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Floquet theory
We start from the most general, linear, time-independent

Hamiltonian for photons on a lattice (h̄ = 1):

HS = H0 + HJ = ∑
i

ωia†
i ai −∑

i 6=j
Jija†

i aj, (S1)

with a†
i , the photon creation operator, and no particular require-

ments for the couplings Jij (these will come later depending on
the chosen lattice geometry). We add an on-site, time-dependent,
periodic modulation of the resonant frequency with a position-
dependent intensity and phase

Ht = ∑
i

Ai cos(Ωt + φi)a†
i ai. (S2)

For times much larger than the period T = 2π/Ω, it becomes
meaningful to apply the Floquet theory of quasi-energies [1, 2].
In particular, the solutions to the time-dependent Schrödinger
equation can be written as |ψn(t)〉 = exp(−iεnt)|un(t)〉, with
un(t) a T-periodic function which is a solution to

[HS + Ht − i∂t]|un(t)〉 = εn|un(t)〉 (S3)

The spectrum εn has a Brillouin-zone like structure with Ω the
width of the first zone, i.e. for any solution |un(t)〉 of quasi-
energy εn, and any integer m, exp(imΩt)|un(t)〉 is also a solu-
tion, with eigenvalue εn + mΩ. The states |un(t)〉 form a Hilbert
space of T-periodic functions. The inner product in this space
can be defined starting from the standard bra-ket inner product
〈•|•〉 for time-independent states, and reads

〈〈•|•〉〉T
∫ T

0
dt〈•|•〉, (S4)

The states can be expanded on the Floquet basis given by

|{ni}, m〉 = Ut(t)|{ni}〉 exp(imΩt) (S5)

=|{ni}〉 exp

(
− i

Ω ∑
i

Ai sin(Ωt + φi)ni + imΩt

)
,

where ni denotes the occupation number of site i, and

Ut(t) = exp
(
−i
∫ t

t0

Ht(t′)dt′
)

(S6)

is the time-evolution operator corresponding to the time-
dependent Hamiltonian Ht, and we assume an adiabatic switch-
ing of the modulation in order to disregard the phase offset
due to the starting time t0. Since the Hamiltonian is particle-
number-preserving, we need only consider the subspace of a
single excitation in the system, ∑i ni = 1 ∀ {ni}. Equation (S3)
is then an eigenvalue problem with matrix elements in this basis
given by

〈〈{n′j}, m′|HS + Ht − i∂t|{ni}, m〉〉 = (S7)

δm,m′
[
〈{n′j}|H0 + mΩ|{ni}〉

]
+∫ T

0
ei(m−m′)Ωt exp

( iAj

Ω
sin(Ωt + φj)−

iAi
Ω

sin(Ωt + φi)

)
×〈{nj}|HJ |{ni}〉.

These matrix elements are then equal to

〈〈n′i , m′|HS + Ht − i∂t|ni, m〉〉 = δm,m′ (mΩ + ωi) , (S8)
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when the particle stays on the same site, and to

〈〈n′j, m′|HS + Ht − i∂t|ni 6=j, m〉 =
∫ T

0
ei(m−m′)Ωt Jij×

exp
(

i
Ω

(
Aj sin(Ωt + φj)− Ai sin(Ωt + φi)

))
,

(S9)

when the particle hops from site i to site j. In eqs. (S8) and (S9),
we label by ni the only non-zero occupation number of {ni}. We
can further use the Jacobi-Anger expansion to simplify eq. (S9)
to

〈〈n′j, m′|HS + Ht − i∂t|ni 6=j, m〉 =

−Jm′−m

(
ρij

)
ei(m′−m)φij Jij,

(S10)

with Jn(x) the n-th Bessel function of the first kind, and the
definition

ρijeiφij = (Ajeiφj − Aieiφi )/Ω. (S11)
Perturbation theory
Some additional intuition can be found in writing the Floquet

perturbation theory [3, 4] for the effective time-independent
Hamiltonian Heff that describes the time evolution for timescales
greater than T, in the sense that the time-evolution operator is

U(t + T, t) = exp
(
−i
∫ t+T

t
(HS + Ht)dt

)
= exp (−iHeffT)

(S12)

For a Fourier-expanded time-periodic Hamiltonian,

H(t) = ∑
m

HmeimΩt, (S13)

we can write a perturbation expansion for Heff in orders of 1/Ω.
Up to first order, this reads

Heff = H0Ω + H1Ω +O
(

1
Ω2

)
= Hm=0 +

1
Ω

∞

∑
m=1

1
m
[Hm, H−m] +O

(
1

Ω2

)
.

(S14)

In our dynamically-modulated lattice, after the unitary transfor-
mation

H′ = U†
t [HS + Ht − i∂t]Ut = ∑

i
ωia†

i ai−

∑
m

∑
ij
Jm

(
ρij

)
eim(Ωt+φij) Jija†

i aj,

with the definitions of J , ρ, and φ as above, the Fourier com-
ponents Hm can be easily read out. The zero-th order of the
perturbative expansion of eq. (S14) is

H0Ω = H0 + H′J = ∑
i

ωia†
i ai −∑

ij
J′ija

†
i aj,

J′ij = JijJ0

(
ρij

)
, (S15)

i.e. similar to the starting HS of the static lattice, but with
rescaled (but still real) couplings J′ij. The first-order term is

H1Ω =
∞

∑
m=1

(−1)m

Ωm ∑
ijpq
Jm(ρij)Jm(ρpq)Jij Jpqeim(φij−φpq)

× [a†
i aqδjp − a†

pajδiq]

= ∑
ij

2i
∞

∑
m=1

(−1)m

Ωm ∑
p
Jm(ρip)Jm(ρpj)Jip Jpj

× sin(m(φip − φpj))a†
i aj, (S16)

Fig. S1. Definition of various phases under a modulation of
constant amplitude, and phases (marked in black): ϕ on site
A, 2ϕ on site B, and 3ϕ on site C (see also to Fig. 2 in the main
text). In blue, the phase φij as defined in eq. (S11) is given for
a clockwise hopping direction (indicated by the arrow in the
center of the hexagon). With red, the phase φip − φpj entering
eq. (S16) is given, for the same hopping direction.

The (purely imaginary) term after the first sum sign can obvi-
ously be interpreted as a new coupling amplitude, J′′ij , which is
added to J′ij, thus introducing a complex phase. The obvious
interpretation of these terms is hopping from one site to another
through one intermediate site. In the same way, terms of higher
order in 1/Ω represent hopping through an increasing number
of intermediate sites.

Kagomé lattice
The Kagomé lattice (illustrated in Fig. S1 here and Fig. 2 of

the main text) has three lattice sites in the unit cell, which we
label A, B, and C. The values of the couplings of eq. (11) in the
main text computed through (eq. (S16)) are

tAC,0 = J0(2ρϕ), tAB,0 = tBC,0 = J0(ρϕ)

tAB,1 = t′AB,1 =

2i
J

Ω ∑
m

(−1)m

m
Jm(ρ2ϕ)Jm(ρϕ) sin(m(ϕ/2− π))

tAC,1 = t′AC,1 =

2i
J

Ω ∑
m

(−1)m

m
Jm(ρϕ)Jm(ρϕ) sin(mϕ)

tBC,1 = t′BC,1 =

2i
J

Ω ∑
m

(−1)m

m
Jm(ρ2ϕ)Jm(ρϕ) sin(m(π + ϕ/2)),

(S17)

where ρϕ = 2(A0/Ω)| sin(ϕ/2)| and ρ2ϕ = 2(A0/Ω)| sin(ϕ)|
are the amplitudes computed through eq. (S16) for a phase
difference between sites i and j of ϕ and 2ϕ, respectively. In Fig.
S1, we illustrate the computation of the phases that enter the
sine functions of eq. (S17). Starting from the modulation phases
(marked in black), one first computes the value of φij (marked
in blue) as defined in eq. (S11) for all first neighbors, and then
the values of φip − φpj (marked in red) that enter eq. (S16).

Numerical simulations
We note that this perturbation theory discussion is only used

for a better intuitive understanding of the effect, but the topo-
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Fig. S2. The (largest) width of the opened band gap due to the
dynamic modulation of frequency Ω vs. the amplitude A0 and
the phase angle ϕ for the Kagomé lattice with first-neighbor
coupling (a): J = 0.1Ω; (b): J = 0.3Ω; (c): J = 0.5Ω; (d):
J = 0.7Ω; (e): J = 0.9Ω; (f): J = 1.1Ω. The colorbar scale is the
same in all panels.

logically non-trivial bands are present even for values of J that
are comparable to Ω. This is why in our work we mostly use
the full diagonalization on the Floquet basis, i.e. we diagonalize
the matrix of eq. (S7). Numerically, we truncate the orders of
mΩ by picking an mmax value and taking orders up to that, i.e.
|m|, |m′| ≤ mmax. Convergence with respect to this parameter
was always checked, and is reached very fast (mmax ≈ 2) for low
values of J when the different orders of the Floquet bands are
well separated in frequency space. As J becomes comparable
to Ω, higher orders are needed, but convergence was always
reached at mmax = 10, at most. The diagonalization of the ef-
fective static Hamiltonian (from perturbation theory) was only
used for panels (b) of Fig. 2 and panels (a) and (c) of Fig. 3 of the
main text. As is seen and can be expected, this matches the exact
Floquet diagonalization very well for low J/Ω, but becomes
inadequate for higher values. Of course, that could in principle
be fixed by higher orders in the perturbation expansion, but that
would bring no further insight and is thus not really needed.

In Fig. S2 we show the width of the opened band gap ∆T
versus A0 and ϕ, for J from 0.1Ω to 1.1Ω, computed by diago-
nalization on the Floquet basis. Panels (a) and (c) are shown in
Fig. 3 of the main text (panels (b) and (d), respectively), but with
a different scale of the colorbar. As J increases, the amplitude
A0 needed to open a gap grows as well. This can at least qualita-
tively be understood through the following considerations. As
J becomes comparable to Ω, Floquet bands of different orders
m start crossing, thus closing any potential band gaps. As A0
increases, however, the re-scaled first-neighbor coupling J′ij of eq.
(S15) generally decreases, since ρij is proportional to A0, and the
Bessel function J0(x) has its maximum value at x = 0. Thus, the
problem with mixing of bands of different orders can be avoided

through a sufficiently large A0.
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