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Abstract: This paper presents an overview of the read noise in CMOS image sensors (CISs) based on
four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting
from the input-referred noise analytical formula, process level optimizations, device choices and
circuit techniques at the pixel and column level of the readout chain are derived and discussed. The
noise reduction techniques that can be implemented at the column and pixel level are verified by
transient noise simulations, measurement and results from recently-published low noise CIS. We show
how recently-reported process refinement, leading to the reduction of the sense node capacitance,
can be combined with an optimal in-pixel source follower design to reach a sub-0.3 e−rms read noise at
room temperature. This paper also discusses the impact of technology scaling on the CIS read noise.
It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS)
transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both
simulation results of the gate leakage current and 1/ f noise data reported from different foundries
and technology nodes are used.

Keywords: CMOS; image sensors; temporal read noise; 1/ f noise; thermal noise; correlated multiple
sampling; deep sub-electron noise

1. Introduction

The idea of an image sensor with photon counting capability is becoming a subject of interest for
new applications and imaging paradigms [1–3]. Such a device must have an input-referred read noise
negligible compared to a single electron. Among the state-of-the-art imaging devices, single photon
detectors may appear to be the best candidate for such an application [4]. Historically, micro-electronics
could not provide readout chains with noise levels as low as deep sub-electron. Hence, the solution
was to introduce a gain at the level of the photon-electron conversion. In photomultipliers tubes
(PMTs) and single photon avalanche photodiodes (SPADs), the electron generated by the incident
photon is accelerated and multiplied to a number of electrons from a few hundred in PMTs to millions
in SPADs. Such a signal level can be easily detected and quantized into two logic levels, since the
number of incident photons during the period of detection is assumed to be much less than one.
However, these devices present the following disadvantages [5]. First, they are limited to the case
of single photon detection. In other words, the arrival of one photon and multiple photons are not
distinguished. Second, these devices suffer from a dead time and after pulse following each photon
detection, blinding the device for a certain time. The third limitation is related to the low resolution

Sensors 2016, 16, 514; doi:10.3390/s16040514 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148021445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 514 2 of 19

and fill factors of focal plane arrays using such devices. Additionally, they use high voltages, which
are not compliant with standard CMOS image sensor (CIS) processes.

During the last decade, CISs have seen their performance increasing remarkably in terms of
dynamic range, speed, resolution and power consumption. With a lower cost and better on-chip
integration, CISs replaced progressively the charge coupled devices (CCDs) in many applications and
enlarged the market of electronic imaging devices. In terms of sensitivity, the quantum efficiency
has been improved to reach levels as high as 0.95 [3]. The fill factors have been constantly improved.
The dark current in the pinned photodiodes (PPDs) has been reduced to levels making the process of
electron-hole pair generation noiseless for integration times around tens of ms. The read noise has
also been dramatically reduced to reach deep sub-electron levels [6–8]. Hence, CIS technologies are
advanced enough to envisage the photon counting possibility.

Besides the quantum efficiency, this paper discusses the possibility of performing photon counting,
with standard CIS, essentially from the read noise perspective. Starting from the analytical expressions
of the input-referred noise, the noise reduction mechanisms at the circuit, device and process level are
discussed and verified with simulation, measurements and data reported in recent works. The impact
of the combination of different techniques is also analyzed, and the noise levels that can be reached
with state-of-the-art technology in standard processes are quantified. This paper also shows how the
technology downscaling can be used to reduce the read noise and how the gate leakage current could
limit this advantage.

2. CMOS Image Sensors and Photon Counting Requirements

Figure 1 shows the schematic of a conventional low noise CIS readout chain. The corresponding
timing diagram is shown in Figure 2. It also shows the potential profile across the PPD, the transfer
gate (TX) and the sense node (SN) during the three phases of operation: the integration, the reset and
the transfer phases. During the integration time, the PPD accumulates the electrons generated by the
incident photons. During the readout, the pixel is connected to the column through the row selection
switch (RS), then the reset switch (RST) is closed in order to set the SN voltage higher than the pinning
voltage of the PPD. The voltage level at the SN after the reset is read with the in-pixel source follower
(SF) and sampled at the end of the readout chain. The potential barrier between the PPD and the SN is
controlled by the transfer gate (TX). When the barrier is lowered, the charges accumulated in the PPD
are transferred to the SN. The SN voltage level after the transfer is sampled at the output of the readout
chain. The reset and transfer samples are then differentiated. This operation is called correlated double
sampling (CDS) [9].
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Figure 1. Schematic of a conventional low noise CMOS image sensor (CIS) readout chain. RST,
reset switch; TX, transfer gate; RS, row selection switch; SN, sense node; PPD, pinned photodiode;
AZ, auto-zero; VDD, supply voltage .
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Figure 2 depicts also the different noise sources affecting the signal in the CIS apart from the
photon shot noise. During the integration, the charge originating from the thermal generation
of electron-hole pairs in the depleted region of the PPD (the dark current) can corrupt the signal.
In state-of-the-art CIS, the dark current in PPDs has been reduced to a few e−/s. Hence, for exposure
times below hundreds of ms, the dark current can be neglected.

The reset of the SN leaves a kT/C noise charge held at the SN. This noise is as high as several
electrons in the case of a SN capacitance of a few fF. However, for 4T pixels, it is canceled thanks to the
CDS readout scheme, as depicted in the timing diagram of Figure 2.
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Figure 2. Timing diagram of the conventional CIS readout chain of Figure 1 with noise mechanisms
affecting the signal at the PPD and the readout chain levels.

The charge transfer from the PPD to the SN can be affected by the noise related to the charge
deficit due to incomplete transfer and lag [10,11]. Unlike the sampled reset kTC noise, this noise is
not canceled by the CDS. The charge transfer noise has been extensively studied for CCDs [12,13]
because an efficient charge transfer is crucial in such devices. In state-of-the-art CIS with 4T pixels,
values of the lag as low as 0.1% have been reported. Thus, the lag can be neglected compared to the
read noise in the low light context. The transient noise related to the lag is believed to behave as a shot
noise [11], similarly to buried channel CCDs [13]. However, with a lag below 1%, this noise can be
neglected in low light conditions. It is also believed that trapping mechanisms in the silicon oxide
interface under the transfer gate also contribute to the transfer non-idealities [10,14–16], giving rise to
a Random Telegraph Signal (RTS)-like noise.

Finally, the readout of the SN reset and transfer voltages is affected by random fluctuations due
to the readout chain noise; starting with the in-pixel SF and noise coupling of the TX and RST lines
with the SN, the power supply noise and ending with the column-level circuitry and analog-to-digital
converters (ADCs). The column-level amplification is introduced in order to minimize the contribution
of the next circuit blocks to the input-referred total noise, e.g., buffers, sample-and-holds and ADC.
The column-level amplifier also limits the bandwidth in order to minimize the thermal noise [8].
A switched capacitor amplifier is usually used. An auto-zero (AZ) is performed in order to reset its
feedback capacitor and to reduce its offset and 1/ f noise [9]. When the AZ switch is opened, the
noise is sampled at the integration capacitor and transferred to the output. This sampled noise is
also canceled thanks to the CDS. Low noise CIS readout chains may also include correlated multiple
sampling (CMS) that can be implemented with analog circuitry [17,18] or performed after the ADC [19].
CMS consists of averaging M samples after the reset and M other samples after the transfer with a
sampling period TS, then calculating the difference between the two averages.
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With a careful design, the readout noise originating from the pixel and column-level amplifier
is the dominant noise source in CIS. Figure 3 shows the calculated probability of a true photo-electron
count and a single photo-electron detection as a function of the input-referred readout chain noise
by assuming a Gaussian distribution of noise and using the error function. Based on Figure 3,
90% accuracy requires a read noise below 0.4 e−rms for single photo-electron detection and 0.3 e−rms
for photo-electron count. Recently reported works are today closer than ever to these limits [7,8,20].
A detailed noise analysis of the readout noise is therefore necessary in order to determine the key
design and process parameters that can be used for further noise reduction.
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Figure 3. Probability of a true photo-electron count and single photo-electron detection as a function of
the input-referred readout noise.

3. Read Noise in CIS

In a conventional CIS readout chain, three readout noise sources can be distinguished:
thermal noise, 1/ f noise and leakage current shot noise. For each noise source, the variance at
the output of the readout chain is first calculated and then referred to the input as a noise charge.
Hence, the pixel conversion gain is a key parameter in the noise analysis. The pixel conversion gain
can be calculated using a small-signal analysis of the pixel. It is crucial to take into account the effect
of parasitic capacitances. Figure 4 presents a schematic of a 4T pixel section view showing all of the
parasitic capacitances connected to the sense node. These include the overlap capacitances of the
transfer and reset gates, CTov and CRov, respectively, the sense node junction capacitance, CJ , and the
parasitic capacitance related to the metal wires, CW . These capacitances are independent of the in-pixel
SF. Their sum is defined as:

CP = CTov + CRov + CJ + CW (1)
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Figure 4. Cross-section of a conventional 4T pixel showing the different parasitic elements contributing
to the sense node capacitance.
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Figure 5 presents a simplified small-signal schematic of the CIS readout chain of Figure 1.
This small-signal schematic is used to calculate the conversion gain together with the noise and
signal transfer functions. Based on the detailed analytical calculation presented in [8], the conversion
gain of a conventional CIS 4T pixel can be expressed as:

ACG =
1
n

CP + Ce ·W + (1− 1
n )(Ce ·W + 2

3 Cox ·W · L)
(2)

Here, n is the slope factor of the in-pixel SF [21] defined as Gms/Gm, where Gm and Gms are the SF
gate and source transconductances, respectively. Ce is the extrinsic capacitance per unit width of the
in-pixel source follower transistor. It includes the overlap and fringing capacitances as depicted in
Figure 4. Cox is the SF oxide capacitance per unit area.
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Figure 5. Small-signal analysis of the CIS readout chain depicted in Figure 1 showing the different
readout noise sources considered in the analysis.

3.1. 1/ f Noise

Under the long-channel approximation, the gate-referred 1/ f noise power spectral density (PSD)
of a MOS transistor operating in the saturation region is commonly expressed as:

SVg( f ) =
KF

C2
ox ·W · L · f

(3)

Here, W and L are the gate width and length; Cox is the oxide capacitance per unit area; and KF
is a 1/ f noise process and bias-dependent parameter. This empirical model is easy to use for hand
calculation and remains valid even for advanced CMOS technologies for adequate gate widths and
lengths [22]. The parameter KF can be expressed as [21,23]:

KF = KG · k · T · q2 · λ · Nt (4)

where k is the Boltzmann constant, T is the absolute temperature, q is the electron charge, λ is the
tunneling attenuation distance (' 0.1 nm) [24], Nt is the oxide trap density and KG is a bias-dependent
parameter. It has been shown in [21] that KG is close to unity when the transistor is operating in the
weak and moderate inversion regime.

Most analog circuit simulators use the Berkeley Short-channel Model (BSIM) to predict the 1/ f
noise behavior of circuits. It is important to establish a relationship between the parameters used by
the simulator and the simple equation used for hand calculations in order to best exploit the noise
calculation results. The oxide trap density is the key process-dependent parameter. In the BSIM model,
it is referred to as the noise parameter A (noiA) [25].

It is well known that the 1/ f noise PSD is inversely proportional to the gate area. In low noise CIS
readout chains, the transistors located outside the pixels array can be designed with gate dimensions
much larger than the in-pixel source follower transistor. In this case, the latter becomes the dominant
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1/ f noise source in the readout chain, and the other 1/ f noise sources can be neglected. Based on the
small-signal schematic of Figure 5 and the calculation detailed in [8], the input-referred 1/ f noise can
be expressed as:

Q2
1/ f = α1/ f ·

KF(CP + 2Ce ·W + 2
3 Cox ·W · L)2

C2
ox ·W · L

(5)

where α1/ f is a unitless circuit design parameter reflecting the impact of the CMS noise reduction on
the 1/ f noise. Based on the detailed analytical calculation [26], it can be expressed as:

α1/ f =
∫ ∞

0

1
f
· 4

M2
sin4(π ·M · TS · f )

sin2(π · TS · f )
· 1

1 +
(

f
fc

)2 d f (6)

where fc is the cutoff frequency of the column-level amplifier, which is assumed to be lower than the SF
stage bandwidth. TS is the sampling period of the correlated sampling. α1/ f is calculated numerically
and plotted as a function of fc.TS in Figure 6. It shows that α1/ f is weekly dependent on TS when M is
higher than two. In this case, α1/ f ranges between three and four.
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Figure 6. Numerical calculation of the parameter α1/ f from Equation (6) as a function of the ratio
between the cutoff frequency of the readout chain and the sampling frequency of the correlated
sampling T fc · TS for a simple CDS and CMS with different orders M.

3.2. Thermal Noise

The thermal noise of a MOS transistor operating in saturation is modeled by a drain current
source that adds to the signal. The drain current noise PSD is commonly expressed as [21]:

SId( f ) = 4 · k · T · γ · gm (7)

where gm is the gate transconductance of the transistor and γ is the excess noise factor given by 2n
3 ,

for a long-channel transistor biased in strong inversion [21].
In a conventional CIS readout chain, besides the power supply and bias voltage noise, there

are two dominant thermal noise sources: the in-pixel SF transistor operating in saturation and the
column-level amplifier. The latter makes the noise sources from the next stages (ADC, CMS, etc.)
negligible when enough gain is provided. The two dominant noise sources are uncorrelated; thus,
their noise PSDs add. We assume that the bandwidth of the in-pixel SF stage is limited by the
column-level amplifier. We consider that the column-level gain is provided by a closed-loop operational
transconductance amplifier (OTA). Using the small-signal analysis of the SF stage and the column-level
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amplifier [8], the thermal noise voltage variance at the output of the column-level amplifier is calculated.
It is then referred to the input using the column-level and conversion gain Equation (2), resulting in:

Q2
th = αth ·

kT
Acol · C

(
γSFGm,A(

2
3 Cox ·W · L + 2Ce ·W + CP)

2

Gm,SF
+

γA

A2
CG

)
(8)

where C = CL + Cin
Acol+1 . Here, CL and Cin are the integration and load capacitances of the

column-level amplifier. γSF and γA are the noise excess factors corresponding to the in-pixel source
follower transistor and the OTA of the column-level amplifier, respectively. Gm,SF and Gm,A are the
transconductances of the in-pixel SF stage and column-level OTA, respectively. αth is a unitless circuit
design parameter dependent on the circuit or processing techniques used after the column-level
amplification stage. In the case of CMS, αth is given by [26]:

αth =
1

π fc

∫ ∞

0

4
M2

sin4(π ·M · TS · f )
sin2(π · TS · f )

· 1

1 +
(

f
fc

)2 d f ' 2
M

(9)

Note that for proper settling of the signal between sampling instants, 2π · fc · TS has to be typically
larger than five, and under such conditions, αth can simply be approximated by 2

M .

3.3. Leakage Current Shot Noise

During the readout, the charge transferred to the SN may be corrupted by all of the leakage
currents through the junctions and gate oxide due to tunneling. Since these leakage currents are due
to barrier control processes, they give rise to shot noise. As shown in the small-signal schematic of
Figure 5, the leakage current shot noise can be modeled by two noise current sources: In,GD and In,GS.
In,GD represents the shot noise of all of the leakage currents flowing between the SN and the ground,
which includes the SN junction leakage and the SF gate oxide tunneling current that sinks into the
bulk and the drain. In,GS represents the shot noise associated with part of the SF gate oxide tunneling
current that flows to the source. The unilateral PSD of the current shot noise can be expressed as [27]:

SIL( f ) = 2 · q · IL (10)

where IL is the mean value (DC current) of the total leakage current. It can be shown that both shot
noise components In,GD and In,GS have the same transfer function magnitude, between the noise
current source and the output of the column level amplifier. The leakage current shot noise PSD at the
output of the column level amplifier can therefore be simplified as:

SL,Amp( f ) = SIL( f ) ·
A2

CG · A2
col

(2π f )2 · 1

1 +
(

f
fc

)2 (11)

Note that IL is the sum of all of the sense node leakage currents. The noise PSD after the CMS,
taking into account the impact of aliasing, can be expressed as:

SL,CMS( f ) = sinc(π f TS)
2 · 4

M2
sin4(π ·M · TS · f )

sin2(π · TS · f )
·

+∞

∑
n=−∞

SL,Amp( f − nTS) (12)

Figure 7a shows a plot of the input-referred shot noise PSD, normalized to 2 · q · IL · TS. It can be
noticed that due to the 1/ f 2 term in Equation (11), the PSD is independent of fc, and the area of the
PSD increases with M. It can be shown that the input-referred charge variance due to the total leakage
current’s shot noise can be expressed as:

Q2
L = 2 · αshot · q · IL · TS (13)
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with:

αshot =
∫ ∞

0

1
π
· sin(M · x)4

(x · sin(x))2 ·
1

1 +
(

x
fc ·TS

)2 dx ' M
3

( f or M ≥ 2) (14)

Note that the shot noise current sources feature a white PSD. However, when integrated in the SN
capacitance, they give rise to a Wiener process [28]. The variance of this noise is thus expected to rise
with the readout time. In order to evaluate the impact of the CMS on the leakage current shot noise,
αshot is calculated numerically and plotted in Figure 7b as a function of M. In the case of a simple CDS,
αshot is equal to 0.5; hence, the shot noise variance is given by q · IL · TS, which corresponds to a typical
case of a Wiener process [28]. Figure 7b also shows that, in the general case, the leakage current shot
noise increases linearly with TS ·M.
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Figure 7. Input-referred shot noise PSD (a) and variance (b), normalized to 2 · q · IL · TS as a function of
the correlated multiple sampling (CMS) order M.

4. CIS Read Noise Reduction Techniques

4.1. Column-Level Techniques

Based on Equation (8), the parameters that can be used to reduce the readout thermal noise
independently of the pixel design are the column-level gain Acol , the capacitance C acting on the
bandwidth of the column-level amplifier and the CMS order M that determines the value of the
parameter αth. For thermal noise, the column-level gain Acol , the capacitance C and the CMS order M
all have the same impact on the input-referred noise. In order to validate this result, transient noise
simulations [29] have been performed on a conventional CIS readout chain with a 4T pixel using
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a standard thick oxide NMOS source follower transistor, a column-level amplifier based on an OTA
with a feedback capacitance C f and the passive CMS circuit presented in [17]. Figure 8a shows the
impact of the column-level gain and bandwidth control on the input-referred noise when a simple
correlated double sampling is used after the column-level amplifier. Figure 8b shows the impact
of the correlated multiple sampling on the input-referred thermal noise for different column-level
gains. These simulation results show that the thermal noise can be reduced drastically using only the
column-level parameters.
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Figure 8. Input-referred thermal noise, obtained from transient noise simulations, of a CIS readout
chain, with a 4T pixel (standard NMOS source follower) with a conversion gain of 85 µV/e−,
column amplification (closed loop gain with the operational transconductance amplifier (OTA)) and
CMS implemented with the analog circuit presented in [17], as a function of: (a) the column-level gain
Acol for different values of C and a simple CDS (M = 1); (b) the CMS order M for different values of the
column-level gain Acol and C = 0.2 pF.

Based on Equation (5), α1/ f is the only parameter in the input-referred 1/ f noise expression
that is independent of the pixel-level device and process parameters. As shown in Section 3.1, α1/ f
decreases with the CMS order. Figure 9 shows transient noise simulations of the input-referred 1/ f
noise for readout chains with different in-pixel SF types as a function of the CMS order. Figure 9
demonstrates that even if the CMS comes with some 1/ f noise reduction, the impact of the device
parameters (SF type) is much more significant.



Sensors 2016, 16, 514 10 of 19

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

In
pu

t r
ef

er
re

d 
1/

f n
oi

se
 [e

-

R

M

S

]

CMS order M

NMOS thick oxide SF

PMOS thick oxide SF

PMOS thin oxide SF

Figure 9. Input-referred 1/ f noise of a CIS readout chain, with 4T pixel, column amplification and
CMS [17], obtained with transient noise simulations, as a function of the CMS order M for different
in-pixel source follower transistor types. The pixels with thick oxide NMOS and PMOS SFs feature a
conversion gain of about 85 µV/e−, while the thin oxide SF based pixel features a conversion gain of
185 µV/e−.

4.2. Pixel-Level Techniques

The thermal noise can be reduced to extremely low levels by implementing column-level circuit
techniques as shown in Figure 8a,b. Consequently, further reduction of the thermal noise at the pixel
level is less efficient, and noise optimization at the pixel level should be mostly focused on reducing the
remaining and dominant 1/ f noise. Equation (5) is the starting point for the 1/ f noise optimization
and suggests different approaches, including proper device selection, design optimizations, as well as
process improvements.

4.2.1. Reduce the Capacitance CP and the Source Follower Transistor Overlap Capacitance

This point remains an active research topic. Careful layout is not enough to significantly decrease
the contributions of the wiring parasitic capacitances, the transfer and reset overlap capacitances,
as well as the junction capacitance of the floating diffusion. For this purpose, process improvements
are necessary. Many recent works presenting sub-electron readout noise CIS actually focused on
this point. In [30], different process-level techniques have been presented leading to the reduction
of CP. It has been shown that the omission of the low doped drains (LDDs) used in standard
CMOS transistors reduces effectively the gate overlap capacitances. Furthermore, increasing the
depletion depth under the floating diffusion by reducing the doping concentration reduces the junction
capacitance. The combination of these techniques led to a CP reduction of about 47%. In [7], the
capacitance CP has been reduced by using an idea called “virtual phase”, well known in CCDs,
consisting of creating a potential profile that isolates the floating diffusion from the transfer gate.
In this way, the overlap capacitance between the transfer gate and the floating diffusion (denoted
CTov in Figure 4) is dramatically reduced. Furthermore, the channel width of the reset transistor is
reduced by controlling the doping profile in order to reduce the overlap between the reset gate and
the floating diffusion (denoted CRov in Figure 4). However, this was obtained at the cost of a low
pixel full-well capacity and a relatively higher lag. In [20], CTov is reduced by introducing a special
implant isolating the transfer gate from the SN, and CRov is reduced by omitting the reset transistor.
However, this requires the reset to be performed with a high voltage clock of 25 V connected directly
to an implant close to the SN. Figure 10 shows the impact of the CP reduction through a plot of the
calculated input-referred 1/ f noise as a function of the gate width and length, based on Equation (5),
for a CP of 0.75 fF, corresponding to a standard process, and a CP of 0.25 fF, corresponding to the one
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that could be obtained through advanced process refinements [30]. Figure 10 shows the effectiveness
of this Cp reduction, which leads to a reduction of the input-referred 1/ f noise from 0.4 to 0.3 e−rms.
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Figure 10. The calculated input-referred 1/ f noise, based on Equation (5), as a function of the in-pixel
source follower width W and length L for a thin oxide transistor in a 180-nm technology where
Cgse = Cgde = 0.95 fF/µm, Cox = 9.5 fF/µm2, K = 10−11 F2V2/m2, αCMS = 3, and in (a) CP = 0.75 fF,
it corresponds to the SN capacitance in a standard process, (b) CP = 0.25 fF corresponds to an SN
capacitance reduced with process-level optimization.

4.2.2. Reduce the 1/ f Noise Process Parameter KF (the Oxide Trap Density Nt)

This point can be addressed through design choices and technological improvements. It is known
that buried channel devices have a lower 1/ f noise by featuring a lower KF parameter. This is likely
due to the fact that the charge carriers are kept away from the silicon oxide interface [31]. It has been
shown that using buried channel NMOS source followers leads to sub-electron noise performance [19].
From a design aspect, thick-oxide transistors that operate at voltages as high as 3.3 V are commonly
used in CIS pixels. Figure 11 shows the oxide trap density of PMOS and NMOS thick oxide transistors
from different foundries and technology nodes. It shows that PMOS transistors feature, generally, a KF
parameter lower than NMOS transistors. Using an in-pixel PMOS source follower transistor also led
to a sub-electron noise performance [32]. The drawback of in-pixel PMOS transistor is the reduction
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of the fill factor due to the spacings imposed by the layout design rules and the possible quantum
efficiency reduction if the PMOS n-well is too close to the PPD.
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Figure 11. The oxide trap density Nt, of PMOS and NMOS thick oxide transistors, as a function of the
technology node based on measurement results reported in design kits from different foundries.

4.2.3. Increase the Oxide Capacitance per Unit Area Cox

Based on Equation (5), the 1/ f noise can also be reduced by increasing the oxide capacitance per
unit area of the in-pixel SF. From a design perspective, this corresponds to the selection of a thin oxide
SF instead of the traditional thick oxide transistor. In most CIS processes, all of the gates included in
the pixel feature thick oxides, since the transfer gate and the reset gate are controlled by high voltages
(3.3 V); the SF is also chosen as a thick oxide transistor to exploit a high dynamic range. In [8], it has
been shown how a thin oxide transistor can be implemented in a CIS pixel without degrading the
dynamic range or dramatically reducing the fill factor at the benefit of a much reduced input-referred
1/ f noise.

4.2.4. Use a Minimum Gate Width and an Optimal Length

Based on Equation (5), it can be shown analytically [33,34] or numerically using the a plot of
Equation (5) versus the gate width and length that the lowest input-referred 1/ f noise corresponds to
the minimum gate width and an optimal length generally slightly higher [33]. Figure 10 illustrates this
principle on a practical example. It shows a plot of the input-referred 1/ f noise as a function of the
gate width and length for a pixel based on a thin oxide PMOS SF of a 180-nm CMOS process for two
different values of CP. It shows how, for both CP values, the input-referred 1/ f noise can be reduced
by choosing a minimum SF gate width and a slightly larger length. Note that the reduction of the
SF gate size might increase the probability of RTS noise occurrence [35]. However, the amplitude of
the RTS noise is inversely proportional to the gate area [36]; thus, it would be also reduced by using
a minimum SF gate width.

4.2.5. Thin Oxide Source Follower: A Good Match

From the designer’s perspective, the points mentioned in Sections 4.2.3 and 4.2.4 can both be
addressed by using a thin oxide SF. Indeed, A thin oxide SF with a minimum gate width features
also lower overlap capacitances. It is important to verify that the choice of a thin oxide transistor
does not come at the cost of a negative impact on the 1/ f noise process parameter KF. A thinner
oxide is expected to come with a better control of the gate over the channel and, therefore, a lower KF.
The oxide trap density of thin oxide PMOS transistors and thick oxide NMOS transistors of different
foundries and technology nodes has been compared in [8] based on data reported in design kits. This
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comparison showed that the thin oxide PMOS transistors generally feature a lower oxide trap density.
Thus, using a thin oxide PMOS source follower addresses the points of Sections 4.2.2, 4.2.3 and 4.2.4 at
once. Figure 12 shows the schematic of a 4T pixel based on a thin oxide PMOS SF. In order to validate
this idea, a transient noise simulation is performed on three readout chains based respectively on a
standard thick oxide NMOS, a thick oxide PMOS and a thin oxide PMOS source follower in a 180-nm
CIS process. The compared readout chains share the same column level amplification and CMS circuit
presented in [17]. Figure 9 shows the impact of the in-pixel source follower transistor type, as well
as the CMS order M on the input-referred 1/ f noise. The PMOS SF-based readout chain features
a lower 1/ f noise than the NMOS-based one thanks to the increase of Cox and the reduction of the
parameter KF. The readout chain based on the thin oxide PMOS SF features the lowest input-referred
noise because its SF cumulates a lower KF, a higher oxide capacitance per unit area and a lower
minimum width.

SN

VRST

TX
RST

RS
PPD

Ibias

Pixel

VDD (3.3)

C
olum

n

Thin oxide 
PMOS
Thick oxide 
PMOS
Thick oxide 
NMOS

Vlow

Figure 12. Schematic of the recently-proposed pixel [8] based on a thin oxide PMOS source follower.

It is important to verify that these techniques are not harmful in terms of the thermal noise.
Equation (8) shows that the thermal noise is reduced by increasing the conversion gain. Thus, using a
thin oxide SF with smaller gate dimensions is also expected to reduce the input-referred thermal noise.

The benefits of using a thin oxide SF transistor have been confirmed with measurement results.
A test chip comparing pixels based on thin oxide PMOS source followers with state-of-the-art pixels
with thick oxide buried channel NMOS source followers has been presented in [8]. Figure 13 shows
the measured average total input-referred noise of the two different pixels for two column-level gain
values and with a simple CDS. Figure 13 shows how both thermal (at low column gain) and 1/ f noise
(at high column gain) are dramatically reduced thanks to the implementation of the source follower
with a thin oxide PMOS transistor.

The tested pixel was designed using a standard CIS process and fulfilling the standard design
rules. There was therefore no possibility to exploit the impact of the reduction of CP through process
optimization. In order to predict the impact of the combination of thin oxide SF with process
optimizations reducing the sense node capacitance, the parameter CP of Equation (5) is replaced by the
measurement results from [30]. The starting point corresponds to the result of 0.4 e−rms obtained in [8]
and corresponding to the case of a thin oxide SF-based pixel design with standard rules. Then, the
values of CP based on [30] are used to predict the evolution of the input-referred noise for each
additional technique used to reduce the the SN capacitance. The result is plotted in Figure 14. It shows
the expected input-referred noise, at the optimal gate width and length, for each value of CP. Figure 14
shows that the 0.3 e−rms limit can be crossed if the thin oxide PMOS SF is combined with process
optimizations reducing CP in the 180-nm process used in [8].
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Figure 13. The measured input-referred total noise of a CIS readout chain, with 4T pixel and column
amplification, for two column level gains Acol , for an in-pixel buried channel thick oxide NMOS source
follower and a thin oxide PMOS source follower from [8].
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Figure 14. The input-referred 1/ f noise as a function of the capacitance CP determined by the
floating diffusion, wiring and parasitic capacitances independent from the source follower transistor.
CP = 0.75 fF corresponds to the case of a conventional sense node junction, transfer gate and
transistors. CP = 0.55 fF corresponds to the case of transfer and reset gates without low doped
drains [30]. CP = 0.4 fF corresponds to the case of transfer and reset gates without low doped drains
and a sense node without channel stop underneath [30]. CP = 0.25 fF corresponds to the case of more
advanced process refinements as [7,30]. The numbers in labels correspond to the minimum width and
optimum length as discussed in Section 4.2.4.

5. CIS Read Noise and Technology Downscaling

Since their first development, CIS pixels have always been designed with thick oxide transistors
compatible with high voltages (3.3 V). The device parameters of thick oxide transistors do not follow
the scaling rules as the thin oxide transistors. The impact of the technology downscaling on these
devices is rather limited. Moreover, it appears that the oxide trap density of thick oxide transistors
tends to increase with the technology downscaling, as shown in Figure 11.

It has been demonstrated in [8] that a thin oxide SF can be used together with a conventional
PPD for a low noise performance. Thin oxide transistors, on the other hand, take full advantage of
technology downscaling. Thus, it is interesting to investigate the impact of technology downscaling on
the input-referred noise. The starting point for analyzing the impact of the technology downscaling
on the input-referred noise of a readout chain based on a thin oxide SF is Equations (5) and (8).
The conclusions can be made based on how the technology downscaling affects the different process
and device parameters. Table 1 shows the scaling factor corresponding to the relevant device
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parameters [37]. The technology downscaling allows a higher oxide capacitance per unit area,
a lower gate width and lower overlap and parasitic capacitances. Hence, the input-referred 1/ f
noise variance is supposed to decrease with κ2, assuming that the oxide trap density Nt remains
constant with the technology downscale. The thermal noise is expected to decrease with κ2 and, hence,
would remain negligible. The International Technology Roadmap for Semiconductors (ITRS) expects
the oxide trap density to decrease with the technology downscaling [22]. Figure 15 shows the Nt values,
for thin oxide transistors, reported in design kits of three foundries for different technology nodes.
It shows that the oxide trap density follows the ITRS roadmap when downscaling from 180 nm
to 130 nm. For more advanced technologies, the data are not conclusive and must be verified by
measurements. The 1/ f noise of NMOS transistors does not increase dramatically. On the contrary,
PMOS transistors appear to show a higher Nt for advanced technologies. In bulk CMOS, the buried
channel conductance of the PMOS transistors is likely the reason for their lower 1/ f noise. While deep
submicron PMOS transistors are expected to behave as surface channel devices, which explains the
fact that their 1/ f noise becomes comparable to the one of NMOS transistors.

Table 1. Impact of technology downscaling on the parameters of the input-referred 1/ f noise in
Equation (5).

Parameter Scaling Factor

W 1
κ

L 1
κ

Cox κ

CP
1
κ

Ce ·W 1
κ
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Figure 15. The evolution of the oxide trap density Nt, as a function of the technology node based on
measurement results reported in design kits from different foundries.

The measurement results presented in [8,38] explore indirectly the impact of the technology
downscaling on the noise reduction. A pixel with a thin oxide SF transistor have been compared to
a thick oxide SF based one. For the 180-nm process used in [8,38], the thick oxide transistor features
an oxide capacitance per unit area of 5 fF/µm2 compared to 9.55 fF/µm2 for the thin oxide transistor.
In addition, the minimum width determined by the design rules is 0.4 µm for the thick oxide compared
to 0.22 µm for the thin oxide transistor. Consequently, using a thin oxide source follower transistor
instead of a thick oxide has the same effect as a technology downscaling with a scaling factor of two.
Based on this observation, the input-referred noise is expected to decrease by a factor of two, which
matches the measurement results shown in Figure 13.
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Besides the read noise originating from the 1/ f and thermal noise, the gate leakage current shot
noise has been up to now neglected due to the extremely low levels of the leakage currents achieved
in the used technology. It is important to investigate the evolution of this noise when using more
advanced technologies. Indeed, the gate leakage current increases by several orders of magnitude
when downscaling from 180-nm to 65-nm technologies [37]. Based on Equation (13), the shot noise
associated with the gate leakage current is hence expected to increase significantly. In order to evaluate
its impact, simulations have been performed with transistors having a minimum gate width and
length from technologies between 180 nm and 65 nm. The corresponding leakage current shot noise
RMS is given by the square root of the total number of electrons crossing the gate in a time interval
of 10 µs (enough to read two samples). The results are plotted in Figure 16. Figure 16 also shows
how the input-referred noise is expected to decrease by only taking advantage of the technology
downscaling based on Equation (5) and the assumption of constant oxide trap density for deep
submicron technologies. The starting point corresponds to the input-referred noise obtained using a
thin oxide SF in a 180-nm CMOS process [8]. It can be noticed that the 0.3 e−rms limit can be crossed if a
CIS process is developed with a technology node under 130 nm and a thin oxide transistor is used as a
SF. However, for technologies under 90 nm, the gate leakage current appears to be a severe problem
starting to dominate the total noise. Hence, the optimal technology node is between 130 nm and 90 nm,
unless process improvements are applied to reduce the gate leakage current. Figure 16 shows also
the impact on the technology node when the process refinements reducing the SN capacitance CP are
applied. The noise levels for each technology node are obtained using Equation (5) and the scaling
rules. The starting point corresponds to noise expected when combining the thin oxide PMOS SF with
a CP of 0.25 fF, as shown in Figure 14. The latter shows that an input-referred read noise under 0.2 e−rms
could be possible with a technology node between 130 nm and 90 nm, a thin oxide SF and process
level CP reduction.
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Figure 16. The expected evolution, with technology downscale, of the input-referred 1/ f noise of CIS
designed with standard CMOS process with thin oxide in-pixel SF.

RTS noise may also be a concern with the technology downscaling. In sate-of-the-art low
noise CMOS image sensors, it may result in a dramatically high input referred-noise value of
about several e−rms, but it is only present in a minority of pixels (the tail of the noise histogram).
Therefore, RTS noise was not accounted for in this work, including in the extrapolation towards
downscaled technologies, because we limited the latter to 65 nm, where leakage is much more an
issue. A further investigation of input-referred noise for such 4T pixels in deep submicron technology
would definitely require one to account for RTS noise. Unfortunately, RTS noise is not modeled in
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the most common simulators, and the complexity of this phenomena still impedes an analytically- or
empirically-precise expression of its occurrence.

6. Conclusions

The capability of performing photo-electron counting, with an accuracy higher than 90%,
using conventional CIS readout chains requires a total read noise level below 0.3 e−rms. This read noise
is mainly composed of the 1/ f noise originating from the in-pixel SF, the thermal noise originating
from the pixel- and column-level saturated transistors and the shot noise associated with the leakage
current at the level of the SN. The latter is negligible in the technology nodes used currently (above
100 nm).

The thermal noise can be drastically reduced, to extremely low levels, by combining column-level
gain, bandwidth control and CMS. The 1/ f noise becomes then the dominant noise source.
The reduction of the 1/ f noise can involve process-, device- and circuit-level optimizations. The
process-level refinements include the sense node total capacitance and the SF KF parameter reduction.
At the device level, the input-referred noise can be reduced by using an in-pixel SF with a higher oxide
capacitance per unit area, a minimum gate width and an optimal gate length. The implementation of
an in-pixel thin oxide PMOS SF-instead of a thick oxide NMOS presents a practical example of how
this device level optimization can be performed in a standard process. At the circuit level, the 1/ f
noise can be slightly further reduced using the CMS.

Based on measurement results reported in recent works and the analytical expressions of the
input-referred noise, the combination of a standard thin oxide PMOS SF with the process refinement
reducing the SN capacitance is expected to decrease the total read noise of a conventional CIS below
0.3 e−rms.

The input-referred thermal and 1/ f noise are expected to decrease with the technology
downscaling to levels below 0.2 e−rms. For technologies below 90 nm, the SF gate oxide leakage
current is expected to increase dramatically. Therefore, unless the leakage current is reduced by some
other means at the process level, the optimum technology node ranges between 90 nm and 130 nm.
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