
1

Team Integration
Do Son Thanh

Abstract—We leverage theoretical advances and the multi-user
nature of argumentation. The overall contributions of our work
are as follows. We model the schema matching network and the
reconciliation process, where we relate the experts’ assertions and
the constraints of the matching network to an argumentation
framework. Our representation not only captures the experts’
belief and their explanations, but also enables to reason about
these captured inputs. On top of this representation, we develop
support techniques for experts to detect conflicts in a set of their
assertions. Then we guide the conflict resolution by offering two
primitives: conflict-structure interpretation and what-if analysis.
While the former presents meaningful interpretations for the
conflicts and various heuristic metrics, the latter can greatly
help the experts to understand the consequences of their own
decisions as well as those of others. Last but not least, we
implement an argumentation-based negotiation support tool for
schema matching (ArgSM), which realizes our methods to help
the experts in the collaborative task.

I. INTRODUCTION

The task of reconciling a schema matching network was
performed by a single expert. As the size of networks in data
integration grows, the complex reconciliation tasks should be
performed by not only one but several experts, to avoid the
overload on a single expert and also to assign each expert the
parts of the problem about which he is more familiar. More-
over, typical information systems need to involve a wide range
of expertise knowledge, since schemas are often designed by
different persons and with different domain purposes. As a
result, there is a need for a mechanism that allows not a single
expert but an expert team work collaboratively to reconcile the
output of automatic matchers.

In this chapter, we develop such a multi-user mechanism to
enable collaborative reconciliation process. It is challenging
to achieve this goal since we have to face the three following
issues. Note that hereby two terms—experts and users—
are used interchangeably to represent the participants in this
process.

1) How to encode user inputs? The inputs of users should
be encoded to not only capture fully information given
by users but also support reasoning on the information.
In other words, from user inputs, we can derive conse-
quences and compute their explanations.

2) How to detect conflicting inputs? As users might have
different opinions about the correctness of correspon-
dences, their inputs inevitably involve conflicts. Detecting
conflicts is an important step to eliminate inconsistency.

3) How to guide conflict resolution? To facilitate conflict
resolution, we need to define a mechanism that sup-
ports users to exchange knowledge, allow debugging, and
contain explanations for the given decisions. Moreover,
we provide heuristic metrics to rank possible decisions

TABLE I
TERMINOLOGIES

Term Description

Hypergraph A hypergraph G = (V,E) where V is a set
of nodes and E ⊂ S(V)

Correspondence hypergraph A hypergraph in which vertices are corre-
spondences and hyperedges are violations

Violation hypergraph A hypergraph in which vertices are viola-
tions and hyperedges are correspondences

as well as support ”what-if” analysis, which involves
computing the foreseeable consequences of the decisions.

To address these issues, we leverage theoretical advances
and the multi-user nature of argumentation. The overall con-
tributions of our work are as follows. We model the schema
matching network and the reconciliation process [12], [6],
[17], [5], [18], [11], where we relate the experts’ assertions and
the constraints of the matching network to an argumentation
framework. Our representation not only captures the experts’
belief and their explanations, but also enables to reason
about these captured inputs. On top of this representation, we
develop support techniques for experts to detect conflicts in a
set of their assertions. Then we guide the conflict resolution
by offering two primitives: conflict-structure interpretation
and what-if analysis. While the former presents meaningful
interpretations for the conflicts and various heuristic metrics,
the latter can greatly help the experts to understand the
consequences of their own decisions as well as those of others.
Last but not least, we implement an argumentation-based
negotiation support tool for schema matching (ArgSM), which
realizes our methods to help the experts in the collaborative
task.

II. PRELIMINARIES

There are many protocols for negotiation process [23], [22].
In these works, the authors considered general settings about
resources, users’ preferences, etc.

A. Assumptions

For the sake of simplicity, we make the following assump-
tions for this problems:

1) Agent assumptions:
• The users are selfless: they have no other goal beside the

common goal.
• The users are truthful: they do not tell lies or intentionally

harm the system.
2) Environment assumptions:
• Multi-channel: an agent can communicates with many

her/his related agents. Therefore, no need to identify
which message is intended for which agents.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148021386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

• Unlimited bandwidth: the agent can communicate with
other agents without worrying sharing the communication
bandwidth with others

• Reliable: there is no lost or tempered message during
communication.

III. PROBLEM DEFINITION

Team integration problem P (k,W,G) is the problem of har-
nessing the work of k workers on the workload W efficiently
to reach the common goal G. In the schema matching domain,
given a set of correspondences C and the constraints Γ, we
can detect a set of violations V = {v1, v − 2, ..., vn | vi =
{cj , ..., ck} ⊂ C} that need to be resolved by k workers. Let
C∗ = fb(C) be the set of correspondences after resolution,
that C∗ satisfies Γ and maximizes an objective function is the
goal of the team integration process.

Formally, the team integration problem in schema matching
is defined as follows:

SCENARIO. Team integration in schema matching Given
a set of constraints Γ, a set of correspondence C and a set
of derived violation V = V ioΓ(C) of C with respect to Γ,
the team integration problem P (k,W,G) of k workers can be
modeled as follows:
• The workload W of this problem is V .
• The goal G of this problem is that the feedbacked

correspondences C∗ satisfies Γ and the objective value
obj(C∗) is maximized, where obj(.) is a pre-defined
objective function.

In our context, we assume that the worker ability are equal
and the role of each worker are the same. In order to solve the
above problem, we need to solve two inherent sub-problems:
design a fair task assignment and a conflict resolution protocol.

QUESTION 1. Task assignment Given a set of violations
V and k workers, a task assignment is k subsets T =
{V1, V2, ..., Vk} divided from V , where Vi ⊂ V , such that
Vi ∩ Vj = ∅ and

⋃
i Vi = V .

QUESTION 2. Conflict resolution Design a communication
paradigm between users such that the conflicts in the feedback
process are resolved.

IV. TASK ASSIGNMENT

In this section, we formulate the first question in the team
integration problem by fair task assignment.

Definition 1. Fair task assignment A task assignment T =
{V1, V2, ..., Vk} is fair if it satisfies 2 following conditions:

• Workload Balance: 1
b ×

∑k
i=1 Wi

k ≤ Wi ≤ b×
∑k

i=1 Wi

k ,
where Wi =

∑
v∈Vi
|v| is the workload of Vi and b ≥ 1

is a load-imbalance tolerance factor.
• Communication Minimizing: The amount of commu-

nication between workers is minimum. The amount of
communication is measured as the total of overlapping
correspondences: msg(T) =

∑
|Ci ∩ Cj | where Ci is

the correspondences of Vi.

Fig. 1. A violation hypergraph is created from a network of schema

In order to solve this problem, we reformulate it into a
k-way hypergraph partitioning problem. The solution for this
problem is discussed next. Finally, we describe the information
each worker possesses after assigned the task.

A. Hypergraph model for Task assignment

A hypergraph H is a pair H = (N,E) where a hyperedge
e ∈ E can connect more than two nodes in N . Therefore, a
node and a hyperedge can naturally represent a violation and
a correspondence respectively. That is, in H , N ≡ V and E ≡
C. Moreover, since each violation contains different number
of correspondences, each violation-node v is associated with
a weight equals the number of correspondences in it: w(v) =
|v|.

The example below illustrates the process of constructing a
hypergraph from a set of violations:

Example 1. In Figure 1, we have a network of schemas
created from 3 schemas: s1, s2, s3. From this network of
schemas, six violations v1{c2, c4}, v2{c1, c2}, v3{c1, c5, c6},
v4{c4, c5, c6}, v5{c3, c4}, v6{c1, c3} are detected together
with their correspondences. Based on this information, we
can construct a violation hypergraph with 6 nodes and 6
hyperedges.

The violations and its correspondences can be modelled as
a violation hypergraph as follows:

Definition 2. A violation hypergraph HV is a pair HV =
(N,E) where
• N is a set of nodes created from a set of violations N =
{vi|vi ∈ V } and each node vi is associated with a weight
|vi|.

• E is a set of hyperedges created from a set of correspon-
dences E = {ei ⊂ N |∃cj ∈ C,∀vk ∈ ei, cj ∈ vk}

With this modelling, the task balancing problem in defi-
nition 1 can be resolved as a k-way hypergraph partitioning
problem as follows:

PROBLEM 1. Given a hypergraph HV (N,E) and an overall
load-imbalance tolerance factor b such that b ≥ 1, the goal is
to partition the set N into k disjoint subsets, N1, N2, ..., Nk

such that
• The total weight of nodes in each subset Ni is bounded

by 1
b ×

∑k
i=1 |Ni|

k ≤ |Ni| ≤ b ×
∑k

i=1 |Ni|
k where |Ni| is

the total weight of nodes in Ni.
• The sum of external degrees

∑
|E(Ni)| of a partitioning

is minimized, where the external degree |E(Ni)| of a

3

partition Ni is defined as the number of hyperedges that
are incident but not fully inside this partition.

B. Hypergraph partitioning

There are various approaches for computing a k-way parti-
tion , which can be categorized into following schemes:
• Recursive bisection paradigm: reduces k-way partition-

ing problem into performing a sequence of bisections,
but at least NP-hard [7]. Many heuristics algorithms have
been developed, as surveyed in [2].

• Multi-level paradigm: In this class of hypergraph bisec-
tions algorithm [9], [15], [1], [25], an iterative refinement
process is employed by constructing a sequence of suc-
cessively smaller (coarser) hypergraphs. The substantially
successful tool for this scheme is hMetis [].

• Direct-computing paradigm: In [24], the authors
showed that a method that compute k-way partitions
directly produced much better than recursive method
(computing k-way partitions successively via recursive
bisections) in terms of optimizing objectives such as sum
of external degrees, scaled cost and absorption [2]. There
are many research works on this direction, most recent
by K-PM/LR algorithm [3].

There is also a hybrid algorithm developed in [16],
which combines direct-computing paradigm and multi-level
paradigm. As claimed by the authors, this algorithm out-
performs either k-way FM or K-PM/LR algorithms.

// TODO: Hypertree Decomposition

C. Collaborative resolution network

After dividing the hypergraph into many partitions, we can
build a collaborative resolution network CRN that represents
the relationship between partitions (workers) and the shared
correspondences between them. A collaborative resolution
network CRN is a graph where nodes are partitions and there
is an edge between two nodes if there is at least one common
correspondence between them. Each edge in a CRN is labeled
with the common correspondences between the partitions.

Each worker ui is responsible for resolving violations in
partition Ni. Moreover, workers who share the same edge must
communicate to resolve conflicts on the common correspon-
dences. The following example illustrates a CRN :

Example 2. Back to example 1, if we have 3 workers
and we need to find a fair task assignment for them, we
can divide the hypergraph in Figure 1 into three parti-
tions by solving the 3-way hypergraph partitioning problem:
N1{v1, v5}, N2{v3, v4}, N3{v2, v6}. The collaborative resolu-
tion network is illustrated in Figure 2.

Worker u1 is responsible for resolving violations v1, v5 and
she must communicate with worker u2 to resolve any conflict
on correspondence c4 and worker u3 on correspondences
c2, c3.

V. CONFLICT RESOLUTION

After partitioning the violation hypergraph HV into many
partitions, we have balanced the assigned tasks among users.

Fig. 2. A collaborative resolution network of 3 workers

In the next step, users will give feedbacks on correspondences
in their partitions to correct violations. A feedback given by
user is a set of possible target attributes of one source attribute.

A source attribute a might be shared by multiple users. In
order to reach agreement on target attribute for a, these users
must participate in a negotiate process divided into rounds of
message exchange. In each round, every user propose a set
of possible target attributes of a. At the end of each round,
every user has received all the proposals and try to reduce the
number of possible target attributes of a.

When users’ preferences are common knowledge, negoti-
ation process can reach a fix-point of agreement using dis-
tributed protocols like monotonic concession protocol (MCP)
[22]. In the following sections, we encode this negotiation
process by designing a negotiation language and a MCP
specified for schema matching problem. In our simple version,
we assume that users are negotiating over a single source
attribute only. The extension to multiple source attributes is
straightforward and natural.

A. Model of negotiation process

A negotiation process can be modeled as follows. The basic
elements of a negotiation process are users and proposals:
• Users: are denoted by U = {u1, u2, ..., un}. Users com-

municate to each other by exchanging proposals in order
to agree on a common variable x (no shared memory).

• Channels (multi-way channels): are the channels which
is used to broadcast the proposals of ui ∈ U to all other
users of U . The channels are assumed to be reliable
(no message loss, no message corrupted, no message
duplicated).

• Proposals: denoted by ϕ which is proposed by user u
on a certain variable. For clarity, we will later provide a
formal definition of proposal in section V-B.

• User actions: each user has a set of actions that they can
provoke to exchange the proposals to each other:

– send(ϕ): sending of proposal ϕ
– receive(ϕ): reception of proposal ϕ

Schema matching is the problem of finding an attribute of
target schema for a given source attribute. Thus, we present
a source attribute a by a variable x(a, s), where s is target
schema. A value of x is a certain target attribute of s. The
domain of x is the set of all attributes of s.

We model the negotiation process h as a finite sequence
of rounds h = {r0, r1, ..rk}. At each round, every user puts
forward a proposal. A round starts when a user proposes
a new proposal and ends when all users in U have given

4

their proposals. A round rk consists of a tuple of proposals
< ϕk

1 , ϕ
k
2 ...ϕ

k
n > where ϕk

i is the proposal made by user ui
at the k-th round.

B. Negotiation Proposal

A negotiation proposal ϕ for a variable x can be presented
as a set of possible values of x as follows. //TODO

The example below illustrates a proposal:

Example 3. Let x be a shared vari-
able and its domain D(x) is D(x) =
{”LastName”, ”FirstName”, ”Name”, ”MiddleName”}.
Some proposals for x that a user can propose are:
• ϕ1 , x = ”LastName” ∨ x = ”BillingAddress”
• ϕ2 , x = ”LastName”∨x = ”BillingAddress”∨x =

”Name” ∨ x = ”MiddleName”
• ϕ3 , x = ”Name” ∨ x = ”MiddleName”

Based on the proposals proposed by users in the last round,
we can find out if an agreement has been made.

Definition 3. Given a negotiation process h, an agreement
has been made if the following condition holds

ϕ
|h|
1 ⇔ ...⇔ ϕ

|h|
k

C. Monotonic Concession Protocol (MCP)

In the negotiation problem we consider a set of n users, each
user ui with proposal ϕi. These n users have to negotiate to
agree on a common value v that is the belief value of one of
the proposals.

1) Protocol properties: A protocol defines the rules of
negotiation process between users. It specifies the proposals
that each user is allowed to make as a function of prior
proposals.

PROBLEM 2. Given a negotiation process, designing a
protocol that satisfies the following properties:
• Termination: A protocol must ensure that the negotiation

process ends after a finite number of rounds. Formally, the
protocol must ensure the negotiation process ends after
a polynominal rounds in the size of D and U .

• Success: A protocol must guarantee success which means
an agreement must be reached after the negotiation
process ends.

A success-guaranteed protocol is a special case of a terminal
protocol where a protocol must also ends with an agreement.
Given a negotiation process h that follows a protocol, we can
check its status as follows: given a function π(r) =

⋂
ϕi∈r ϕi

which indicates the agreed values at the round r, a negotiation
process h is
• Terminal if |π(r|h|)| = 0
• Successful if |π(r|h|)| = 1
• Running if |π(r|h|)| > 1

Or
• Terminal if ∃ϕ1, ..., ϕk ∈ r, ϕ|h|1 ⇔ ...⇔ ϕ

|h|
k ⇔ ∅

• Successful if ∃ϕ1, ..., ϕk ∈ r, ϕ|h|1 ⇔ ...⇔ ϕ
|h|
k ⇔ {v}

• Running if otherwise

Therefore, a protocol must show improvement after each
run to guarantee termination. This can be done by limit the
proposals that can be made by a user.

Observation 1. A user must
• Show improvement in his proposals. That means the

proposal in each round must be more preferable than
previous rounds.

• Not contradict himself. He can not propose new proposals
that violates previous proposals.

Given this observation, we add a preferable constraint on
the proposals for Protocol ?? to ensure termination.

Protocol 1. A monotonic concession protocol is a simple
protocol with an additional constraint: given a negotiation
process h, a proposal ϕ|h|i is valid if

∀r ∈ N,ϕr
i � ϕr−1

i

In other words, a proposal is valid if it is more preferable
than the previous proposals made by the same user. We can
prove that the MCP protocol ends after a finite of rounds.

Theorem 1. Protocol 1 is terminal if one of two following
conditions is satisfied

1) ∀h, |π(r|h|)| = 0
2) ∀h, |π(r|h|)| = 1

Proof: Since a user can not make the same proposal twice
but the later proposal must be more preferable than previous
proposals, we ensure that the protocol ends after a finite set
of rounds.

However, by ensuring efficiency, we have compensated
agreement over efficiency. The theorem below proves that
the monotonic concession protocol is terminal but does not
guarantee success:

Theorem 2. Protocol 1 does not guarantee success:
∃h, |π(r|h|)| 6= 1

Proof: The proof is straightforward. We need to find two
negotiation histories that follows MCP that one is successful
and the other terminates but unsuccessful.

In order to guarantee success, we need to force an agree-
ment if the negotiation process ends unsuccessfully. We use
majority voting to force an agreement between users. Let
Pr =

⋃
JϕiK denotes the proposed values of all users at

round r and σr(v) =
∑

v∈JϕiK 1 indicates the number of
users propose v at round r. The forced agreement v of the
negotiation process h is the value that has the most proposals:
∀v′ ∈ Pr, σr(v′) < σr(v).

2) Relaxed Monotonic Concession (RMC) Protocol): The
observation 1 may not be realistic since it forces a user not to
contradict himself and requires his proposals to be monotonic
conceding. Therefore, we replace the validity condition in
Protocol 1 with a loosening form:

Protocol 2. A relaxed monotonic concession protocol is a sim-
ple protocol with an additional constraint: given a negotiation
process h and a function ς(r) = Σ|JϕiK|, h is valid if

∀r ∈ [1, |h|], ς(r − 1) > ς(r)

5

However, the RMC protocol requires an assessment of the
global state which can only be evaluate with a coordinator.
In this paper, we assume that a coordinator is available and
responsible for providing ς value to each user at each round.

Theorem 3. Protocol 2 does not guarantee success:
∃h, |π(r|h|)| 6= 1

Proof: The proof is straightforward. We need to find two
negotiation histories that follows MCP that one is successful
and the other terminates but unsuccessful.

Since the RMC protocol does not guarantee success, we
must also apply majority voting to get a forced agreement as
described in Section ??.

VI. EXPERIMENTS

A. Experimental setup

We have used 4 real-world datasets (see Table II) for
our experiments. HThe first three datasets(BusinessPartner,
PurchaseOrder, UniversityAppForms) have ground truth but
the THALIA one does not. The datasets are available at
http://lsirpeople.epfl.ch/qvhnguye/smart/. In the following we
shortly describe these datasets.
• Business Partner: The Business Partner are 3 schemas

originated from SAP that model business partners in SAP
ERP, SAP MDM and SAP CRM systems. Each schema
has 80 attributes and 3 levels of hierarchy.

• PurchaseOrder: We collected, extracted and normalized
purchase order e-business documents from various re-
sources, including COMA evaluations [?], openTRANS1,
xCBL2, RosettaNet3, SAP-PO4, CRF5.

• UniversityApplicationDataset: University Application
Form (UAF): We collected and extracted XML schemas
representing the web interface of American universities’
application form. Although we visited around 50
university websites but only be able to obtain 15
schemas since most of them use the same platforms,
such as CommonApp6, UniversalApp7, Embark8,
CollegeNet9.

• THALIA: This dataset [8] is available at http://www.cise.
ufl.edu/research/dbintegrate/thalia/. It provides 44 XML
schemas of learning courses of 44 famous universities all
over the world. Each schema has around 10 attributes.

We worked with a state-of-the-art Hypergraph Partitioning
tool, namely the hMETIS system, http://glaros.dtc.umn.edu/
gkhome/metis/hmetis/overview, release 2007 − 05 − 25. We
have used the schema matcher Coma++ [4].

We have obtained the candidate correspondences us-
ing a schema matcher (Coma++) (threshold=0.3, topK=10,

1openTRANS E-business document standards http://www.opentrans.de/
2XML Common Business Library
3The RosettaNet Standard, http://www.rosettanet.org/
4SAP Purchase Order Standard, http://www.sap.com
5Centro Ricerche Fiat http://www.crf.it
6Common Application https://www.commonapp.org
7Universal College Application https://www.universalcollegeapp.com/
8Embark, http://www.embark.com
9CollegeNet http://www.collegenet.com/elect/app/app

TABLE II
DATASETS

Dataset Nr. of Min/Max. nr. of Nr. of
schemas attributes violations

BusinessPartner 3 80/106 252
PurchaseOrder 10 35/408 11688
UniversityAppForms 15 65/228 70347
THALIA 44 3/18 5063

delta=0.5) for each involved pair of schemas. In the exper-
iments, the interaction graph of schema matching network
is a complete graph (i.e. clique graph) and we assume the
one-to-one constraint and the circle constraint to hold. All the
violations are detected with respect to these constraints. The
task assignment starts with the complete set of violations. We
obtain the figures by repeating the experiments in 5 runs.

B. Experimental Metrics

In our experiment we are particularly interested in measur-
ing the processing time of the task assignment process and the
costs of negotiation process based on partitioning result.

Processing time. We measure the processing time in terms
of partitioning process performed by hMETIS. We ignore
all other I/Os time since the partitioning time essentially
illustrates the task assignment process to assign violations to
each user.

Communication cost. After partitioning, users participate
in negotiation process to reach agreements. We measure the
communication cost in terms of exchanging messages (i.e.,
overlapping correspondences) between each pair of users. The
formula was given in Definition 1: msg(T) =

∑
|Ci ∩ Cj |.

Note that this metric could be greater than the total number
of correspondences in schema matching network.

Negotiation cost. We measure the number of conflicts; that
is, the number of common correspondences shared by two
or more users to be resolved by negotiation protocol. The
formula is given by conf(T) =

⋃
(Ci ∩ Cj). Note that this

metric must be less than the total number of correspondences
in schema matching network.

C. Experimental results

1) Trade-off between workload-balancing and
communication-minimizing: In this section we study the
relation between workload balance and communication
minimizing in fair task assignment (definition 1). We show
that in order to reach the workload balance between users, it
is necessary to sacrifice the cost of communication between
users for negotiation.

2) Effects of network size: We are interested in how does
the processing time of task assignment depends on the number
of violations. In this experiment we apply our fair task
assignment method in different datasets, using same set of
constraints to detect violations. In the other words, we repeat
the task assignment method in the case of networks of different
size, but of the same topology, the complete graph. Finally,
we measure the processing time, relative to the number of all
violations.

http://lsirpeople.epfl.ch/qvhnguye/smart/
http://www.cise.ufl.edu/research/dbintegrate/thalia/
http://www.cise.ufl.edu/research/dbintegrate/thalia/
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://www.opentrans.de/
http://www.rosettanet.org/
http://www.sap.com
http://www.crf.it
https://www.commonapp.org
https://www.universalcollegeapp.com/
http://www.embark.com
http://www.collegenet.com/elect/app/app

6

D. Notes

Metrics:
• Overlapping correspondence: is the correspondence

which is shared by two or more users.
• Workload balance: check the workload of each user is

balance or not.
• Number of users: is the number of partitions k in k-way

hypergraph partitioning problem.
• Processing time: is the elapsed time of task assignment,

that is, the elapsed time of hypergraph partitioning.
Parameters:
• The number of violations: affected by the number of

correspondences in schema network. How does the pro-
cessing time of hypergraph partitioning scale with the
number of violations (i.e., the number of violation-nodes
in hypergraph).

• The number of correspondences in one violation: affected
by the number of schemas in schema network. How does
the processing time scale with the number of hyper edges
of hypergraph.

Experiments:
• Finding appropriate number of users
• Effects on total exchanging messages
• Processing time

VII. RELATED WORK

We model the collaborative reconciliation on schema match-
ing network. In this context, the user inputs are encoded
as propositional formulae. Following logical argumentation,
we can infer consequences from encoded formulae. Each
inference is represented by an argument, in which the claim
is a consequence (indirect approval or disapproval of a corre-
spondence) and the support is the respective explanation. On
top of the arguments, we analyze the relationships (attacks)
between them and construct an argumentation framework
to detect conflicts in inputs. Second, we propose a method
to guide conflict resolution. From arguments, we generate
all possible decisions and rank them according to different
criteria. Moreover, to enhance the trust of users in their own
decisions and those of the others, we support what-if analysis
by showing the effects of decisions. Third, we develop ArgSM,
an argumentation-based negotiation support framework for
schema matching. In ArgSM, the schema matching problem is
modeled in terms of Answer Set Programming (ASP). Based
on this model, we generate arguments and compute attacks.
Moreover, our framework provides two insight views: Schema
view (human-oriented), and Argumentation view (technical).
They are displayed side by side in a unified graphical user
interface (GUI). This helps the users to review the inputs and
make decisions effectively [20], [19], [10], [21], [13], [12],
[14].

VIII. CONCLUSION

We presented a negotiation protocol to enable negotiation
within our tool. We would like to extend the notion of
proposed constraints and consider further integrity constraints

that are relevant in the praxis (e.g., functional dependencies,
domain-specific constraints). We would like to apply our
methods to other problems. While our work focuses on schema
matching, our techniques, especially the argumentation-based
reconciliation, could be applicable to other tasks such as entity
resolution or business process matching.

REFERENCES

[1] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng, Multilevel
circuit partitioning, Proceedings of the 34th annual Design Automation
Conference (New York, NY, USA), DAC ’97, ACM, 1997, pp. 530–533.

[2] Charles J. Alpert and Andrew B. Kahng, Recent directions in netlist
partitioning: a survey, Integr. VLSI J. 19 (1995), no. 1-2, 1–81.

[3] Jason Cong and Sung Kyu Lim, Multiway partitioning with pairwise
movement, Proceedings of the 1998 IEEE/ACM international conference
on Computer-aided design (New York, NY, USA), ICCAD ’98, ACM,
1998, pp. 512–516.

[4] H.H. Do and Erhard Rahm, COMA: a system for flexible combination
of schema matching approaches, Proceedings of the 28th international
conference on Very Large Data Bases, VLDB Endowment, 2002,
pp. 610–621.

[5] Avigdor Gal, Michael Katz, Tomer Sagi, Matthias Weidlich, Karl Aberer,
Hung Quoc Viet Nguyen, Zoltán Miklós, Eliezer Levy, and Victor
Shafran, Completeness and ambiguity of schema cover, CoopIS, 2013,
pp. 241–258.

[6] Avigdor Gal, Tomer Sagi, Matthias Weidlich, Eliezer Levy, Victor
Shafran, Zoltán Miklós, and Nguyen Quoc Viet Hung, Making sense
of top-k matchings: A unified match graph for schema matching, 2012,
p. 6.

[7] Michael R. Garey and David S. Johnson, Computers and intractability;
a guide to the theory of np-completeness, W. H. Freeman & Co., New
York, NY, USA, 1990.

[8] Joachim Hammer, Mike Stonebraker, and Oguzhan Topsakal, THALIA
: Test Harness for the Assessment of Legacy Information Integration
Approaches Introduction to THALIA, Thalia Studies In Literary Humor
(2004), no. August, 1–11.

[9] S. Hauck and G. Borriello, An evaluation of bipartitioning techniques,
Proceedings of the 16th Conference on Advanced Research in VLSI
(ARVLSI’95) (Washington, DC, USA), ARVLSI ’95, IEEE Computer
Society, 1995, pp. 383–.

[10] Nguyen Quoc Viet Hung, Saket Sathe, Duong Chi Thang, and Karl
Aberer, Towards enabling probabilistic databases for participatory
sensing, CollaborateCom, 2014, pp. 114–123.

[11] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan Miklos, and Karl
Aberer, On leveraging crowdsourcing techniques for schema matching
networks, DASFAA, 2013, pp. 139–154.

[12] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Chau Vinh Tuan,
Tri Kurniawan Wijaya, Zoltan Miklos, Karl Aberer, Avigdor Gal, and
Matthias Weidlich, Smart: A tool for analyzing and reconciling schema
matching networks, ICDE, 2015, pp. 1488–1491.

[13] Nguyen Quoc Viet Hung, Duong Chi Thang, Matthias Weidlich, and
Karl Aberer, Erica: Expert guidance in validating crowd answers,
SIGIR, 2015, pp. 1037–1038.

[14] Nguyen Quoc Viet Hung, Duong Chi Thang, Matthias Weidlich, and
Karl Aberer, Minimizing efforts in validating crowd answers, SIGMOD,
2015, pp. 999–1014.

[15] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hy-
pergraph partitioning: applications in vlsi domain, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 7 (1999), no. 1, 69
–79.

[16] George Karypis and Vipin Kumar, Multilevel k-way hypergraph parti-
tioning, Proceedings of the 36th annual ACM/IEEE Design Automation
Conference (New York, NY, USA), DAC ’99, ACM, 1999, pp. 343–348.

[17] Hung Quoc Viet Nguyen, Tri Kurniawan Wijaya, Zoltán Miklós, Karl
Aberer, Eliezer Levy, Victor Shafran, Avigdor Gal, and Matthias Wei-
dlich, Minimizing human effort in reconciling match networks, ER, 2013,
pp. 212–226.

[18] Quoc Viet Hung Nguyen, XuanHoai Luong, Zoltan Miklos, ThoThanh
Quan, and Karl Aberer, Collaborative schema matching reconciliation,
CoopIS, 2013, pp. 222–240.

[19] Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Ngoc Tran Lam, and Karl
Aberer, Batc: a benchmark for aggregation techniques in crowdsourcing,
SIGIR, 2013, pp. 1079–1080.

7

[20] Quoc Viet Hung Nguyen, Tam Nguyen Thanh, Tran Lam Ngoc, and
Karl Aberer, An evaluation of aggregation techniques in crowdsourcing,
WISE, 2013, pp. 1–15.

[21] Thanh Tam Nguyen, Quoc Viet Hung Nguyen, Matthias Weidlich, and
Karl Aberer, Result selection and summarization for web table search,
ICDE, 2015, pp. 231–242.

[22] Jeffrey S. Rosenschein and Gilad Zlotkin, Rules of encounter: designing
conventions for automated negotiation among computers, MIT Press,
Cambridge, MA, USA, 1994.

[23] Sabyasachi Saha and Sandip Sen, An efficient protocol for negotiation
over multiple indivisible resources, Proceedings of the 20th international
joint conference on Artifical intelligence (San Francisco, CA, USA),
IJCAI’07, Morgan Kaufmann Publishers Inc., 2007, pp. 1494–1499.

[24] Horst D. Simon and Shang-Hua Teng, How good is recursive bisection?,
SIAM J. Sci. Comput. 18 (1997), no. 5, 1436–1445.

[25] Sverre Wichlund, On multilevel circuit partitioning, Proceedings of the
1998 IEEE/ACM international conference on Computer-aided design
(New York, NY, USA), ICCAD ’98, ACM, 1998, pp. 505–511.

	Introduction
	Preliminaries
	Assumptions
	Agent assumptions
	Environment assumptions

	Problem definition
	Task assignment
	Hypergraph model for Task assignment
	Hypergraph partitioning
	Collaborative resolution network

	Conflict Resolution
	Model of negotiation process
	Negotiation Proposal
	Monotonic Concession Protocol (MCP)
	Protocol properties
	Relaxed Monotonic Concession (RMC) Protocol)

	Experiments
	Experimental setup
	Experimental Metrics
	Experimental results
	Trade-off between workload-balancing and communication-minimizing
	Effects of network size

	Notes

	Related Work
	Conclusion
	References

