power of the

pump and probe in the CW or quasi-CW regime are given by [4, 3]

dPp

dz
=− gB

Aeff
PpPs −αPp, (4.48a)

dPs

dz
=− gB

Aeff
PpPs +αPs, (4.48b)
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where the Brillouin gain is obtained from Eq. (4.46) as follows:

gB(Ω) = g0ℜ
[
g (Ω)

]= g0|g (Ω)|2 = g0

(
ΓB
2

)2

(
Ω−ΩB

)2 +
(
ΓB
2

)2 , (4.49)

in which g0 ≈ 5×10−11 m
W is the maximum Brillouin gain and ℜ denotes the real part. Eq. (4.49)

shows a Lorentzian distribution for the Brillouin gain spectrum whose FWHM bandwidth is

ΓB and it has the property ℜ[
g (Ω)

]= |g (Ω)|2. The Lorentzian distribution for Brillouin gain

spectrum has been experimentally demonstrated to be almost perfectly accurate [116]. Fig. 4.9

depicts the Brillouin gain spectrum given in Eq. (4.49) for standard optical fibers. The FWHM

spectral width of 27 MHz shows how narrowband the Brillouin process is and so it can be

utilized as a narrowband filter for selecting an optical wavelength. In the small-signal regime
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Figure 4.9 – Normalized Brillouin gain spectrum showing a Lorentzian function with a FWHM spectral
width of 27 MHz.

where the pump can be considered undepleted, the pump equation is simply approximated

by
dPp

dz =−αPp, and thus P (z) = P0e−αz where P0 is the input pump power. Substituting the

exponential pump power in the probe equation of Eqs. (4.48) leads to

dPs

dz
=

(
α− gB

Aeff
P0e−αz

)
Ps. (4.50)

Consider a fiber of length L into the far end of which the probe power Ps(L) is launched. With

this boundary condition, Eq. (4.50) gives the following solution:

Ps(z) = Ps(L)eα(z−L) exp

(
gBP0

Aeff

e−αz −e−αL

α

)
. (4.51)

The first exponential function in Eq. (4.51) shows the power attenuation while the second one

represents the power amplification due to the SBS process. Moreover, at the input of the fiber
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where z = 0, the backscattered power is detected to be

Ps(0) = Ps(L)e
gBP0Leff

Aeff
−αL

, (4.52)

in which Leff = 1−e−αL

α is the fiber effective length. When the system is in the quasi-CW regime

where the pump is a square pulse covering the segment ∆L of the fiber length, Leff is replaced

by ∆L and thus the exponent in the gain function is so low that it can be approximated by

e
gBP0∆L

Aeff ≈ 1+ gBP0∆L

Aeff
, when

gBP0∆L

Aeff
¿ 1. (4.53)

In BOTDA sensors, a relatively intense pump pulse of length ∆L is launched into the near

end (z = 0) of the sensing optical fiber and a low-power CW probe of power Pb is injected to

its far end (z = L). Assume that the pulse power at the position z along the fiber is denoted

by P (z) and so the net Brillouin gain is gB∆L
Aeff

P (z). At the same position the probe power is

Pbe−α(L−z) and thus, the amplified power by the Brillouin interaction is gB∆L
Aeff

P (z)Pbe−α(L−z).

As this amplified power travels to the input of the fiber, it suffers from the fiber attenuation

by the factor of e−αz . Therefore, the detected Brillouin-amplified power at the fiber input is

obtained as [101]

gB∆L

Aeff
P (z)Pbe−α(L−z)e−αz = gBPbe−αL∆L

Aeff
P (z). (4.54)

The importance of Eq. (4.54) is that the Brillouin gain detected from the amplified probe

signal is proportional to the local pump power P (z) along the fiber. Therefore, it is possible

to measure the longitudinal evolution of optical power propagating in optical fibers using a

BOTDA sensor. When the pump power is not large enough to excite considerable nonlinear

interaction and thus, pump depletion, the power evolution follows the exponential decay

P0e−αz . Therefore, the ideal trace of the detected Brillouin gain is an exponential decay and

any deviation from that is the result of pump depletion due to nonlinear effects, in this case

modulation instability. Fig. 4.10 depicts the power evolution along an optical fiber which is

proportional to the detected Brillouin gain. The solid lines have been obtained by simulating

the nonlinear Schrödinger equation while the dashed lines represents the ideal exponential

decay. It is evident from the figure that for low input power like 150 mW the power variation

matches almost perfectly the exponential function while by increasing the input power the

nonlinear interaction and thus, the pump depletion enhances the deviation from the ideal

power evolution.

4.3.2 Validating Experimental Setup

In order to validate the analytical model and numerical results regarding the longitudinal

evolution of modulation instability, a standard BOTDA system [6] has been utilized to obtain

experimental results. This system is based on a pump-probe interaction, in which a high-

power pump pulse and a continuous-wave probe signal are launched into the opposite ends of

an optical fiber under test. While the high-power pump pulse induces modulation instability
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Figure 4.10 – Pump power evolution along an SMF of length L = 25 km with α = 0.2 dB
km , γ = 1.8 W−1

km

and β2 =−22 ps2

km for different levels of input power. The noise power spectral density is −121 dBm
Hz . The

simulations of the NLSE are shown in solid lines and the exponential decays are plotted by dashed curves.

in the fiber, the low-power probe signal is simply used to measure the longitudinal evolution

of the pump power through the Brillouin gain. Since the Brillouin gain is proportional to

the pump power in the small gain approximation, the longitudinal evolution of pump pulse

and any depletion induced by MI can be directly mapped by analyzing the Brillouin gain

affecting the probe power. The scheme of the experimental setup is sketched in Fig. 4.11.

x

y
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Pump

Probe

EDFA

Pol.
Switch

SOA

VOA

At.
Pulse 

Generator

Microwave 
Generator

25 km 
SMF

PD
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50:50

Bias 

Computer

PD Osc

1:99

Power Calibration Unit 
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Figure 4.11 – Experimental setup based on a standard BOTDA scheme; LD: laser diode; SOA: semiconductor
optical amplifier; EDFA: erbium-doped fiber amplifier; VOA: variable optical attenuator; FBG: fiber Bragg
grating; At.: 10 dB attenuator; PD: photodetector; Osc: Oscilloscope; EOM: electric-optic modulator; SMF:
single-mode fiber.

The light from a distributed feedback (DFB) laser diode (LD) at 1551.1 nm is split into pump

and probe branches by a 50:50 coupler. A semiconductor optical amplifier (SOA) is used to

shape pulses of 20 ns with a high extinction ratio (>50 dB) and a repetition period of 300 µs,

longer than the return-trip time in the fiber. Pump pulses are amplified by a low-noise EDFA

and attenuated by a variable optical attenuator (VOA) to precisely adjust different levels of

pump peak power. A power calibration unit shown in the dashed box, is used for monitoring

the peak power launched into the fiber under test (FUT), which is in this case a 25.5 km
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4.3. Brillouin Optical Time Domain Analysis

long standard SMF. For the probe branch, an electro-optic modulator (EOM) is employed

to generate a two-sideband probe with a suppressed carrier, and a polarization switch is

inserted to eliminate the polarization dependence of the SBS gain. An optical isolator in the

probe branch is used to stop the pump pulses propagating back into the output of the EOM.

A 10-GHz fiber Bragg grating (FBG) is employed to filter out one of the probe sidebands and

the Rayleigh backscattered light from the pulses, so that only one of the probe sidebands is

detected by a 125 MHz photo-detector (PD). Finally, a computer acquisition card is used to

record the time-domain traces of the detected signal.

It is important to mention that the FUT has a very uniform Brillouin gain throughout the

fiber, ensuring that the recorded time-domain trace at a given pump-probe frequency offset

is proportional to the pump power at each fiber position, discarding any potential effect

induced by spectral variations of the Brillouin gain. This way, the acquired traces can show

a reliable profile of the longitudinal evolution of the pump power along the fiber. It is also

noteworthy that the probe power is kept very low in comparison with the pump power, so

that the SBS-induced depletion can be safely neglected [8] and the traces only include the

effect of modulation instability. The optical fiber utilized in this experiment is a standard SMF

of length 25.5 km with typical the attenuation of 0.2 dB
km and anomalous GVD coefficient of

β2 = −22 ps2

km . The nonlinear coefficient of the fiber under test has been measured using a

self-aligned interferometer with a Faraday mirror, as described in Chapter 2; the measured

nonlinear coefficient is γ= 1.8 W−1

km .

To sensing fiber
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Pump

Pulse

1:99

PD Osc

At.1 GHz

FBG

Narrowband 

optical filtering
(b)

Pump

Pulse

1:99

PD Osc

50:50

1:99 OSA

(a)

To sensing fiber

Figure 4.12 – Two modifications to the standard BOTDA system; used to analyze the impact of noise on the
behavior of modulation instability: (a) Scheme used to couple ASE noise co-propagating with the pump
pulses; (b) Scheme used to filter out ASE noise from the pump pulses.

Fig. 4.12 sketches two modifications in the standard BOTDA configuration to quantitatively

verify the impact of ASE noise on modulation instability. In Fig. 4.12a, an EDFA is used as a

source of ASE noise which is coupled to the pump pulses through a 50:50 coupler. The level of

noise spectral density is controlled via a variable optical attenuator. Using this configuration,

the evolution of the pump power during propagation along the fiber can be investigated

in presence of different levels of co-propagating background noise, seeding modulation

instability at different levels. On the other hand, Fig. 4.12b shows a configuration designed

for filtering the ASE noise (within the MI spectral band) generated by the EDFA used to boost

the pump pulses. The filter includes a circulator and a narrowband FBG with a bandwidth

of 1 GHz. Since the spectral band of modulation instability is in the range of a few tens of

GHz, the 1 GHz filter used in this configuration can filter most of the ASE noise within the MI

bandwidth.
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4.4 Experimental Validation of the Model
Using the BOTDA system illustrated in Fig. 4.11, the longitudinal power evolution of an optical

pulse during its propagation along an optical fiber can be obtained by measuring the local

linear Brillouin amplification [6]. In the performed experiment, pump pulses have duration

of 20 ns, corresponding to a spatial resolution of 2 m, and traces have been acquired with

2000 times averaging. The pump-probe frequency offset has been set to the average Brillouin

frequency shift (BFS) of the fiber which is 10.84 GHz, so that the measured longitudinal power

evolution can be mostly attributed to modulation instability and fiber attenuation. In order to

ensure this, the BFS of the fiber has been measured, verifying negligible longitudinal variations.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

1

2

3

4

5

6

Distance  [km]

B
ri

llo
u

in
 g

ai
n

  [
%

]

 

 

Measurements 
Fitted curves

290 mW

570 mW

130 mW

Figure 4.13 – Brillouin traces along with their fitted curves, for three different values of input pump power:
130 mW, 290 mW, and 570 mW.

Fig. 4.13 shows the pulse peak power evolution along the optical fiber under test for three

different input pump powers: 130 mW, 290 mW and 570 mW. For the case of the lowest

power, i.e. 130 mW, it is possible to observe the natural exponential power decay given by

the fiber attenuation; however, as pulse power increases, the peak power evolution changes

due to the onset of modulation instability. Comparing the curves in Fig. 4.13, it is interesting

to notice that increasing the input power of an optical signal launched into the fiber can

even decrease the signal power propagating at far distances as a consequence of the pump

depletion induced by modulation instability. In other words, increasing the input power does

not necessarily enhance the power propagating throughout the fiber at the original wavelength,

but sometimes can degrade it due to nonlinear distortions, such as modulation instability. At

high input power, the Fermi-Pasta-Ulam recurrence phenomenon turns out evident, as shown

by the oscillatory behavior in Fig. 4.13 for a pump power of 570 mW. An important aspect to

mention is that, since the depletion is oscillatory it is possible to assume that modulation

instability is dominant and the depletion induced by other processes, such as stimulated

Raman and Brillouin scattering, is negligible. The measured longitudinal traces have been

fitted to smooth curves as shown by the dashed lines in Fig. 4.13 using the smoothing spline

method [117]. This method is appropriate for fitting a smooth function to a set of noisy
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data [118]. This way, the experimental measurements of the pump power evolution which is

proportional to the measured Brillouin gain can be represented smoothly by discarding the

effect of noise, thus providing a clean reference for comparing with the analytical model and

simulation data.
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Figure 4.14 – Longitudinal BOTDA traces for different noise PSD values, ranging from −135 up to −115 dBm
Hz ,

and for an input peak power of a) 60 mW and b) 500 mW.

In order to investigate the impact of the background noise on the onset and behavior of

modulation instability, an EDFA has been used to introduce noise into the system based on

the scheme shown in Fig. 4.12a. The longitudinal BOTDA traces obtained with an input pump

power of 60 mW, for different levels of noise power spectral density are depicted in Fig. 4.14a.

Under the lowest noise situation, the time-domain BOTDA trace can be measured with no

distortion; however, when the ASE noise increases, MI is seeded enough to deplete the pump.

This behavior experimentally validates that the onset of modulation instability depends not

only on the peak pump power which is kept fixed in this case, but also on the power level of

the background noise co-propagating with the pump within the MI spectral band. Fig. 4.14b

reports similar results, but for an input peak power of 500 mW. In this case, modulation

instability substantially distorts the expected exponential decay of the pulse power along the

fiber as a consequence of the high input power, even at low noise conditions. However, it is

possible to observe that the presence of ASE noise further seeds MI, increasing the amount of

pump depletion. The results validate the behavior described in Fig. 4.4 and demonstrate the

key role of the noise spectrum in the analytical model. It is worth noting that the small negative

level obtained in the measured gain shown in Fig. 4.14b for the noise power spectral density

of −115 dBm
Hz does not have any relation to the MI evolution, but results in the measurement

process simply from the uneven and limited-bandwidth response of the photo-detector.

A second test to verify the effect of noise on modulation instability has been carried out

employing the scheme in Fig. 4.12b. In this case most of the ASE noise co-propagating with

the pump pulses is filtered out, thus providing a potential reduction of the seeding of MI.

Fig. 4.15 shows how filtering the ASE noise within the MI spectral band changes the onset of

MI and thus decreases the pump depletion. The comparison between filtered and non-filtered

pump cases clearly highlights the importance of background noise in seeding MI and how
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Figure 4.15 – BOTDA traces for filtered and non-filtered ASE noise cases with different peak power levels:
a) 130 mW, b) 330 mW, c) 450 mW and d) 810 mW.

filtering can mitigate its impact. According to Fig. 4.15a and Fig. 4.15d the filter does little in

very low or very high peak power regimes; while it is evident from Fig. 4.15b and Fig. 4.15c

that inserting a narrowband filter in the MI spectral band can be very effective in delaying the

onset of modulation instability and thus decreasing the pump depletion due to MI.

The impact of ASE noise filtering on the behavior of modulation instability and thus, on

the performance of BOTDA sensors is demonstrated in Fig. 4.16 where the characteristics

of a BOTDA systems are compared for two cases: with and without a 1-GHz filter in the MI

spectral band. Fig. 4.16a shows the Brillouin gain measured at the end of the FUT as a function

of the pump power, illustrating the effect of filtering on the output pulse power. It can be

observed that the amount of MI-induced depletion decreases significantly by filtering out the

ASE noise in the spectral band of modulation instability. This leads to higher output pulse

power with respect to the case in which the noise is not filtered out, especially for high power

regime. It should be noted that the residual noise passing through the 1-GHz filter still induces

some level of MI, thus inducing also some pump depletion, but at higher pump powers. This

explains why the red curve in Fig. 4.16a does not follow a perfect straight line as a function

of the input power, but shows a clear behavior of pump depletion. It should be emphasized

that even with a perfect filter covering only the bandwidth of the propagating signal, MI will

always occur if there is co-propagating noise. This is because the MI gain at pump wavelength
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Figure 4.16 – Effect of ASE on the BOTDA performance: a) SBS gain measured in the last meters of the
25 km SMF versus input pump power, with and without narrowband optical filtering, b) Comparison of
maximum distance reached by the pump before 50% of power depletion, with and without filter.

is not null, which means that any in-band noise co-propagating along the fiber will always

seed MI, inducing some level of depletion, which essentially depends upon the noise PSD

and bandwidth of the optical filter. Moreover, the curve corresponding to the no-filter case in

Fig. 4.16a shows a similar behavior as the numerical simulations illustrated in Fig. 4.4; while

the case of filtered noise looks different which can also be a result of non-white or colored

noise due to filtering. Fig. 4.16b shows an experimental comparison of the maximum distance

that the pump power can reach before being depleted by 50%. The figure clearly shows the

improvement in the performance of BOTDA systems by reducing the ASE noise and thus

decreasing the amount of pump depletion due to modulation instability. Tolerating 50% of

pump depletion at the fiber end, we can launch an input power of 400 mW with filtering while

without the filter it must be around 200 mW. In other words, by injecting 400 mW into the

fiber, 50% depletion occurs at 10 km along the fiber without filtering, while by using the filter

it happens at 25 km.

Fig. 4.17 compares the critical power obtained from the experimental measurement with
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Figure 4.17 – Critical power Pcrit versus fiber length obtained by numerical simulations, experimental
measurements and analytical model for two depletion ratios: a) 10% and b) 20%.
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the results of numerical simulations and analytical model II. In order to acquire the critical

power versus the fiber length from the experimental data, the fiber position showing a certain

depletion ratio is extracted from the measured BOTDA traces, thus obtaining the respective

depletion length for different input pump powers. This way, the input pump power leading

to a given depletion length corresponds to the MI critical power for a fiber of length equal

to the calculated depletion length. The numerical results are obtained by applying the split-

step Fourier method and Monte Carlo simulation to the nonlinear Schrödinger equation.

Solving Eq. (4.26) or equivalently Eq. (4.27) in this case, results in the critical power given by

the analytical model. The experimental results and the numerical simulations match almost

perfectly, mostly because in simulation the pump depletion is taken into account. On the other

hand, the critical power obtained from the analytical model follows exactly the measurements

and simulations but with a slight difference; in fact the proposed model provides a fairly

tight lower bound for the critical power ensuring a safe limit for avoiding a certain amount of

depletion due to modulation instability.
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Figure 4.18 – Critical gain σcrit versus fiber length for two depletion ratios: a) 10% and b) 20%; the plots
compare measurements, simulations and results of the proposed analytical model.

Fig. 4.18 shows the critical gain σcrit versus the fiber length for two depletion ratios, i.e. 10%

and 20%. It must be noted that in contrast to Fig. 4.5, the model does not give a straight hori-

zontal line because of the non-uniform ASE noise power used when measuring the different

pump power conditions. According to the experimental setup illustrated in Fig. 4.11 the input

power level is adjusted by a variable optical attenuator in a 10-dB range. Therefore, the ASE

noise generated by the EDFA is also modified in the same range, thus leading to a different

behavior when compared to Fig. 4.5, in which a constant ASE noise is assumed. Under this

condition, Fig. 4.17 and Fig. 4.18 demonstrate a good agreement between measurement, simu-

lation and analytical solution so that the discrepancy between the experimental and analytical

results is negligible showing an acceptable accuracy for the analytical model to predict an

MI critical power in fiber-optic systems. Actually, the experimental results presented in this

section and compared with the proposed model proof the validity of the analytical formula in

Eq. (4.21) for depleted power due to modulation instability in relatively low depletion ratios.

Therefore, the formulas for optimal input power in Eq. (4.32) and maximal output power in

Eq. (4.33) obtained from the MI depleted power in Eq. (4.21), are experimentally trustworthy.
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Brillouin optical time domain analysis (BOTDA) sensing systems rely on the nonlinear process

of stimulated Brillouin scattering (SBS). This inelastic scattering occurs when two counter-

propagating optical waves, called pump and probe, with a frequency difference of the Brillouin

frequency shift (BFS) interact or actually interfere. Therefore, SBS is sensitive to the polar-

ization state of the pump and probe. The polarization dependence of the Brillouin gain in

polarization-maintaining (PM) fibers was experimentally demonstrated by Stolen [119]. He

showed that in high birefringence (Hi-Bi) fibers when the pump and probe are launched or-

thogonally into slow and fast axes, the Brillouin gain is negligible. More importantly, when the

pump is injected at 45° with the birefringence axes, the Brillouin gain is more or less uniform

for all polarization states of the probe. However, the situation is different in non-PM fibers

because their birefringence changes randomly both in magnitude and direction. Horiguchi

et al. demonstrated in an experiment that the overall Brillouin gain of a pump-probe interac-

tion in standard single-mode fibers (SMF) can vary a factor two depending on the pump and

probe polarizations [120]. This was mathematically proved using the Stokes representation of

polarization states in a random birefringence medium containing two counter-propagating

light waves [121]. More mathematical analysis shows the high sensitivity of SBS on the inter-

acting pump and probe state of polarization (SOP) [122]. Therefore, in BOTDA sensors the

polarization-dependent Brillouin gain, sometimes called polarization fading, is a challenge to

be dealt with.

The classical techniques for eliminating the polarization noise in BOTDA are based on

the electromechanical systems such as polarization scramblers and polarization switches.

Electromechanical components make BOTDA sensors less robust and impose time-consuming

averaging in order to obtain a polarization independent measurement. Recently, a technique

for eliminating the polarization noise has been proposed exploiting the Brillouin gain for

the Stokes component and the Brillouin loss for the anti-Stokes component of the probe

while theses components are orthogonally polarized [123]. The technique is based on the

balanced detection of the Stokes and anti-Stokes components of the probe experiencing both

Brillouin gain and loss. The detection scheme can be simplified to a self-heterodyne detector

by using two orthogonally polarized pumps and leaving the probe components in parallel

polarization [124]. Moreover, in this system since the peak power of pump pulses is divided

to two orthogonally polarized components, the modulation instability (MI) is mitigated or
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equivalently more pump power can be launched into the sensing fiber without a considerable

pump depletion due to MI [125]. This way, the signal-to-noise ratio (SNR) of the system can be

enhanced but not as much as expected because although the scalar modulation instability of

each pump component reduces, a vector modulation instability occurs due to the interaction

of two orthogonal components [126]. This chapter is devoted to the performance analysis of a

BOTDA sensor deploying orthogonally polarized pumps and the comparison of such a system

with the ordinary one from the MI point of view.

5.1 Manakov System

The fundamental mode propagating in a single-mode fiber is HE11 which is a hybrid mode

including two degenerate modes. Therefore, even a single-mode fiber, in fact, supports two

orthogonally polarized modes with the same spatial distribution. Using the weakly guiding

approximation, the two modes are shown to be linearly polarized along orthogonal axes, for

instance the x- and y-axis; so they are represented by HE11x and HE11y . If nx and ny denote

the refractive indices of x and y principal axes, respectively, the modal birefringence is defined

as

Bm = |nx −ny |. (5.1)

Assuming nx > ny , the x-axis is called the slow axis and the y-axis is called the fast axis

because c
nx

< c
ny

in which c is the speed of light in vacuum. The phase difference induced on

the polarization components of the optical field by the birefringence is expressed by

φ= nx kL−ny kL = (nx −ny )kL = BmkL, (5.2)

where k = 2π
λ is the vacuum wavenumber and L is the propagation length. The beat length

LB of a fiber is defined as the length in which the induced phase difference between the two

polarization components is 2π and according to Eq. (5.2) it is given by

LB = 2π

(nx −ny )k
= λ

nx −ny
= λ

Bm
. (5.3)

LB is the minimum propagation length over which the input and output polarization states

return to identical. The typical value of birefringence for standard optical fibers is in the order

of 10−8 and thus, the beat length of standard fibers is in the range of tens of meters (< 100 m)

at telecom wavelengths around 1.5 µm. Two general techniques are utilized for manufacturing

birefringent or polarization maintaining (PM) fibers; one is by breaking the circular symmetry

of the fiber core into an elliptic shape that achieves a birefringence of 10−6 or equivalently a

beat length of ≈ 1 m. The other method uses stress-induced birefringence reaching up to 10−4

equivalent to a beat length of ≈ 1 cm. The commercially available PANDA and BOW-TIE are

among such high-birefringence (Hi-Bi) fibers. However, in standard optical fibers extensively

used in communications and sensing systems, birefringence changes in a random manner

both in value and in orientation of the slow and fast axes. Therefore, stochastic analysis is
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necessary to describe lightwave characteristics in such optical fibers [127, 128]. An important

parameter in randomly varying birefringent fibers is the correlation length lc which is defined

as the length over which two polarization components remain correlated and it is of the order

of 10 m for standard fibers. Another parameter is the polarization mode dispersion (PMD)

which is the pulse broadening due to the different group velocities of two polarization modes.

In a fiber of length L with group velocities vg x = 1
β1x

and vg y = 1
β1y

, the PMD-induced pulse

broadening is given by the following variance [129]:

σ2
T = 2(β1x −β1y )2l 2

c

(
e−

L
lc + L

lc
−1

)
. (5.4)

For long fibers where L À lc , the exponential function in Eq. (5.4) can be neglected and thus,

the pulse broadening is expressed by

σT = |β1x −β1y |
√

2lc L = Dp

p
L, (5.5)

where Dp =
√

2lc |β1x −β1y | is called the PMD parameter and its value is ranged from 0.01 to

2 psp
km

; the PMD parameter in low-PMD fiber is around 0.05 psp
km

. Now, we can analyze light

propagation in an optical fiber having birefringence.

5.1.1 Mathematical Derivation of the Manakov System

First, we consider a deterministic (non-random) linear birefringence and then, we apply

randomness to our analysis. Let Ax and Ay denote the slowly varying envelope of the x-

polarized and y-polarized fields with corresponding frequencies ω1 and ω2 and propagation

constants βx (ω) and βy (ω). The time- and longitudinal variations of the optical vector field

can be expressed by

A(z, t ) = x̂Ax (z, t )e i (β0x z−ω1t ) + ŷAy (z, t )e i (β0y z−ω2t ) +c.c., (5.6)

where x̂ and ŷ represent the unit vectors along the x- and y-axis, respectively. c.c. denotes the

complex conjugate of the previous terms and β0x =βx (ω1) and β0y =βy (ω2) show the propa-

gation constants at the pump wavelengths. In a linearly birefringent fiber, the general form of

the two coupled nonlinear Schrödinger equations governing the slowly varying envelopes is

given by [3]

∂Ax

∂z
+β1x

∂Ax

∂t
+ iβ2

2

∂2Ax

∂t 2 + α

2
Ax = iγ

(
|Ax |2 + 2

3
|Ay |2

)
Ax + iγ

3
A∗

x A2
y e−2i∆βz , (5.7a)

∂Ay

∂z
+β1y

∂Ay

∂t
+ iβ2

2

∂2Ay

∂t 2 + α

2
Ay = iγ

(
|Ay |2 + 2

3
|Ax |2

)
Ay + iγ

3
A∗

y A2
x e2i∆βz , (5.7b)

in which α is the attenuation coefficient, γ = n2k
Aeff

is the nonlinear coefficient and ∆β =
β0x −β0y is proportional to the modal birefringence Bm. In general, β1x 6=β1y so that |β1x −
β1y | represent the group velocity mismatch (GVM) between the two principal axes. It is

also assumed that the group velocity dispersion (GVD) coefficient β2 is the same for both
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polarizations that is acceptable as long as the optical frequenciesω1 andω2 are relatively close

to each other and thus, β2 can be attributed to the central frequency ω0 = ω1+ω2
2 . Defining

β1 = β1x+β1y

2 and δ= β1x−β1y

2 leads to β1x =β1 +δ and β1y =β1 −δ, where β1 can be attributed

to the central frequency ω0. By changing the time variable from t to t −β1z, the reference

frame moves with the average group velocity and the coupled equations in Eq. (5.7) are written

as

∂Ax

∂z
+δ∂Ax

∂t
+ iβ2

2

∂2Ax

∂t 2 + α

2
Ax = iγ

(
|Ax |2 + 2

3
|Ay |2

)
Ax + iγ

3
A∗

x A2
y e−2i∆βz , (5.8a)

∂Ay

∂z
−δ∂Ay

∂t
+ iβ2

2

∂2Ay

∂t 2 + α

2
Ay = iγ

(
|Ay |2 + 2

3
|Ax |2

)
Ay + iγ

3
A∗

y A2
x e2i∆βz . (5.8b)

The phase terms e±2i∆βz in Eqs. (5.8) can be removed by defining the following phase-shifted

envelopes:

U (z, t ) = Ax (z, t )e+i ∆β2 z , (5.9a)

V (z, t ) = Ay (z, t )e−i ∆β2 z . (5.9b)

Using Eqs. (5.9) in the coupled equations results in

∂U

∂z
+δ∂U

∂t
+ iβ2

2

∂2U

∂t 2 + α− i∆β

2
U = iγ

(
|U |2 + 2

3
|V |2

)
U + iγ

3
U∗V 2, (5.10a)

∂V

∂z
−δ∂V

∂t
+ iβ2

2

∂2V

∂t 2 + α+ i∆β

2
V = iγ

(
|V |2 + 2

3
|U |2

)
V + iγ

3
V ∗U 2. (5.10b)

In randomly varying birefringent fibers, the random rotation of the principal axes along with

a random phase difference between the two axes results in the following transformation of the

envelopes [130]:[
U ′

V ′

]
=

[
cosθ e iφ sinθ

−e−iφ sinθ cosθ

][
U

V

]
, (5.11)

where θ is a uniform random variable over the interval [0,2π] and φ is also a random variable

uniformly distributed over [−π
2 , π2 ] independent from θ [3]. Besides random rotation of the

birefringence axes, the modal birefringence ∆β also changes randomly along the fiber. In

a reasonably accurate model, ∆β is represented by a Gaussian stochastic process with zero

average and exponentially decaying correlation, valid for all positions z, z1 and z2 along the

fiber as follows [3]:

E
[
∆β(z)

]= 0, (5.12a)

E
[
∆β(z1)∆β(z2)

]=σ2e−
|z1−z2 |

lc , (5.12b)

in which E denotes the expected value operation. σ2 is the variance and lc is the correlation

length of birefringence fluctuations. Substituting the transformation given by Eq. (5.11) in
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Eqs. (5.10) and averaging over θ, φ and ∆β using Eqs. (5.12), and dropping the primes, we find

that [131]

∂U

∂z
+δ∂U

∂t
+ iβ2

2

∂2U

∂t 2 + α

2
U = 8

9
iγ

(|U |2 +|V |2)U , (5.13a)

∂V

∂z
−δ∂V

∂t
+ iβ2

2

∂2V

∂t 2 + α

2
V = 8

9
iγ

(|U |2 +|V |2)V. (5.13b)

The group velocity mismatch (GVM) in Eqs. (5.13) represented by δ can be removed using the

following phase transformation [132]:

u(z, t ) =U (z, t )e i
(
δ2

2β2
z− δ

β2
t
)
, (5.14a)

v(z, t ) =V (z, t )e i
(
δ2

2β2
z+ δ

β2
t
)
. (5.14b)

Applying the transformation given by Eqs. (5.14) to Eqs. (5.13) leads to

∂u

∂z
+ i

β2

2

∂2u

∂t 2 + α

2
u = 8

9
iγ

(|u|2 +|v |2)u, (5.15a)

∂v

∂z
+ i

β2

2

∂2v

∂t 2 + α

2
v = 8

9
iγ

(|u|2 +|v |2)v. (5.15b)

The set of Eqs. (5.15) is called the Manakov system first described in [133]. It has been

experimentally demonstrated that light propagation in standard optical fibers with relatively

low PMD can be described accurately using the Manakov system in both anomalous [134]

and normal [135] dispersion regimes. The coefficient 8
9 which is a result of averaging over

the whole Poincaré sphere, can be absorbed to the nonlinear coefficient by defining γ= 8
9

n2k
Aeff

.

This way, the Manakov system in Eqs. (5.15) is rewritten as

∂u

∂z
+ i

β2

2

∂2u

∂t 2 + α

2
u = iγ

(|u|2 +|v |2)u, (5.16a)

∂v

∂z
+ i

β2

2

∂2v

∂t 2 + α

2
v = iγ

(|u|2 +|v |2)v. (5.16b)

It is worth mentioning that in the Manakov system, as it is clear from Eq. (5.16), the self-

phase modulation (SPM) terms iγ|u|2u and iγ|v |2v have equal strength to the cross-phase

modulation (XPM) terms iγ|u|2v and iγ|v |2u which is a characteristic of randomly varying

birefringent fibers. The Manakov system described in Eqs. (5.16) is used in the next section to

model the propagation of orthogonally polarized light waves in a BOTDA system utilizing long

standard SMFs.

5.1.2 Numerical Simulation of the Manakov System

In this section, numerical simulations of the Manakov system given in Eqs. (5.16) are carried

out to obtain the longitudinal evolution of pump power and thus, the Brillouin gain in a

BOTDA sensor with orthogonally-polarized pumps. Three different scenarios are considered:

1) a classical BOTDA containing one pump with peak power P0, 2) a BOTDA deploying two
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pumps with parallel polarization each of which has a peak power of P0
2 and with the frequency

difference ∆ f , 3) a two-pump BOTDA with the same parameters but orthogonal states of

polarization. In order to numerically solve the Manakov system in Eqs. (5.16), the split-step

Fourier method described in Chapter 2 is utilized. Moreover, the background noise as a

seeding signal for modulation instability is taken into account by applying a Monte Carlo

simulation to the Manakov system. A standard SMF with typical characteristics at 1550 nm

like the attenuation coefficient α= 0.2 dB
km , GVD coefficient β2 =−22 ps2

km , nonlinear coefficient

γ= 1.8 W−1

km is considered. It should be noted that the fiber must be long enough to guarantee

the accuracy of the statistical averaging of the coupled nonlinear Schrödinger equations over

the fiber random birefringence. It can be seen that for a standard fiber with a length of more

than 1 km, during the propagation the state of polarization covers the Poincaré sphere almost

completely [3]; the fiber length here is chosen 25 km being compatible with our experiment.

The total pump power is chosen to be P0 = 250 mW, therefore, for the single-pump BOTDA the

peak power is 250 mW, while the peak power of each pump in two-pump BOTDA is 125 mW.

The frequency spacing between the two pumps are set to 20 GHZ which is around twice the

Brillouin frequency shift. The total noise power spectral density (PSD) is −118 dBm
Hz which

means that it is −121 dBm
Hz in each polarization.
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Figure 5.1 – Numerical simulation of modulation instability gain spectrum for a standard SMF with

α = 0.2 dB
km , β2 = −22 ps2

km , γ = 1.8 W−1

km , and two fiber lengths a) L = 10 km and b) L = 25 km in three
different scenarios. The frequency spacing between the pumps is ∆ f = 20 GHz, the noise power spectral
density is −118 dBm

Hz , and the total power is 250 mW. The curves are normalized to e−αL to discard the
effect of fiber loss.

Fig. 5.1 depicts the modulation instability gain spectrum in the three considered scenarios

for two fiber lengths, 10 and 25 km. For the sake of visibility, the pump lines at 0 and ±10 GHz

are removed from the plots. Firstly, the spectral lines in the figure demonstrates an efficient

four-wave mixing (FWM) between the pumps with parallel polarizations while with orthog-

onally polarized pumps, FWM is highly suppressed [136] which is evident from the figure.

Secondly, the MI gain in single-pump scenario is always higher than that of the orthogonal

pumps whether in small-signal gain or low pump depletion plotted in Fig. 5.1a or in saturated

gain or high pump depletion shown in Fig. 5.1b. Therefore, it is evident that a BOTDA with

orthogonally polarized pumps can perform better than a single-pump BOTDA in the sense
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5.1. Manakov System

of pump depletion due to modulation instability. To confirm this claim, the longitudinal

evolution of pump power during the propagation along the fiber is simulated for the three

considered scenarios. In the two-pump scenarios the total pump power is obtained by adding

the two pump powers incoherently which is proportional to the total Brillouin gain in a BOTDA

system. Fig. 5.2 shows the simulation results of pump power evolution. The case of parallel

pumps demonstrates a highly oscillating pump power due to the FWM between the pumps.

Hence, this scenario is not applicable in BOTDA systems. However, in other scenarios where

FWM is efficiently suppressed there are no abrupt changes in the longitudinal variation of the

pump power. On the other hand, it is interesting to observe the behavior of the orthogonally

polarized pumps, which shows a considerable improvement in terms of pump depletion

compared to the standard single-pump configuration. For instance, the pump depletion ratio

at the fiber end (25 km) is more than 70% for a single-pump setup while it is less than 40%

when orthogonally polarized pump are deployed.
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Figure 5.2 – Longitudinal pump power evolution along a 25 km SMF with α= 0.2 dB
km , β2 =−22 ps2

km , and

γ= 1.8 W−1

km in three practical scenarios plus a fictitious case. The frequency spacing between the pumps is

∆ f = 20 GHz, the noise power spectral density is −118 dBm
Hz , and the total power is 250 mW. The curves are

normalized to e−αz to discard the effect of fiber loss.

Fig. 5.2 also includes a fourth fictitious scenario (the plot close to a straight line) in which

there is no interaction between two orthogonal pumps and thus no vector modulation instabil-

ity occurs. Actually, each pump has its own scalar modulation instability and its corresponding

power depletion. Comparing the power evolution in two cases of orthogonally polarized

pumps with and without vector modulation instability, we find that how significant the in-

teraction of two pumps and the power depletion can be. It proves that assuming the same

performance, it is not possible to double the pump power by splitting it into two orthogonal

pumps because in addition to scalar modulation instability of each pump there is a vector

modulation instability due to the interaction of the pumps. It is worth mentioning that the

power evolution of parallel pumps can be exploited for extracting the fiber parameters γ and

β2. More specifically, the position and the depth of the first dip in the curve highly depends

on the dispersion and nonlinear coefficients. Moreover, this dip is almost independent from
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Chapter 5. Polarization Modulation Instability

the system noise level because it is the result of energy transfer between pumps and not

the interaction of pumps and noise. Therefore, by measuring the longitudinal evolution of

pump power in a two-pump BOTDA with parallel polarizations the fiber characteristics can

be extracted almost accurately.

5.2 BOTDA with Orthogonally Polarized Pumps
Pump probe interaction through the nonlinear process of stimulated Brillouin scattering (SBS)

provides an amplification or gain when the probe is in the Stokes zone of the pump, while in

the anti-Stokes region it induces a loss on the probe. Traditional single-pump BOTDA sensors

can exploit either the gain or the loss mechanism of SBS for measuring the environmental

parameters like temperature and strain. However, in two-pump BOTDA systems, it is required

to use the gain and loss mechanisms simultaneously. Fig. 5.3 illustrates the conceptual design

of a BOTDA with orthogonally-polarized pumps. On the one hand, the probe spectral lines are

in the Stokes region of the horizontal pump and thus, they experience a gain due to the energy

transfer from that pump. On the other hand, the vertical pump induces a loss on the probe

lines because they are located in its anti-Stokes zone.

Brillouin lossBrillouin gain

9.55 GHz

ω

9.55 GHz

Vertical

Pump

Probes Horizontal

Pump

1.3 GHz 1.3 GHz

Figure 5.3 – Brillouin interactions of the probe spectral lines with the orthogonally-polarized pumps. The
vertical pump induces a Brillouin loss on the probe, while the horizontal pump provides a Brillouin gain.
The BFS is 9.55+1.3 = 10.85 GHz.

The efficiency of gain and loss on each probe line highly depends on the frequency differ-

ence between them. The scheme in Fig. 5.3 is designed so that the upper probe line experiences

an efficient loss due to the vertical pump because the frequency difference between them is

9.55+1.3 = 10.85 GHz which is the Brillouin frequency shift (BFS) in standard optical fibers;

and for the same reason the lower probe line sees an efficient gain from the horizontal pump.

If Ip denotes the intensity of each pump, the small-signal gain induced by the horizontal pump

is expressed by 1+ gh Ip Leff, where gh is the Brillouin gain of the horizontal pump. Similarly, if

gv represents the Brillouin gain of the vertical pump, the small signal loss due to the vertical

pump is expressed by 1− gv Ip Leff. By measuring the difference between the gain and loss, the

net signal is detected to be (1+ gh Ip Leff)− (1− gv Ip Leff) = (gh + gv )Ip Leff and it automatically

compensate the polarization fading.
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5.2. BOTDA with Orthogonally Polarized Pumps

5.2.1 Experimental Setup of Two-Pump BOTDA
The experimental setup implementing exactly the conceptual design given in Fig. 5.3 is por-

trayed in Fig. 5.4. The output of a laser source at 1550.5 nm is split into two branches using

an optical coupler. In the pump branch, the continuous-wave (CW) light is shaped into a

train of optical square pulses with a pulse duration of 50 ns and a repetition period of 300 µs

using a Mach-Zehnder electro-optic modulator (MZ-EOM) driven by an RF switch. The switch

is turned on and off by a pulse generator and at the same time, a microwave oscillator at

9.55 GHz modulates the pump pulses to generate two spectral lines around the laser frequency.

The carrier at the laser wavelength is highly suppressed by the bias voltage applied to the

intensity modulator. The modulated lightwave passes through a polarization controller (PC),

a differential group delay (DGD) module and a programmable optical filter (POF), depicted

inside a dashed box in Fig. 5.4. These optical components together allow us to implement the

three scenarios mentioned in the previous section for the study of modulation instability, i.e.

orthogonal pumps, parallel pumps and single pump.

Pulse generator

RF

Oscillator

Laser

Coupler

EDFA

1

2

3

Photodetector

Fiber

Polarization

scrambler

Phase modulator

Filter

Microwave

OscillatorRF Switch

MZ-EOM PC DGD POF

RF Demodulator

Oscilloscope

Figure 5.4 – Experimental setup for implementing three variations of a BOTDA sensor: 1) single pump,
2) parallel pumps and 3) orthogonal pumps. PC: polarization controller; DGD: differential group delay;
POF: programmable optical filter; RF: radio frequency; MZ-EOM: Mach-Zehnder electro-optic modulator.

The polarization controller allows the linearly-polarized light at the output of the intensity

modulator to be properly aligned into the DGD module. This birefringent material generates

a wavelength-dependent phase shift difference between its axes expressed by θ = 2π∆ f ∆τ, in

which ∆τ is the differential group delay introduced by the birefringence in the DGD module

and ∆ f is the frequency spacing between the optical waves [125], in this case 19.1 GHz.

Therefore, depending on the wavelength difference and the angle of the linearly-polarized

incident light, the birefringent material can provide different states of polarization at its output.

Two orthogonally-polarized pulses can be obtained if the incident angle into the birefringent

material is set to 45° and θ =π. The incident angle is achieved by the polarization controller,

while condition on θ is fulfilled by choosing a DGD module with ∆τ= 26 ps. The generation

of pulses with parallel polarizations only requires to adjust the incident angle to one of the

principal axes of the DGD module. Finally, for making a standard single-wavelength pulse, the

programmable optical filter is adjusted to select only one of the sidebands. Once the desired

pump signal is generated, it is boosted by an erbium-doped fiber amplifier (EDFA), whose

amplified spontaneous emission noise is filtered out by a 1 nm optical filter.
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In the probe branch, the CW lightwave is modulated by an electro-optic phase modulator

driven by a 1.3 GHz signal generator. This modulation frequency is selected so that the upper

(lower) sideband of the phase modulation interacts with the lower (upper) sideband of the

pump to implement the conceptual design in Fig. 5.3. After interacting via stimulated Brillouin

scattering, the probe signal is directed to a photodetector playing the role of a self-heterodyne

detection scheme. Since the probe has three spectral lines in which the two sidebands are in

opposite phase because of the electro-optic phase modulator, the detected signal at 1.3 GHz is

the difference between the Brillouin gain and loss as desired for implementing the scheme in

Fig. 5.3. The detected radio frequency (RF) signal at 1.3 GHz is transformed to a base-band

signal using the RF demodulator. Finally, the BOTDA signal is acquired by an oscilloscope.

5.2.2 Comparison of the Model and Measurements

Here, the experimental measurements obtained from a BOTDA system with three different

configurations are compared with the numerical simulations obtained from the theoretical

model given by the Manakov system. The local Brillouin gain which is proportional to the

pump power distributed along the fiber is measured to obtain the evolution of pump power as

it propagates through the fiber. Therefore, the measurement must be similar to the simulation

results depicted in Fig. 5.2 except that the experimental results include the attenuation effect

and thus, an exponential decay. A 25 km long SMF (its exact length is 24760 m) is employed

as the sensing fiber under test (FUT). The main objective is to compare the performance of

a single-pump BOTDA and a double-pump BOTDA with orthogonal polarizations from the

modulation instability point of view. However, the configuration of double-pump BOTDA

with parallel polarization is also implemented to extract the fiber characteristics from its

experimental measurement. As mentioned before, the coherent interaction of the parallel

pumps through the four-wave mixing process can be exploited to extract dispersion and

nonlinear coefficients. Therefore, it is necessary to measure this scenario even though it is

not desired from the BOTDA perspective. Fitting the measurement results with the numerical

simulation of the system, we find the dispersion and nonlinear coefficients. It is worth

mentioning again that the Manakov system is numerically solved using the split-step Fourier

method while the noise is taken into account by performing a Monte Carlo simulation.

Fig. 5.5 compares the experimental and simulation results. The measured BOTDA trace

of the single-pump configuration along with its corresponding simulation is plotted in both

sub-figures of Fig. 5.5. Moreover, the exponential decay due to the fiber attenuation is depicted

to demonstrate the behaviour of an ideal BOTDA system free from the pump depletion due

to nonlinear effects. Comparing the single-pump and ideal cases, we find that there is a

50% depletion at the fiber end (≈ 25 km) in the single-pump configuration. In addition to

the single-pump BOTDA, Fig. 5.5a depicts the pump power evolution in the double-pump

BOTDA with parallel polarizations. The deep dip in the trace is because of the FWM between

the pumps and it can be used to extract the fiber dispersion and nonlinear coefficients by

fitting the numerical simulation to the experimental results which leads to the parameters

β2 =−23 ps2

km , and γ= 1.0 W−1

km for the FUT. Moreover, Fig. 5.5a demonstrates that two-pump

BOTDA systems with parallel polarizations are not suitable as sensors due to high pump
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Figure 5.5 – Measured and simulated power evolution in a 25 km SMF with a total input power of 300 mW,
for a) single pump with 300 mW and double parallel pumps each of which with 150 mW, and b) single
pump with 300 mW and double orthogonal pumps each of which with 150 mW. The system parameters

are: α= 0.2 dB
km , β2 =−23 ps2

km , and γ= 1.0 W−1

km . The frequency spacing between the pumps is 19.1 GHz

and the noise power spectral density is −109 dBm
Hz . The undepleted exponential decay corresponding to

the ideal situation is also plotted.

depletion.

The main result of this study is shown in Fig. 5.5b where the single-pump BOTDA is com-

pared with a double-pump one of orthogonal polarizations. First of all, it is evident from

the figure that the numerical simulation of the Manakov system given in Eqs. (5.16) is in an

excellent agreement with the experimental results, demonstrating the validity of the model

and its accuracy in analyzing a two-pump BOTDA from the MI perspective. Secondly, Fig. 5.5b

demonstrates that a double-pump BOTDA system with orthogonal polarizations outperforms

a classical single-pump one as long as the MI pump depletion matters. Obvious differences

in the pump power evolution can be observed in the last 10 km of fiber, where the power of

the single pump is depleted by approximately 50% as a result of scalar modulation instability,

while the total power in the two orthogonal pulses is only depleted by around 10% due to

vector or polarization modulation instability. This represents an improvement slightly less

than 3 dB in the sensor response at the end of the fiber, enabling a sensing range extension of

around 7 km while maintaining the same SNR [101].

In order to evaluate the performance improvement provided by the use of orthogonally

polarized pumps, the measured depletion ratio at the fiber end is compared in Fig. 5.6 with

the single-pump case for different levels of input pump power. As it is evident from the

figure, the depletion ratio using a single pump is clearly much higher than when using double

pumps with orthogonal polarizations. As an example, tolerating a depletion ratio of about

20%, the input pump power can be increased from around 220 mW to 320 mW employing

orthogonally-polarized pumps. This represents a 1.5-fold improvement in the input pump

power supported by the system before inducing distortions in the pump evolution traces.

Furthermore, for pump powers below 300 mW, the depletion ratio grows from 15% using

orthogonally polarized pumps up to more than 50% using the single pump configuration,

which also confirms the advantage of a BOTDA with orthogonally polarized pumps. It is worth
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Figure 5.6 – Measured pump depletion ratio versus total input power at the fiber end (≈ 25 km distance)
for two cases: 1) single pump and 2) double pumps with orthogonal polarizations.

mentioning that the oscillatory behavior of the single pump case in Fig. 5.6 is due to the FPU

recurrence phenomenon.

Finally, it is seen that the Manakov system is a reasonably accurate model for evaluating

the power evolution in a Brillouin distributed sensor employing two orthogonally polarized

pumps. It is also demonstrated that although the pump depletion due to the scalar modulation

instability reduces by splitting the pump power into two orthogonally polarized pumps, the

vector or polarization modulation instability originating from the interaction of the pumps

induces a pump depletion limiting the performance improvement. Therefore, the maximum

pump power allowed to be launched into a BOTDA sensor is determined by the pump deple-

tion due to the polarization MI described by the Manakov system. Such a maximum power is

obtained when two pumps with orthogonal polarizations are utilized and it is shown to be

higher than the allowable power for a single-pump BOTDA.
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Conclusions

This dissertation analyzes the main limitation for increasing the sensing distance of distributed

optical fiber sensors, i.e. pump depletion due to modulation instability (MI). A mathematical

model for predicting the critical, optimal and maximal powers is proposed and verified by

experiment and simulation. Methods for mitigating modulation instability in optical fibers

are presented. The results of this thesis are given below.

Suppose a fiber-optic system with the input pump power of P0 comprising a background

noise with the power spectral density Sn. For a standard single-mode fiber (SMF) of length L

with attenuation coefficient α, group-velocity dispersion β2, and nonlinearity γ, the power

depleted from the pump due to modulation instability is given

PMI = Sne2γP0Leff−αL

2
√

2π|β2|Leff

. (1)

This formula shows the impact of background noise level, dispersion, attenuation and nonlin-

earity on the amount of depleted power due to modulation instability. Specifically, increasing

the group-velocity dispersion and decreasing the background noise are shown to be effective

in reducing modulation instability.

Accepting a depletion ratio R for the aforementioned system, we can define a critical input

power for which the output power experiences a depletion of R%. Based on the depleted

power in Eq. (1), the MI critical power for a tolerable depletion ratio R is expressed by an

intuitively expected formula as

Pcrit = σcrit

2γLeff
, (2)

where the critical gain σcrit is obtained from the following equation:

eσcrit = R
√

2π|β2|
Snγ

p
Leff

σcrit. (3)

The transcendental equation given by Eq. (3) can be simply solved by numerical methods in

order to obtain the MI critical power from Eq. (2). The depletion ratio R provides a degree of

freedom in evaluating the MI critical power so that it can be adapted to different fiber-optics

systems based on application.
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Maximizing the pump power at the fiber output in order to achieve the maximum signal-

to-noise ratio (SNR) by performing an optimization based on Eq. (1) results in the following

maximal output power:

Pmax = e−αL

2γLeff
ln

( √
2π|β2|

eSnγ
p

Leff

)
, (4)

where e ≈ 2.71828 is Euler’s number. The optimal input pump power corresponding to the

maximal output power is obtained from

Popt = 1

2γLeff
ln

( √
2π|β2|

Snγ
p

Leff

)
. (5)

The optimal input power given in Eq. (5) can be very applicable in designing, testing and

analyzing fiber-optic systems suffering from modulation instability such as distributed optical

fiber sensors.

According to Eq. (1) and Eq. (4), the impact of modulation instability on distributed optical

fiber sensors can be alleviated by modifying the fiber characteristics such as dispersion and

nonlinearity. It is evident from Eq. (4) that by increasing the dispersion coefficient β2, maximal

output power enhances slightly due to the logarithmic dependence. It can be justified con-

sidering that the MI bandwidth decreases while the MI gain remains unchanged so the total

depleted power reduces. Another parameter is the nonlinear coefficient γ that can be much

more effective than the dispersion coefficient in mitigating modulation instability. However,

reducing γ through increasing the fiber effective area is useless in improving the performance

of distributed fiber sensors, because the Raman and Brillouin gain coefficients also decrease

with the same proportion.

Eq. (5) and Eq. (4) suggest a rather effective way to mitigate modulation instability by

decreasing the level of background noise in the MI spectral band which is demonstrated

experimentally in this thesis via utilizing a narrowband optical filter covering the MI spec-

tral lobes around the pump wavelength. Moreover, by splitting the pump power into two

orthogonally-polarized components at different wavelengths, it is possible to reduce the MI

pump depletion. In this case the system performance is determined by the vector modulation

instability originating from the two interacting pumps.

This work can be continued in several ways. For instance, the proposed analytical model

for MI characteristics can be generalized to consider higher-order dispersions. The results will

be applicable for dispersion-managed optical fibers such as dispersion-shifted fibers (DSF).

Another path is to consider a colored or non-white characteristic for the background noise.

This assumption will result in a different modulation instability gain spectrum and thus,

different power depletion due to MI. Moreover, the experimental observation of such a colored-

noise-seeded MI can be exciting.

Based on the model, obtaining optimum combinations of fiber characteristics and system

parameters for different applications can also open the door for future work. Such optimal

configurations will be useful in designing, manufacturing and testing distributed fiber sensors.
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A White Noise

In this appendix, a few essential concepts for dealing with stochastic signals in general and

white noise in particular are represented. White noise is a random signal with a constant

power spectral density and so, it is necessary to define the power spectral density (PSD) of

random signals. For a random power signal x(t ), the power spectral density Sx (ω) is defined

as [137]

Sx (ω), lim
T→∞

E
[|x̂T (ω)|2]

T
, (A.1)

where E denotes the expected value operator and x̂T (ω) indicates the Fourier transform of the

truncated signal as follows:

x̂T (ω) =
∫ + T

2

− T
2

x(t )e iωt dt . (A.2)

Obtaining the PSD of a random signal directly from Eq. (A.1) is cumbersome. Fortunately, for

a broad range of random signals called wide-sense stationary or WSS signals, it is possible to

calculate their PSD by taking the Fourier transform of their autocorrelation function, thanks

to the well-known Wiener–Khinchin theorem in spectral analysis [137]. A random signal x(t )

is called wide-sense stationary when its expected value E[x(t)] is time independent and its

correlation between two instants t1 and t2 depends only on the time difference τ= t1 − t2. In

this case the autocorrelation function is given by [138]

Rx (τ) = E
[
x(t +τ)x∗(t )

]
. (A.3)

Accordingly, the Wiener-Khinchin theorem simply indicates that

Sx (ω) =F
[
Rx (τ)

]= ∫ +∞

−∞
Rx (τ)e iωτdτ. (A.4)

The white noise signal n(t) is a WSS stochastic signal with a zero average and a constant

power spectral density, i.e. E[n(t)] = 0 and Sn(ω) = N0
2 , where N0 is called one-sided power

spectral density [138]. Since the white noise PSD is constant, according to the Wiener-Khinchin
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Appendix A. White Noise

theorem its autocorrelation is a Dirac impulse function that can be expressed as

Rn(t1, t2), E
[
n(t1)n∗(t2)

]= N0

2
δ(t1 − t2). (A.5)

Eq. (A.5) indicates that for a white noise the samples at different instances are uncorrelated.

This characteristic of noise provides a simplicity in the mathematical analysis of systems

containing white noise. Here, we show that the same feature holds for the spectral samples of

white noise. More precisely, we demonstrate that n̂(ω), the Fourier transform of n(t ), is also a

white process. It can be easily seen that the ensemble average of n̂(ω) is null as follows:

E
[
n̂(ω)

]= E
[∫ +∞

−∞
n(t )e iωt dt

]= ∫ +∞

−∞
E
[
n(t )

]
e iωt dt = 0. (A.6)

It is worth mentioning that the integration in Eq. (A.6) is not an ordinary integration; rigorously

speaking it is a stochastic integral that needs to be defined in terms of stochastic processes.

However, it is possible to deal with it as normal integration and roughly speaking the results

are still pertinent. The autocorrelation function of n̂(ω) is calculated as follows:

Rn(ω1,ω2) = E
[
n̂(ω1)n̂∗(ω2)

]= E
[∫ +∞

−∞
n(t )e iω1t dt

∫ +∞

−∞
n∗(t )e−iω2t dt

]
=

Ï +∞

−∞
E
[
n(t )n∗(t ′)

]
e i (ω1t−ω2t ′)dt ′dt = N0

2

Ï +∞

−∞
δ(t − t ′)e i (ω1t−ω2t ′)dt ′dt

= N0

2

∫ +∞

−∞
e i (ω1−ω2)t dt =πN0δ(ω1 −ω2). (A.7)

Eq. (A.7) clearly shows that the samples of n̂(ω) at different frequencies are uncorrelated.

Therefore, the Fourier transform of white noise is also a white noise, i.e. a wide-sense stationary

process with uncorrelated samples. This feature of white noise is useful in obtaining the gain

spectrum of spontaneous modulation instability seeded by the background noise which is

modeled as white noise.

112



B Laplace’s Method

In this appendix a useful approximate formula for integrating exponential functions, called

Laplace’s method is discussed and proved. Suppose that the function f (x) has a global max-

imum at x0 at which its first derivative is null, i.e. f ′(x0) = 0, and its second derivative is

negative, i.e. f ′′(x0) =−| f ′′(x0)|. The Taylor expansion of f can be written as

f (x) =
∞∑

n=0

f (n)(x0)

n!
(x −x0)n

= f (x0)+ f ′(x0)(x −x0)+ f ′′(x0)

2
(x −x0)2 +

∞∑
n=3

f (n)(x0)

n!
(x −x0)n

= f (x0)− | f ′′(x0)|
2

(x −x0)2 +
∞∑

n=3

f (n)(x0)

n!
(x −x0)n . (B.1)

For a positive number s the exponential function e s f (x) can be expressed using Eq. (B.1) as

follows:

e s f (x) = e s f (x0)e−
s| f ′′(x0)|

2 (x−x0)2
e

∑∞
n=3

s f (n)(x0)
n! (x−x0)n

. (B.2)

Taking the integral of Eq. (B.2) over the whole real numbers results in

I =
∫ +∞

−∞
e s f (x)dx = e s f (x0)

∫ +∞

−∞
e−

s| f ′′(x0)|
2 (x−x0)2

e
∑∞

n=3
s f (n)(x0)

n! (x−x0)n
dx. (B.3)

Applying the change of variable z =√
s| f ′′(x0)|(x −x0) to the integral in Eq. (B.3) leads to

I = e s f (x0)√
s| f ′′(x0)|

∫ +∞

−∞
e−

z2

2 e
∑∞

n=3 s1− n
2 kn zn

dz, (B.4)

in which kn = f (n)(x0)p
| f ′′(x0)|n . The exponential function inside the integral in Eq. (B.4) can be

expanded using the Taylor series as

e
∑∞

n=3 s1− n
2 kn zn = 1+ k3

s1/2
z3 + k4

s
z4 + k5

s3/2
z5 +

(
k2

3

2s
+ k6

s2

)
z6 + . . . (B.5)
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Note that the terms corresponding to n = 1 and n = 2 in the Taylor expansion of Eq. (B.5) are

simply zeros. Substituting Eq. (B.5) in the integral of Eq. (B.4) results in

I = e s f (x0)√
s| f ′′(x0)|

∫ +∞

−∞

[
1+ k3

s1/2
z3 + k4

s
z4 + k5

s3/2
z5 +

(
k2

3

2s
+ k6

s2

)
z6 + . . .

]
e−

z2

2 dz, (B.6)

The integration in Eq. (B.6) can be performed term-by-term; odd terms lead to zero and only

even terms remain so it can be expressed as

I = e s f (x0)√
s| f ′′(x0)|

[∫ +∞

−∞
e−

z2

2 dz + 1

s

∫ +∞

−∞

(
k4z4 + k2

3

2
z6

)
e−

z2

2 dz + 1

s2 . . .

]
. (B.7)

The first integral in the right-hand side of Eq. (B.7) is a Gaussian integral whose value is
p

2π

and so the expression can be written as

I = e s f (x0)

√
2π

s| f ′′(x0)|
[

1+ 1

s
p

2π

(∫ +∞

−∞

(
k4z4 + k2

3

2
z6

)
e−

z2

2 dz + 1

s
. . .

)]

= e s f (x0)

√
2π

s| f ′′(x0)|
(
1+O(s−1)

)
, (B.8)

where O(s−1) represents the part that decays as fast as 1
s . Therefore, when s is large enough

the following approximate formula for integration is obtained:

∫ +∞

−∞
e s f (x)dx ≈ e s f (x0)

√
2π

s| f ′′(x0)| . (B.9)

Eq. (B.9) is called Laplace’s method for integration and it is useful in approximating integrals

involving exponential-type functions such as hyperbolic functions. The formal statement of

Laplace’s method that has been proved in the above is given in the following theorem [139].

Theorem: Suppose a twice differentiable real-valued function f (x) with a unique global

maximum at x0 so that f ′′(x0) < 0. Then,

lim
s→∞

∫ +∞

−∞
e s f (x)dx

e s f (x0)
√

2π
s| f ′′(x0)|

= 1. (B.10)

The approximation in Eq. (B.9) can be generalized to consider the multiplication of a non-

exponential function. In other words, suppose a smooth function h(x) with positive value at

x0 where the maximum of f (x) occurs. Then, Laplace’s formula is simply modified to [98]

∫ +∞

−∞
h(x)e s f (x)dx ≈ h(x0)e s f (x0)

√
2π

s| f ′′(x0)| . (B.11)

The approximation in Eq. (B.11) sometimes called the steepest decent method [77] or saddle-

point approximation [140] is used for evaluating the power transferred into the MI spectrum.
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