
Provenance-based Reconciliation In Conflicting Data

Duong Chi Thang

ABSTRACT
Data fusion is the process of resolving conflicting data from mul-
tiple data sources. As the data sources are inherently heteroge-
nous, there is a need for an expert to resolve the conflicting data.
Traditional approach requires the expert to resolve a considerable
amount of conflicts in order to acquire a high quality dataset. In
this project, we consider how to acquire a high quality dataset while
maintaining the expert effort minimal. At first, we achieve this goal
by building a model which leverages the provenance of the data in
reconciling conflicting data. Secondly, we improve our model by
taking the dependency between data sources into account. In the
end, we empirically show that our solution can significantly reduce
the user effort while it can obtain a high quality dataset in compar-
ison with traditional method.

1. INTRODUCTION
Many data management applications require integrating data from

multiple sources, each source provides a set of values. However,
different sources may provide conflicting values, some of them are
true, the others are false. To provide quality data to the users, it is
critical that data integration systems can resolve conflict and dis-
cover true values. Typically, we expect there is an authoritative
source (an expert) who can provide the true value for all the data.
However, having an expert to reconcile all the conflicting data is
not feasible for two reasons: (1) the amount of data need recon-
ciling is tremendous, (2) the cost, e.g., salary for the expert, is ex-
tremely high if we ask the expert to reconcile all the conflicting
data. Therefore, we have to settle for an other option where the ex-
pert gives feedbacks for only a part of the data but we still want to
resolve conflicting data as much as possible. In this report, we con-
sider the following problem: can we devise a reconciliation process
such that given a limited user interaction, we can get the maximal
quality of the data possible ?

Our solution is based on two observations. Our first observation
is that reliable data come from trustworthy data sources and trust-
worthy data sources provide reliable data. More precisely, if we
know which data sources are trustworthy, we are able to identify
reliable data and if we have reliable data, we can detect the trust-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

worthy data sources. Our approach follows this observation where
we elicit expert assertion to get reliable data. Then, our proposed
model updates the data source reliability accordingly from these
reliable data. Eventually, with enough user feedback, our model
is able to distinguish trustworthy and untrustworthy data sources.
Therefore, the quality of the dataset can be improved if we discard
data from untrustworthy sources. In other words, by taking the data
source reliability into account, we are able to detect more reliable
data using a small amount of user feedbacks.

Our second observation is that a dataset may contain data sources
that copy from each other. Copy data sources are problematic. For
example, if the copy sources do not update its data regularly, its data
become obsolete or incorrect. Moreover, if a data source copies an
incorrect value, it is more critical to the system as the incorrect
values may become to dominate the correct ones. Therefore, if
we can exclude these copiers early, we can save user effort while
acquire a high quality dataset.

The rest of this report is structured as follows. We formally de-
fine the problem in section ??. Then, we propose our solution to the
problem in Section 3. Section 4 describes our solution when there
are dependency between the data sources. Our experimental eval-
uation is presented in Section 5. Finally, we discuss some related
work in Section ?? and conclude our report in Section ??.

2. MODEL AND PROBLEM DEFINITION
In this section, we first introduce our model of the massive data

collection. Then, we give a formal definition of the problem we
want to solve.

2.1 Massive data collection
We consider a set of n data items and a set ofm data sources that

provides values for the data items. We denoteD = {T1, T2, ..., Tn}
to be a set of data items and each data item Ti is a discrete variable
with values in C = {c1, c2, ..., ct}. Each data item Ti has a correct
value g(Ti) ∈ C that is unknown to us. We denote M = {mij}
to be the set of values provided by the set of data sources R where
mij ∈ {∅, c1, c2, ..., ct} is the value assigned to Ti by data source
Sj . In other words, a data source may not assign values to all data
items.

Combining all the above notions, we define a massive data col-
lection to be a triple E = 〈R,D,M〉 where R is a set of data
source, D a set of data items and M the set of values provided by
the data sources.

2.2 Selective instance
The data collection has a set of instances Ω = {Ii} where an

instance Ii is a set of n assignments. Each assignment 〈T, v〉 or
T = v is a tuple of a data item T and a value v ∈ C. Among

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148021385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the instances, there is a special instance, the ground truth instance
G = {〈Ti, g(Ti)〉}, which is the set of correct assignments for
all data items. During the reconciliation process, we maintain a
selective instance Ir that we consider it approximates the ground
truth G the best. To measure how good an instance approximates
the ground truth G, we define the precision value Pi of an instance
Ii as follows:

Pi =
|Ii ∩G|
|Ii|

(1)

2.3 Problem statement
As mentioned in Section 1, given the heterogeneity of the data

sources, we need external knowledge from an expert to reconcile
conflicting data. There is a tradeoff between the expert effort (i.e.,
the number of feedbacks) and the data collection quality (i.e., the
precision of the selective instance). This tradeoff is depicted in Fig-
ure 1 by the lower curve in which the expert gives feedbacks for the
data items randomly and the selective instance is generated by ma-
jority voting. In this report, we want to heighten this curve as much
as possible. In other words, given an upper limit of expert interac-
tion (e.g., 10% of data items), we aim to improve the precision of
the selective instance as much as possible. Formally, the problem

Figure 1: Optimization goal

we want to solve is as follows:
PROBLEM 1. Given a data collection 〈R,D〉 and a predefined

number of user interactionsN , find an instance I that has the max-
imal precision.

The above problem is basically about select a set ofN user feed-
backs F and build an instance I from the triple 〈R,D,F 〉 such that
I has the maximal precision possible.

3. PROVENANCE-BASED RECONCILIATION
In order to solve Problem 1, we follow an iterative approach

where in each iteration, we select a data item that provides the
most benefit in reconciling conflicting data in the massive data col-
lection. The iterative approach has a key advantage that we can
leverage the information provided by previous feedbacks to select
the most useful data item to feedback next. The reconciliation pro-
cess as shown in Algorithm 1 takes a data collection as input and
iteratively improve its selective instance Ii through user feedback
and feedback propagation. Finally, it returns an instance Ir that ap-
proximatesG the best. In each iteration, we do the following steps:
(1) select a data item Ti ∈ D, (2) elicit user input on the data item
Ti (select the correct value for this data item), and (3) propagate
the user feedback and update the selected instance I .

Initially (line 1), we initialize the set of feedbacked data items F
and the counter i. Then, we generate an instance I0 from the mas-
sive data collection 〈R,D,M〉. Then, we proceed as follows: First,
we select a data item T which brings the most benefit in reconcil-
ing conflicting data in the data collection from the set of candidate

Algorithm 1: Reconciliation process with EM and IG
input : set of data sources R,

set of data items D,
values assigned by data sources M

output: a selective set of categories Ir
// Initialization

1 F = ∅; i = 0
2 I0 = instantiate(M,F);
3 while i < N do

// In each user interaction step
// (1) Select a data item

4 T = select(D \ F);

// (2) Elicit user input
5 Elicit user input on T ;

// (3) Integrate the feedback
6 F = F ∪ {T};
7 Ii+1 = instantiate(M,F);
8 i = i + 1;

9 return Ii

data items (line 4). Here, all data items for which we already have
feedbacked (represented by F) are neglected. Second, we elicit
user input for this data item (line 5). Then, we integrate the feed-
back by updating the set of feedbacked data items F (line 6), and
instantiate a new instance Ii+1 from the data collection leveraging
the feedbacks F . The reconciliation process stops when we use all
the budget of user interactions, i.e., i = N .

The reconciliation process has two main methods instantiate
and select. In the following section, we first describe the instantiate
method for instantiating a selective set using the expectation-maximization
algorithm. Then, we discuss the select function which ranks data
items based on information gain.

3.1 Generating the Selective Instance
Since data are collected from various data sources and the relia-

bility of each data source is unknown, given the values assigned to
a data item by multiple data sources, it is difficult to know which
data source to trust or which value we should choose as the correct
one. Therefore, we handle this uncertainty in reconciling conflict-
ing data based on a probabilistic model. For each data item, we
assign a probability of being correct for each possible value. More-
over, each data source is also assigned a reliability value. Based
on the above ideas, we define a probabilistic data collection as fol-
lows:

DEFINITION 1. Let {T1, ..., Tn} be a set of data items. Let
C = {c1, ..., ct} be a set of values. A probabilistic data collec-
tion is a tuple 〈U, V 〉 such that

U = {〈T1, {Pr1(c1), ..., P r1(ct)}〉, ..., 〈Tn, {Prn(c1), ..., P rn(ct)}〉}

V = {〈S1, P r(S1)〉, ..., 〈Sm, P r(Sm)〉}

where

• Pri(cj) ∈ [0, 1], and
∑t
j=1 Pri(cj) = 1

• Pr(Si) ∈ [0, 1]

We will describe how we assign probability based on the follow-
ing example:

EXAMPLE 1. Table 1 shows the open prices of two stocks pro-
vided by 2 different data sources. Among the values provided by
two sources for two stocks, we do not know which one is correct.
Therefore, we follow the maximum entropy approach by assigning
each possible value of AAPL and MSFT a probability of 0.5, i.e.,

Pr(AAPL = 335.95) = Pr(AAPL = 335.94) = 0.5 and
Pr(MSFT = 25.93) = Pr(MSFT = 25.95) = 0.5. If we
have a feedback on the AAPL stock saying the open price of AAPL
is 335.95, we may need to update the correctness probabilities of
the values of the MSFT stock. There are two approaches to do this:

• Without considering the provenance of the data: if we do not
take into account the data sources, the feedback on AAPL
does not affect MSFT since we see them as isolated. There-
fore, the probabilities remain the same: Pr(MSFT = 25.93) =
Pr(MSFT = 25.95) = 0.5

• Considering the provenance of the data: Since AAPL =
335.95 confirms that the value assigned by data source S1 on
AAPL is correct and by S2 is incorrect, it is reasonable for
us to trust data source S1 more than S2. In other words, S1

should have higher trustworthiness value than S2. Since S2

is less reliable, the value it assigns to data item MSFT is more
likely to be incorrect. Therefore, we should decrease the
probability of MSFT = 25.95 to reflect this observation.
In other words, we may update the probabilities as follows:
Pr(MSFT = 25.93) = 0.75,Pr(MSFT = 25.95) =
0.25.

In order to assign the probabilities to the data items and the data
sources, we consider these sources of probabilities:
• Data source provenance: since data come from different sources

and the reliability of data sources are different, there is a ten-
dency that data from reliable sources are more reliable and
vice versa. Therefore, data from reliable sources should have
a higher probability to be correct.
• User inputs: a user input reduces the uncertainty of not only

the validated data item T but also other data items correlated
to T through the same data source. Consequently, a data item
consistent with user inputs is likely to be correct; whereas a
data item inconsistent with user input is likely to be incorrect.

3.1.1 A quick reminder on Expectation-Maximization
algorithm

Once we know the correct value of each data item, we can mea-
sure the data source reliability. However, since we do not know
the correct values for all data items beside the values feedbacked
by the user, we need to estimate the ground truth. Nevertheless,
estimating the correct values requires knowing the reliability of the
data sources, whereas computing the reliability of the data sources
requires knowing of the ground truth. There is an inter-dependence
between them and we solve the problem by concurrently estimat-
ing ground truth and source reliability. Therefore, the Expectation-
Maximization algorithm is employed for its ability to simultane-
ously calculate the source reliability and estimate the ground truth.
Given enough feedbacks, the reconciliation process can distinguish
between reliable data sources and unreliable ones.

We take the same approach as [1] and model the trustworthiness
of a data source Si indirectly through a t×t latent confusion matrix
Fi where t = |C|. Each row refers to the correct value and each
column refers to a value assigned by a data source. Therefore, we
have m confusion matrices for m data sources. A cell fwkl in the

confusion matrix of data source Sw represents the probability that
data source Sw assigns category cl to a data item given ck is the
correct category. fwkl can be estimated as follows:

fwkl =

∑n
i=1 1miw=cl∧g(Ti)=ck∑n
i=1 1miw 6=∅∧g(Ti)=ck

where 1cond equals 1 if cond equals true and 0 otherwise and∑t
l=1 f

w
kl = 1(∀k ∈ [1..t], j ∈ [1..m]).

From the confusion matrix, we can estimate the reliability of data

source Si by Pr(Si) =
∑t

j=1 f
i
jj∑

j,k f
i
jk

.

Let njil be the number of times a data source Sj assigns value cl
to data item Ti. Since a data source only assigns value to a data
item at most once, njil can only takes two values 0 or 1. Consider
a data item Ti, recall that f jgl is the probability of data source Sj
assign the value cl given cg is the correct category for Ti. Then, the
probability of doing this njil times is (f jgl)

n
j
il . Therefore, the num-

ber of times a data source assigns a category c1, c2, ..., ct to a data
item Ti given cg is the correct value for Ti is distributed according
to a multinomial distribution and its likelihood is proportional to:

Pr(nji1, ...n
j
it; f

j
g1, ..., f

j
gt | g(Ti) = cg) ∝

t∏
l=1

(f jgl)
n
j
il (2)

Since we assume thatm data sources assign value independently to
the data items, the likelihood of categories provided for data item
Ti when cg is correct is proportional to

m∏
j=1

Pr(nji1, ...n
j
it; f

j
g1, ..., f

j
gt | g(Ti) = cg) ∝

m∏
j=1

t∏
l=1

(f jgl)
n
j
il

(3)
Since we do not know the ground truth, we compute the expectation
of Pr(nji1, ...n

j
it; f

j
g1, ..., f

j
gt) over all possible categories, i.e., we

compute the marginal probability over all possible categories

t∑
k=1

pk

m∏
j=1

t∏
l=1

(f jgl)
n
j
il (4)

We also assume that all the data items are independent, the joint
probability distribution over all n data items is

n∏
i=1

(t∑
k=1

pk

m∏
j=1

t∏
l=1

(f jgl)
n
j
il

)
(5)

Equation 5 contains many multinomial distributions. In order
to estimate the prior probability pk of category ck, the confusion
matrix f jgl and the correct value for each data item gi, we apply
the expectation maximization (EM) algorithm. The algorithm has
two steps: (1) the parameter estimation step where we estimate
the parameters pk, f jgl and gi, (2) the maximization step where we
maximize the likelihood function based on the estimated parameter.
The EM algorithm is described in Algorithm 2.

The EM algortihm takes a data collection and the set of feed-
backed data items at the moment as input and returns a probabilis-
tic data collection. Initially , we estimate the ground truth of the set

S1 S2

AAPL 335.95 335.94
MSFT 25.93 25.95

Table 1: The motivating example with two data sources provide
information about OpenPrice of two stock symbols

of data items which have not been feedbacked randomly. For the
feedbacked data items, the correct values are the values feedbacked
by user. We combine these two sets to get the initial estimated
ground truth Ĝ (line 1). Then, we proceed as follows. In the first
step, given the new estimated ground truth, we compute the con-
fusion matrix of each worker and the prior probability distribution
of the values pk. We also calculate the reliability of the workers
and store them in V (line 7-8). In the second step, for each data
item Ti and each category cg , we calculate its probability of be-
ing correct Pr(g(Ti) = cg) using the confusion matrices and the
prior probability distribution pk (line 14). The probabilities of the
data items U are updated accordingly (line 16, 26). For feedbacked
data items, the correct value has probability 1 and the others have
probability 0 (line 20-25) Then, we reestimate the ground truth Ĝ
using the newly calculated probabilities. For each data item, the
value with the highest probability is considered correct (line 27).
We repeat these steps until the results converge. After the results
converge, the probabilistic data collection 〈U, V 〉 is returned.

3.1.2 Instantiating with Expectation-Maximization al-
gorithm

In the previous section, we discuss the EM algorithm and how

it can concurrently estimating ground truth and the accuracy of the
data sources. The output of the EM algorithm is a probabilistic
massive data collection 〈U, V 〉 such that each value of a data item
and each data source is assigned a probability. From the probabilis-
tic massive data collection 〈U, V 〉, we can generate the selective
instance as follows

I = {〈Ti, vi〉 | ∀vj ∈ C ∧ vj 6= vi : Pri(vi) > Pri(vj)} (6)

Informally, the selective instance contains assignments of values
which have the highest probability of being correct for each data
item.

3.2 Ranking data items
In this section, we introduce the key concepts of our ordering

approach—which ranks and displays data items. The system inter-
acts with the user to get feedback on suggested data items. The task
of ordering strategies is to devise how to best present the data items
to the user, in a way that will provide the most benefit for improving
the quality of the data repository. To this end, we apply the concept
of information gain from information theory to choose a ranking in
a principled manner.

Algorithm 2: Expectation maximization
input : a set of data sources R,

a set of data items D,
a set of feedbacked data items F .

output: a probabilistic data collection, 〈U, V 〉
// Initialization

1 Choose Ĝ randomly
2 while not converge do
3 U = ∅, V = ∅

// (1) Estimate the confusion matrices and
category prior probability

4 for Sw ∈ R do
5 for ck, cl ∈ C do

6 f̂w
kl =

∑n
i=1 1miw=cl∧g(Ti)=ck∑n
i=1

1miw 6=∅∧g(Ti)=ck

;

7 Pr(Sw) =

∑t
j=1 fw

jj∑
j,k fw

jk
;

8 V = V ∪ {〈Sw, Pr(Sw)〉};

9 for ck ∈ C do

10 p̂k =

∑n
i=1 1g(Tl)=ci

n ;

// (2) Re-calculate probabilities
11 for Ti ∈ D \ F do
12 Bi = ∅;
13 for g ∈ [1, t] do

14 Pr(g(Ti) = cg) =
pg

∏m
j=1

∏t
l=1(f

j
gl

)
n
j
il∑t

k=0
pk

∏m
j=1

∏t
l=0

(f
j
kl

)(n
j
il

)
;

15 Bi = Bi ∪ {Pr(g(Ti) = cg)};

16 U = U ∪ {〈Ti, Bi〉};

17 for Ti ∈ F do
18 Bi = ∅;
19 for g ∈ [1, t] do
20 if g(Ti) = cg then
21 Pr(g(Ti)) = cg) = 1;
22 Bi = Bi ∪ {Pr(g(Ti) = cg)};

23 else
24 Pr(g(Ti)) = cg) = 0;
25 Bi = Bi ∪ {Pr(g(Ti) = cg)};

26 U = U ∪ {〈Ti, Bi〉};

// (3) Re-estimate Ĝ

27 Ĝ = {〈Ti, ci〉 | Pr(g(Ti) = ci) > Pr(g(Ti) = cj), ∀cj 6= ci}
28 return U, V

We measure the uncertainty of the probabilistic data collection
using Shannon entropy. First, we define the entropy of a data item:

H(Ti) = −
∑
c∈C

Pri(c)× log(Pri(c))

From the entropy of a data item, we can model the uncertainty of a
probabilistic data collection 〈U, V 〉 as follows:

H(〈U, V 〉) =
∑
Ti∈D

H(Ti)

To acquire a maximal precision within a provided budget, we fo-
cus on heuristic strategies that exploit a ranking of data items for
which user inputs shall be elicited. We design the selection func-
tion such that the elicited user inputs on the chosen data item could
contribute the most in reducing the uncertainty. We measure the
contribution of a user feedback on a data item by information gain.
In order to introduce the notion of information gain, we need to de-
fine a conditional entropy measure. The conditional entropy mea-
sures the entropy of the probabilistic data collection conditioned on
the user feedback feedbacks on data item Ti is:

H(〈U, V 〉 | Ti) =
∑

j∈[1..t]

qij × H(I | Ti = cj) (7)

Equation 7 measures the expected entropy of the probabilistic
data repository when the user asserts that cj is the correct value for
data item Ti. To make a decision on which data item to forward
first to the user, we compare the uncertainty before and after the
user give inputs on it. We can now define the information gain
for a data item T ∈ D by the change in the entropy. Thus the
information gain score if user feedback on data item T is computed
as:

IG(T) = H(I) − H(I | T). (8)

In fact, information gain is a mean of quantifying the potential
benefit of knowing the true value of an unknown object [18]. More
precisely, information gain measures the (expected) amount of un-
certainty reduction. Therefore, we suggest the data item that re-
duce the uncertainty most. In other words, the selected data item
has highest information gain, i.e.,

T = arg max
Ti∈D

IG(Ti)

4. RECONCILIATION WITH DEPENDENT
DATA SOURCES

In the previous section, we discuss our solution to the maximal
quality problem using information gain ranking and expectation
maximization algorithm. However, the previous solution does not
perform well if there are dependency between the data sources as
shown in Section experiment. Therefore, we need a mechanism to
remove these dependent data sources as early as possible. Remov-
ing dependent data sources also helps minimizing user efforts since
the dependent data sources to be removed tend to contain incorrect
or obsolete data.

As we want to remove dependent data sources early, the recon-
ciliation process with dependency detection has two phases. In the
first phase, we focus on detecting and removing as many dependent
sources as possible and in the second phase, we focus on reducing
the uncertainty of the data collection. There may be some depen-
dent data sources that are not removed in the first phase that we
need to remove them in the second phase as we get more feed-
backs. The reconciliation process with dependency detection is

shown in Algorithm 3. Beside the data collection 〈R,D,M〉, it
takes a threshold l (the number of user interactions that are used
for detecting dependent sources) and a dependent threshold td as
input. The reconciliation process with dependency detection itera-
tively improves its selective instance I through user feedback, de-
pendency detection and feedback propagation. Finally, it returns
an instance Ir that approximates G the best. In each iteration, we
do the following steps: (1) select a data item Ti ∈ D, (2) elicit
user input on data item Ti, (3) detect and remove dependent data
sources and (4) propagate the user feedback and update the selected
instance I .

Algorithm 3: Reconciliation process with dependency detec-
tion

input : set of data sources R,
set of data items D,
values assigned by data sources M ,
a threshold l,
a dependent threshold td.

output: a selective set of categories Ir
// Initialization

1 F = ∅; i = 0
2 I0 = instantiate(M,F);
3 while i < N do

// In each user interaction step
// (1) Select a data item

4 if i < l then
5 T = select_depend(D \ F)

6 else
7 T = argmaxT∈D\F IG(T)

// (2) Elicit user input
8 Elicit user input on T ;

// (3) Handling dependent sources
// (3.1) Detect dependent sources

9 R′ = detect(R,D, F, td);
// (3.2) Remove dependent sources

10 remove_dependent(R′);

// (4) Integrate the feedback
11 F = F ∪ {T};
12 Ii+1 = instantiate(M,F);
13 i = i + 1;

14 return Ii

Initially (line 1), we initialize the set of feedbacked data items
F and the counter i. Then, we generate an instance I0 from the
massive data collection 〈R,D,M〉. Then, we proceed as follows:
For the first l iterations, we apply the data item ordering method
select_depend which selects a data item T which provides the
most benefit in detecting dependent sources (line 5). After l first
iterations, we apply the information gain ordering as described in
Section 3.2 (line 7). Here, all data items for which we already have
feedbacked (represented by F) are neglected. Second, we elicit
user input for this data item (line 8). Then, we detect the dependent
sources in line 9 and remove them in line 10. Finally, we inte-
grate the feedback by updating the set of feedbacked data items F
(line 11), and instantiate a new instance Ii+1 from the updated data
collection leveraging the feedbacks F . The reconciliation process
stops when we use all the budget of user interactions, i.e., i = N .

The reconciliation process with dependency detection has four
main methods: instantiate, select_depend, detect and remove_dependent.
Beside the instantiate method which was discussed in Section
3.1.2, we will discuss the other methods in the following section.
First, we describe the detect method in which we use to detect the
dependent sources. Then, we explain the select_depend function
which orders the data items in a way that helps the most in detecting
dependent sources. Finally, we show how we handle the dependent

data sources (the remove_dependent function).

4.1 Detecting data source dependency
In order to detect dependence between data sources, we apply the

method mentioned in [3]. We assume that the data collection con-
tains two types of data sources: independent sources and copiers.
We denote S1 ∼ S2 the dependency between two data sources S1

and S2. In detecting dependence between data source S1 and S2,
we are interested in three sets of data itemsDt, the set of data items
that S1 and S2 give the same correct category, Df , the set of data
items that S1 and S2 give the same incorrect category, Dd, the set
of data items that S1 and S2 give different categories. We denote
dt, df , dd the size of Dt, Df , Dd respectively.

In order to calculate dt, df , dd, we need to know the ground truth
of the data items. However, the only source of ground truth avail-
able is the feedbacks provided by the expert. Therefore, in each
iteration, we calculate dt, df , dd based on the feedbacks provided
by the user, i.e., Dt, Df , Dd ⊆ F where F is the number of feed-
backed data items at an iteration. The conditional probability that
S1 and S2 are dependent given the observation of the data ∆ is

Pr(S1 ∼ S2 | ∆) =

1

1 + 1−α
α

(1−ε
1−ε+cε)

dt(ε
c(t−1)+ε−cε)

df (1
1−c)dd

(9)

In Equation 9, we denote α = Pr(S1 ∼ S2) to be the prior
probability that two data sources are dependent, c(0 < c ≤ 1),
the probability that a value provided by a copier is copied; and
ε(0 ≤ ε < t−1

t
), the probability that an independently provided

value is false.
For a set of data sources, we can detect dependent sources by

calculating the probability in Equation 9 and set an accept thresh-
old td for this probability. If the conditional probability that two
data sources S1 and S2 are dependent is higher than td, they are
considered dependent, otherwise, we consider them as independent
sources.

4.2 Handling dependent sources
In the previous section, we describe the detect method which

we use to detect the dependence between data sources. In this sec-
tion, we first discuss our method of ordering the data items (the
select_depend method). Then, we show how we handle the de-
pendent data sources (the remove_dependent method).

4.2.1 Ranking data items for detecting source depen-
dency

In this section, we discuss a data item ordering strategy where
data items which contribute the most to detect dependent sources
are feedbacked earlier. We apply a greedy ordering approach where
in each iteration, we select the data item with the maximum expec-
tation of common incorrect categories. The intuition behind this
heuristic is that copy data sources tend to have more number of
common false values and eliciting feedback on data items that have
a larger number of common incorrect categories df is particularly
beneficial for detecting dependent sources. Formally, we define the
expectation of common incorrect categories of a data item Ti as
follows:

E(Ti) =
∑
c∈C

Pri(c)
∑

S1,S2,S1 6=S2

|DS1,S2
f | (10)

Then, we select the data item with the highest expected number

of common incorrect categories, i.e,

T = arg max
Ti∈D

E(Ti)

4.2.2 Removing dependent sources
Since Equation 9 does not indicate the direction of dependence,

after we detect two dependent sources, we may not know which
data source to remove. Therefore, we apply a heuristic to select
data source to delete. Since a copy source tends to be less reliable
than an independent one, we remove data source with a lower trust-
worthiness value from a pair of dependent ones. In other words, if
Pr(S1 ∼ S2 | ∆) > td and Pr(S1) > Pr(S2) then we remove
data source S2 from the data collection.

5. EXPERIMENTAL RESULTS
In this section, we now empirically show the effect of minimiz-

ing user efforts and data source dependence detection on many
datasets. We tested the user effort minimization process on a real-
world dataset and a synthetic one. However, since we want to test
source dependence detection in numerous conditions which are not
easily found in real data, we only experimented with synthetic data
for the dependence detection part. Moreover, in real-world dataset,
we do not know which sources copy from others since a data source
never exposes the information whether it copies from others or not.

5.1 Experimental settings

5.1.1 Datasets
Our experiments will be conducted on two types of data: real

data and synthetic data. While the real data provide a pragmatic
view on real-world scenario, the synthetic data help to evaluate the
performance with different settings.

• Real data1: the dataset was extracted from 50 data sources
in the Stock domain on 01-07-2011. We focus on the NAS-
DAQ100 symbols which are the major stocks. For the pur-
poses of evaluation, we use the gold standard provided by
Nasdaq.com on the 100 symbols in the NASDAQ100 index.
Among many attributes from the Stock domain, we focus on
one attribute Open price. We use the ground truth to simulate
expert’s assertions. Among 50 data sources, we select 5 data
sources that best represent the dataset.

• Synthetic data: we generate a synthetic dataset with 15 in-
dependent data sources providing values for 50 data items.
From the independent data sources, we generate 11 copiers
that copy from the same independent data source. For each
value from the original source, the copiers may change it to
another value with a probability of 0.4.

All experiments ran on an Intel Core i7 system (2.8GHz, 8GB
RAM).

5.1.2 Metrics
Beside the precision metric described in Section ??, we mea-

sured the quality improvements achieved by reconciliation and the
required human efforts as follows:

• User effort:is measured in terms of feedback steps. Since a
user examines one data item at a time, the number of feed-
back steps is the number of asserted data items.

1We thank authors of [11] for providing us the data set

• Percentage of Precision Increased: measure the relative
quality improvement. If the precision of the data collection
at an iteration is p and the initial precision is p0 then the per-
centage of precision increased is

p− p0
1− p0

× 100

.

5.2 Computational time
User participation is not only limited in cost but also in time. An

expert can not wait for hours or days for the system to select a data
item for her elicitation. As a result, the computational time to select
a data item is an important aspect. In this experiment, we study the
average response time of the system to select a data item with two
different parameters: the number of values t and the number of
data items n in the data collection. In each setting, we measure the
average running time over 100 runs.

Table 2 shows the result of this experiment. A significant obser-
vation is that when the number of data items doubles, the running
time increases nearly 8 times. This is because we need to inspect all
data items to calculate the conditional entropy for each of them in
order to select the one with the most information gain. Another ob-
servation is that the running time increases 4 times when the num-
ber of values doubles. The reason is that for each data item, we
need to calculate the entropy of the data collection for each pos-
sible value. However, for a data collection with 100 data items, 4
possible values, taking 2 minutes to select a data item is reasonable
since user elicitation is a one-time process.

n
50 100

t 2 144538 1031567
4 550740 4703390

Table 2: Effects of number of values and data items on running
time (ms)

5.3 Evaluations on User Effort Maximization
In this set of experiments, we study the efficiency of our solution

to the maximal quality problem. More precisely, we study the im-
provements in precision (Y-axis) with increased feedback percent-
age (X-axis, out of total number of data items) using two strategies:
(1) Baseline: feedback on data item in random order, instantiate
using majority voting, (2) IGEM: selection of data item based on
information gain and instantiate using EM algorithm. In that, we
first analyze the effects of data source reliability on the performance
of two strategies. Based on the results, we show that our solution
using expectation maximization algorithm and information gain or-
dering outperforms the baseline. Secondly, we evaluate the effects
of data source reliability variance on our solution. From the ex-
perimental results, we show that our solution performs well if the
reliability of the data sources vary considerably.

5.3.1 Effects of data source reliability
In this experiment, we study the effects of data source reliability

on the efficiency of the IGEM model. More precisely, we generate
a dataset where the data source reliability follow a normal distri-
bution N(µ, 0.1). Then, we vary the mean µ to see its effects on
the precision. Expert validation is simulated using the generated
ground truth (constructed together with the dataset).

Figure 5.1.2 depicts the result in average over 50 experiment
runs. This result shows a significant improvement in precision for

the IGEM strategy with respect to the baseline. For example, if
the source reliability mean is 0.5, to reach a precision of 0.8, the
IGEM strategy needs only 30% of user interactions while the BL
takes 60%, saving about 30% of the user effort. Or equivalently, if
the source reliability mean is 0.6, the IGEM strategy acquires the
precision of 0.9 for only 20% of user interactions while the baseline
requires 60% of user interaction.

5.3.2 Effects of data source reliability variance
In this experiment, we study the effects of the data source re-

liability variance. Our hypothesis is that if the reliability of the
data sources vary considerably, the IGEM strategy works extremely
well. Following the previous experiment, we also generate a dataset
where data source reliability follow a normal distributionN(0.5, σ).
Then, we vary the standard deviation σ to see its effects on the per-
formance of the IGEM strategy. Expert validation is also simulated
using the generated ground truth.

Figure 4 depicts the result in average over 50 experiment runs.
We only keep the IGEM curves in Figure 4 since all the baseline
curves are below them. The result confirms our hypothesis that the
variance of the data source reliability have a positive effect on user
effort minimization. For example, to reach a precision of 0.9, we
need 60% of user interactions if σ is 0.1 but we only need 50% of
user interaction if σ is 0.15. The reason is that when the reliability
of the data sources vary considerably, given enough feedbacks, the
EM algorithm eventually distinguishes reliable data sources from
unreliable ones. Hence, we can correctly identify the correct values
since they are given by reliable sources.

5.4 Evaluations on Dependency Detection
In this set of experiments, we study the efficiency of our de-

pendency detection method (the DEPEND strategy) and its effect
on maximizing the data collection quality. In these experiments,
we want to simulate the following scenario: the data collection
contains some good data sources and some malicious ones (a data
source is malicious if its reliability is below 0.5). To make it worse,
the data collection also contains some copiers and the copiers copy
from the malicious source. We focus on this scenario for its worst-
case nature. Therefore, if our solution can cope with this scenario,
it can work well with the other cases. In order to detect the de-
pendent sources, we devote 10% of user feedbacks in both of the
experiments.

In the following sections, we test the robustness of our solution to
the malicious sources on two aspects: (1) the maliciousness of the
malicious data sources, i.e., the reliability of the malicious sources,
(2) the number of malicious data sources in the data collection.
From the results, we show that our solution is robust to malicious
sources in both aspects.

5.4.1 Effects of malicious data source reliability
In this experiment, we generate two clusters of 15 data sources:

a cluster of good data sources which data source reliability follow
a normal distribution N (0.8, 0.01) and a cluster of malicious data
sources which reliability follow a normal distribution N(µ, 0.01).
Then, we generate the copiers from one of the malicious source.
In this experiment, the number of reliable sources and malicious
sources are equal. We examine the effects of varying µ on the rec-
onciliation process.

The result of this experiment is shown in Figure 5.3. A no-
ticeable observation is that the DEPEND strategy dramatically in-
creases the precision of the selective instance despite the malicious
source reliability and it outperforms the baseline strategy during
the reconciliation process. We observe a surf in precision for the

Figure 2: Effects of data sources reliability

Figure 3: Effects of malicious data sources reliability

Figure 4: Effect of data source reliability variance on User Ef-
fort Minimization

DEPEND strategy in the beginning of the reconciliation process.
In other words, we are able to get a very high precision (above 0.8)
for only 10% of user interaction. This is expected at we devote the
first 10% of user interaction for dependency detection. By remov-
ing the dependent sources, we are able to get a higher quality data
collection. An interesting observation is that when µ increases, the
amount of precision we can improve with the same amount of feed-
backs decreases. The reason is that as we increase µ, the variance
of the reliability between the data sources in the data collection de-
creases. However, as we show in previous experiment, our solution
performs better if the variance between the data sources is high.

5.4.2 Effects of malicious data source quantity
In this experiment, we generate two clusters of 15 data sources:

a cluster of good data sources which data source reliability follow
a normal distribution N(0.8, 0.01) and a cluster of malicious data
sources which reliability follow a normal distributionN(0.2, 0.01).
Then, we generate the copiers from one of the malicious source.
We vary the ratio between reliable and malicious sources to find
out its effects on the reconciliation process.

Figure 5.4 shows the result of this experiment. An interesting ob-
servation is that in all cases, there is a slight decrease in precision
after we use 10% of user interaction. The reason is that we may

remove some reliable sources in the dependency detection phase
and it affects the precision when we move on to the second phase.
Another interesting observation is that given the same amount of
feedbacks, we can improve the precision the most when the num-
ber of reliable and malicious sources are equal. The phenomenon
can be explained as follows: when most of the sources are reli-
able (75% are reliable), we are more likely to incorrectly remove
reliable data sources. However, when most of the sources are mali-
cious, the overall quality of the data collection is low, which means
we need more feedbacks to get the same amount of precision. How-
ever, it can be clearly seen that the DEPEND method significantly
outperforms the baseline strategy in all cases. For example, when
75% of the data sources is malicious, we only need about 10% of
user interaction to get a precision of 0.6 while the baseline strategy
need over 50% of user interaction. In other words, the DEPEND
strategy is robust to the increased number of malicious data sources
in the data collection.

6. RELATED WORKS
We now review salient work in user effort minimization and

source dependency detection that are related to our research.
Data fusion The goal of data fusion is to resolve conflicts in

data and acquire the true value [4, 12, 5, 14, 19, 17]. Our algorithm
differs from theirs in that their approaches are fully unsupervised
while ours is semi-supervised where user also takes a part in re-
solving conflicts.

Trust management There are many studies on source trustwor-
thiness assessment [13]. The PageRank algorithm and the Authority-
Hub model estimate the trustworthiness of a data source based on
its connection with other sources. However, to the extent of our
knowledge, our approach is the first to leverage user feedback to
assess the trustworthiness of the data source.

User Feedback Further, guiding user efforts has been addressed
for eliminating violations of integrity constraints [20] and for im-
proving ETL processes. Recent works in crowdsourcing user input
for data integration is related to our work [10, 8, 9, 15, 16, 7].
While we assume one input assertion per data item, different ap-
proaches have been presented for resolving conflicts among multi-
ple input assertions per data item. There are some papers that use
expectation-maximization as an aggregation method such as [6].

Figure 5: Effects of ratio of malicious data sources

In this paper, the authors argue that the aggregation method using
expectation-maximization algorithm dominate the traditional ma-
jority voting. Beside our technique of probabilistic aggregation us-
ing Expectation-Maximization, there are some works that rely on
Conditional Random Fields such as [2]. In this paper, the authors
propose an aggregation technique using factor graph. Against this
background, it was argued that data integration in the web setting
has to follow the pay-as-you-go approach that is evolutionary, re-
ducing uncertainty in a step-wise fashion.

7. CONCLUSION
In this project, we consider how to acquire a high quality dataset

while maintaining the expert effort minimal. At first, we achieve
this goal by building a model which leverages the provenance of
the data in reconciling conflicting data. Secondly, we improve our
model by taking the dependency between data sources into account.
In the end, we empirically show that our solution can significantly
reduce the user effort while it can obtain a high quality dataset in
comparison with traditional method.

8. REFERENCES
[1] A P Dawid and A M Skene, Maximum likelihood estimation

of observer error-rates using the EM algorithm, J. R. Stat.
Soc. (1979), 20–28.

[2] Gianluca Demartini, Djellel Eddine Difallah, and Philippe
Cudré-Mauroux, Zencrowd: leveraging probabilistic
reasoning and crowdsourcing techniques for large-scale
entity linking, WWW, 2012, pp. 469–478.

[3] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava,
Integrating conflicting data: The role of source dependence,
PVLDB 2 (2009), no. 1, 550–561.

[4] Avigdor Gal, Michael Katz, Tomer Sagi, Matthias Weidlich,
Karl Aberer, Hung Quoc Viet Nguyen, Zoltán Miklós,
Eliezer Levy, and Victor Shafran, Completeness and
ambiguity of schema cover, CoopIS, 2013, pp. 241–258.

[5] Avigdor Gal, Tomer Sagi, Matthias Weidlich, Eliezer Levy,
Victor Shafran, Zoltán Miklós, and Nguyen Quoc Viet Hung,
Making sense of top-k matchings: A unified match graph for
schema matching, 2012, p. 6.

[6] Mehdi Hosseini, Ingemar J. Cox, Nataša Milić-Frayling,
Gabriella Kazai, and Vishwa Vinay, On aggregating labels
from multiple crowd workers to infer relevance of
documents, Proceedings of the 34th European conference on
Advances in Information Retrieval (Berlin, Heidelberg),
ECIR’12, Springer-Verlag, 2012, pp. 182–194.

[7] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan
Miklos, and Karl Aberer, On leveraging crowdsourcing
techniques for schema matching networks, DASFAA, 2013,
pp. 139–154.

[8] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Chau Vinh
Tuan, Tri Kurniawan Wijaya, Zoltan Miklos, Karl Aberer,
Avigdor Gal, and Matthias Weidlich, Smart: A tool for
analyzing and reconciling schema matching networks, ICDE,
2015, pp. 1488–1491.

[9] Nguyen Quoc Viet Hung, Duong Chi Thang, Matthias
Weidlich, and Karl Aberer, Erica: Expert guidance in
validating crowd answers, SIGIR, 2015, pp. 1037–1038.

[10] Nguyen Quoc Viet Hung, Duong Chi Thang, Matthias
Weidlich, and Karl Aberer, Minimizing efforts in validating
crowd answers, SIGMOD, 2015, pp. 999–1014.

[11] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and
Divesh Srivastava, Truth finding on the deep web: is the
problem solved?, Proceedings of the 39th international
conference on Very Large Data Bases, PVLDB’13, VLDB
Endowment, 2013, pp. 97–108.

[12] Hung Quoc Viet Nguyen, Tri Kurniawan Wijaya, Zoltán
Miklós, Karl Aberer, Eliezer Levy, Victor Shafran, Avigdor
Gal, and Matthias Weidlich, Minimizing human effort in
reconciling match networks, ER, 2013, pp. 212–226.

[13] Quoc Viet Hung Nguyen, Son Thanh Do, Tam
Nguyen Thanh, and Karl Aberer, Privacy-preserving schema
reuse, DASFAA, 2014, pp. 234–250.

[14] Quoc Viet Hung Nguyen, XuanHoai Luong, Zoltan Miklos,
ThoThanh Quan, and Karl Aberer, Collaborative schema
matching reconciliation, CoopIS, 2013, pp. 222–240.

[15] Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Ngoc Tran
Lam, and Karl Aberer, Batc: a benchmark for aggregation
techniques in crowdsourcing, SIGIR, 2013, pp. 1079–1080.

[16] Quoc Viet Hung Nguyen, Tam Nguyen Thanh, Tran
Lam Ngoc, and Karl Aberer, An evaluation of aggregation
techniques in crowdsourcing, WISE, 2013, pp. 1–15.

[17] Thanh Tam Nguyen, Quoc Viet Hung Nguyen, Matthias
Weidlich, and Karl Aberer, Result selection and
summarization for web table search, ICDE, 2015,
pp. 231–242.

[18] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Pearson Education, 2003.

[19] Nguyen Thanh Tam, Duong Chi Thang, Nguyen Quoc Viet
Hung, and Karl Aberer, An evaluation of diversification
techniques, DASFAA, 2015, pp. 215–231.

[20] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville,
Mourad Ouzzani, and Ihab F. Ilyas, Guided data repair,
Proc. VLDB Endow. 4 (2011), no. 5, 279–289.

	Introduction
	Model and problem definition
	Massive data collection
	Selective instance
	Problem statement

	Provenance-based Reconciliation
	Generating the Selective Instance
	A quick reminder on Expectation-Maximization algorithm
	Instantiating with Expectation-Maximization algorithm

	Ranking data items

	Reconciliation with Dependent Data Sources
	Detecting data source dependency
	Handling dependent sources
	Ranking data items for detecting source dependency
	Removing dependent sources

	Experimental results
	Experimental settings
	Datasets
	Metrics

	Computational time
	Evaluations on User Effort Maximization
	Effects of data source reliability
	Effects of data source reliability variance

	Evaluations on Dependency Detection
	Effects of malicious data source reliability
	Effects of malicious data source quantity

	Related works
	Conclusion
	References

