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An average-atom (A-atom) embedded-atom-method potential for random multicomponent alloys
at any composition is derived analytically and validated by comparing A-atom and true random
alloys bulk and defect properties, in model Fe-Ni-Cr systems. The A-atom can be mixed with the
individual alloying-element potentials, thus enabling computation of defect/defect interactions. Its
use provides quantitative insight into the physical role of the fluctuations, and has many applications,
such as in atomistic/continuum modeling of random alloys and the development of new potentials
with controlled properties.

I. INTRODUCTION

Atomistic simulations using semi-empirical potentials
play a key role in uncovering mechanisms of deformation,
diffusion, and phase transformation/growth in many
materials1–5. In understanding the mechanical proper-
ties of metals, these atomistic simulations are particularly
valuable because the behavior is controlled by interac-
tions among defects, especially the interaction of dislo-
cations with other defects like solutes, grain boundaries,
precipitates, other dislocations or cracks, that involves
scales often not reachable by ab initio methods. Most
metals used in applications are multicomponent alloys,
often non-dilute, which present additional complexity.
Molecular Dynamics (MD) or Monte Carlo simulations
require accurate interatomic potentials, and developing
robust potentials remains a major challenge6–19, partic-
ularly for many-component alloys. Furthermore, in non-
dilute alloys, fluctuations in local atomic chemical en-
vironments make the analysis of important defect/defect
interactions difficult and ill-defined. These local chemical
fluctuations can, moreover, control some crucial proper-
ties of the alloy, such as the plastic flow stress. Separating
the effects of overall composition from local fluctuations,
and assessing which properties are controlled by fluctu-
ations and which are not, requires additional tools and
concepts.

To address the atomistic modeling of random alloys at
arbitrary composition, we study in this article the con-
cept of an “average-atom” (A-atom) interatomic poten-
tial. We consider random alloys, i.e. systems where there
is random occupation of the constituent atoms among ar-
bitrary (non lattice) sites. Starting from a known set of
embedded atom method (EAM) interatomic potentials
for the multicomponent alloy system, we perform an an-
alytic average over all possible random occupations of the
atomic sites at the overall alloy composition and thereby
define a single-atom “average-atom” potential meant to
capture the average properties of the real disordered al-
loy. This concept was originally introduced by Smith et
al.20 and then applied to a few specific problems, such
as reverse-engineering interatomic potentials using bulk
properties from experiments20,21, modeling equilibrium
segregation around defects22,23, and studies of average

dislocation core structures24,25. Careful comparison of
the method with true random alloys EAM results has
not been done, so no assessment of its range of validity
exists. Due to increasing computational power, the ap-
proach was largely been superseded by direct studies on
true random configurations of alloys. Thus, features of
the A-atom approach that remain useful and important
for current research have never previously been identified.

In this paper, we re-derive and carefully validate the
A-atom EAM potential concept for studies of bulk and
defects properties, and highlight a number of the impor-
tant but unrecognized features of the method. In par-
ticular, we demonstrate that the A-atom potential can
be combined with any of the original atom potential,
enabling study of the complex “average” defect/defect
interactions that are nearly impossible to extract from
direct simulations on explicit random alloys at high con-
centration. As computational metallurgy enters a new
phase of mechanistic and predictive modeling in realistic
alloys, applications of the A-atom potential to study a
wide range of defects and mechanical properties in mul-
ticomponent random alloys, such as High Entropy Alloys
and austenitic stainless steels for instance, will increase
rapidly.

II. PRE-AVERAGING PROCEDURE

A. Effective medium for the random alloy

The basis theoretical framework strongly resembles
effective-medium, Virtual Crystal Approximation (VCA)
and Coherent Potential Approximation (CPA) ap-
proaches to alloys within electronic structure theory26–33.
We consider an N -component alloy, with average concen-

tration cX of each alloying element X, with
∑N
X=1 cX =

1. A configuration of the alloy consists of a set of atomic
sites {i} occupied by individual atoms, as denoted by site
occupation variables sXi , with sXi = 1 if a type-X atom
sits in i site and 0 otherwise. Within the Embedded Atom
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Method (EAM)6, the energy of a given configuration is

E
(
{sXi }

)
=
∑
i,X

sXi F
X (ρi) +

1

2

∑
i,j 6=i
X,Y

V XYij sXi s
Y
j , (1)

with ρi =
∑
j 6=i,X

sXj ρ
X
ij , (2)

where sums are over all atomic sites and X,Y indicate
the different individual atom types. As usual, V XYij is the

pairwise interaction between atoms X and Y and FX(ρi)
is the embedding energy for atom X at site i, with the
local electron density ρi at site i generated by atoms sur-
rounding site i. For a given set of atomic positions {i},
the average energy of the configuration is obtained by av-
eraging over all possible site occupations consistent with
the overall alloy composition. Since FX(ρi) is indepen-
dent of the chemical occupation at site i and since the
occupations in sites i and j are uncorrelated in the ran-
dom solid solution, the average energy can be written
as

〈E0〉 =
∑
i,X

cX
〈
FX (ρi)

〉
+

1

2

∑
i,j 6=i
X,Y

V XYij cXcY , (3)

where
〈
sXi
〉

= cX . We then perform a Taylor expansion〈
FX (ρi)

〉
=
〈
FX (ρ̄i)

〉
+O(ρi − ρ̄i)2 around the average

electron density ρ̄i, in which the first order term vanishes
since 〈(ρi − ρ̄i)〉 = 0. Neglecting second and higher-order
terms34, which is the only approximation, the average
energy is

〈E0〉 =
∑
i

FA (ρ̄i) +
1

2

∑
i,j 6=i

V AAij , (4)

with FA (ρ̄i) =
∑
X

cXF
X(ρ̄i) ;

V AAij =
∑
X,Y

cXcY V
XY
ij ; ρ̄i =

∑
j 6=i

∑
X

cXρ
X
ij , (5)

where A denotes an “average-atom” having embedding
function FA and self-pair-interaction V AAij . The A-atom
interatomic potential of Eq. 4 has exactly the EAM form
for the potential energy of an elemental atom35, and so
the A-atom is now a new atomic species that embeds the
average properties of the random alloy. Note that all local
fluctuations are averaged out analytically, and that the
average is performed on any arbitrary set of atomic sites.
The above derivation equally applies to Finnis-Sinclair7

and Second Moment Approximation8, and could be ex-
tended to modified EAM potentials17,18.

B. Constituent substitutional impurity

The A-atom EAM potential can further be used in
combination with the individual alloying elements {X}
in simulations, as if the A-atom is a new species. We

can then compute, using standard definitions, the aver-
age properties of a substitutional “solute” atom of type
X0 in the A-atom host matrix, where X0 is any of the
constituent alloying elements. These properties require
computing the average energy change when a solute X0

is added to the random alloy. In a true random alloy, the
energy change for atom X0 is computed by replacing one
other atom type Y by an X0 atom, computing the total
energy change, repeating this procedure over many other
atoms Y in the structure, and then averaging these ener-
gies (see appendix A 3). This process can be performed
analytically as follows. For a random configuration de-
scribed by occupation variables {sXi } and having energy
E
(
{sXi }

)
, the atom at site k is replaced by a type-X0

atom, so that its occupation variables become s̃Xk . The
associated energy change is

∆E =
∑
X

(s̃Xk − sXk )FX(ρk) +
∑
i 6=k
X,Y

V XYki sYi (s̃Xk − sXk )(6)

Averaging Eq. 6 over all possible atomic occupation con-
figurations, using the Taylor expansion for the FX and
the identities

〈
sXi
〉

= cX for all i and
〈
s̃Xk
〉

= 1 if X = X0

and 0 otherwise, the average energy change is

〈∆E〉 =
[
FX0(ρ̄k) +

∑
i 6=k

V X0A
ki

]
−
[
FA(ρ̄k) +

∑
i 6=k

V AAki

]
,

(7)

with V X0A
ki =

∑
Y

cY V
X0Y
ki . (8)

Here, V X0A
ki is the pairwise interaction between X0 and

A atoms. Eq. 7 is identical to the result obtained by in-
troducing an atom X0 into site k of the A-atom EAM
material, and is again independent of the atomic config-
uration {i}. Discussion of the many advantages of the
A-atom potential is relegated to Sec. IV.

III. AVERAGE-ATOM VERSUS TRUE
RANDOM ALLOYS

To be useful, the A-atom potential must be quantita-
tively accurate, which requires testing over a wide range
of true random alloy properties. The averaging process
eliminates the local variations in chemical occupations
and the related local lattice relaxations that exist in the
true random alloy, and so energies and forces in the
A-atom material will only be approximate. Optimized
structures and energies might thus differ between the A-
atom and true random alloys. Here, we consider prop-
erties ranging from the bulk properties of the crystalline
material to various defect structures and energies. As
a model material, we use the fcc Fe-Ni-Cr ternary sys-
tem, described with an EAM potential36. This allows a
systematic comparison between true random alloys and
their A-atom counterparts, and thus the accuracy of this
Fe-Ni-Cr potential for any real alloy is irrelevant. We will
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often focus on Fe(1−x)/2Ni(1−x)/2Crx alloys for different x
values because our studies reveal that the Cr content con-
trols many important property variations. All molecular
statics computations reported here use standard methods
executed within the open-source code Lammps37.

A. Random alloy properties

We first briefly mention comparisons for bulk prop-
erties. The lattice parameters a0 and cohesive en-
ergies Ecoh vs. Cr content x for different fcc
Fe(1−x)/2Ni(1−x)/2Crx materials, as computed for the A-
atom and true random alloys (using 30 × 30 × 30 fcc
unit cells), are shown in Figs. 1a,b. Agreement is ex-
cellent (< 2%). The shear elastic constants C44 and
C ′ = (C11 − C12)/2 of the Fe-Ni-Cr ternary system over
the entire composition range are provided in Figs. 2a,b,
along with the absolute differences between A-atom and
true random alloys (from Ref. 36, calculations performed
on 5× 5× 5 fcc unit cells). The agreement is again very
good, with typical accuracy of ∼ 3% but occasionally
larger differences (in any case, differences are < 5% for
C44, and < 15% for C ′) which may be, in part, due to
fluctuations in the finite-size random alloys themselves.

We now consider planar defects, which involve addi-
tional atomic relaxations compared to the bulk. Pla-
nar defect energies, such as surface and stacking fault
energies are relevant for fracture and dislocation struc-
ture/plasticity for instance38,39. Fig. 1c shows the sur-
face energies σ001 and σ111 of the (001) and (111) planes,
respectively, for the A-atom and true random materials
for the Fe(1−x)/2Ni(1−x)/2Crx alloys (see Appendix A 1
for simulation details). Excellent agreement is obtained
(< 1%). Fig. 2c shows the intrinsic stacking fault ener-
gies γISF across the full range of Fe-Ni-Cr compositions
as computed using the A-atom potential along with the
absolute differences relative to the true random alloys.
The absolute differences are typically small, less than
10 mJ/m2. Relative differences can be larger, ≈ 15%,
since γISF itself is at least an order of magnitude smaller
than the surface energies. Furthermore, overall trends
with alloy composition are captured very well.

We next consider the dislocation, a line defect. We
study the glissile {111}(110) edge dislocation responsi-
ble for plasticity in fcc materials, which dissociates into
two Shockley partials separated by an intrinsic stacking
fault. The equilibrium separation distance deq between
the partials should be accurately described38 by the A-
atom, since it accurately predicts the elastic constants
and the stacking fault energy. Using standard techniques,
we insert an initially-dissociated dislocation into each
Fe(1−x)/2Ni(1−x)/2Crx A-atom material, relax the struc-
ture, and measure deq. This procedure is repeated for the
true alloys, starting from the partial separation measured
in the A-atom materials (see Appendix A 2). After relax-
ation, the partial dislocations in the random alloys glide
small distances and adopt wavy configurations, both due
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FIG. 1. Properties of Fe(1−x)/2Ni(1−x)/2Crx alloys vs. Cr
content x: (a) lattice parameter a0 (b) cohesive energies Ecoh,
(c) surface energies σ001 and σ111, (d) solute energies Esol

X0
and

(e) solute misfit volumes ∆VX0 , measured in A-atom (red)
and true random (blue) alloys.

to local compositional/structural fluctuations that inter-
act with the dislocation stress field. As shown in Fig. 3,
the average partial dissociation distances in the true ran-
dom alloys, averaged over 20 different realizations at each
composition, match well with those predicted by the A-
atom materials for x = 0.4 and 0.5 but deviate somewhat
for lower x. The local fluctuations along the line defect
in the true random alloy exert forces on the dislocation
line that cause deviations relative to the A-atom mate-
rial, even though the two materials have essentially equal
average material properties. This demonstrate the role
of the fluctuations in controlling the very detailed dislo-
cation configuration. More important is the glide stress.
Although not shown, the glide stresses in the A-atom
materials are very low (< 10 MPa), as expected for ele-
mental fcc metals (e.g. Al, Ni, Cu). In contrast, the glide
stresses in the true random alloys are very large (∼ 200-
500 MPa, depending on dislocation line length and ran-
dom sample), due to the interactions of the dislocation
with the local chemical and structural fluctuations in the
true random alloy. Thus, the plastic flow stress is con-
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FIG. 2. Shear elastic constants (a) C44 and (b) C′ =
(C11 −C12)/2, and (c) intrinsic stacking fault energy γISF, as
computed with the A-atom potential (left), along with the ab-
solute differences relative to the true random alloys36 (right),
versus composition of the Fe-Ni-Cr ternary alloys. The dark
blue point in ∆C′ has the value −10.4GPa.

trolled by fluctuations and cannot be modeled using the
A-atom material; the mechanistic origins of the strength-
ening in the true random alloys are discussed elsewhere40.

B. Constituent “solute” properties

We now investigate the accuracy of the mixing of
A-atoms with true atoms to compute real atom “so-
lute” properties in the alloy. Specifically, we compute
the solute energies ∆Esol

X0
and misfit volumes ∆VX0

for
X0 = Fe, Cr, Ni in the Fe(1−x)/2Ni(1−x)/2Crx alloys. Sim-
ulation details for computations in the true random alloys
are given in Appendix A 3. Figs. 1d,e show ∆Esol

X0
and

∆VX0
as computed for the A-atom and the true random

alloys. The accuracy of the A-atom approach is consis-
tently very good, particularly with the values being quite
small in absolute terms.

Finally, we showcase properties that are extremely dif-
ficult to measure in true random alloys: the average in-
teraction energy between a constituent “solute” atom X0

FIG. 3. Dislocation structures and splitting distances deq of
an edge dislocation in Fe(1−x)/2Ni(1−x)/2Crx alloys vs. x, in
true random (top) and A-atom (bottom) materials. Color-
ing corresponds to common neighbor analysis41: white and
violet atoms are associated with the partial cores, and red
atoms with the stacking fault. Uncertainty among different
realizations in the true random alloys is ≈ ±5Å.

and structural defects. We first consider the interaction
energy Eint

X0−d between an X0 atom and an edge dislo-
cation in the multicomponent alloy, as a function of the
position of the X0 atom. In the true random alloy, the
dislocation position itself is not unique because it adjusts
to the local fluctuations (see Fig. 3). So, when replacing
one other atom type Y by an X0, the dislocation ad-
justs locally; computing Eint

X0−d in a true random alloy
is thus not clearly defined and is also subject to large
fluctuations. Using the A-atom potential, however, the
average interaction energy at a given position relative
to the well-defined, straight, dissociated dislocation in
the A-atom material is easily computable. Fig. 4a shows
Eint
X0−d for X0 = Fe, Ni and Cr in the fcc Fe33Ni33Cr33

alloy at a wide range of substitutional atomic positions
around one of the partial dislocation cores. Fe and Ni
have repulsive interaction energies just below the par-
tial dislocation, where the dislocation pressure is ten-
sile, consistent with negative misfit volumes (Fig. 1e),
while Cr shows the opposite behavior. All of these inter-
action energies are responsible for the high plastic flow
strength measured in the true random alloys40, and vary
with alloy composition. To demonstrate the role of over-
all composition, we compute the interaction energies of
“solutes” with the intrinsic stacking fault Eint

X0−γ for the
Fe(1−x)/2Ni(1−x)/2Crx A-atom alloys, and for X0 located
in the second plane above the fault plane. Fig. 4b shows
that the Eint

X0−γ vary strongly with composition, with the
Cr interaction changing from attractive to repulsive with
increasing Cr content x, for instance. In true random
alloys, the replacement procedure necessary to compute
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Eint
X0−γ involves subtraction of two similar energies with

large fluctuations, making determination of the interac-
tion energy inaccurate unless thousands of simulations
are run. The A-atom approach is thus the only way to
measure defect/defect interactions accurately, while also
being high efficient and applicable to any multicompo-
nent system.

IV. DISCUSSION

Having derived the A-atom potential and carefully
compared its properties to those of true random alloys,
we now highlight some of its important features and ap-
plications.

Since the configurational averaging in Eqs. 4, 5 and 7 is
done on an arbitrary set of atomic sites, using the A-atom
potential to study structural defects is fully justified, as
shown in Figs. 1c, 2c and 3. Energy and forces are ana-
lytical for the A-atom EAM potential, and thus studies
of structural defects present no specific difficulty. This
is in contrast to electronic structure CPA approaches to
random alloys, where the loss of lattice periodicity in the
presence of defects is accompanied by a loss of analytic-
ity that complexifies and/or precludes the solution of the
coupled CPA equations30,42,43.

In addition, Eq. 7 shows that it is possible to perform
calculations on systems that mix A-atoms with real con-
stituent atoms {X} to obtain “solute” quantities and in-
teraction energies between any solutes X0 in the set {X}
and any structural defects, in random multicomponent
alloys at arbitrary composition, as shown in Figs. 1d,e
and 4. This provides a way to understand how individ-

ual constituent elements behave, on average, in the alloy
material and how the behavior varies with the overall
alloy composition. This also forms a robust basis for de-
veloping predictive models of alloy properties40,44–46: the
average alloy material is a natural reference state from
which one can compute all the necessary model parame-
ters using the A-atom potential alone or combined with
the elemental potentials.

As we mentioned before, the A-atom material has av-
eraged out all the local compositional and structural fluc-
tuations of the true random alloy. By comparing mate-
rials properties computed for the A-atom and true ran-
dom alloys, those properties that are controlled by the
average and by the fluctuations, respectively, are clearly
identified. This is physically insightful and valuable for
understanding the mechanistic origin of a given material
property.

Next, let us state again that the A-atom potential is a
new EAM potential. Starting from a known set of poten-
tials for elements {X}, the A-atom potential for a tar-
geted random alloy is fully defined by Eqs. 5. This will
have great benefits in developing/benchmarking poten-
tials for multicomponent alloys, especially for modeling
mechanical properties. Indeed, the A-atom potential al-
lows for fast and accurate sampling of many bulk and de-
fect properties for the whole compositional space, which
can be very large for some multicomponent systems such
as High Entropy Alloys47,48. Moreover, from a known set
of potentials, an infinite number of new potentials can be
generated and explored using the A-atom approach. For
instance, a family of potentials with controlled materi-
als properties can be created, in which only one property
varies while the other ones are held nearly fixed. This
can permit careful study of the role of individual mate-
rial properties on macroscopic behavior, e.g. the role of
stacking fault energy on the strength of nanocrystalline
metals5. More subtle is the fact that it can lead to better
potentials for desired elemental materials. Several pre-
existing EAM potentials for the same pure element can
be combined with different weights (as represented by
the “concentrations”) to generate a new potential with
an improved description of the elemental properties.

Finally, the A-atom potential should be useful
in concurrent multiscale modeling methods, extend-
ing atom/continuum multiscale models such as the
Quasicontinuum49–51 or the Coupled Atomistic Discrete-
Dislocation52,53 models to random alloys. Specifically,
the A-atom potential can be used efficiently and ac-
curately to compute the material properties in coarse-
grained continuum regions using the Cauchy-Born rule,
with the compositional averaging performed automati-
cally and with the ability to refine the description down
to the atomic scale.
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V. CONCLUSION

In summary, we have presented and validated the A-
atom potential as an efficient and elegant way to com-
pute many average properties of random alloys, including
defect properties. In particular, we have demonstrated
the valuable use of the A-atom method in computing de-
fect/defect interactions that are essentially unobtainable
by direct simulations on random alloys. We have further
identified a host of very useful application concepts for
the A-atom approach. In future work, we will report on
specific applications to problems in plastic flow stress,
cross-slip, and fracture of complex metal alloys, and fur-
ther show that the A-atom approach accurately captures
the finite-temperature thermodynamic properties of true
random alloys54.
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Appendix A: Simulation details for defect properties

In this section, important numerical details about the
calculation of defect properties into the true random al-
loys are provided.

1. Planar defects

Intrinsic stacking fault energies are computed using
simulation boxes of size x × y × z = 50 × 50 × 23 along
the [101̄], [12̄1] and [111] directions. Periodic boundary
conditions are applied along x and y directions, and free
surface conditions along the z direction. This simulation
size is large enough to both prevent any interaction be-
tween the fault and the free surfaces, and to obtain a
large enough sampling of the random composition in the
fault plane. Similar simulation size (> 300000 atoms)
and boundary conditions are used for the surface energy
calculations of the (001) and (111) planes.

2. Dislocations

The average dislocation configuration is extracted from
true random alloys as follows. Random distributions of
atoms at the targeted compositions are prepared on simu-
lation boxes of size 202×36×125 along the [101̄], [12̄1] and
[111] directions (5454000 atoms). Then, a {111}(110)
edge dislocation is introduced by adding an extra atomic
plane, that is spread over the expected equilibrium dis-
sociation distance, as given into the A-atom material.

Periodic boundary conditions are applied along x and
y directions, and free surface conditions along the z di-
rection. Relaxation at 0K is performed, and then the
average dissociation distance is measured by averaging
over 20 different random realizations for each alloy com-
position.

3. Substitutional constituent solutes

Calculations of solution energies and misfit volumes
are performed on simulations of 6 × 6 × 6 fcc unit cells
(864 atoms). We exemplify the exact computational pro-
cedure in the true random alloys on the misfit volume
calculation. The average misfit volume of the X0 species,
∆VX0

, is computed using a replacement procedure, where
each atom of the random atomic configuration is replaced
by an X0-type atom, and the associated relaxation vol-
ume ∆V nX0

is measured (n ∈ [1, Ns] labels the atomic
sites, here). A collection of measurements is then ob-
tained for each X0. This raw dataset can be subdivided
into different datasets {∆V kYX0

}, with kY ∈ [1, nY ], where

∆V kYX0
corresponds to the relaxation volume resulting

from the replacement of a Y -type atom located in the
kY site by an X0-type atom, and nY = cYNs with cY
the concentration in Y atoms. The average misfit vol-
ume of X0 can thus be written as

∆VX0
=

1

Ns

Ns∑
n=1

∆V nX0
,

=
1

Ns

N∑
Y=1

nY∑
kY =1

∆V kYX0
,

=

N∑
Y=1

cY ∆V X0/Y , (A1)

with ∆V X0/Y = 1
nY

∑nY

kY =1 ∆V kYX0
, and ∆V X0/X0 =

0. The resulting misfit volumes satisfy the sum rule∑N
X0=1 cX0

∆VX0
= 0. The computation of the av-

erage misfit volume of one constituent element in the
Fe33Ni33Cr33 alloy, with the 864 atoms simulation size,
thus requires 576 calculations, whereas the A-atom
method requires only a single computation. The com-
putational benefit of the A-atom approach is obvious,
especially when the number of alloying components in-
creases.

Note that the raw dataset obtained from true random
alloy calculations shows fluctuations around the average
value of each misfit volume, that can be rather important
for some alloy compositions. Large fluctuations of some
point defect properties with the local chemical environn-
ment - without attempt to reach the average property -
have also been observed by some authors by DFT calcu-
lations in concentrated alloys55,56.

Attempts to obtain interaction energies between “so-
lutes” X0 = Fe, Ni and Cr and a stacking fault Eint

X0−γ
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were made for the equicomposition fcc Fe33Ni33Cr33 al-
loy. A random distribution of atoms at the equicomposi-
tion is prepared on a simulation box of size 50× 50× 23
along the [101̄], [12̄1] and [111] directions, that contains
a stacking fault. For each “solute” X0, 30 different Y
in the atomic plane one plane above the fault plane are
successively replaced by an X0. This is repeated for all
{Y } 6= X0 and the associated average energy is com-
puted. This does not permit a determination of Eint

X0−γ
with good precision: there are large fluctuations in en-
ergy among the different individual measurements, and

the final interaction values are very small (lower than
8 meV for the equicomposition alloy). Increasing the
sampling to the same number of replacements as for the
misfit volume calculation did not significantly improve
the accuracy of the measurement. Thus, instead of the
one calculation needed per solute/stacking interaction in
the A-atom material, thousands of calculations would be
necessary to obtain only one solute/stacking interaction
in the true random alloy with an acceptable accuracy.
This is not a tractable approach to capture defect/defect
interactions over a range of alloy composition in multi-
component alloys.
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