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Spatial multistability induced by cross interactions of confined polariton modes
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We demonstrate the occurrence of spatial multistability using laterally confined microcavity exciton-polaritons.
By coherently exciting with a blue detuned laser a series of confined polariton modes, we investigate the effects
of multistability on the transmitted laser beam as a function of the excitation power. At each threshold of the
hysteresis loop, a switching of the mode profile of the laser beam is associated with a significant energy jump of
each of the confined polariton modes in the mesa. A simulation of this behavior is achieved with a multimode
generalization of the Gross-Pitaevskii equations in the exciton photon basis. The mechanism behind the spatial
multistability is identified as a repulsive cross interaction between polaritons in different modes.
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I. INTRODUCTION

An optically driven system is said to be bistable if there exist
two possible output intensities over a range of input powers
[1]. When more than two output intensities are allowed either
when cycling the input power or for a given input value, the
result is an optical multistability, as was observed for example
for atomic systems in an optical resonator [2–5]. There
exists a different kind of optical multistability called spatial
multistability which consists of having specific transverse
spatial profiles for each of the stable states of the optical
multistability. This effect was first demonstrated using a HeNe
laser cavity [6], as well as other gas lasers [7,8], and was
theoretically discussed in Refs. [9,10]. It relies on being able
to select and switch between laser cavity modes out of a
superposition of modes either by injecting the right phase
pattern or by displacing a saturable absorber inside the cavity.

In this work we present the demonstration of spatial multi-
stability based on confined microcavity exciton-polaritons. By
laterally confining light either by engineering the microcavity
[11–14], or by the use of oval defects [15], it is possible to
create a series of spatially distinct, confined polariton modes
when these new cavity modes are strongly coupled to an
exciton in a quantum well (QW). Therefore, taking advantage
of the nonlinearity in the optical response of the polariton
modes resulting from the exciton-exciton interactions, we can
coherently excite this system to obtain the spatial multistability
simply by changing the excitation power. In contrast with
the mode competition in laser cavity where mode switching
occurs without a change of the output power, the spatial mode
switching of the polariton spatial multistability is associated
with an intensity threshold, as a consequence of polariton-
polariton interactions.

The bistability and spinor multistability of a microcavity
polariton have been extensively studied both theoretically
[16–22] and experimentally [23–32]. It relies on exciting the
microcavity using a laser blue detuned with respect to the lower
polariton branch (LP) and to measure the transmitted laser
intensity. When cycling the excitation power, an hysteresis
curve is observed that is a consequence of the Kerr-like
nonlinearity induced by exciton-exciton interactions [23].
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Specifically, the spinor multistability is achieved by rotating
the polarization of the input laser on the Poincaré sphere to
trigger the polariton spinor interactions in order to obtain a
multistable pseudospin system [24]. This effect is caused by
the population of one polariton spin state that can induce a
blue shift in the orthogonally polarized polariton branch [33].
Then, the overall competition between the excitation laser
polarization, spinor interactions, and cavity anisotropy dictates
the possible outcome of the multistability [28,31,33].

In our study we demonstrate that polariton-polariton inter-
actions occur between confined polariton modes. We observe
that the population in one mode induces a blue shift on
the other modes when increasing the resonant excitation
power by measuring weak photoluminescence (PL) signals
below and above the excitation laser energy. The mechanism
involved in the observed spatial multistability can be seen as
a generalization of the spinor multistability, that is, a cross
interaction of more than two independent polariton modes.
At low density, the polarized polariton states are orthogonal
as a consequence of in-plane momentum conservation of the
exciton-photon interaction [34,35]. At high enough density,
these polaritons start to interact due to the spin dependence
of the exciton-exciton interactions. For our circular traps, the
confined polariton modes are initially orthogonal due to the
orthogonality of the photon modes [35,36]; however, they
evolve with increasing density since they originate from the
same exciton state. We confirm this theoretically by extending
the usual formalism of spinor Gross-Pitaevskii equations, in
order to describe our multimode interacting system. We obtain
a set of coupled differential equations in the exciton-photon
basis that adequately simulate the strong coupling of excitons
and confined photons inside the mesa and accounts for the
existence of cross interactions.

II. SAMPLE AND EXPERIMENTAL METHOD

The sample studied was grown by molecular beam epitaxy
(MBE) and consists of a 21 (22) top (bottom) GaAs/AlAs
distributed Bragg reflector (DBR) λ microcavity with a
single In0.04Ga0.96As QW placed at the antinode of the
electromagnetic field inside the cavity spacer with a vacuum
Rabi splitting of �0 = 3.5 meV [11]. The spacer has been
chemically etched before the overgrowth of the top DBR to
create circular mesas of 6 nm in height and 3 to 20 μm
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TABLE I. Energy, cavity detuning δ, and excitonic fraction |X|2
of the first five polariton states of the studied 9 μm mesa. �ELP =
Ei − E1 is the polariton energy relative to the energy E1 of the ground
state. The cavity detuning for the ith polariton state is defined as
δ = Eci − Ex , where Eci is the energy of the ith cavity mode and Ex

is the exciton energy.

Ei Energy (eV) �ELP (meV) δ (meV) |X|2

1 1.48235 0.00 −0.73 0.40
2 1.48248 0.13 −0.50 0.43
3 1.48260 0.25 −0.29 0.46
4 1.48284 0.50 0.18 0.53
5 1.48297 0.60 0.47 0.57

in diameter that act as a confinement potential (9 meV) for
light [37]. The resulting number of cavity modes for a specific
mesa depends on its diameter and defines the number of
confined polariton modes (one lower and one upper branch
for each cavity mode, see Sec. IV). In the present study
we use a mesa of 9 μm in diameter where the fundamental
cavity mode has a detuning of δ = −0.73 meV with respect
to the exciton state (1.4845 eV) and a corresponding polariton
ground state excitonic fraction of |X|2 = 0.40. The measured
linewidth of this mode is FWHM = 115 μeV corresponding
to a Q factor of about 13 000. The energy, excitonic fraction,
and respective cavity detuning for the excited polariton states
are given in Table I. The spatial distribution of these confined
states can be visualized by nonresonant PL either by energy
resolving a slice of the spatial profile as shown in Fig. 1(a),
or by performing a full tomography of the states, as explained
below. With this procedure, we image the polariton ground
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FIG. 1. (a) PL intensity as function of energy and position for
a 9 μm mesa under nonresonant excitation. The black dashed
line indicates the energy position of the excitation laser for the
multistability experiment and the x marked white line is the position
of the bare exciton. (b)–(g) Spatial profile of the first six confined
states starting from the ground state labeled E1 to E6. All intensities
are normalized and shown in linear color scale. The first excited state
E2 in (c) is hidden in (a) due to the position of the slit cutting the
spatial profile.

state (labeled E1 in Sec. IV) in Fig. 1(b) and the first five
excited states in Figs. 1(c)–1(g) (labeled E2 to E6). Since the
trap is elliptical, the full circular symmetry is broken, which
lifts the degeneracy of the states of angular quantum number m

for a given radial quantum number n [35,38]. Hence, the first
two excited states E2 and E3 correspond to the (n = 1,m = 1)
doublet [Figs. 1(c) and 1(d)] and the excited state E4 in
Fig. 1(e) corresponds to a superposition of the even and odd
solutions of the (n = 2,m = 2) state, the energy splitting of
which is less than our spectral resolution (70 μeV) [38].

The experimental method allows the observation of the
polariton bistability and can be summarized as follows [23,24].
First, the microcavity is driven by a laser blue detuned with
respect to the LP mode. As the excitation power increases, the
LP mode shifts upward in energy due to polariton-polariton
repulsive interaction and a strong nonlinearity occurs once the
shift compensates the laser detuning. Then, as the excitation
power is decreasing, the LP remains locked to the laser down
to a critical density where a lower threshold occurs. With the
same reasoning, we can expect that, if the system is driven by a
laser blue detuned with respect to N polariton modes without
cross interactions, then we should observe the superposition
of N independent bistable loops, with each polariton mode
getting locked to the laser once their energy equals that of
the laser. Since each polariton mode has a particular spatial
profile, the spatial profile of the transmitted laser at each stable
branch on the multistability will be the sum of the profiles
of each of the states locked to the laser at that excitation
power. However, if repulsive cross interaction exists between
the confined polariton modes, then a polariton mode that blue
shifts up to the laser energy should expel the former state
locked to the laser. Having a single polariton mode locked to
the laser on each stable branch of the multistability will result
in the spatial multistability. As shown below, our experimental
findings are well explained with this simple picture and, thus,
it allows us to investigate cross level interactions.

In order to observe the spatial multistability, the energy
spacing between the polariton modes should not be too large,
otherwise polariton lasing might switch on when increasing
the input power before the multistability occurs. This was
observed in 3 μm mesa [39] and is a consequence of efficient
phonon scattering in the mesa [40] and the onset of bosonic
stimulation when the occupation of the ground state reaches the
critical density. For this reason the experiments are performed
on a 9 μm mesa instead of a 3 μm one.

In our experiments, we excite resonantly with a single mode
cw Ti:sapphire laser the fifth polariton state [E5 situated at
around 1.48297 eV, see Fig. 1(a)], well below the fundamental
cavity mode (situated at 1.48378 eV) to maintain the strong
coupling regime at high density. This state is chosen because its
large component at k = 0 allows for an efficient pumping of the
system and its detuning allows us to observe the nonlinearity
of the polariton ground state before reaching our maximum
excitation power. We detect the transmitted signal either with
a power meter to integrate the full spatial profile or by focusing
the beam on the slit of a spectrometer equipped with a CCD
camera. With a proper choice of focal length, we create an
image larger than the size of the entrance slit. Therefore, by
translating the focusing lens in front of the spectrometer, we
can perform an energy resolved tomography and recover the
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full spatial profile for a given energy as shown in Figs. 1(b)–
1(g). The excitation spot size of φ ≈ 30 μm creates a uniform
excitation of the 9 μm mesa and the sample is kept at ∼4 K
in a helium flow cryostat. The excitation laser is circularly
polarized, and the detection is unpolarized.

III. SPATIAL MULTISTABILITY

Figure 2 presents the multihysteresis cycle resulting from
the excitation scheme explained above while detecting with
the power meter (spatially integrating the signal). As the
excitation power is increasing (following the red arrows),
we measure three distinct upward jumps of the transmitted
intensity, whereas four downward jumps are observed when
the power is decreasing (blue arrows). A small nonlinearity
is also visible on the way up at around 4 mW. To highlight
the spatial multistability, we present the spatial transverse
profiles of the transmitted signal at the energy of the laser
for selected power positions as indicated by the black arrows
in Fig. 2. By comparing these profiles with the ones measured
nonresonantly, we clearly recognize that each stable state on
the multihysteresis corresponds to one of the excited states of
the mesa, starting with the fifth excited state [see Fig. 1(f)] at
low excitation power, and shifting down to the ground state
at maximum power. The states are scanned back in opposite
order from the ground state to the fifth excited state when
the power is decreased. The spatial profile of the beam
is therefore determined by the lateral confinement of the
optical modes; this mechanism differs from the one based on
spontaneous pattern formation due to transverse instability in
a resonantly pumped planar microcavity, which was recently
proposed [41,42]. Although the ordering in energy is respected,
not all of the states appear when we increase or decrease the
excitation power. On the way up, we are able to differentiate the

odd from the even (n = 2, m = 2) four-lobe states originating
from E4; however, a single (n = 1, m = 1) two-lobe state
appears. The opposite is observed on the way down: both
(n = 1, m = 1) states are scanned (states E2 and E3) but a
single (n = 2, m = 2) state appears. Finally, we observe that,
whenever two steady states are allowed for a given excitation
power, they have distinct spatial profiles: this demonstrates
the spatial character of the multistability. Simply put, we
can switch the transverse profile of the laser beam when
transmitted through the mesa only by varying the power, while
keeping the wavelength fixed.

Additional features are also present on this multistability
curve. First, apart from the three upward thresholds, we
observe a smoother nonlinearity on the E4 four-lobe state at
around 4 mW, right after the first upward threshold. As opposed
to the other thresholds, no bistability is observed when ramping
the power up and down this nonlinearity (not shown), but we
do measure a change of the spatial profile between the odd and
even solution of the (n = 2, m = 2). Second, when comparing
the transverse profile of the E2 state before the last upward
threshold and after the first downward threshold, we notice
a slight rotation of the symmetry axis as we approach the
upward threshold. A rotation of the spatial pattern was shown
to occur through coherent control by imprinting the phase of
the input beam [43]. In our case, the observed phenomena
originates from the cross interactions between polaritons in
different modes, as explained in Sec. IV. Near the upward
threshold, a state that has almost blue shifted up to the laser
may induce a slight rotation of the spatial profile, hence it
affects the phase relation it has with the excitation laser.

As mentioned above, the existence of the polariton spatial
multistability is a consequence of cross interactions. To further
confirm this point, we performed direct measurement of
the polariton energy shifts along different parts of the full

FIG. 2. Spatial multistability measured on a 9 μm mesa. The black curve shows the multihysteresis cycle when we integrate spatially the
transmitted signal. The red (blue) arrows indicate the path taken when increasing (decreasing) the excitation power. Each color map represents
the spatial profile measured at the energy of the laser for the specific power indicated by the black arrows. Each image corresponds to a
10 × 10 μm square and the intensity is normalized from zero to one and shown in linear color scale. The roman numerals indicate regions on
the curve, where the transmitted light was spectrally resolved and displayed in Fig. 3.
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FIG. 3. PL intensity maps measured in transmission as a function
of the excitation power. (a) Spectra acquired while increasing power
for regions I, II, and III in Fig. 2 and (b) following regions III, IV, and
back to I for decreasing power. The black arrow indicates the energy
position of the excitation laser. The lower intensity lines at a lower
energy correspond to states that have not reached the laser, whereas
the ones at higher energy are states expelled from the resonance. The
dashed white lines indicate the position of the upper (a) and lower (b)
thresholds in Fig. 2.

multihysteresis cycle (see roman numerals in Fig. 2) for a
given slice in the x direction of the spatial profile (defined by
the slit of the spectrometer). For example, Fig. 3(a) presents
the spectral evolution when the excitation power is increased
starting after the first threshold upward (I), passing the small
nonlinearity (II), and crossing the second upward threshold to
reach region (III). Figure 3(b) shows the same measurement
while decreasing the excitation power, passing by region (IV)
back to (I). The dominant intensity is always at the energy of
the excitation laser, and the white dashed lines indicates the
thresholds that are found in Fig. 2. In all these PL spectra,
one clearly identifies at least one mode much weaker in

intensity (two orders of magnitude) and below the laser energy;
moreover, at each threshold on the multistability curve, we
observe an energy jump of each of these lower energy states.
If we perform a tomography of the lowest energy state on either
side of the thresholds up or down (not shown), we find that
its transverse profile always corresponds to that of the ground
state, while the spatial profile of the transmitted laser changes
according to Fig. 2.

Two mechanisms involved in the multistability are evi-
denced with these measurements. First, when analyzing the
upward thresholds, we see that due to polariton-polariton
self-interaction, the polariton state closest in energy to the
laser blue shifts up to the laser energy, where a sharp
increase in population occurs (as for polariton bistability).
A drastic switching of the mode profile occurs at this point.
Second, when this threshold occurs, all the lower energy states
experience a sudden blue shift, indicating a cross interaction
with the population of the state resonant with the laser. A
reverse mechanism is responsible for the sudden redshifts
when the excitation power is decreased and one of the state
suddenly unlocks from the laser. Even though the nonlinearity
measured on the multistability at 4 mW in Fig. 2 is weak, we
clearly observe an energy jump, which confirms the measured
switching of the modes. Finally, the slight variation of the
threshold positions measured in PL compared to Fig. 2 is
caused by the sensitivity of the experiment to intrinsic noise,
especially close to the thresholds. Since we need a longer
integration time to acquire the spectra compared to the spatially
integrated measurements with the power meter (instantaneous
value), we increase the probability of the system to undergo a
noise-induced jump [32].

We are able to identify not only polariton states below the
laser, but as seen between the two thresholds in Fig. 3(b), we
are able to observe polariton modes above the energy of the
laser. In order to follow what happens to an upper state once a
lower state’s spatial profile becomes dominant, we excite the
sample in linear polarization and detect in cross polarization. In
that situation, the overall behavior of the spatial multistability

FIG. 4. (a) PL intensity as a function of position and energy for low excitation power (bottom of the multistability curve) for a given slice
in the x direction of the spatial profile. (b) Tomography for each state as indicated by the labels Ei (a). (c) and (d) The same as (a) and (b)
but for maximum excitation power (top of the multistability curve). For (a) and (c) the color map is in log scale, whereas for (b) and (d) the
intensities are normalized and shown in linear color scale. The labels Ei in red indicate the tomography at the energy of the laser. For each
panel, the excitation laser is linearly polarized and the detection is done in cross polarization.
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is unchanged, and allows us to filter out the dominant intensity
from the state at the excitation laser energy (by about four
orders of magnitude) and to look for weak signals from the
other states. Figures 4(a) and 4(c) present PL intensity maps
for low and maximum excitation power, respectively, and for
a given slice in the x direction of the spatial profile. In both
cases we clearly identify a series of polariton states either
below the excitation laser energy (the highest intensity on the
maps) for low power or above it for high excitation power.
In order to confirm the nature of these states, we show the
transverse spatial profiles for each of them, as indicated by
the roman numerals in Figs. 4(b) and 4(d) for low and high
excitation power. Notice that in both cases the energy ordering
of these states is conserved independently from their relative
position with respect to the excitation laser and corresponds to
the energy levels measured nonresonantly as shown in Fig. 1.

With these results we can easily understand how the modes
evolve during the spatial multistability. Whenever a polariton
mode is blue shifted at the energy of the laser, we measure a
sharp increase of the transmitted intensity accompanied by a
switching of the transverse profile and correlated blue shifts
for the other energy states. When a state is pulled by the laser
and gets locked, it expels the previous mode above the laser
energy. As explained below, the repulsive cross interactions
between the polariton modes prevents them to cross each other;
therefore, we observe the same ordering of the modes in energy
at any excitation power.

IV. THEORETICAL MODEL

The rich physics of microcavity polaritons builds upon
exciton-exciton interactions. Numerous examples of these
interactions have been studied, ranging from polariton con-
densate interacting with an exciton reservoir in nonresonant
excitation experiments [44–49] to spinor interactions in res-
onant [50–55] or nonresonant excitation [56,57]. They are,
however, different in nature from the spinor effects induced
by the effective magnetic field caused by TE-TM splitting of
the microcavity mode [58–60] or by the birefringence field
induced by disorder [61,62]. In all these studies the interaction
is essentially between two modes or components that can
be either the condensate with a reservoir or interaction with
opposite spins for the spinor case. Such interactions have
been analyzed through the Gross-Pitaevskii formalism at the
mean field level. In view of the success of these approaches
to study polariton-polariton interactions, we derive a similar
approach based on a set of coupled differential equations,
which takes into account interactions between N modes. Since
each polariton mode has its own cavity detuning, it has a
specific excitonic fraction (see Table I) and an energy blue
shift of its own. As a consequence, a set of coupled equations
in the polariton basis will not fully take into account the
polariton-polariton interactions as a function of the excitation
power and also the pumping efficiency (which varies according
to the photonic fraction); it would need to be solved iteratively.
All of this can be avoided by describing the system in
the exciton-photon basis, which directly renormalizes the
components of the polariton modes as a function of the
excitation power.

To derive our mean field coupled equation system, we start
with the usual exciton-photon Hamiltonian [63–65]:

H =
∫

dr
[
ψ̂†

x

(
Ex − �

2∇2

2mx

)
ψ̂x + ψ̂†

c

(
Ec − �

2∇2

2mc

)
ψ̂c

+ �

2
(ψ̂†

xψ̂c + ψ̂xψ̂
†
c ) + g0

2
ψ̂†

xψ̂
†
xψ̂xψ̂x

]
, (1)

where ψ̂
†
x and ψ̂

†
c are exciton and cavity photon creation

field operators. The Hamiltonian can be decomposed into four
parts: the first two are the kinetic terms for the exciton and
photon, the third is the light-matter interaction, and the last
is the exciton-exciton interaction. For simplicity we do not
consider the effect of quasimode coupling nor the saturation
of the exciton oscillator strength [66]. We also assume circular
symmetry of the system, which allows us to expand the photon
operator in modes corresponding to solutions of Maxwell
equations for a circular trap, namely Bessel functions of first
kind and order m: ψ̂c = ∑

n,m cn,mJm(κn,mr)eimφb̂n,m, where
κn,m is fixed by the boundary conditions of the mesa and gives
the energy of the confined photon states. The symmetry of
the system implies the conservation of the angular quantum
number in the light-matter coupling [35] indicating that we
should describe the exciton field operator using the same
expansion in Bessel functions for the center of mass part of
the exciton wave function as [35,36,64]

ψ̂x =
∑
{ν,m}

cν,meimφJm(kν,mr)x̂ν,m, (2)

where the Jm(kν,mr)’s are again Bessel functions of first kind
and order m, kν,m is an exciton eigenmomentum, x̂ν,m is the
annihilation operator for an exciton with angular quantum
number m, and the sum is over sets of {ν,m} indices, which
are determined by the boundary conditions. The index ν has a
similar meaning as the radial quantum number for the photon
as it sets the condition on the exciton momenta kν,m through
the boundary condition of the system [36]. Nevertheless, the
exciton motion is not affected by the mesa, and the boundary
conditions are then defined by the quantization area chosen
for the computation [35]. As a result, the exciton energy is
barely affected and assumed to be single valued, which is
consistent with the usual flat exciton dispersion measured in
microcavities. Using Eq. (2) we can rewrite the light-matter
Hamiltonian to properly consider the strong coupling between
an exciton and a photon of the same angular quantum number.
In principle, the breaking of k symmetry in the mesa allows for
light-matter coupling between an exciton in any state n and a
photon in any state n′ with the same m [35,36]. Such a coupling
would create numerous polariton modes for which a single
exciton state couples with photons of various spatial profiles,
resulting in an in-plane polariton distribution composed of
all of them (weighted by their respective photon fraction).
Since this type of coupling is not realized experimentally, we
therefore use a single index i to identify each allowed pair
of quantum numbers (n,m) to an exciton or a photon state.
Furthermore, to simplify the calculation, we do not compute
the full spatial evolution of the system and assume that for each
mode i, there is a corresponding spatial profile. Finally, we can
rewrite the system Hamiltonian accounting for the existence
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of multiple confined cavity modes:

H =
∑

i

Exi x̂
†
i x̂i +

∑
i

Eci b̂
†
i b̂i + 1

2

∑
i

�i(x̂
†
i b̂i + x̂i b̂

†
i )

+ 1

2

∑
i,j,k,l

gijkl x̂
†
i x̂

†
j x̂kx̂l , (3)

where b̂
†
i is the creation operator for a cavity photon in mode i,

Eci is its associated energy, and Exi is the energy of the exciton
of state i. The coupling constant between the ith exciton
and photon modes �i depends on the oscillator strength of
the exciton as well as on the spatial overlap between the
exciton and the photon. For the case of perfectly circular 9
μm mesas, the change of �i and Exi between the modes
is negligibly small, and therefore assumed they are constant.
Following the same approach as in Ref. [65], it can be shown
that only the terms conserving the number of particles in the
initial and final states are important if we limit ourselves
to first order perturbation theory. Therefore, the summation
over four indices in Eq. (3) is replaced by a summation
over two, such that gijkl → gij and x̂

†
i x̂

†
j x̂kx̂l → x̂

†
i x̂

†
j x̂i x̂j .

Then, using Heisenberg’s equation we derive the equation of
motion for each exciton and photon operator, which, following
the usual mean field approximation and assuming [67,68]
〈x̂†

i x̂i x̂j 〉 ∼= 〈x̂†
i x̂i〉〈x̂j 〉 and 〈x̂†

i x̂
†
i 〉 = 〈x̂j x̂j 〉 = 0 ∀ (i,j ), gives

rise to a set of coupled differential equations:

i�χ̇i =
⎛
⎝Ex − iγx +

∑
j

gij |χj |2
⎞
⎠χi + �i

2
φi,

(4)

i�φ̇i = (Eci − iγci)φi + �i

2
χi + fext,

where χi = 〈x̂i〉 and φi = 〈b̂i〉 are the ith exciton polarization
and photon mean field, respectively, and γx(γci) is their
respective homogeneous linewidth. For a perfectly circu-
lar mesa, the exciton-exciton interaction terms are gij =
2αg0

∫
dr|ci |2|cj |2|Ji(kr)|2|Jj (kr)|2 and α = 0 if i = j and

α = 1 if i 
= j . Since the mesa studied is slightly elliptical,
we instead consider the gij as fitting parameters. Finally, the
external driving field of energy El which pumps each photon
mode is defined as fext = √

I0 exp(−iElt/�). Equations (4)
can be understood as a multimode generalization of the
Gross-Pitaevskii equation in the exciton-photon basis [33,69].
These equations include the usual population exciton-exciton
self-interaction terms gii but also cross-interaction terms
gij that couple the exciton polarization of state i with the
population of state j . These terms are the ones responsible for
the correlated blue shifts at each threshold as shown in Fig. 3.
Note that a similar set of equations can also be obtained in the
case of an exciton state coupled to a single photon mode when
two pumping beams are used at different energies [18] or in
the case of a polariton double well system [70], even if the
cross-interaction terms were neglected in the latter case due to
the specific geometry of the system.

The result of the simulation is shown in Fig. 5(a), where the
sum of all photon field intensities |φi |2 is plotted as a function
of the excitation power. For the simulation, we consider the five
cavity modes associated with the polariton modes measured
nonresonantly (see Table I), meaning that one of the (n =
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FIG. 5. (a) Simulation of the multihysteresis cycle. The simula-
tion considers five polariton modes with the laser in resonance with
the fifth one. The inset shows the experimental data as presented in
Fig. 2 for comparison. (b) Calculated multihysteresis curve for each
of the five cavity photon modes included in the simulation. E1 is the
cavity mode associated with the polariton ground state. Each curve
has been shifted by a fixed multiplication factor given in the figure.
The red (blue) parts highlighted on each curve indicates the state of
highest intensity for increasing (decreasing) excitation power. Adding
each red and blue fragment gives the final curve plotted in (a).

2,m = 2) four-lobe states is not included. The laser energy is at
the energy of fifth state E5. We see a very nice agreement when
comparing the simulation with the measured multistability in
Fig. 2(a), which is reproduced in the inset of Fig. 5(a). For the
same range of excitation power, the simulation shows a higher
photon intensity compared to the experimental data. This is
likely caused by saturation effects which are not considered in
the simulation.

In order to limit the number of free parameters in the
simulation, we assumed that the gii’s were different from one
another and that the first off-diagonal terms gij=i+1’s were
identical such that g12 = g23 = g34 = g45 and gij = gji . All
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TABLE II. Values of the interaction constants gij and of the
homogeneous linewidths for the five cavity and exciton modes used
for the simulation. The gij are given in units of the scaling parameter
g0 = 3.8 × 10−4 meV/density, where the density is fixed to one.

Interaction constants Linewidths
gij (g0) (μeV)

g11 0.355 γc1 55
g22 0.629 γc2 55
g33 0.629 γc3 32
g44 1.000 γc4 65
g55 1.000 γc5 65
g12 0.140 γx 20
g13 0.100 – –

other gij ’s are fixed to a single value because the accuracy
of the simulation in that case did not allow us to justify
otherwise. Finally, we allowed for a slight variation of the
cavity mode linewidths to adjust the positions of the lower
thresholds, as they are most sensitive to this value. The
values of the parameters used for the simulation are given
in Table II. The unequal number of thresholds for increasing
and decreasing power can only be reproduced with g12 
= 0.
This is a clear indication that, although the polariton modes
are initially independent (only a single exciton mode for a
single photon mode), the polaritons in different modes interact
together through the exciton-exciton interaction. The small
size of the first hysteresis loop compared to the other two is
the result of the small laser detuning which barely satisfies the
criteria for bistability (�laser >

√
3γc3) [23].

Figure 5(b) shows the individual mode intensities as a
function of the excitation power in order to understand which
of the photon modes dominates in the multistability. Each
curve is offset by a multiplication constant (given in the
figure) to better visualize the simulation, even though it hides
their relative intensities. To circumvent this visual inaccuracy,
we highlight in red (blue) on each curve the state of highest
intensity at each increasing (decreasing) power value. Then,
adding all the red and blue fragments separately reproduces
the multistability curve in Fig. 5(a). In this way we highlight
that at each threshold, the dominant mode alternates, keeping
an order that is given by the energy ordering at low power,
which reproduces well our findings.

From this figure the influence of the cross interactions
can easily be seen as, each time one of the modes becomes
dominant, all the other modes jump as well. If the mode
energy is below the dominant one, then its intensity increases
without overcoming it. If the mode was previously locked
to the laser, then its intensity drops. This explains why we
measure a single transverse profile at the energy of the laser
and why the other polariton modes are orders of magnitude
weaker in intensity as shown in Fig. 3. By considering
Eq. (4), we conclude that any abrupt jump in photon mode
intensity will cause a jump in exciton population resulting in
a jump in energy as observed in Fig. 3. Finally, the simulation
clearly shows that both E2 and E3 jump at the second upper
threshold and that E2 becomes the dominant one, as observed
in the experiment. In the simulation, the exciton-exciton
self-interaction terms are equal (g22 = g33), which implies
that the only way for the two states to have their upward

threshold at the same power is through the cross interaction
g23; for this specific simulation, it is equal to 0.22g22. Leaving
g23 to zero would create distinct thresholds for E2 and E3.
The identical values of g22 and g33 are a direct consequence
of the similar spatial profile of modes E2 and E3 since these
modes originate from the same state (n = 1,m = 1).

Since the exact conversion of the input laser power to the
photon density per mode is difficult to evaluate, the interaction
constants are scaled with a parameter g0 for an arbitrary
density. It is worthwhile noting that at low power, the laser is
resonant with the fifth polariton mode, and thus we do not get a
separate bistable behavior due to its self-interaction. Therefore,
we used g44 as the scaling parameter and simply gave to
g55 the same value. The numerical values for the gij should
be interpreted as effective parameters since our model does
not consider saturation effects that will decrease the coupling
strength �i and alter the excitonic fractions at high density.
We also neglect polariton-phonon scattering which leads to
scattering between the different polariton modes and becomes
efficient at high density [39]. Nonetheless, the accuracy of
the simulated predictions of the model does confirm that the
main processes involved in the spatial multistability are the
polariton-polariton self- and cross interactions.

V. CONCLUSIONS

In this paper we reported on the demonstration of spatial
multistability, through resonant excitation of confined polari-
ton modes in a 9 μm mesa. By exciting the sample with a laser
blue detuned in energy with respect to a set of five polariton
modes, we measured a series of thresholds of the transmitted
intensity when we increased or decreased the excitation
power, resulting in polariton multistability. Furthermore, each
stable position along the multistability curve corresponds to a
specific transverse spatial profile of the transmitted laser beam,
which arises from the profile of the corresponding confined
polariton mode. This behavior has an important implication:
the transverse spatial profile of the transmitted laser beam can
simply be varied by changing its input power.

In general, the polariton bistability is driven by the
polariton-polariton self-interactions mediated by the exciton;
in these measurements, however, we have shown that cross
interactions occur between the polariton modes and trigger the
observed spatial multistability. We confirmed this mechanism
by tracking the spectral shift of the polariton modes below and
above the excitation laser energy and by observing that the
energy jumps of the modes is concomitant with the intensity
jumps of the transmitted laser beam at each threshold.

Finally, all the main features of the observed multistability
have been successfully simulated using a multimode version
of the Gross-Pitaevskii equations in the exciton-photon ba-
sis. The equations contained the nonlinear effects of cross
interactions among different modes in order to explain the
energy blue shifts, the asymmetry in the upward and downward
thresholds, and the transmission of a laser beam, the profile
of which switched between the polariton mode profiles. This
formalism could be applied, in principle, to the study of
multimode polariton-polariton interactions in a variety of
confined exciton-polariton systems.

085313-7



C. OUELLET-PLAMONDON et al. PHYSICAL REVIEW B 93, 085313 (2016)

ACKNOWLEDGMENTS

The present work is supported by the Swiss Na-
tional Science Foundation under project No. 135003 and

the European Research Council under project Polariton-
ics contract No. 291120. The polariton network is also
acknowledged.

[1] H. M. Gibbs, Optical Bistability: Controlling Light with Light
(Academic, London, 1985).

[2] S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, Phys. Rev.
Lett. 49, 1928 (1982).

[3] J. Nalik, W. Lange, and F. Mitschke, Appl. Phys. B 49, 191
(1989).

[4] A. Joshi and M. Xiao, Phys. Rev. Lett. 91, 143904 (2003).
[5] J. Sheng, U. Khadka, and M. Xiao, Phys. Rev. Lett. 109, 223906

(2012).
[6] C. Tamm and C. O. Weiss, J. Opt. Soc. Am. B 7, 1034 (1990).
[7] D. Wilkowski, D. Hennequin, D. Dangoisse, and P. Glorieux,

Chaos Solitons Fractals 4, 1683 (1994).
[8] A. B. Coates, C. O. Weiss, C. Green, E. J. D’Angelo, J.

R. Tredicce, M. Brambilla, M. Cattaneo, L. A. Lugiato, R.
Pirovano, F. Prati et al., Phys. Rev. A 49, 1452 (1994).

[9] M. Brambilla, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and
C. O. Weiss, Phys. Rev. A 43, 5114 (1991).

[10] M. Travagnin, M. Pinna, F. Prati, and L. A. Lugiato, Opt.
Commun. 108, 377 (1994).

[11] O. El Daif, A. Baas, T. Guillet, J.-P. Brantut, R. I. Kaitouni, J. L.
Staehli, F. Morier-Genoud, and B. Deveaud, Appl. Phys. Lett.
88, 061105 (2006).

[12] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A.
Lemaı̂tre, and J. Bloch, Phys. Rev. Lett. 100, 047401 (2008).

[13] K. Winkler, C. Schneider, J. Fischer, A. Rahimi-Iman, M.
Amthor, A. Forchel, S. Reitzenstein, S. Höfling, and M. Kamp,
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Deveaud-Plédran, Nat. Mater. 9, 655 (2010).

[25] C. Adrados, A. Amo, T. C. H. Liew, R. Hivet, R. Houdré, E.
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