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Abstract

The Web became the central medium for valuable sources
of information extraction applications. However, such user-
generated resources are often plagued by inaccuracies and
misinformation due to the inherent openness and uncertainty
of the Web. In this work we study the problem of extract-
ing structured information out of Web data with a credibil-
ity guarantee. The ultimate goal is that not only the struc-
tured information should be extracted as much as possible
but also its credibility is high. To achieve this goal, we pro-
pose a learning process to optimize the parameters of a prob-
abilistic model that captures the relationships between users,
their unstructured contents, and the underlying structured in-
formation. Our evaluations on real-world datasets show that
our approach outperforms the baseline up to 6 times.

1 Introduction
The Web became the central medium for valuable sources
of information such as articles, blogs, and wikis, where peo-
ple constantly share knowledge, report scientific studies, up-
load comments, and write reviews. As a consequence, the
Web emerged as the prime source for extracting informa-
tion. Applications that benefit from information extraction
on top of the Web include systems for knowledge base [6,
25], decision-support [10], recommendations [14], and data
integration [11, 12, 23, 24].

However, the Web is often plagued by unreliable and un-
trustworthy information as Web users can express post their
contents freely. The openness of the Web have enabled users
to share their information and relay data without proper at-
tribution. Moreover, the users also have wide-ranging lev-
els of expertise and availability. This leads to potential er-
rornous, inconsistent, and out-of-date information when ex-
tracting data from the Web. While the quality of Web data
will be still questionable in future, it provides a unique op-
portunity to exploit the wisdom of the crowd.

As a result, there is a need of identifying ‘credible’ infor-
mation out of structured data. That is, we should extract the
data of high correctness and filter out uncertain and error-
neous information. This is motivated by the fact that nowa-
days there is a lot of information extraction applications that
need high quality such as one in healthcare domain [20],
where the extracted information is very sensitive and affects
many lives.

However, existing works on information extraction only
focus on extracting structured data from unstructured con-
tents on the Web [3, 4]. Structured information is hindered
by the sheer amount of avaiable Web data and its unstruc-
tured, free-text representation (i.e. do not follow formal
guidelines, and may even lack proper syntax or spelling).
The literature concerns how to parse these unstructured data
effectively, meaning the structured data should be correctly
identified as-is by avoiding parsing errors. As a result, the
extracted data comes with high recall of information cover-
age, but still questionable in terms of quality due to the in-
herent uncertainty of the Web. Even though there are a few
body of work that study the quality assessment of data as
a post-processing step [15–18, 20–22], the output of their
quality classifiers can be unpredictable when more training
data is provided.

Going beyond the literature, we propose an information
extraction framework that comes with a credibility guar-
antee. Our model allows end-user to specify a credibility
threshold as input. Then, it tries to extract the structured data
as much as possible while ensuring the overall credibility
of extracted data is larger than the pre-defined threhold. In
summary, the contributions of this paper is as follows:

• We formally define the problem of extracting structured
data from the Web with a credibility guarantee.

• We propose a probabilistic model to capture the relation-
ship between the structured data, the unstructured Web
contents and their authors.

• We propose a learning algorithm that allows the credi-
bility guarantee to be met while achieving largest output
size.

The remainder of this paper is organized as follows. In the
second section, we formally define the problem of credible
information extraction. We then introduce how to model var-
ious elements in this problem using the factor graph model
in the third section. In the fourth section, we discuss an al-
gorithm to learn the model that satisfies the credibility con-
straint. In the experiment section, we provide empirical anal-
ysis of our approach using real-world datasets. The experi-
mental results show that we are able to achieve the precision
guarantee with the output size is up to 6 times larger than the
baseline. Finally, we provide the related works and conclude
the paper.
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2 Problem Definition
Our credibile information extraction problem is put in the
context of social media case study. In that, each user pro-
vides one or many posts, which are unstructured contents.
The structured data we are trying to extract are statements,
which are facts in real life.

Our overall goal is to learning a credibility assessment
classifier with a precision guarantee. In particular, our algo-
rithm allows a user to specify a precision threshold as input.
Problem 1 Given a set of users U = {u1, ...,uk}, their posts
P = {p1, ..., pm}, the distinct statements S = {s1, ...,sn} and
a precision threshold τ, return a set of statements consid-
ered to be credible with precision at least τ that maximizes
output size. We have access to an oracle, who can labeled a
statement s as credible or non-credible.

Solving this problem needs to take into account the label-
ing cost – the number of labels that we need from the oracle
– that we seek to minimize. Here the computation time –
the time it takes to produce an output – is neglected since
our problem concerns the quality of the output. Moreover,
thanks to efficient self-configuration of our proposed proba-
bilistic model using factor graph below (i.e. using message
passing and sampling), the computation is scalable.

3 Modeling Credibility in the Web
Our approach leverages the intuition that there is an im-
portant interaction between statement credibility, linguis-
tic characteristics, and user trustworthiness. We therefore
model these elements jointly through a probabilistic graph-
ical model, more specifically a factor graph, where each
statement, post and user is associated with a binary random
variable. Figure 1 provides an overview of our model. For
a given statement, the corresponding variable should have
value 1 if the statement is credible, and 0 otherwise. Like-
wise, the values of post and user variables reflect the objec-
tivity and trustworthiness of posts and users.

User
Post
Statement

Variables

User
Post
Statement

Factors

Figure 1: Credibility Evaluation

3.1 Creation of the factor graph
The primary goal of the proposed factor graph is to retrieve
the credibility label of statements and the observed features

by leveraging the mutual influence between the model’s
variables. The factor graph will capture the following rela-
tionships: (i) each user is connected to all hist posts, (ii) each
statement is connected to all posts from which it can be ex-
tracted (by state of the art information extraction methods),
(iii) each user is connected to statements that appear in at
least one of his posts.

Formally, a factor graph is a bipartite graph M = 〈V,F,E〉
where V is a set of random variables, F is a set of func-
tions (factors), and E ⊆{{v, f} | v∈V, f ∈F} are undirected
edges. A set of random variables V and a set of factors F
fully characterises a factor graph. The definition of the edges
relates each factor f (v1, . . . ,vd) ∈ F to the random variables
over which it is defined, i.e., { f ,vi} ∈E for vi ∈V , 1≤ i≤ d.

In our context, there are three types of random variables
representing users, posts, and statements. We overload nota-
tion and use U , P, and S to refer to the actual users, posts, and
statements, as well as to the associated random variables,
i.e., V =U ∪P∪S. Further, our model includes user factors
fU , post factors fP, and statement factors fS to represent the
relations between these variables, i.e., F = fU ∪ fP∪ fS.

Variables Formally we have ui ∈ {0,1} is the random
variable that represents the user trustworthiness. ui = 0
means that the user ui must not be trusted while ui = 1 means
user ui is trusted. Second, si ∈ {0,1} is the random variable
that represents the statement credibility. si = 0 means that
the statement is not credible and si = 1 means that the state-
ment is credible. Third, pi ∈ {0,1} is the random variable
that represents the post objectivity. pi = 0 means that the
post is subjective whereas pi = 1 means that the post is ob-
jective.

Factors Nodes associated with users and posts have ob-
servable features, which can be extracted from the online
community.

User factors/features. For users, we derive engagement
features (number of questions and answers posted), in-
teraction features (e.g. replies, giving thanks), and demo-
graphic information (e.g. age, gender). The features are pre-
sented in details in [20]. Formally, each user u is associ-
ated with a normalized, multi-dimensional feature vector
〈 f U

1 (u), ..., f U
s (u)〉. Against this background, the user factor

u f is defined as:

u f (u) = exp(
s

∑
i=1

wU
i f U

i (u)u) (1)

Here, f U
i (u) ∈ [0,1] is the feature score of the user for the

i-th feature, which is normalized into the unit interval by
dividing it by the maximum feature value observed among
all users. And wU

i is a weighting parameter indicating the
significance of the individual features. Note that every user
factor uses the same weight vector 〈wU

1 , ...,w
U
s 〉.

Post factors. For posts, we extract linguistic features in the
form of discourse markers and affective phrases. The fea-
tures are presented in detail in [20]. Formally, each post p
is associated with a normalized, multi-dimensional feature



vector 〈 f P
1 , ..., f P

t 〉. As a result, a post factor p f is defined
as:

p f (p) = exp(
t

∑
i=1

wP
t f P

i (p)p) (2)

Here, f P
i (p) ∈ [0,1] is the feature score of the post for the

i-th feature, which is normalized into the unit interval by
dividing it by the maximum feature value observed among
all posts. And wP

i is a weighting parameter indicating the
significance of the individual features. Note that every post
factor uses the same weight vector 〈wP

1 , ...,w
P
t 〉.

Statement factors. Each factor h() depicts the mutual rein-
forcing relationship between user, post, and statement.

hi(u, p,s) = exp(wH
i ·C(u, p,s)) (3)

where wH
i is the weight parameter of a given factor hi in the

factor graph. Here, C(u, p,s) is an indicator function cap-
turing the consistency between user value, post value, and
statement value as follows.

C(u, p,s) =


1 u = 1∧ p = 1∧ s = 1

or u = 0∧ p = 0∧ s = 0
0 u = 1∧ (p⊕ s = 0)

or u = 0∧ (p⊕ s = 1)
0.5 otherwise

(4)

This indicator captures two observations. First, a trustwor-
thy user is likely to post credible statements and a non-
trustworthy user is likely to post non-credible statements.
Second, a non-trustworthy user is unlikely to post credible
statements and a trustworthy user is unlikely to post non-
credible statements. For other cases, we assign a value of
0.5 to equally distribute the possibilities as default.

3.2 Probability Computation

The factor graph model enables us to compute the credibility
of a statement that is provided by a user. This computation
exploits the (marginal) probabilities of the random variables
representing the trustworthiness of users, the credibility of a
statement, and the objectivity of the posts. Since the trust-
worthiness of a user u ∈U and the credibility of a statement
s ∈ S are binary, Pr(s = 1) (or short Pr(s)) or Pr(u) are the
probability that the statement is credible and the user is trust-
worthy, respectively. Probability computation is based on the
correlations defined by the factor functions that relate the
random variables to each other.

Model Parameter. More precisely, we can define W =
{wU} ∪ {wP} ∪ {wH} as the set of all weights. With all
weights are normalized to [0,1], we define a parame-
ter instance of the factor graph as I ∈ [0,1]|W | and I =
〈w1, . . . ,w|W |〉. As a result, given a parameter instance I, wen
can compute the representative probability distribution of
the factor graph as the normalized product over all factors
and variables:

Pr(S,U,P|I) = 1
Z ∏

u
∏

p
∏

s
u f (u) · p f (p) ·h(u, p,s)

=
1
Z ∏

u
∏

p
∏

s
exp(∑

w∈I
w · f unc(.)) (5)

where f unc(.) is a feature or indicator function as aforemen-
tioned.

Marginal probabilities. To compute the marginal proba-
bilities, one can employ Bayesian rules. However, the fac-
tor graph model allows a more efficient computation by us-
ing belief propagation or sampling. Belief propagation con-
siders the (un)certainty as information that is propagated
throughout the factor graph, e.g., by message-passing algo-
rithms or sum-product algorithms [19]. However, these tech-
niques tend to converge slowly if the graph is large and con-
tains circles [32]. When applying factor graph to credibility
assessment, the number of variables grows quickly, result-
ing in large and dense factor graphs. Therefore, we resort
to sampling to find the most probable values of random vari-
ables, while taking into account the factors connecting them.
Specifically, Gibbs sampling proved to be a highly efficient
and effective mechanism for factor graphs [32].

3.3 Instantiation
Given a parameter instance I, the probability computation on
the factor graph returns the marginal probabilities of state-
ment variables. That is, for each statement s, we have a
probability Pr(s is credible). Based on these probabilities,
we can instantiate a set of statements (denoted as R) that
we believe to be credible. We follow a simple approach to
select statements that have probability larger than 0.5; i.e.
R = {s ∈ S | Pr(s = credible)> 0.5}. It is worth noting that
the set of instantiated statements R depends on the parameter
instance I and the factor graph model M in which we denote
R = instantiate(〈M, I〉).

4 Learning the model with precision
guarantee

Problem 1 can be reformulated as a learning problem where
we need to find a parameter instance I from the multi-
dimensional parameter space [0,1]|W | such that the precision
of instantiated statements is guarantee and its output size is
maximized. Formally, given a set of users U = {u1, ...,uk},
their posts P = {p1, ..., pm}, the distinct statements S =
{s1, ...,sn}, we can construct a factor graph model M as
above. Now given a precision threshold τ, we need to find
a parameter instance I such that Prec(R)≥ τ and |R| is max-
imal, where R = instantiate(〈M, I〉).

For brevity sake, we denote Prec(I) = Prec(R) as the
precision of a given parameter instance, which is the frac-
tion of actual credible statements over the total of instan-
tiated statements. As the ground truth for all statements is
unknown before-hand, we provide a precision estimation in
Section 4.3. Similarly, we denote Size(I) = |R| as the output
size of a given parameter instance.



Algorithm 1: The iterative parameter learning process
input : a set of user U ,

a set of posts P,
a set of statements S,
a precision threshold τ.

output: a set of credible statement R.

// Initialization

1 M← construct(U,P,S); // Construct a factor graph
2 I = 〈1,1, ...,1〉;
3 for i = 1..d do
4 I = binarySearch(I, i,τ);

5 T = Ω = {I};
6 while Ω 6= /0 do
7 I = pop(Ω);
8 for i = 1..d do
9 I′ = I;

10 I′[i] = I[i]−1/k;
11 for j = 1..d, j 6= i do
12 I′ = binarySearch(I′, j,τ);

13 I′ = binarySearch(I′, i,τ);
14 Ω = Ω∪{I′};
15 T = T ∪{I′};

16 I∗ = argmaxI∈T Size(I);
17 R = instantiate(〈M, I∗〉);
18 return R;

Algorithm 2: Binary search
input : a parameter instance I,

the i-dimension of I,
a precision threshold τ.

output: parameter instance I with new i-dimension value.
1 hi← I[i]∗ k
2 lo← 0
3 while hi− lo≥ 2 do
4 mid← (hi+ lo)/2
5 I[i] = mid/k
6 if Prec(I)> τ then
7 hi = mid
8 end
9 else

10 lo = mid
11 end
12 end
13 return I

4.1 Parameter Search
In general, to find the parameter instance that satisfies the
constraint, it requires us to search over all the possible in-
stances [0,1]|W |, which is very large [1]. In order to reduce
the search space, we make two observations: 1) as there are
an infinite number of instances in the parameter space, an
approximation is required to make it finite and 2) there is a
tradeoff tendency between precision and output size that as
we increase the feature weights of a parameter instance I,
the precision increases while its output size decreases. The
second observation comes from the fact that each weight-
ing parameter reflects the perceived importance of the corre-

sponding feature. Hence, increasing a weight value applies
a stricter constraint on the features, which increases the pre-
cision while reducing the output size and vice versa.

Regarding the first observation, we can discretize the pa-
rameter space by using a granularity parameter k and de-
fine a set of (k + 1)|W | points to be a set of points of the
form I = 〈b1, ...,b|W |〉, where each b is of the form j

k where
j ∈ {0,1, ...,k}. This allows us to reduce the search space by
only focusing on the points inside the “grid”.

Regarding the second observation, it allows us to make
the assumption on the monotonicity of precision which is
stated as follows:
Definition 1 (Monotonicity) We say that precision is
monotonic w.r.t. the features of the factor graph if the fol-
lowing condition holds. For any two parameter instances Ii
and I j, if Ii � I j then Prec(Ii)≥ Prec(I j).
This monotonicity assumption is intuitive but not universally
valid. One can construct a set of meaningless features for
which the precision is not monotonic. Moreover, a feature
might not be necessarily monotonic on its whole value do-
main (but a range of values is often enough). In the exper-
iments, we show that this assumption holds for the studied
features in real-world datasets.

Here we define an ordering on the vector representation
of parameter instance. That is, Ii � I j if ∀m ∈ [1, |W |],wim ≥
w jm. If the monotonicity assumption holds, it entails the
anti-monotonicity of output size i.e., if Ii � I j then Size(Ii)≥
Size(I j). This is due to the trade-off between maximizing
precision and maximizing output size: one can increase pre-
cision at the cost of output size and vice-versa. For example,
one can achieve a perfect precision (with high chance) by
returning the most credible statements but the output size is
only 1.

4.2 Iterative learning process
The monotonicity assumption implies that there is a set
of parameter instances T = {I | Prec(I) ≥ τ ∧ ∀I′ ≺
I,Prec(I′) < τ}. On the other hand, based on the anti-
monotonicity of output size, the instances in T also sat-
isfy another property that ∀I ∈ T,∀I′ � I,Rec(I′) < Rec(I).
In other words, Problem 1 can be reformulated as finding
amongst the parameter instances I ∈ T the one with the high-
est recall as T contains the instances that satisfy the preci-
sion threshold while being candidates for the one with the
largest output size. In the following, we discuss how to enu-
merate the parameter instances in T as when T is available,
finding the one with the maximum output size is straightfor-
ward.

The iterative learning process is shown in Algorithm 1.
Initially, we construct a factor graph based on the users, their
posts and statements (line 1) as discussed in the previous
section. Then, the algorithm will search for all the param-
eter instances in T . It first searches for an initial parameter
instance that belongs to T (line 2-4) using the binarySearch
function. This function does binary search to look for the pa-
rameter instance I′ by changing value in the i-th dimension
of the parameter instance I such that I′[i] is the smallest value
in the i-th dimension such that Prec(I′) is still larger than



τ. From the initial parameter instance that belongs to T , it
generates other instances based on this instance. These new
instances, in turn, are used to find other instances (line 5-
15). From the current instance I (line 7) that is already in
T , it generates another instance I′ by changing the i-th value
in I, which makes I � I′ (line 10). However, this instance
I′ may not satisfy the precision threshold, which requires
us to search through other dimensions j 6= i ∈ [1,d] using
binarySearch to make I′ ∈ T (line 11). However, we need
to re-adjust the i-th dimension again to avoid oversatisfying
the precision threshold (line 13). The algorithm halts when
there is no such instance remaining (line 6). Then, we find
the parameter instance with the largest output size (line 16)
and from this parameter instance, we instantiate the set of
credible statements (line 17).

4.3 Precision estimation

We now discuss the implementation of the precision esti-
mation (i.e. Prec(I) call) in Algorithm 2. Since the number
of statements is large, it would be costly to obtain ground
truth for all statements. Instead, it is practical to ask ground
truth for a number of sample statements (i.e. available train-
ing data or expert annotations). In addition, asking for labels
for many statements goes against the purpose of our setting,
which is finding a set of credible statements.

Guided sampling. To this end, we approximate the precision
of the instantiated statements R using sampling technique.
We apply Monte-Carlo sampling technique [] in which we
ask an expert to label a set of randomly selected statements
with confidence coefficient of 90%. Especially, the sampler
is guided by the probability distribution in Eq. 5. This guid-
ance helps the samples reflect the true distribution of data
and make the precision estimation more accurate. The preci-
sion of R is then approximated based on the precision of the
sample statements.

Reusing samples. Although the above approach only re-
quires a small number of samples per call, the total number
of samples across different calls to estimate precision can be
high as the selected samples can be different. To this end,
we introduce a technique to reuse the samples from differ-
ent calls to reduce the total cost to obtain the samples. That
is, we order the statements in S based on the hashed values
of the statements. As a result, in order to sample statements
from R, we pick the statements by the increasing order of
hash values. This increases the chance of reusing statements
in different calls to the oracle, hence, reducing the cost to
obtain the labels for the statements.

The hash function is designed in such a way that the prob-
ability distribution of data is preserved. To do this, we com-
pute the importance of each statement as the number of users
and the number of their posts sharing this statement. Intu-
itively, the importance distribution of statements aligns with
their probability distribution, since credible/non-credibles
statements are often shared by many trustworthy/untrust-
worthy users. As a result, the order of hash values is the
order of importance degrees of statements.

5 Experimental Evaluation
5.1 Settings
Datasets To validate the effectiveness of our proposed ap-
proach, we conducted experiments on a healthcare dataset[].
The dataset contains 2.8 million posts provided by 15,000
users on a healthcare forum. There is a total of 291276 state-
ments about side-effects of drugs extracted from the posts.
The dataset also contains the “ground-truth” which is the
recognized side-effects of the drugs provided by experts. Ac-
cording to this ground truth, we can derive the labels (credi-
ble or non-credible) of 72819 statements; i.e. check whether
a given statement agrees or negates against the expert knowl-
edge.

Algorithm In this set of experiments, we compare our al-
gorithm with a baseline method. The baseline method con-
structs a linear classifier L based on the features discussed
in Section 3. The linear classifier is a weighted combination
of the features. Each weight described the importance of the
corresponding feature. In order to learn the weights, we use
a training dataset of 200 samples and leverage the MIRA
algorithm[5] to learn the weights of the linear classifier.

However, the linear classifier constructed as above does
not guarantee the precision. In order to guarantee the pre-
cision, we set a threshold δ for the classifier to select the
credible statements from the dataset. For a statement s, if
L(s) > δ, statement s is considered credible and vice versa.
The threshold δ allows us to control the precision of the re-
turned statements by the baseline method. The higher the
threshold, the higher the precision. After constructed the lin-
ear classifier, we use binary search to find a smallest possible
threshold δ such that the returned statements have a preci-
sion higher than the precision constraint τ.

5.2 Monotonicity of dataset
We first carried out an experiment to verify the monotonic-
ity assumption. In the dataset, we have 72819 statements that
already had labels from the experts. For each statement, we
compute the well-known features in the literature, includ-
ing affective features and document length. Then, for differ-
ent values of these features, we report the precision of the
statements, by computing the fraction of credible statements
among the statements whose feature values fallen into the
given range.

Figure 2 shows the monotonicity result. The X-axis is the
value of the features. The Y-axis presents the “precision” of
the respective statements. The key finding is that as the val-
ues of the affective features increase, the precision of corre-
sponding statements is non-decreasing. For example, when
the values of the affective features increases from [0.6,0.9] to
[0.9,1.0], the precision increases from 0.81 to 0.95. We ob-
serve the same trend for the post length feature, even though
the monotonicity holds from 0 to 0.8. This shows that our
monotonicity assumption is valid in real datasets.

5.3 Correctness of learning model
In this experiment, we study the correctness of our learn-
ing model is finding credible statements. The idea is that
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Figure 2: Monotonicity assumption

the more labels are elicited from user, the better the model
should be in returning credible statements. Regarding the
setting, we set the precision threshold τ = 0.9.
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Figure 3: Recall w.r.t. # samples

Figure 3 depicts the results of instantiation during the
learning process (i.e. Algorithm 1). The X-axis presents the
number of expert labels used by the process (accumulated
after each precision estimation call) over the total number
of available labels. The Y-axis presents the number of state-
ments that are instantiated as credible. It can be clearly seen
that the more labels are provided, the output size of instan-
tiated statements increases. Especially, at 22% labels, the
model reaches stable and the increase of labels after this
point does not significantly increase the output size. This
represents the effectiveness of our learning process in using
the labels as we can instantiate most of the credible state-
ments without too much efforts.

Deep understandings of the learning process. We further
provide the characteristics of our learning model given dif-
ferent precision requirements. In particular, we vary the pre-
cision threshold from τ = 0.8 to τ = 0.9. Then we report
the quality metrics of learning process, including the out-
put size, the actual precision, the number of labels, and the
number of precision estimations. Regarding the setting, we
perform the experiment on the 72819 statements whose la-
bels are known as we want to compute the actual precision
by comparing the instantiated statements with the expert la-
bels.

Metrics τ : precision threshold

0.8 0.85 0.9

Output size 91.7K 87.6K 84.2K
Precision 0.82 0.84 0.91
#Labeled statements 21% 28% 24%

Table 1: Characteristics of learning process

Table 1 illustrates the result. An important observation is
that as we increase the precision threshold, the output size
decreases. This is due to the trade-off between maximiz-
ing precision and maximizing the number of credible state-
ments. Another noticeable observation is that the actual pre-
cision always satisfies the threshold. Although at τ = 0.85,
the actual precision is 0.84 but the difference is negligible.
The final finding is that our learning process does not require
too many labeled statements in order to achieve the quality
requirement.

5.4 Effectiveness of learning model
In this experiment, we compare the effectiveness of our algo-
rithm with the baseline w.r.t. the output size of instantiated
statements. The idea is that within the same precision re-
quirement, our model is able to instantiate more statements
than the baseline. Regarding the setting, we vary the preci-
sion threshold from τ = 0.8 to τ = 0.96.

Figure 4 presents the result. The X-axis is the precision
threshold and the Y-axis is the ratio of output size between
our learning model and the baseline. We observe that our al-
gorithm outperforms the baseline significantly. For instance,
when the precision constraint is 0.82, we are able to re-
turn nearly 6 times the amount of the baseline. The above
experiments show that our approach is not only able to
statisfy the precision guarantee but also with higher output
size. This can be explained as follows. When the precision
threshold is low, the baseline often over-satisfies the require-
ment and thus instantiate far less number of statements than
our model. When the precision threshold is high, the over-
satisfying becomes neglible and thus the baseline performs
better than before. However, it is still worse than our model
since it does not taking into account the relationships be-
tween users, posts, and statements as captured by our factor
graph model.
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precision estimation

Effectiveness of precision estimation. The core of our
learning model is the precision estimation to guide the
search of parameters. In this setting, we would like to ver-
ify the accuracy of our precision estimation using sampling
techniques as proposed in Section 4.3. To this end, we will
compare the precision of our model output with the preci-
sion requirement. To able to compute the actual precision,
we also have to provide the evaluation only on the 72819
statements that already had labels from the experts.

Figure 5 illustrates the effectiveness of our precision es-
timation. The experiment is conducted by varying precision
threshold from τ = 0.80 to τ = 0.96. Our algorithm is able



to return the statements that satisfy the precision constraint.
This can be seen as the precision values of our algorithm are
near the identity line. For instance, when the precision con-
straint is 0.9, the instantiated statements have a precision of
0.92. In some cases, the precision is less than the threshold
but the difference is negligible (< 0.02).

6 Related Work

Active learning. Active learning approaches allows the
learning algorithm to choose the data it wants to get la-
bels [28], which is suitable in settings where the labels
are costly to obtain. It has been applied in various ma-
chine learning applications such as speech recogntion [34],
information extraction [2] and text classification [29]. In
credibility assessment, active learning approaches can be
classified into two categories: classifier-independent and
classifier-specific. Classifier-specific approaches requires
constructing a classifier. Notable works in this category
are SVMs [29] and decision trees [31] while committee-
based approaches [2] belong to classifier-independent cat-
egory. Although our approach is similar to active learning
approaches, there is a fundamental difference. Traditional
active learning approaches do not guarantee that the values
returned by the learning algorithm satisfy a predefined qual-
ity. On the other hand, our approach is able to achieve this
constraint while maximizing the output size.

Truth Finding. Given a set of data items claimed by mul-
tiple sources, the truth finding (a.k.a. truth discovery) prob-
lem is to determine the true values of each claimed item,
with various usages in information corroboration [13], and
data fusion [7]. Existing work on truth finding also mod-
els the mutual reinforcing relationship between data items
and sources, e.g., by a Bayesian model [33], maximum like-
lihood estimation [30], and latent credibility analysis [27].
In addition, these techniques often incorporate prior knowl-
edge about various aspects of the source and the data, such
as the dependence between sources [8] and the temporal di-
mension in evolving data [9]. Although these techniques are
able to estimate the truthfulness of the posts, they do not
have a precision guarantee on the truth estimation.

Credibility Features. A lot of prior research have been con-
ducted on identifying credible statements from the Web [26].
In these works, they capture the credbility of a statement as a
combination of individual features/indicators. The first type
of features is content-based, such as semantic features (e.g.
category, entities, keywords), sentiments features (e.g. sub-
jectivity), and syntactic features (part-of-speech tag, punctu-
ation marks, spelling errors), advertisements, and page lay-
out. The second type of features is network-based, such as
the overall ratings of users sharing the same statements.
However, most of the exsiting works only compute the cred-
ibility as an aggregation function of these features. On top
of these works, we reuse these features and additionally take
into account the mutual relationships between users, their
posts, and statements by the factor graph model.

7 Conclusions and Future Work
This paper proposed techniques to find credible statements
in online user-generated contents with a precision guaran-
tee. The approach comprises of two components: a proba-
bilistic model and a learning process. The former is respon-
sible for capturing the mutual reinforcing relationships be-
tween users, posts, and statements and enforce the consis-
tency observations about credibility. For example, a trust-
worthy user is likely to post credible statements and vice-
versa. The instantiation of the probabilistic model is a set
of (probably) credible statements, which is the output. The
latter searches for the best-suitable parameters of the prob-
abilistic model such that the output precision satisfying a
pre-defined threshold and the output size is maximal. Our
evaluation showed that our techniques outperform respec-
tive baselines significantly, up to 6 times better.

In future work, as online users are often divided by com-
munities with a wide range of characteristics, we aim to ex-
tend the probabilistic model to capture the community mem-
bership of users. In addition, we also intend to extend our
approach to handle continuous/multi-set labels as the cur-
rent approach only supports discrete labels.
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