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Abstract—In this paper, we address two questions asked by 

the organizers of the World Meeting on Lightning: 1) What has 
been, in your opinion, your most Important contribution to 
lightning research? and 2) in your opinion, what lightning 
research issues should be given special attention in the coming 
years?  
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I.   INTRODUCTION 
In this paper, we address two questions posed by the 

initiators of the World Meeting on Lightning: The main 
contributions of our own research in the lightning field and the 
lightning research issues that should be given special attention 
in the coming years. The research performed by the authors in 
the past few decades has followed in the footsteps of 
pioneering work done in Switzerland by Berger and co-
workers and through collaborative efforts with research groups 
from universities around the world. To take into account this 
context, we have organized this paper as follows: In Section II, 
we present from a historical point of view the work of Berger 
and his co-workers. Section III is devoted to the salient 
contributions in which the authors have been involved. In 
Section IV we present what we have selected, with an 
inevitable measure of subjectivity, as our main contribution: 
The setting up and main results of the instrumented Säntis 
tower in Switzerland. Finally, in Section V, entitled Priority 
Issues in Lightning Research, we attempt to answer the 
question of the lightning research issues that should be given 
special attention in the coming years. 

II.   PIONEERING WORK OF BERGER AND CO-WORKERS (1940S-
1970S) 

The most widely referenced and most comprehensive 
dataset to date on lightning return stroke currents measured on 
short instrumented towers was presented by Berger and co-
workers [1, 2]. The measurements were made on two 70-m tall 
towers including the steel needle that acts as a lightning rod, 
built on Mount San Salvatore in Lugano. Mount San Salvatore 
has a height of 640 m above the level of the adjacent Lake 
Lugano and it is 914 m above sea level. The first tower for 

lightning measurements was constructed on the summit of San 
Salvatore Mountain in 1943. It was replaced by a radio and 
television tower in 1958, on which the measurement of 
lightning discharges continued. In 1950, a second lightning 
research tower was constructed 400 m to the North from the 
first one. Both towers were 70 m tall. Later, the second tower 
was demolished and nowadays only the TV and radio tower is 
present on the summit of the mountain. Lightning currents 
were measured by means of a two-stage shunt just below the 
needle of each tower and recorded by cathode ray 
oscillographs. Berger also conducted high-speed photographic 
observations at Monte San Salvatore [3]. 

The work of Berger and his colleagues was truly pioneering 
and much of the modern knowledge on the lightning discharge 
is due to him. His important research contributions have 
resulted in a better understanding of the physics of the 
lightning discharge and its characteristics. 

III.  NEW CHAPTER: 1980S-TODAY 
In the late 1980s, under the impulse of Professor Michel 

Ianoz and in cooperation with Prof. Carlo Mazzetti (University 
of Rome “La Sapienza”) and Prof. Carlo Alberto Nucci 
(University of Bologna), activities in lightning research were 
initiated at the Swiss Federal Institute of Technology (EPFL), 
Lausanne. At that time, the authors started working together 
while they were carrying their PhD studies (M. Rubinstein at 
the University of Florida and F. Rachidi at EPFL, respectively 
under the supervision of Profs. Martin Uman and Michel 
Ianoz). A summary of the salient research work carried out 
until today is presented in the next subsection and in Section 
IV. 

A.   Lightning Return Stroke Modeling 
-   Development of the MTLE return stroke model in 

collaboration with the Universities of Bologna and 
Rome [4, 5]. 

-   Development of equations allowing to infer lightning 
currents from remote electromagnetic fields for 
various return stroke models [6].  

-   Development of a model for lightning return strokes 
taking into account the Doppler frequency shift 
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occurring as a result of reflection at the extending end 
of the return stroke. The derived expression is in 
agreement with the relativistic Doppler effect and is 
consistent with the Lorentz transformation [7, 8]. 

B.   Lightning Electromagnetic Field Computation 
-   Development of analytical expressions for 

electromagnetic fields radiated by a lightning 
discharge [9-11] 

-   Derivation of an approximate formula for the 
calculation of horizontal electric field from lightning 
[12]. This formula has found extensive applications in 
lightning-related studies and is widely used in the 
literature (e.g., [13]). 

-   Full-wave computation of lightning electromagnetic 
fields and validity assessment of simplified approaches 
[14-16]. 

-   Analysis of lightning electromagnetic field propagation 
along stratified soil or mixed propagation paths [17-
20]. 

-   Development of a model for the evaluation of the 
electric field associated with the lightning-triggering 
rocket wire and its corona [21]. 

C.   Lightning Electromagnetic Field Measurements 
-   Simultaneous measurements at the NASA Kennedy 

Space Center of lightning return stroke current, and 
electric and magnetic fields at very close range (down 
to 30 m, the closest measurement to the lightning 
channel ever made by that time). The obtained 
experimental data obtained using artificially-initiated 
lightning resulted in a better understanding of the 
lightning phenomenon and in the characterization of 
the very close electromagnetic fields [22].  

-   Simultaneous measurements of return stroke current, 
the corresponding electric and magnetic fields at three 
distances associated with lightning strikes to the 
Toronto CN Tower were performed during the 
Summer of 2005 [23]. The data have been used to test 
engineering models extended to take into account the 
presence of an elevated strike object [24, 25]. 

D.   Lightning Interaction with Tall Towers 
-   Derivation of a closed-form expression in the 

frequency domain to calculate the lightning current at 
any height along a strike object taking into account 
reflections at the top and at the bottom. An expression 
was also derived to calculate the reflection coefficient 
as a function of frequency at the bottom of the 
lightning strike object from two currents measured at 
different heights along the strike object [26]. 

-   Expressions relating lightning return stroke currents 
and far radiated electric and magnetic fields, taking 
into account the presence of the elevated strike object, 
were derived and tested versus sets of simultaneously-
measured currents and fields associated with lightning 

strikes to the CN Tower in Toronto, and reasonable 
agreement was found [27, 28]. These expressions may 
be used when lightning currents are measured directly 
on instrumented towers to calibrate the performance of 
lightning location systems. 

-   Based on a distributed-source representation of the 
lightning channel, the mathematical formulations of 
the so-called engineering lightning return stroke 
models were generalized to take into account the 
presence of a vertically-extended strike object [29]. 

-   Analysis and evaluation of the number of upward 
flashes from tall structures [30, 31]. 

E.   Lightning-Induced Effects 
1)   Field-to-transmission line coupling models 

-   Different models have been proposed in the literature 
to describe the interaction of lightning 
electromagnetic fields with transmission lines. A 
comprehensive study was performed in order to assess 
these models and it was shown, in particular, that in a 
model which is extensively used in the power 
literature a source term is incorrectly omitted, and that 
this omission may lead to important underestimation 
of lightning-induced voltages [32, 33]. 

-   A model describing the coupling of an external 
electromagnetic field to a transmission line was 
developed which presents the advantage of being 
solely in terms of magnetic field components [34]. 
This model is now being used by several researchers 
in various fields of electromagnetic compatibility. 

2)  LEMP Coupling to Overhead Lines 
-   Various studies on LEMP coupling to overhead power 

lines (e.g., [35-39]). 
-   Lightning-induced on overhead lines taking into 

account the frequency-dependence of soil parameters 
[40].  

3)  Coupling to Buried Cables 
-   Modeling LEMP coupling with buried cables [41]. 
-   Effect of dispersive and stratified ground on induced 

voltages on buried cables [42-44]. 

4)  Experimental Validation 
-   Measurements of voltages induced from triggered 

lightning and model validation (overhead lines: [45-
47], buried cables: [48, 49]. 

F.   Transient Analysis of Grounding Systems 
-   A Comparison of Frequency-Dependent Soil Models: 

Application to the Analysis of Grounding Systems 
[50]. 

G.   LEMP Shielding 
-   Numerical analysis of the electromagnetic shielding of 

buildings against LEMP [51, 52]. 



H.   Lightning Location Systems 
-   Development of statistical methods for the estimation 

of the detection efficiency of adjacent lightning 
location systems [53, 54]). 

-   Statistical estimation of current parameters from 
remote field measurements [55]. 

-   Development of a new method for locating lightning 
using electromagnetic time reversal [56, 57]. 

-   Analysis of the effect of mountainous terrain on the 
performance of lightning location systems [58]. 

IV.  SWISS EXPERIMENTAL STATION FOR LIGHTNING AT MOUNT 
SÄNTIS 

Starting in 2008, a new research project was funded by the 
Swiss National Science Foundation which allowed the 
instrumentation of the Säntis tower in Switzerland for the 
measurement of lightning currents. This tower is struck by 
lightning more than 100 times a year and it represents a unique 
structure to collect experimental information related to 
lightning discharges. The Säntis station has been instrumented 
using advanced and modern equipment including remote 
monitoring and control capabilities for an accurate 
measurement of lightning current parameters ([59-61]). In the 
first five years of the operation of the station, more than 500 
flashes were recorded. The obtained data constitutes the largest 
dataset available to this date for upward negative flashes. Some 
of the salient results obtained using the observations at the 
Säntis tower are as follows: 

-   Derivation of lightning current parameters for upward 
negative flashes [62].  

-   Characteristics of positive upward flashes [63]. 

-   Evaluation of the performance o lightning location 
systems [64]. 

V.   PRIORITY ISSUES IN LIGHTNING RESEARCH 
In spite of the very active and successful efforts of 

numerous research teams in the last 100 years or so, there is 
still much to be learnt about the physics of the lightning 
discharge and its effects. The continuation or initiation of 
basic and applied research for the years to come will likely be 
fueled by three main drivers:  
1) Scientific Curiosity. Many aspects of the phenomenon are 
still poorly or not fully understood, including the initiation of 
natural and tower lightning, charge separation in the clouds, 
transient luminous events, modelling of various processes in 
different types of lightning discharges. 
 
 2) The availability of new technological and methodological 
tools. These include: 

-   Very high-speed video;  

-   Lightning mapping to “view” discharge processes 
within the clouds;  

-   Improved lightning detection and location, 
inexpensive, low power consumption sensor networks 

that could see large-scale deployment around the 
world;  

-   Drones (to make measurements where they have not 
been made before), and 

-   Developments in big data and artificial intelligence. 

3) The needs created by new trends in technology and human 
activity. The use of renewable energy sources that are 
vulnerable to lightning, the use of smaller, sensitive, 
ubiquitous electronics in smart grids, transportation, internet 
of things, etc., the use of new materials, climate change, 
leading to changes in the lightning phenomenon itself. 

Although the work listed under all three drivers is 
important, we select one point, which in our opinion, should 
be given priority. 

Climate Change and Lightning 

As a consequence of climate change, lightning’s 
importance is set to increase as its level of incidence, its 
characteristics, and its intensity could be affected by modified 
weather patterns and as we move to more vulnerable 
renewable sources of energy, such as wind and solar farms. 
This will be exacerbated by the trend to use composite 
materials on wind turbines and aircraft and by the use of 
smaller, more sensitive electronics. Changes in lightning 
incidence and characteristics are also likely to influence the 
global electrical circuit (e.g., [65]).   

Preliminary research indicates a possible correlation 
between the number of lightning flashes and the temperature 
[66, 67]. A correlation has also been observed between 
climate change and deforestation [68]. Current lightning 
protection standards, largely based, as mentioned in Section II, 
on the work of Berger and co-workers, do not account for the 
possible increased risk due to climate change. Indeed, 
Berger’s measurements were made last century and most 
climate change models predict an increase in the severity of 
weather phenomena. The degree of complexity and the 
accuracy of these models at the local level are insufficient to 
use them with confidence for decision making regarding early 
development and application of preventive measures against 
increased lightning risks at the regional scale. 

Large amounts of historical lightning data available are 
being gathered by earth-based and satellite lightning detection, 
observation and location systems worldwide. In addition, 
direct lightning current measurements are gathered every year 
on instrumented towers in Switzerland, Germany, Austria, 
Brazil, Canada, Japan, Russia and China. Moreover, 
deforestation data are being collected from satellite imagery at 
increasing resolution (currently 30 m) and, if the trend 
continues, it will improve to a few meters within years. These 
data could be exploited with the help of expert knowledge for 
the extraction of patterns and the development of models at 
the global and regional levels that could serve as decision-
making aids and warning systems, both short term and long 
term, regarding the lightning risk linked to climate change. In 
addition, the potential also exists to use the lightning data as 
an indicator of climate change level and climate change pace. 
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