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Abstract—The Ranger robot was designed to interact with
children in order to motivate them to tidy up their room. Its
mechanical configuration, together with the limited field of view
of its depth camera, make the learning of obstacle avoidance
behaviors a hard problem. In this article we introduce two
new Particle Swarm Optimization (PSO) algorithms designed
to address this noisy, high-dimensional optimization problem.
Their aim is to increase the robustness of the generated
robotic controllers, as compared to previous PSO algorithms.
We show that we can successfully apply this set of PSO
algorithms to learn 166 parameters of a robotic controller for
the obstacle avoidance task. We also study the impact that an
increased evaluation budget has on the robustness and average
performance of the optimized controllers. Finally, we validate
the control solutions learned in simulation by testing the most
robust controller in three different real arenas.

I. INTRODUCTION

Performance evaluations of robotic controllers are inher-

ently noisy, with sources of randomness ranging from sensor

and actuator noise, varying initial conditions, and manufac-

turing tolerances to changes in the environment. Furthermore,

as reported in [1], carrying out obstacle avoidance with short-

range, noisy sensors results in performance distributions that

are not Gaussian and in many cases have very large standard

deviations.

Population-based optimization techniques have been suc-

cessfully leveraged for coping with noisy fitness distribu-

tions [2]. We can find examples of successful operation

under noise for Particle Swarm Optimization (PSO) [3], [4],

Genetic Algorithms [5], and Evolutionary Strategies [6].

We focus our research on the PSO algorithm [7], because

of its potential for an efficient distributed implementation,

adding robustness to failure of individual robots in the learn-

ing process, and speeding it up through parallel evaluation.

PSO has been applied to different problems in robotics,

such as odor source localization [8], flocking [9], robotic

search [10], and obstacle avoidance [11].

In this article, we use the Ranger robot [12], a small

limited robotic platform designed to interact with children,

since it has various characteristics which make it interesting

for this research. First, it is equipped with a depth-camera

used as unique input for our controller. The richness in the

resulting perceptual input speaks for a highly optimized,
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Fig. 1. The Ranger robot.

fine-grained use of this single on-board sensor. If this op-

timized use is achieved through bottom-up learning, this in

turns means being able to handle a high-dimensional search

space. Second, it has a square footprint, and two motors

in differential drive configuration placed in the front part

(see Fig. 1). This mechanical configuration, together with

the limited field of view of the depth camera, makes the

learning of obstacle avoidance behaviors a hard problem.

Obstacle avoidance should be therefore considered here as a

challenging benchmark for our learning techniques.

The maneuvering limitations of the Ranger robot in combi-

nation with the previously mentioned sources of randomness

can result in not only learned controllers with acceptable

mean performance, but also in a significant number of

outliers characterized by very low performances. Thus, this

article focuses on how to learn robust controllers which

consistently show good performances by exploring four

different PSO algorithms. By robustness here, we mean that

the worst evaluation of a given controller should be as high

as possible, i.e., that the controller succeeds in (almost) every

case.

In our previous work [13], [14], we presented and ex-

plored various noise-resistant PSO algorithms for multi-robot

learning based on Optimal Computing Budget Allocation

(OCBA), a statistical sample allocation method introduced

by Chen et al. [15]. We presented both distributed and

centralized versions of a PSO algorithm based on OCBA,

suitable for resource-constrained mobile robots due to its low

requirements in terms of memory and communication. We

showed that our PSO-OCBA algorithms outperform other

techniques [11] for dealing with noise in robotic learning,

achieving a more consistent progress and a better estimate

of the ground-truth performance of candidate solutions.

The first of the four PSO algorithms adopts a naı̈ve

evaluation approach: each candidate solution is evaluated a
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fixed number of times and the resulting scores are aggregated

in a simple average to improve the performance estimation.

The second, is the PSO-OCBA centralized version described

in [13], [14], which allocates the number of evaluations

to maximize the probability of correct selection of good

candidates, and estimates the performance by averaging the

results of the corresponding evaluations. The third and fourth

algorithms are modifications of the first and the second,

respectively, with the aim of increasing the robustness of

the resulting controllers. Their implementation leverages a

different aggregation function for generating an appropriate

estimate of the fitness of the candidate solutions.

In the four aforementioned algorithms, we also study the

impact of an increased evaluation budget in the controllers’

robustness and mean performance.

The remainder of this article is organized as follows. In

Section II, we describe the obstacle avoidance task that

will be used to compare the algorithms, and the robotic

platform used. Section III describes the four PSO algorithms

used in this paper. Section IV presents the results obtained

by learning in simulation, and evaluates the most robust

controller on a real robot. Finally, Section V concludes the

paper.

II. BENCHMARK TASK

We have chosen obstacle avoidance as a task to illustrate

robotic learning because it is a fundamental task popular

in the robotic learning literature [11], [16]–[19], and it is a

challenging task for the concrete robotic platform used in

this study.

We use a metric of performance based on the work in [16],

which was also used in [11], [18], [19]. It consists of three

factors, all normalized to the interval betwen 0 and 1:

f = fv · (1−
√

ft) · fi (1)

fv =
1

Neval

Neval

∑
k=1

max{vl,k+ vr,k,0}

2
(2)

ft =
1

Neval

Neval

∑
k=1

|vl,k− vr,k|

2
(3)

fi =
1

Neval

Neval

∑
k=1

imin,k (4)

where {vl,k,vr,k} are the normalized speeds of the left and

right wheels at time step k, imin,k is the normalized proximity

distance value of the closest distance measured at time step

k, and Neval is the number of time steps in the evaluation

period. This function rewards robots that move forwards

quickly ( fv), turn as little as possible ( ft), and stay away from

obstacles ( fi). Each factor is calculated at each time step and

the resulting series is averaged over the total number of time

steps in the evaluation period.

We conducted our experiments using the Ranger robot [12]

(see Fig. 1), a wooden robotic box equipped with wheels

and sensors aimed to interact with children and motivate

them to tidy up their room [20]. It has a 30cm width, and

it weights approximately 3.5kg. Its differential drive motors

are positioned in the front of the robot, complemented by

two castor wheels in the back. It has two wheel encoders,

which are used to measure the wheel speeds for the fitness

calculations. Its sensing capabilities were augmented with a

depth camera Primesense Carmine 1.09, placed in the front

upper part of the robot, which in our case is the only external

input for the controller. This depth sensor has a resolution

of 640×480 pixels, a horizontal field of view of 1rad, and

a nominal range of 0.35−1.4m.
In this work, the depth sensor is configured at a reduced

resolution of 160columns× 120rows. Only the rows in the

range [61,108] (being 1 the top row of the sensor) are used

both for the controller inputs and the fitness calculation. Each

distance measurement above 1m is converted to 1m, and all

the measurements are normalized to the interval [0, 1] (in

this specific case already normalized if expressed in meters).

Given the technology used by the depth sensor, objects under

35cm or areas near sharp edges cannot be measured. This

effect was not modeled in our simulations.

Calculating fi corresponds to obtaining the minimum

normalized measurement among every pixel between rows

61 and 108.

We reduce the normalized pixel depth information of rows

[61,108] into 80 virtual sensors to be used as only external

inputs of the controller. Each virtual sensor is the result of

obtaining the minimum of the normalized values of a group

of 96 depth-pixels. Each group of 96 pixels is composed

of two adjacent columns of the 48 pixels between rows

61 and 108. The different virtual sensors give horizontal

resolution of distance information, but filter out the vertical

resolution.The reason for performing this kind of reduction

is that the robot only moves in a 2D plane.

The controller used is a recurrent artificial neural network

of two units with sigmoidal activation functions. The outputs

of the units determine the wheel speeds. Each neuron has

83 input connections: the 80 virtual sensors, a connection

to a constant bias speed, a recurrent connection from its

own output, and a lateral connection from the other neuron’s

output, resulting in 166 weight parameters in total. These 166

parameters define the dimensionality of the learning space of

the algorithms.

The high-dimensional optimization problem to be solved

by the PSO algorithms is to choose the set of weights of

the artificial neural network controller such that the fitness

function f as defined in Eq. 1 is maximized.

III. ALGORITHMS

PSO is a metaheuristic originally introduced by Kennedy

and Eberhart [7], which was inspired by the movement of

flocks of birds and schools of fish. It models candidate solu-

tions as a swarm of particles moving in a high-dimensional

space. The position of each particle represents a set of

weights of a controller. Each particle stores its own personal

best position and the position of the best in its neighborhood,

which are used to guide the particle’s movement.

The movement of particle i in dimension j depends on

three components: the velocity at the previous step weighted



1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate particle position

5: Update personal best

6: Update neighborhood best

7: Update particle position

8: end for

9: end for

Fig. 2. Pseudocode for the canonical PSO algorithm.

by an inertia coefficient w, a randomized attraction to its per-

sonal best x∗i, j weighted by wp, and a randomized attraction to

the neighborhood’s best x∗
i′, j weighted by wn (Eq. 5). rand()

is a random number drawn from a uniform distribution

between 0 and 1.

vi, j =w·vi, j+wp ·rand() ·(x
∗
i, j−xi, j)+wn ·rand() ·(x

∗
i′, j−xi, j)

(5)

Each particle evaluation consists of a robot moving in

the arena for a fixed time running the controller with the

weights given by that particle’s position. Particle evaluations

are performed in parallel, which means that each robot is

testing a different controller at any given time. The fitness

corresponding to a particle is equivalent to the performance

of the robot measured with function f from Eq. 1. The

pseudocode for the canonical PSO is shown in Figure 2. The

four algorithms studied in this article correspond to variations

of it.

Table I shows the parameters that are common to all PSO

algorithms used in this article. They are set following the

guidelines for limited-time adaptation presented in [21]. The

only exception is the number of particles (Np) which was

reduced to 48 instead of using the dimension of the problem

(Np = D = 166). This reduction was done to decrease the

computational cost of the simulations. Based on experimental

evidence not reported in the article, we found that for this

particular problem and experimental settings, the complexity

of the fitness landscape grew sublinearly in respect to the

number of inputs of the networks. This is probably due to

the high correlation between topologically close inputs, and

to the limited actions that the robot can take. Thus, reducing

Np did not have a strong effect in the convergence of the

PSO algorithms.

The most common approach to deal with noise consists of

evaluating the fitness function several times in order to obtain

a better estimate. In this article, we explore the influence of

the evaluation budget per iteration. We explore three different

budgets (B1, B2, and B3), which can be fairly compared

across the four different algorithms. The comparison is fair

in the sense that for a given budget Bi, the four algorithms

have the same number of evaluations per iteration and in

total.

TABLE I

PARAMETERS COMMON TO ALL PSO ALGORITHMS

Parameter Value

Number of robots Nrob 4
Population size Np 48
Evaluation span te 60 s
Personal weight wp 2.0
Neighborhood weight wn 2.0
Neighborhood size Nn 3
Dimension D 166
Inertia w 0.8
Vmax 20
Iterations Ni 40

1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate M times particle position

5: Compute estimated performance of particle position

6: Update personal best

7: Update neighborhood best

8: Update particle position

9: end for

10: end for

Fig. 3. Pseudocode for PSO rep and PSO rep dec algorithms. In PSO rep,
line 5 estimates the performance by calculating the mean of the M samples,
while in PSO rep dec the performance is obtained by calculating the first
decile of the M samples.

A. PSO rep

PSO rep corresponds to the naı̈ve approach of evaluating

every new candidate a fixed number of times (M) [22], and

obtaining the estimated performance as the mean of the

M evaluations. The pseudocode for PSO rep is shown in

Figure 3, in which line 5 corresponds to performing the mean

of the M samples previously evaluated.

In Table II, budget parameters for PSO rep are shown. The

budget per iteration for PSO rep corresponds to Np ·M.

PSO rep results in a good performance estimation for

new candidates, but invests as many resources in good as in

poor candidates which could be immediately discarded [22].

Another disadvantage is that the number of repetitions of

each evaluation is fixed and should be selected based on the

amount of noise, which must be known in advance.

B. PSO ocba

The idea behind the application of OCBA to PSO is

to fix the mentioned issues of PSO rep which affect its

performance under the presence of noise. OCBA is a tech-

nique based on Bayesian statistics for allocating samples to

different candidate solutions introduced by Chen et al. [15].

Given k candidates with means {X̄1, . . . , X̄k} and variances

{σ2
1 , . . . ,σ

2
k }, and a total number of samples T , OCBA aims

at maximizing the probability of correctly selecting candidate

b as the best (the one with the lowest mean):

P{CS}= P{X̄B < X̄i, i 6= b} (6)



TABLE II

BUDGET PARAMETERS FOR PSO rep, AND PSO rep dec

Parameter B1 B2 B3

Evaluations of new candidates M 5 10 20
Iteration budget Bit = Np ·M 240 480 960

by applying the following allocation rules:

Ni

N j

=

(

σi/δb,i

σ j/δb, j

)2

, i 6= j 6= b (7)

Nb = σb

√

∑
k

i=1,i 6=b

N2
i

σ2
i

(8)

where Ni is the number of samples for candidate i, and δi, j =
X̄i− X̄ j the difference between the means of candidate i and

candidate j. An intuitive way of interpreting Equations 7

and 8 is that candidate i will get more samples Ni when it

has larger variance σ2
i and when its mean is closer to the

mean of the best solution found so far (small δ 2
b,i). To switch

the type of problem from minimization to maximization, we

can simply consider X̄i = −X̄ ′
i where X̄ ′

i corresponds to the

mean of the maximization problem.

This allocation procedure has been proven to be optimal in

the sense that it maximizes an asymptotic approximation to

the probability of correct selection P{CS} as the number of

samples tends to infinity, but it was also shown to be very ef-

ficient for limited sampling budgets in numerical experiments

[15]. OCBA was previously applied to PSO on numerical

benchmark functions [4], [22], where it outperformed other

techniques for dealing with noise.

In PSO ocba, previously introduced in [13], [14], OCBA

automatically adjusts the evaluation budget between old

and new solutions to maximize the probability of correct

selection of good candidates. In addition, as the iterations in-

crease, good candidates tend to accumulate a large number of

samples, thereby producing accurate performance estimates

of the best solutions and leaving at the same time a larger

proportion of the allocation budget to accurately test new

candidates.

PSO ocba pseudocode is shown in Fig. 4. Most steps

are similar to PSO rep, but instead of evaluating every new

position a fixed number of times M in the evaluation step, it

allocates the iteration budget (Bit) in a different manner. First,

n0 samples of the new positions are taken to estimate their

mean and variance (in our case, n0 = 2). Then the remaining

samples are allocated among all the new positions and all

the personal bests (2Np candidates total) using Equations 7

and 8. Note that since all personal bests were new positions

at some time, they already have at least n0 samples at the

moment of the OCBA allocation. The estimated performance

is calculated for each particle position by obtaining the mean

of the evaluation samples.

In Table III, the specific parameters of PSO ocba algorithm

are defined for the three budgets studied in this paper.

1: Initialize particles

2: for Ni iterations do

3: for Np particles do

4: Evaluate new particle position n0 times

5: end for

6: remaining budget := iteration budget - n0 ·Np

7: while remaining budget> 0 do

8: Allocate ∆ samples among current positions and

personal bests using OCBA

9: Evaluate allocated samples

10: Recalculate estimated performance and variance for

new evaluations

11: remaining budget := remaining budget - ∆

12: end while

13: for Np particles do

14: Update personal best

15: Update neighborhood best

16: Update particle position

17: end for

18: end for

Fig. 4. Pseudocode for the PSO ocba and PSO ocba dec algorithms. In
PSO ocba line 10 estimates the performance by calculating the mean of the
samples, while in PSO rep dec the performance is obtained by calculating
the first decile of the samples. In both versions the variance is also calculated
in line 10.

TABLE III

BUDGET PARAMETERS FOR PSO ocba, AND PSO ocba dec

Parameter B1 B2 B3

Iteration budget Bit 240 480 960
Initial number of samples n0 2 2 2
Additional number of samples ∆ 4 4 4

C. PSO rep dec

PSO rep dec is a modification of PSO rep with the aim

of increasing the robustness of the resulting controllers.

Robust controllers are those with high values of their worst

evaluation for a set of evaluation samples. The hypothesis

here is that using the mean might not be the best statistical

aggregation function for estimating the performance of a

candidate solution in such noisy settings.

One possibility is to use the minimum of the M samples

to calculate the estimated performance. By running some

preliminary tests, we have seen that the learning process is

very hard, since the minimum is a too sensitive aggregation

function to single bad samples and the evaluations have

large standard deviation. Instead, PSO rep dec computes

the first decile of the M evaluations for the estimation of

the performance. Thus, the algorithm learns controllers with

the first decile containing the lowest performance set. The

pseudocode is the same as for PSO rep, shown in Fig. 3, but

in which line 5 corresponds to calculating the first decile of

the M samples previously evaluated. We calculate the first

decile for a set of M sorted (from the lowest to the highest)



samples as follows. If M/10 is an integer, then:

D1 =
val(M/10)+ val(M/10+1)

2
(9)

where val(i) is the value of the ith sample of the sorted set.

If M/10 is not an integer, then:

D1 = val(⌈M/10⌉) (10)

The three budgets explored are the same as in PSO rep

(see Table II). For the budget B1, D1 = val(1), while for B2,

D1 =
val(1)+val(2)

2
, and for B3, D1 =

val(2)+val(3)
2

.

D. PSO ocba dec

PSO ocba dec is a variation of PSO ocba, in which as in

PSO rep dec the first decile of the evaluated samples is used

as estimated performance for the learning, aiming to increase

the robustness of the resulting controllers. It corresponds to

a more adaptive approach for the allocation of the budget

than in the naı̈ve PSO rep dec algorithm.

The pseudocode is the same as for PSO ocba, shown in

Fig. 4, but in which in line 10 the estimated performance is

calculated as the first decile of the already obtained samples,

using also Equations 9 and 10.

The other main difference is the way the OCBA algorithm

is used. Instead of using the mean and variance, the first

decile and variance are used. Thus, in Eq. 7, δi, j is defined

as the difference between the first decile of candidate i

and the first decile of candidate j (δi, j = D1(Xi)−D1(X j)).
OCBA will allocate more evaluations on candidates with

high variance and large first decile.

The three budgets studied for this algorithm are the same

as in PSO ocba (see Table III).

IV. EXPERIMENTS AND RESULTS

The learning experiments are performed in simulation

using four Ranger robots, in a square arena of 4m x 4m with

walls 0.3m height, where 10 cylindrical obstacles of 25cm

diameter and 24cm height are added (see Fig. 5a). Before

each fitness evaluation the static obstacles are randomly

repositioned, and the initial robots’ poses are set randomly

with a uniform probability distribution, verifying that they

do not overlap with obstacles or other robots. Each fitness

evaluation lasts 60s. For our learning experiments, we use

Webots [23], a high-fidelity submicroscopic simulator that

models dynamical effects such as friction and inertia.

For each algorithm and budget size under study we per-

form 20 learning runs for statistical significance. Due to the

presence of noise, the fitness value of the best solution as

reported by the algorithms may not be an accurate represen-

tation of the actual performance of the solution. Therefore, in

order to accurately judge the performances, we perform 100

a-posteriori evaluations of the best solution at each iteration.

This allows us to compare the controllers both in terms of

average performance and lowest performance (robustness).

In order to compare the learning algorithms we can look at

Figure 6, where the performance of the learned controllers

is presented in boxplots grouped by budget. Each boxplot

(a)

(b)

Fig. 5. (a) Arena used during the learning in simulation. (b) Arena env2

used in real robot experiments. In both cases the cylindrical obstacles are
randomly placed at the beginning of each evaluation.

represents the performance of the 20 controllers learned per

algorithm, each evaluated 100 times. We can see that the

algorithm resulting in controllers with highest median is PSO

ocba for every budget. In addition, the OCBA algorithms

outperform the algorithms based on naı̈ve allocation, both in

robustness and median for the different budgets.

For smallest budget (B1, Fig. 6a), both PSO algorithms

based on OCBA are better in terms of robustness, showing

the optimal allocation given by OCBA when the budget

is limited. For B1, the algorithm resulting in most robust

controllers is PSO ocba, and not PSO ocba dec as we

could expect. This might be due to a too limited budget

to properly estimate the first decile. On the other hand,

for budgets B2 (Fig. 6b) and B3 (Fig. 6c) PSO ocba dec

slightly outperforms PSO ocba dec in terms of robustness of

the learned controllers. Furthermore, PSO rep dec results in

slightly more robust controllers than PSO rep only when the

budget is the largest (B3).

We have grouped the same boxplots by algorithm in

Fig. 7 for better understanding the influence of the budget.

In the case of algorithms based on fixed allocation of the

evaluations (Fig. 7a and Fig. 7c), we can observe that the

increase of budget improves the robustness of the controllers,

but not so clearly the median value. For the algorithms based

on OCBA (Fig. 7b and Fig. 7d), augmenting the budget

does not have an impact in the median and robustness of

the controllers. The smallest budget (B1) is sufficient thanks

to the use of the OCBA adaptive allocation.

The learning progress is shown in Fig. 8 for the different

algorithms and budgets. The red curves show the mean over

the 20 learning runs of the best solution as estimated by
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Fig. 6. Performance in simulation for the different learned controllers
aggregating 100 a-posteriori evaluations from 20 runs for each learning
algorithm and budget. The box represents the upper and lower quartiles, the
line across the middle marks the median, the bars extend to the most extreme
data points not considered outliers, and the red crosses show outliers. The
lower bar is an indicator of the robustness. They are grouped by budget: (a)
B1, (b) B2, and (c) B3.
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Fig. 7. Performance in simulation for the different learned controllers
aggregating 100 a-posteriori evaluations from 20 runs for each learning
algorithm and budget. The box represents the upper and lower quartiles, the
line across the middle marks the median, the bars extend to the most extreme
data points not considered outliers, and the red crosses show outliers. The
lower bar is an indicator of the robustness. They are grouped by learning
algorithm: (a) PSO rep, (b) PSO ocba, (c) PSO rep dec, and (d) PSO ocba

dec.

the algorithm. The blue curves represent the ground truth

performance obtained by 100 a posteriori evaluations and

averaged over the 20 runs. As we already know from [13],

PSO rep (Figures 8a-8c) is not able to properly estimate the

performance and tends to overestimate when comparing with

the ground truth, while PSO ocba (figures 8d-8f) can estimate

properly. What we can observe here is that increasing the

budget results into less estimation error in both algorithms.

When looking at PSO rep dec (Figures 8g-8i), we observe

the same overestimation phenomenon as in PSO rep, and also

the effect of increasing budget in reducing this overestima-

tion. For PSO ocba dec (Figures 8j-8l), the algorithm is able

to properly estimate the first decile for budgets B2 and B3,

but fails to estimate properly for budget B1 resulting in a

small overestimation. This might be an indication that B1

is not enough to properly compute the first decile, and the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

env1 real env1 sim env2 real env2 sim env3 real env3 sim

Fig. 9. Evaluation of the most robust learned controller. The performance
was measured in 20 evaluations of 30s per environment using single robot in
reality and in simulation. The box represents the upper and lower quartiles,
the line across the middle marks the median, the bars extend to the most
extreme data points not considered outliers, and the red crosses show
outliers.

reason why PSO ocba outperforms PSO ocba dec for B1 in

Fig. 6a.

In order to validate the learning process in simulation, we

tested a selected controller using only one Ranger in three

smaller arena versions of the learning one. The reduced size

of the arenas and of the number of robots was due limitations

in their availability and space. The arena env1 is 2m x 2m,

with walls of 0.3m height and 3 cylindrical obstacles of same

size as in the learning. It respects the same robot density

as in the learning and approximates the obstacle density by

rounding up the number of obstacles. env2 is 3m x 3m, with

5 cylindrical obstacles of the same type (see Fig. 5b). env3

is also 3m x 3m, without cylindrical obstacles.

The chosen controller is the most robust from all the

learned controllers, and was obtained in a PSO ocba learning

run of budget B2. It has been evaluated 20 times per arena

in reality, and in simulation on equivalent simulated arenas.

Both the robot and the obstacles were randomly placed at

the beginning of each evaluation, which lasted 30s. In Fig. 9,

we can see the performance of the selected controllers for

the three arenas in simulation and reality. We can observe

how the distribution and median of the performances are

very similar between simulation and reality, and the small

discrepancies might be due to small differences in the models

used. The difference in performance between arenas is due

to the amount of free space available.

V. CONCLUSION

In this article we have introduced two new PSO algorithms

based on the use of the first decile of several samples for

the estimation of the performance. Their aim is to increase

the robustness of the generated robotic controllers. We have

seen that when enough evaluation budget is available (B3 for

the fixed allocation approach and B2 and B3 for the OCBA

one) their resulting controllers are on average slightly more
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Fig. 8. Progress averaged over 20 runs for each of the four algorithms and three different budgets. The red curve represents the performance of the
best solution as estimated by the algorithm and averaged over the 20 runs, and the blue curve represents the ground truth performance obtained by 100
a posteriori evaluations per run and averaged over the 20 runs. In the case of PSO rep and PSO ocba the algorithms use the mean of the samples as
estimated performance for the learning, and so the ground truth corresponds to the mean of 100 a posteriori evaluations. In PSO rep dec and PSO ocba

dec learning is made using the first decile as estimated performance, so the ground truth corresponds to the first decile of 100 a posteriori evaluations.
Error bars represent one standard deviation. (a) PSO rep B1. (b) PSO rep B2. (c) PSO rep B3. (d) PSO ocba B1. (e) PSO ocba B2. (f) PSO ocba B3. (g)
PSO rep dec B1. (h) PSO rep dec B2. (i) PSO rep dec B3. (j) PSO ocba dec B1. (k) PSO ocba dec B2. (l) PSO ocba dec B3.

robust than those obtained by using PSO algorithms based

on the mean. Unfortunately, we cannot conclude that this

improvement can be generalized for other sets of learning

parameters or benchmark tasks.

We have also explored the effect of the evaluation budget

for the four algorithms covered in this paper. Results show

that increasing the budget helps to generate more robust and

performant controllers in the case of the naı̈ve repetition

approaches. On the other hand, this increase in the budget

has no effect on the controllers produced by PSO algorithms

based on OCBA, since they are able to allocate low budgets

in an adaptive way. Increasing the total budget by having a

larger population size might have a positive impact on the

robustness and performance of the controllers, since it allows

for more exploration in the learning. This could be studied

in future works.

The two algorithms based on OCBA outperform their

naı̈ve allocation budget versions in terms of the average

robustness of their resulting controllers. They are also able

to properly estimate the ground truth performance, although

in the concrete case of PSO ocba dec it needs a certain

minimum budget.

Furthermore, we have shown that we can apply success-

fully this set of PSO algorithms to very high-dimensional



problems, in this case to learn 166 parameters of a robotic

controller. We validated our learning in simulation by testing

the most robust controller in three different real arenas.

As a future work, we would like to implement the PSO

OCBA algorithms for the learning of heterogeneous con-

trollers for cooperative robotic behaviors as in [9].
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