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1 Summary

In this article, we propose a new controller for recovering in-
termittent pushes during bipedal locomotion. We use 3LP as a
template model which can provide closed-form solutions for
state evolution. The idea behind our controller is to project
the perturbed state of current time-step back to the beginning
of the hybrid phase, use the expertise of a discrete controller
and then apply the resulting optimal policy to the system at
the current time-step. Linear properties of 3LP makes such
calculation very fast and effective. By optimizing a certain
cost function, we find the most robust and generic projecting
configuration which outperforms the discrete controller itself.

2 Introduction

Performing walking for bipedal robots is highly influenced be
the characteristics of the hardware. Inspired by passive dy-
namic walkers (McGeer, 1990), the class of fixed-knee robots
use inverted pendulum (IP) models to control and stabilize the
motion. With the assumption of point-mass and the fact that
swing and stance legs are massless, these models use attack
angles and push-off forces to control the robot and compen-
sate the energy loss in the heel strike (Collins et al., 2005). On
the real hardware then, besides manufacturing light-weight
legs, hip actuators try to track the final desired angle of at-
tack to ensure stability. The underlying assumption in such
control paradigm is therefore being able to impose the final
attack angle without influencing overall dynamics.

In IP models, at certain discrete events like heel-strike or
maximum apex, discrete controllers update the control inputs
to deal with disturbances accumulated so far. Due to non-
linearity of the model however, these controllers have to use
a linearized map of the system, called Poincaré map (Teschl,
2012) to predict the state and effect of control inputs in the
next discrete event (Byl and Tedrake, 2008). Regardless of
the control policy, unless using the same discrete event and
the associated linearized map, these controller cannot react
to intermittent pushes until the next discrete event. More
advanced IP-based models that consider masses in the legs,
torso or knees also suffer from the same nonlinearity proper-
ties.

3LP model however considers swing and torso dynamics and
can already produce periodic gaits, without the need to im-
pose footsteps or attack angles. Thanks to linearity, transition
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Figure 1: The overall idea of time-projection where the current
state is mapped back in time to the beginning of the
phase. It is then given to an expert controller whose out-
put is used in the current time-step to stabilize the system
online.

matrices can be obtained analytically which are not lineariza-
tion around a specific gait anymore. In this work, we take ad-
vantage of these matrices and design a controller that refines
control policies at every time-step, rather than discrete events.
Such online controller is however essentially built upon a dis-
crete LQR (DLQR), designed for touch-down events. We use
the term touch down rather than heel-strike, because 3LP ben-
efits from smooth weight transition without any impacts. In
our approach, although the timing is fixed, the projecting con-
troller modifies hip/ankle torques to change the final footstep
location and provides online reaction to perturbations.

In the next section, we provide an overview of the proposed
controller and how to use the expertise of a DLQR. Next, we
demonstrate the ability of this controller in rejecting intermit-
tent perturbations and finally, we discuss advantages of such
computationally simple control policy.

3 Methods

Considering touch down events, we can simply form a dis-
crete error system, describing the evolution of error and the
effect of control inputs. This error system is valid in fact for
any type of gait found for 3LP, regarding many actuation di-
mensions provided by the model. Using this error system and
a choice of state and input costs, one can simply calculate a
DLQR controller K (Ogata, 1995). However, we want to go
beyond this controller and find a rule to update control inputs
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Figure 2: Footstep plan using DLQR (top) and projecting (bottom) controllers. The DLQR reacts to intermittent pushes only at the end of
the phase while the projecting controller updates inputs continuously. Note the percentages that show force application timing.

at any time online. Given the expert DLQR controller and an
online disturbance observer, we perform the following steps
at any time t during a stride phase: (I) Map or project the cur-
rently observed state Xt back in time to the beginning of the
phase, (II) Use the expert DLQR controller, (III) Apply the
resulting control input at time t. This idea is demonstrated in
Figure.1 where unlike the open-loop 3LP, control inputs are
not linear functions of time anymore and they depend on dis-
turbances. The important part is indeed time-projection. Al-
though the transition matrices are available already, the con-
trol inputs applied from the beginning of the phase until time
t are yet unknown.

The expert DLQR produces a control policy U1 based on a
projected state X1 which are both unknown. Using feedback
relation and state evolution matrices, one can simply solve a
linear set of equations to find all unknown variables. How-
ever, we consider a second alternative system that generates
another policy U2 based on a projected state X2. This archi-
tecture can in fact decouple the system dynamics from distur-
bance dynamics to provide a more robust time-projection.

The inputs U1, U2 and the currently observed disturbance Wt
can have influence on X1, X2 and Xt . We explore intercon-
necting configurations with a grid search over all possibilities
to find the best performance. The cost function considered
for this optimization is similar to LQR, with a horizon of two
steps. For each candidate configuration, we take a normal ini-
tial state and perturb each dimension separately to obtain a set
of perturbed states. A two step simulation is then calculated
for each member of this set by applying the candidate con-
troller. We do the same simulation for a normal state also, but
perturbed with intermittent pushes of certain magnitude and
different timings. Then for each simulation, a separate LQR-
like cost is calculated over states and inputs. The final cost
for each configurations is the summation of individual costs
calculated for adult-size and kid-size models. The resulting
optimal combination with minimum cost is the most robust
configuration against intermittent disturbances.

4 Results

The optimal configuration exploits both alternative systems
and outperforms the DLQR controller alone, shown in
Figure.2 over a simulation of multiple intermittent pushes. In

other words, the DLQR controller produces large correcting
steps in case of moderate but short-lasting pushes. The pro-
jecting controller however modulates the hip-torques online
to capture the extra energy and therefore, it produces more
normal footstep patterns. By further analysis, it also turns out
that the optimal projecting architecture has slightly smaller
eigenvalues and thus being faster, but with a more limited
basin of attraction.

5 Discussion

The resulting projecting configuration is based on an expert
DLQR controller, but more robust and responsive to the tim-
ing of external pushes. It updates control inputs online and re-
quires only solving a system of Ax = B equations with 16 un-
knowns. This can be computationally done in micro-seconds,
compared to longer optimization times needed for model pre-
dictive controllers. However, we have to admit that MPC is
more powerful as it can consider inequality constraints on
torque limits and footstep lengths as well. The projecting
controller is enough in case of slower walking speeds where
limitations are rarely important. Thanks to calculation of the
basin of attraction however, we can provide an emergency
criteria that allows the algorithm to perform more complex
calculations (like MPC) if the projecting controller violates
limitations.

6 Acknowledgments

This work was funded by the WALK-MAN project (European
Community’s 7th Framework Programme: FP7-ICT 611832).

References

Katie Byl and Russ Tedrake. In Robotics and Automa-
tion, 2008. ICRA 2008. IEEE International Conference on,
pages 1258–1263. IEEE, 2008.

Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse.
Science, 307(5712):1082–1085, 2005.

Tad McGeer. the international journal of robotics research, 9
(2):62–82, 1990.

Katsuhiko Ogata. Prentice Hall Englewood Cliffs, NJ, 1995.

Gerald Teschl. American Mathematical Soc., 2012.


