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Abstract

When a shoal of small fishes notices a predator, they typically change their collective shape
and form a specific pattern. They do so efficiently (in parallel) and without collision. This
motivates us to design algorithms with similar properties.

In this paper, we study the problem of distributed pattern formation. A set of processes
needs to move from a set of initial positions to a set of final positions. The processes are oblivious
(no internal memory) and must preserve, at any time, a minimal distance between them.

A naive solution would be to move the processes one by one, but this would have a poor
time complexity. The difficulty here is to move the processes simultaneously in clearly delimited
phases (as there is no internal memory), no matter how unfavorable the initial configuration may
be. We solve this by treating the problem “dimension by dimension”: the processes first form
1D trails, then gather into a 2D shape (this technique can be generalized to higher dimensions).

We present an optimal algorithm which time complexity depends linearly on the radius of
the smallest circle containing both initial and final positions. The algorithm is self-stabilizing,
as the processes are oblivious and the initial positions are arbitrary.

1 Introduction

Nature has always been a fertile source of inspiration for computing: evolutionary algorithms [2],
neural networks [14] or cellular automata [20] are all based on natural phenomena.

One remarkable phenomenon is the ability of simple individuals (ants, bees, fishes...) to form
complex patterns without centralized control. For instance, shoals of fishes can form a massive
compact structure [18], which can then deform itself to cross small holes and avoid predators.
These individuals form complex patterns very efficiently by moving to the new positions in parallel.
They do so without accident: they do not even touch each other. Reproducing this phenomenon
has a particular interest in the era of autonomous mobile devices [16]. This could have many
applications, such as the exploration of dangerous or impracticable zones [3] as well as medical
nanorobots [17].

In this paper, we consider the problem of arbitrary pattern formation: a set of n processes, with
a set of n arbitrary initial positions, must move to a set of n arbitrary final positions (landmarks)
forming some desired pattern. The difficulty of this problem lies on the requirement to consider
“voluminous” processes (namely processes do have a volume). More specifically, a minimal distance
D between any two processes needs to be preserved at any time. This requirement is essential for
any application where the volume of processes is not negligible. Besides, many types of devices are
fragile (quadcopter drones, robots exploring Mars...) and collisions could render them unusable.

Most existing works on pattern formation [19, 7, 8, 21] ignore collisions: each process is represented
by a point, and can move independently of other processes. Several processes can thus occupy the
exact same position. Pattern formation has indeed been considered without collisions [11, 12, 13],
but two processes could be as close as possible to each other, as long as they do not occupy the exact
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same point in space. These approaches do not apply to the setting where the volume of processes
imposes a minimal distance between any two processes. Some papers considered problems where
processes have a certain volume, such as localization [6] or gathering [5, 15, 4, 1]. However, the more
general problem of arbitrary pattern formation has never been studied for voluminous processes,
i.e., without collisions.

We study this problem in a general setting where processes are oblivious (they have no form of
internal memory) and cannot communicate between each other. The moves of the processes can
only be determined by their current position. A naive solution would be to shift on a sufficient
distance, then to have the processes move one by one to the desired positions. Clearly, such a
solution would be extremely ineffective in terms of execution time for a large number of processes
(ideally, the processes should all move together).

The difficulty here is to separate the moves in clearly delimited phases, that can be identified without
ambiguity only by looking at the positions of processes (as the processes have no internal memory).
Besides, this should be done while all processes move simultaneously (in order to have an optimal
execution time) and with the constraint of respecting a minimal distance at any time, no matter
how the processes are arranged in the initial configuration (i.e., possibly in a very unfavorable way).

In this paper, we present a solution where the execution time depends linearly on the distance
between initial and final positions, which we show is optimal in terms of time complexity. Our
algorithm involves two major steps:

• First, we provide a sub-algorithm to form trails without collisions (Collision-Free Trail Forma-
tion, CFTF). A trail is a slice of pattern contained in a very tight band. The idea underlying
this algorithm is for the processes to scatter, align orthogonally to the band and finally gather.

• Then, we provide an algorithm that uses the CFTF algorithm as a subroutine (Collision-Free
Pattern Formation, CFPF). This algorithm slices the desired pattern in several trails, scatters
the trails in the orthogonal direction, uses the CFTF algorithm to form the desired trails,
and finally gathers the trails to obtain the desired pattern.

The main idea here is to treat the problem “dimension by dimension”. For presentation simplicity,
we consider the pattern formation problem in a 2D space, but the same principle could be repeated
to reach higher dimensions : in the same way that we stack “trails” to form a 2D pattern, we could
stack “slices” very similar to 2D patterns to form any 3D pattern – and so forth.

Besides, our resulting CFPF algorithm is self-stabilizing [9], as the processes are oblivious and the
initial positions are totally arbitrary. Thus, any transient disruption simply brings the system to a
new initial configuration.

We also prove that this algorithm has an optimal time complexity. We express the time complexity
as a function of R: the radius of the smallest circle containing both initial and final positions of the
processes. Time complexity is often expressed as an asymptotic function of n (the total number of
processes), which is not sufficient here: the execution time is conditioned by the initial and final
distances between processes. The time complexity of the naive solution where the processes move
one by one is O(R3) (see 2.3). We show that the time complexity of the pattern formation problem
without collision is only Θ(R), and that our algorithm matches this bound (i.e., a tight bound on
the time complexity is Ω(R)).

The rest of the paper is organized as follows. In Section 2, we describe the problem, the model and
our time complexity criteria (we show that this complexity is Ω(R)), then we give an overview of
our solution. In Section 3, we present our Collision-Free Trail Formation (CFTF) algorithm and
show its O(R) complexity. In Section 3, we present our Collision-Free Pattern Formation (CFPF)
algorithm and show its O(R) complexity. We conclude in Section 5.
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2 Preliminaries

2.1 Model

We consider a 2D space with a (x, y) coordinates system, and a set P of n processes. Each process
is described by its (x, y) position. We denote by d(A,B) (resp. d(p, q)) the distance between two
points A and B (resp. two processes p and q) in the space. The processes must observe a minimal
distance D between each other: for any two processes p and q, we must have d(p, q) ≥ D.

We adopt the classical FSYNC (fully synchronous) model for swarm computing [10]. The time is
divided into successive steps t = 0, 1, 2, 3 . . . Let ε > 0 be an arbitrarily small constant. ε is the
largest distance that a process can cross between two time steps. At each time t, each process p
uses its position and the position of other processes to compute a point M such that d(p,M) ≤ ε,
and moves to this point. Then, the position of p at time t+ 1 will be M .

The processes are anonymous (one can distinguish two processes only by their position) and obliv-
ious (no form of memory is available).

Note 1: In this problem, the processes are required to know n positions to reach in the plane
(also called landmarks [12]). Thus, a common coordinates system is a legitimate hypothesis, as
the processes can also know three specific points of the plane that provide origin, metric and
orientation. In practice, as each process is assumed to see other processes, these three points could
also be obtained from elements of the setting.

Note 2: We adopt a synchronous model for the clarity of presentation. It should not be seen as
a succession of discrete steps where the processes “teleport” between each step, bur rather as the
approximation of a continuous move: the maximal distance ε that a process can cross between two
steps can be as small as we want. Besides, as shown in [13], a pattern formation technique in a
synchronous model can be converted to an asynchronous model if required. In this paper, we focus
on avoiding collisions during the pattern formation – which remains nontrivial even if we abstract
symmetry or synchrony problems.

2.2 Problem

Let S be an arbitrary set of n points such that, for any two points A and B of S, d(A,B) ≥ D.
At t = 0, the n processes have an arbitrary position such that, for any two processes p and q of P ,
d(p, q) ≥ D. The problem consists of finding an algorithm satisfying the two following conditions:

• Liveness. The n processes always eventually occupy the n positions of S permanently (and
then do not move from these positions).

• Safety. At any point in time, the condition on the minimal distance between processes must
always be respected: at any time and for any two processes p and q, d(p, q) ≥ D.

For simplicity reasons, we only consider collisions at each discrete step. However, this is not a
problem in practice, as ε can be as small as we want. To ensure that there is no collision between
two steps, a simple solution is to impose a minimal distance D + ε instead of D. Also, note that
even without this hypothesis, our algorithm prevents any collision between two steps (assuming
that the processes move in straight line).

2.3 Time complexity

The performance of a pattern formation algorithm can be measured by its time complexity, that is:
the asymptotic behavior of its execution time, i.e. the number of time steps required to form the
pattern.
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The time complexity of an algorithm is often expressed as a function of n (the total number of
processes). However, this criteria is not sufficient in the case of mobile processes with a bounded
speed: the distance between the initial and final positions imposes a minimal execution time,
independently of n. In other words, it is impossible to bound the execution time with a function
of n: if such a bound existed, it would always be possible to overstep it by increasing the distance
between initial and final positions sufficiently.

Therefore, we consider another parameter here: R, the radius of the smallest circle that contains
all initial and final positions of the processes. More precisely, R is the smallest number for which
there exists a point O such that:

1. At t = 0, for any process p, d(O, p) ≤ R.

2. For any point M of S, d(O,M) ≤ R.

Note that, as there is a minimal distance between processes, R implicitly imposes a bound on n:
the maximal number of processes that we can put into a circle of radius R with a minimal distance
D between processes. In other words, the number of processes n can be proportional to R2.

We want to express the time complexity T of the problem (that is, the number of steps to form the
pattern) as a function of R. For this purpose, we use the classical asymptotic Landau notation: Ω,
O and Θ.

• T is “Ω(f(R))” if there exists R0 and k > 0 such that ∀R ≥ R0, T ≥ kf(R). This is a lower
bound: the time complexity is at least kf(R) for a sufficiently large R.

• T is “O(f(R))” if there exists R0 and k > 0 such that ∀R ≥ R0, T ≤ kf(R). This is an upper
bound: the time complexity is at most kf(R) for a sufficiently large R.

• T is “Θ(f(R))” if T is both Ω(f(R)) and O(f(R)) (tight bound). In other words, there exists
R0, k1 > 0 and k2 > 0 such that ∀R ≥ R0, k1f(R) ≤ T ≤ k2f(R).

The time complexity of an algorithm where the processes move “one by one” (like in [4]) is at least
proportional to nR. Thus, as n can be proportional to R2, such an algorithm only provides an
upper bound O(R3) to the time complexity. In this paper, we show that the time complexity of
the CFPF problem is only Θ(R):

• The lower bound is trivial. Consider the case where the n processes are on a circle of radius
R, and that the center of this circle is one of the final positions. Then, the execution time is
at least R/ε (the minimal time for a process to reach the center of the circle). Thus, the time
complexity of the problem is Ω(R).

• For the upper bound, we provide an algorithm solving the CFPF problem with an execution
time O(R). We present this algorithm in the next section.

2.4 Overview of our algorithm

We give here an intuition of how we construct an algorithm to solve the CFPF problem in O(R)
time steps.

We first define the notion of a trail. Intuitively, a trail is a set of positions which is arbitrarily large
in the x direction, but very tight in the y direction.

Definition 1 (Trail). For any point or process A, let x(A) (resp. y(A)) be the x (resp. y) coordinate
of A. A trail is a set of points T such that:
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1. The condition on the minimal distance is respected: for any two points A and B of T ,
d(A,B) ≥ D.

2. The “width” of T in the y direction is at most D/2: for any two points A and B of T ,
|y(A)− y(B)| ≤ D/2.

Then, the set S of final positions can be seen as several trails stacked in the y direction, as shown
below.

Let y1 (resp. y2) be the smallest (resp. largest) y coordinate occupied by a point of S. Let N be
the smallest integer such that y1 +ND/2 > y2. ∀i ∈ {1, . . . , N}, let Ti be the set of points M of S
such that y1 + (i− 1)D/2 ≤ y(M) < y1 + iD/2. According to Definition 1, Ti is a trail. Then, the
set S of final positions can be decomposed in the set of trails {T1, . . . , TN}.
In Section 3, we give an algorithm to form any trail (Collision-Free Trail Formation algorithm),
and bound its execution time. Then, in Section 4, we use this algorithm as a subroutine to define a
CFPF algorithm with a O(R) time complexity. This algorithm forms the trails {T1, . . . , TN}, then
stacks them in the y direction.

3 Collision-Free Trail Formation (CFTF) Algorithm

In this section, we give a CFTF algorithm and bound its execution time. We first define the
CFTF problem, introduce some definitions and primitives, and give an informal description of the
algorithm. Then, we describe the algorithm and show its execution time.

3.1 CFTF Problem

Consider a set Q of m processes. Let T be a trail (see Definition 1) such that |T | = m. At t = 0, the
m processes have an arbitrary position such that, for any two processes p and q of Q, d(p, q) ≥ D.
We want to find an algorithm such that the m processes always eventually occupy the m positions
of T (liveness). During the whole process, the condition on the minimal distance between processes
must always be respected: at any time and for any two processes p and q, d(p, q) ≥ D (safety)

3.2 Definitions

In order to describe our CFTF algorithm, we define the minimal x coordinate of the processes
(resp. positions), define a total order relationship on the processes (resp. positions), and finally
the elementary distances between processes (resp. positions) according to this order.

Minimal x position. Let xmin be the largest number such that, for each process p, x(p) ≥ xmin.
In other words, xmin is the smallest x coordinate occupied by a process. Similarly, let x0 be the
smallest x coordinate occupied by a point of T .

Total order relationship. We define a total order relationship “>” on the position of processes.
We say that p > q if one of the two following conditions is satisfied:
(1) x(p) > x(q)
(2) x(p) = x(q) and y(p) > y(q)

Note that the order relationship is total, as the condition on the minimal distance between processes
forbids two processes to be at the same position. We also define a similar order relationship on the
points of T .

For any time t, let (p1, p2, . . . , pm) be the m processes such that p1 < p2 < · · · < pm. Let
(M1,M2, . . . ,Mm) be the m points of T such that M1 < M2 < · · · < Mm.

Elementary x distances. ∀i ∈ {1, . . . ,m − 1}, let di = x(pi+1) − x(pi) (distances between
processes) and Di = x(Mi+1)− x(Mi) (distances between positions).
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3.3 Primitives

We define here some basic primitives used in the algorithm to describe the moves of the processes.
Let p be a process with coordinates (x, y) at time t, and let M be a point of same coordinates.

“Move towards” primitive. Let M ′ be a point. Let K be a point of the segment [MM ′] such
that d(M,K) = ε. If such a point does not exist (that is, if d(M,M ′) < ε), we consider that
K = M ′. Then, we say that p moves towards M ′ if the position of p at time t+ 1 is K.

“Move with vector” primitive. Let [a, b] be a 2D vector such that
√
a2 + b2 ≤ ε. Let K be a

point of coordinates (x+ a, y+ b). Then, we say that p moves with vector [a, b] if the position of p
at time t+ 1 is K.

3.4 CFTF Algorithm

Our CFTF algorithm is described in Figure 1. We provide an informal description of the algorithm
below.

The algorithm goes through 4 successive phases: the processes translate to the good x offset (Phase
1), increase their x distance between each other (Phase 2), align in the y direction (Phase 3) and
finally adjust their distance in the x direction until they form the desired trail.

1. In Phase 1, the processes translate in the x direction until the smallest x coordinate occupied
by a process (xmin) corresponds to the smallest x coordinate of the set of final positions (x0).

2. In Phase 2, the processes scatter in the x direction until we have di ≥ max(D,Di) for each i.
di ≥ D ensures that the processes can move in the y direction without collision in the next
phase. di ≥ Di ensures that the x distance between processes is at least the desired distance
Di. Thus, the processes only have to reduce this distance in Phase 4 to obtain the desired
trail.

3. In Phase 3, the processes move in the y direction until they all have the desired y position.
As we have di ≥ D for each i, there is no collision between processes during this phase.

4. In Phase 4, the processes gather in the x direction until we have di = Di for each i. According
to Phase 2, they only have to reduce their distance between each other. Then, we have the
desired x and y positions, and thus the desired trail.

3.5 Time complexity

Similarly to R (see 2.3), let r be the radius of the smallest circle containing all initial and final
positions of the m processes. In Theorem 1, we show that the execution time of the CFTF algorithm
is O(r). For this purpose, we first bound m with r in Lemma 1.

Lemma 1. m ≤ 1 + 2r/D

Proof. First, let us show that ∀i ∈ {1, . . . ,m − 1}, Di ≥ D/2. Indeed, assume the opposite:
there exists i such that Di < D/2. Then, there exists two final positions A and B such that
|x(A)− x(B)| ≤ D/2. As |y(A)− y(B)| ≤ D/2, we have d(A,B) ≤ D/

√
2 < D: contradiction.

Therefore, Σi=m−1
i=1 Di ≥ (m− 1)D/2. As Σi=m−1

i=1 Di ≤ r (by definition), we have (m− 1)D/2 ≤ r.
Thus, m ≤ 1 + 2r/D.

Theorem 1. The m processes occupy the m desired positions in O(r) time steps, and the condition
on the minimal distance is always respected.
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CFTF Algorithm

At each step, every process p executes the following algorithm, which is divided in 4 phases.
The conditions of the 4 phases are defined to be mutually exclusive.

Predicates

• P1 : xmin = x0

• P2 : ∀i ∈ {1, . . . ,m− 1}, di ≥ max(D,Di).

• P3 : ∀i ∈ {1, . . . ,m}, y(pi) = y(Mi).

• P4 : The m processes occupy the m positions of T .

Phase 1: Translation

Condition: ¬P1

Action: If |xmin − x0| < ε, move with vector [x0 − xmin, 0]. Otherwise:

• If xmin > x0, move with vector [−ε, 0].

• If xmin < x0, move with vector [ε, 0].

Phase 2: Scattering

Condition: P1 ∧ ¬P2 ∧ ¬P3

Action: Let i be the smallest integer such that di < max(D,Di).
Then, if p belongs to {pi+1, pi+2, . . . , pm}, move with vector [ε, 0].

Phase 3: Alignment

Condition: P1 ∧ P2 ∧ ¬P3

Action: Let i be such that p = pi. Let M be the point of coordinates (x(pi), y(Mi)).
Then, move towards M .

Phase 4: Gathering

Condition: P1 ∧ P3 ∧ ¬P4

Action: Let i be the smallest integer such that di > Di. Let e = di −D.
Then, if p belongs to {pi+1, pi+2, . . . , pm}:

• If e ≤ ε, move with vector [−e, 0].

• If e > ε, move with vector [−ε, 0].

Figure 1: CFTF Algorithm
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Proof. The proof is in 4 steps.

1. Suppose ¬P1. The distance of translation in Phase 1 is at most r. Thus, P1 is true after a
time T1 ≤ dr/εe = O(r). As the translation is the same for all processes, the safety condition
is respected.

2. Suppose P1 ∧ ¬P2 ∧ ¬P3. Let i be the integer described in Phase 2. Then, we have di ≥
max(D,Di) in at most dmax(D,Di)/εe time steps. Thus, P1 ∧ P2 ∧ ¬P3 is true after a
time T2 ≤ Σi=m−1

i=1 dmax(D,Di)/εe ≤ Σi=m−1
i=1 dD/εe + Σi=m−1

i=1 dDi/εe ≤ m(1 + D/ε) + (m +
Σi=m−1
i=1 Di/ε) ≤ (2 + D/ε)m + r/ε. According to Lemma 1, m ≤ 1 + 2r/D, and thus,

T2 ≤ 2 + D/ε + (4/D + 3/ε)r = O(r). As the moves of Phase 2 only increase the distance
between processes, the safety condition is respected.

3. Suppose P1 ∧ P2 ∧ ¬P3. The moves of Phase 1 and 2 do not modify the y position of the
processes. Thus, ∀i ∈ {1, . . . ,m}, |y(pi) − y(Mi)| ≤ r. Therefore, in Phase 3, P1 ∧ P3 is
true after a time T3 ≤ dr/εe = O(r). According to P2, for any two processes p and q,
|x(p) − x(q)| ≥ D. Thus, as the moves of Phase 3 are only in the y direction, the safety
condition is respected.

4. Suppose P1∧P3∧¬P4. ∀i ∈ {1, . . . ,m−1}, Phase 2 increases di of at most max(D,Di)+ε. Let
∆i be the value of di at the beginning of Phase 4. Then, Σi=m−1

i=1 ∆i ≤ r+Σi=m−1
i=1 (max(D,Di)+

ε) ≤ r + m(D + ε) + Σi=m−1
i=1 Di ≤ r + (1 + 2r/D)(D + ε) + r ≤ 2(2 + ε/D)r + D + ε. Let i

be the integer described in Phase 4. Then, we have di = Di in at most d∆i/εe ≤ 1 + ∆i/ε
time steps. Thus, P4 is true after a time T4 ≤ Σi=m−1

i=1 (1 + ∆i/ε) ≤ m + (Σi=m−1
i=1 ∆i)/ε ≤

1 + 2r/D + (2(2 + ε/D)r + D + ε)/ε = 4(1/D + 1/ε)r + 2 + D/ε = O(r). As the moves of
Phase 4 do not allow to have di < Di, the safety condition is respected.

Once P4 is true, the processes do not move, and thus the liveness condition is satisfied. The
execution time is at most T1 + T2 + T3 + T4 = O(r).

4 Collision-Free Pattern Formation (CFPF) Algorithm

In this section, we use our previous CFTF algorithm to define a CFPF algorithm and bound
its execution time. Similarly, we start with some definitions and an informal description of the
algorithm.

4.1 Definitions

Similarly to the previous section, we first define the minimal y coordinate and a total order re-
lationship now based on the y direction. We use this order to classify the processes in N sets
{S1, . . . , SN}, which correspond to the N trails forming the final pattern. We then define the
elementary distances between these sets and trails, and the y translation of a given trail.

• Similarly to 3.2, we define ymin as the smallest y coordinate occupied by a process. For a set
of processes (resp. points) Q, let ymin(Q) be the smallest y coordinate occupied by a process
(resp. point) of Q.

• The total order relationship defined in 3.2 gives priority to the x coordinate over the y
coordinate. We now consider a total order relationship that gives priority to y over x. Let
(p1, . . . , pn) be the n processes ordered such that p1 < p2 < · · · < pn, according to this
order relationship. According to the definition of {T1, . . . , TN} in 2.4, let S1 be the |T1| first
processes of the sequence, let S2 be the |T2| following processes, and so forth until SN .
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• For two sets of processes {S, S′} ⊆ {S1, . . . , SN}, let d(S, S′) = min(p,q)∈S×S′ d(p, q). ∀i ∈
{1, . . . , N − 1}, let di = d(Si, Si+1) (distance between sets) and Di = d(Ti, Ti+1) (distance
between trails).

• ∀i ∈ {1, . . . , N} and for any value y0, let T ′i (y0) be the trail obtained by a translation of Ti of
distance |y0 − ymin(Ti)| in the positive y direction.

• For a process p, let S(p) ∈ {S1, . . . , SN} be the set such that p ∈ S(p) (the set containing p).

4.2 CFPF Algorithm

The algorithm is described in Figure 2. We provide an informal description of the algorithm below.

Similarly to the CFTF algorithm of Section 3, the CFTF algorithm performs in 4 successive phases.
These phases are defined so that the content of the sets (S1, . . . , SN ) always remains the same.

1. In Phase 1, the processes translate in the y direction until the smallest y coordinate of a
process (ymin) corresponds to the smallest y coordinate of the set of final positions (ymin(S)).

2. In Phase 2, the sets (S1, . . . , SN ) scatter in the y direction until we have di ≥ max(D,Di)
for each i. di ≥ D ensures that the processes can form the desired trails without collision in
the next phase. di ≥ Di ensures that the y distance between the sets is at least the desired
distance Di. Thus, the resulting trails only have to reduce this distance in Phase 4 to obtain
the desired pattern.

3. In Phase 3, the processes of each set Si use the CFTF algorithm of Section 3 to form a trail
similar to Ti, but translated in the y direction.

4. In Phase 4, the sets (S1, . . . , SN ) gather in the y direction until we have di = Di for each i.
Then, the processes form the N desired trails, and thus the desired pattern.

Note that the CFTF algorithm does not increase (resp. decrease) the maximal (resp. minimal) y
coordinate occupied by a process of the trail. Thus, the condition of Phase 3 always remains true
during the execution of the CFTF subroutine.

4.3 Time complexity

Theorem 2. The n processes occupy the n desired positions in a O(R) time, and the condition on
the minimal distance is always respected.

Proof. The proof is in 4 steps.

1. Suppose ¬P1. The distance of translation in Phase 1 is at most R. Thus, P1 is true after a
time T1 ≤ dR/εe = O(R). As the translation is the same for all processes, the safety condition
is respected.

2. Suppose P1 ∧ ¬P2 ∧ ¬P3. Let i be the integer described in Phase 2. Then, we have di ≥
max(D,Di) in at most dmax(D,Di)/εe time steps. Thus, P1 ∧ P2 ∧ ¬P3 is true after a
time T2 ≤ Σi=N−1

i=1 dmax(D,Di)/εe ≤ Σi=N−1
i=1 dD/εe + Σi=N−1

i=1 dDi/εe ≤ N(1 + D/ε) + (N +
Σi=N−1
i=1 Di/ε) ≤ (2 + D/ε)N + R/ε. According to 2.4, N is the smallest integer such that

y1+ND/2 > y2. Thus, y1+(N−1)D/2 ≤ y2, (N−1)D/2 ≤ y2−y1 ≤ R, and N ≤ 1+2R/D.
Then, T2 ≤ 2 + D/ε + (4/D + 3/ε)R = O(R). As the moves of Phase 2 only increase the
distance between processes, the safety condition is respected.
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CFPF Algorithm

At each step, every process p executes the following algorithm, which is divided in 4 phases.
The conditions of the 4 phases are defined to be mutually exclusive.

Predicates

• P1: ymin = ymin(S1)

• P2: ∀i ∈ {1, . . . , N − 1}, di ≥ max(D,Di).

• P3: ∀i ∈ {1, . . . , N}, there exists yi such that Si = T ′i (yi).

• P4: The n processes occupy the n desired positions.

Phase 1: Translation

Condition: ¬P1

Action: If |ymin − y0| < ε, move with vector [0, y0 − ymin]. Otherwise:

• If ymin > y0, move with vector [0,−ε].

• If ymin < y0, move with vector [0, ε].

Phase 2: Scattering

Condition: P1 ∧ ¬P2 ∧ ¬P3

Action: Let i be the smallest integer such that di < max(D,Di).
Then, if S(p) belongs to {Si+1, Si+2, . . . , SN}, move with vector [0, ε].

Phase 3: Trail formation

Condition: P1 ∧ P2 ∧ ¬P3

Action: Let i be such that S(p) = Si. Let yi = ymin(Si). Then, execute the CFTF algorithm of
Section 3 to form the trail T ′i (yi) with the other processes of Si.

Phase 4: Gathering

Condition: P1 ∧ P3 ∧ ¬P4

Action: Let i be the smallest integer such that di > Di. Let e = di −D.
Then, if S(p) belongs to {Si+1, Si+2, . . . , SN}:

• If e ≤ ε, move with vector [0,−e].

• If e > ε, move with vector [0,−ε].

Figure 2: CFPF Algorithm
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3. Suppose P1 ∧ P2 ∧ ¬P3. Let i ∈ {1, . . . , N}. The moves of Phase 1 and 2 do not increase the
distance between the processes of Si. Therefore, all the processes of Si are still contained in
a circle of diameter R. Thus, as the processes of Si execute the CFTF algorithm in Phase 3,
according to Theorem 1, P1∧P3∧¬P4 is true after a time T3 = O(R). Let Yi (resp. Y ′i ) be the
smallest (resp. largest) y coordinate occupied by a process of Si. During Phase 3, according
to the CFTF algorithm, Yi does not increase and Y ′i does not decrease. Thus, during Phase
3, ∀i ∈ {1, . . . , N − 1}, we have di ≥ D, and the safety condition is respected.

4. Suppose P1 ∧ P3 ∧ ¬P4. ∀i ∈ {1, . . . , N − 1}, Phase 2 increases di of at most max(D,Di) +
ε. Let ∆i be the value of di at the beginning of Phase 4. Then, Σi=N−1

i=1 ∆i ≤ R +
Σi=N−1
i=1 (max(D,Di) + ε) ≤ R + N(D + ε) + Σi=N−1

i=1 Di ≤ D + ε + 2(2 + ε/D)R. Let i
be the integer described in Phase 4. Then, we have di = Di in at most d∆i/εe ≤ 1 + ∆i/ε
time steps. Thus, P4 is true after a time T4 ≤ Σi=N−1

i=1 (1 + ∆i/ε) ≤ N + (Σi=N−1
i=1 ∆i)/ε ≤

N +D/ε+1+2(2/ε+1/D)R = O(R). As the moves of Phase 4 do not allow to have di < Di,
the safety condition is respected.

Once P4 is true, the processes do not move, and thus the liveness condition is satisfied. The
execution time is at most T1 + T2 + T3 + T4 = O(R).

5 Conclusion

We gave and proved the first algorithm for general pattern formation in the plane that always
preserves a minimal distance between processes. We showed that the time complexity of this
problem depends linearly on the diameter of the set of initial and final positions, and that our
algorithm matches this bound.

A difficult open problem would be to study collision-free pattern formation in the presence of
defective or malicious processes, that move independently of the algorithm and perturb the pattern
formation. Also, an important step towards practical applications would be to study the impact of
small errors and imprecision in the moves of processes and in their visibility mechanism. We also
adopted a model where the processes have a global visibility of the swarm, and a challenging open
problem would be to consider limited visibility.
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