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Broadband Low-Frequency Electroacoustic
Absorbers through Hybrid Sensor-/Shunt-Based
Impedance Control

Etienne Rivet, Sami Karkar, and Hervé Lissek

Abstract—This paper proposes a hybrid impedance control
architecture for an electroacoustic absorber, that combines an
improved microphone-based feedforward control with a current-
driven electrodynamic loudspeaker system. Feedforward control
architecture enables stable control to be achieved, and current
driving method discards the effect of the voice coil inductance. A
method is given for designing the transfer function to be imple-
mented in the controller, according to a target specific acoustic
impedance and mechanical parameters of the transducer. Nu-
merical simulations present the expected acoustic performance,
introducing global performance indicators such as the bandwidth
of efficient absorption. Experimental assessments in a waveguide
confirmed the accuracy of the model and the efficiency of the
hybrid control technique for achieving broadband, stable low-
frequency electroacoustic absorbers. An application to damping
of resonances in a duct is also presented, and the application
to the modal equalization in actual listening rooms is finally
discussed.

Index Terms—Active sound absorption, electrodynamic loud-
speaker, modal equalization, pressure control, resonances damp-
ing.

I. INTRODUCTION

N CRITICAL listening spaces, such as recording studios

or home theaters, most problematic room resonances occur
within the lowest audible frequency decade [20 - 200 Hz],
impairing the quality of sound diffusion in the room within
a broad frequency range. Broadband low-frequency sound
absorbers are then required to efficiently damp such modes, in
order to equalize the room response. However, sound absorp-
tion is hardly achievable in the low-frequency range with con-
ventional passive porous materials. Absorbing wedges, which
are employed in anechoic chambers, are designed according to
the quarter-wavelength rule, leading to a minimal thickness of
almost 3 meters at 30 Hz [1]. Even though the bulkiness can be
reduced by a factor 2 by stacking different layers of materials
with different flow resistivities [2], the overall thickness of
wall-mounted porous absorbers in the low-frequency regime
cannot be reduced to just a few meters, which makes them
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impractical as furnishing elements for listening rooms. To
overcome this size limitation, passive Helmholtz resonators
and bass-traps (membrane absorbers) can be used. However,
limited by their narrow frequency bandwidth, these passive
absorbers are unable to cover the full frequency decade of
interest [3].

Active sound absorbers may make it possible to extend the
frequency bandwidth over which membrane absorbers present
a significant sound absorption capability. The first step towards
active sound absorbers consisted in substituting a loudspeaker
diaphragm for the passive membrane resonator, and connect-
ing a given electrical impedance or control system to the
loudspeaker terminals [4], [5]. This technique for designing
electroacoustic absorbers improves both the sound absorption
and the bandwidth of the resonator. The shunt impedance was
even synthesized to further extend the frequency bandwidth
of absorption, whereas achieving perfect sound absorption
with a sensorless control loop [6], [7]. The synthesis of an
electrical admittance was preferred to that of an impedance
since the transfer function of the latter was not proper and
could not be implemented on digital platforms. A voltage
controlled current source was added to realize the desired
electrical impedance at the loudspeaker terminals. Through the
synthesized load impedance, the sensorless control required
to neutralize the blocked electrical impedance of the voice
coil for good sound absorption performance. Several improved
models taking into account the semi-inductive behaviour were
proposed, but cannot be represented by an equivalent electrical
circuit or digitally implemented [8], [9]. Using a simplified
model of the blocked electrical impedance of the voice coil
in the synthesized impedance deteriorates the sound absorp-
tion performance, especially above the loudspeaker resonance
frequency.

Alternatively, sensor-based control techniques either require
two external sensors [10], [11], but are difficult to use for room
applications, or one sensor but requires the design of a constant
velocity sound source [12] or the use a velocity estimator [13].
These techniques usually employ a voltage amplifier to drive
the loudspeaker, involving the voice-coil inductance in the
control, which as a consequence limits the sound absorption
performance at higher frequencies. Compensating filters were
added in the control loop to counteract the roll-off (due to
the voice coil inductance) of the efficient acoustic impedance,
improving slightly the robustness and stability of the control
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[14].

Substituting an external sensor for the voltage at the loud-
speaker terminals in the shunt impedance appears to be an
interesting direction to improve the control stability. Sensor-
based control techniques enables sound absorption over a
broader bandwidth to be achieved, and the current driving
method has the advantage of minimizing the voice coil induc-
tance effect. The motivation of this paper is the development of
a hybrid control concept that merges sensor- and shunt-based
acoustic impedance control, leading to efficient, broadband
low-frequency absorbers.

The paper is organized as follows. In SectionIl, a model
of the electrodynamic loudspeaker is introduced before pre-
senting the hybrid sensor-/shunt-based control, together with
a method for identifying control parameters according to a
prescribed target specific acoustic impedance. In Section III,
numerical simulations are provided, highlighting the wide
bandwidth of absorption. Section IV provides an experimental
validation of the concept, a discussion on the application to
modal damping in a 1-D configuration, and an argumentation
on the application of such a concept in reducing the acoustic
degradations due to lower order modes in actual listening
rooms.

II. DESIGN OF THE LOW-FREQUENCY ELECTROACOUSTIC
ABSORBER

A. Model of the electrodynamic loudspeaker

An electrodynamic loudspeaker can be considered as a
single-degree-of-freedom oscillator that is mechanically driven
by a voice coil within a permanent and almost constant
magnetic field. It is assumed that all forces acting on the
transducer, especially those resulting from the total sound
pressure p; at the diaphragm surface, a combination of the
incident and reflected waves, are small enough so that the
governing equations remain linear. The mechanical part is
assimilated to a simple mass - spring - damper system (i.e.,
mass M,,s, mechanical compliance C,s accounting for the
surround suspension and the spider, and mechanical resistance
R,,s, respectively) in the low-frequency range.

If we denote the effective piston area by Sy and the force
factor of the moving-coil transducer by Bl, the equation of
motion of the closed-box loudspeaker diaphragm is derived
from Newton’s second law, which can be written as

du(t)

Mmsi
dt

= Sdpt(t) - BlZ(t) - Rmsv(t)

1 pc*S32
B (cms 7 )/”(t)dt M

where v is the incoming diaphragm velocity and ¢ is the
electrical current flowing through the voice coil. The loud-
speaker is loaded by a rear cabinet of volume V}, the reaction
of the fluid acting on the rear face is usually modelled as a
mechanical compliance C,,,, = V;,/(pc?S32), where p is the
density of the medium and c is the speed of sound in air. The
last term of (1) can then be represented by the total mechanical
compliance Cye = (CrnsCrnb)/(Crns+Cmp) in the following.

Sdpt

F,., =Bli

Fig. 1. Schematic of the closed-box electrodynamic loudspeaker.

A simplified governing equation of the electrical dynamics
can be written as

u(t) = <Le;t + Re) i(t) +e(t) ()
where u is the input voltage between the electrical terminals,
R, is the DC resistance, L. is the self-inductance of the
voice coil, and €(t) = —Blwv(t) is the electromotive force
due to the movement of the voice coil within the permanent
magnetic field. Fig. 1 shows the schematic of the closed-box
electrodynamic loudspeaker.

Considering the Laplace variable s = j2xf, f being the
frequency, the Laplace transform of (1) and (2) reads

(3a)

SaPi(s) = Zn(s)V(s) + BLI(s)
(3b)

U(s) = Z.(s)I(s) — BLV(s)

where Z,,(s) = sMys + Ryms + 1/(sChpe) is the mechanical
impedance of the closed-box loudspeaker and Z.(s) = sL. +
R, is the blocked electrical impedance of the voice coil.

B. Sound absorption capability

The dynamic response of the diaphragm to an external
acoustic disturbance, characterizing the acoustic properties
of the surface, can be described from the specific acoustic
impedance, which is defined as the complex ratio of the
total sound pressure P;(s) at the diaphragm to the diaphragm
velocity V(s). In the case of the open circuit loudspeaker,
namely the case where no electrical current ¢ circulates through
the coil, this quantity can be directly derived from (3a) as

_ Pi(s)  Zn(s)
Zs(s) = V(s) Sy

“4)

For 1-D configurations, the sound absorption coefficient,
which defines the ratio of the acoustic energy absorbed by the
loudspeaker over the incident energy (under normal incidence),
is expressed as

ZS(f) — pC 2

Zs(f) + pc

The bandwidth of efficient sound absorption is defined as the
frequency range over which the total sound energy in front
of the diaphragm is less than twice the total sound energy in
the ideal case o = 1, that is to say p; < \@pi. This criterion

a(f)=1- ‘ 5)
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Fig. 2. Block diagrams of the electrodynamic loudspeaker system under
control by sensing (a) the total sound pressure at the diaphragm or (b)
diaphragm velocity. The light grey and dark grey areas highlight the plant
and controller respectively.

corresponds to a sound absorption coefficient o > 0.83 .
Note that the sound absorption capability of the loudspeaker
diaphragm can be modified through the control of the electrical
current circulating through the voice-coil, as can be seen in
(3a).

C. Formulation of the hybrid sensor-/shunt-based control con-
cept

The main motivation of the method presented in this paper is
to be able to design stable broadband low-frequency electroa-
coustic absorbers, with the aim of practical implementation of
room modal equalization (with acoustic and/or electroacoustic
sources) and noise control in buildings. No prior information
about the sound source (signal, location) is known from the
system. Simple models of the blocked electrical impedance,
as expressed in Eq. (3b), do not take into account the semi-
inductive behaviour accurately enough. This mismatch causes
a limitation for the achieved absorption bandwidth in the
synthesized shunt impedance control [7]. Improved models,
as those proposed in [8] and [9], cannot be represented
by an equivalent electrical circuit or digitally implemented.
Moreover, voltage drive sensor-based techniques unavoidably
involve the voice-coil inductance in the control, which, as a
consequence, also limits the sound absorption performance
at higher frequencies. The current driving method makes it
possible to bypass (3b), minimizing the voice coil inductance
effect. Using only one sensor and taking into account the
loudspeaker model involved in (3a), as in the method presented

'Tdeal case: the total sound energy is equal to the incident wave energy.
Threshold case: the total sound energy in front of the diaphragm (sound energy
of the sum of incident and reflected waves) is equal to twice the sound energy
of the incident wave alone.

in [7], it is possible to control the dynamic response of the
diaphragm of the current-driven loudspeaker. Assuming that
a target specific acoustic impedance Zg; is realized at the
diaphragm, two approaches are presented in the following,
depending on whether a pressure or velocity sensor is used.

1) First approach: from total sound pressure to electrical
current: The transfer function ©(s) from the total sound
pressure P;(s) at the diaphragm to the electrical current I(s)
can be derived from (3a) as

_I(s)  SaqZst(s) = Z(s)
O(s) = P(s)  BlZu(s)

The closed form expression of the specific acoustic impedance
then becomes

(6)

Zm(s)

Z:) = 5 " hreg) @
Figure 2a shows the block diagram of the controlled loud-
speaker by sensing the total sound pressure at the diaphragm.
In this scheme, it can be clearly seen that the blocked electrical
impedance Z. of the loudspeaker is absent from the control.
Current drive presents the advantage of discarding Kirchhoff’s
law (2), thus eliminating the blocked electrical impedance Z,
in the equation of the loudspeaker, whereas this quantity can
potentially be a source of instability in a voltage drive control
configuration [10], [14]. Nevertheless, this strategy requires an
accurate evaluation of the loudspeaker mechanical parameters,
such as the effective piston area Sy, the force factor Bl, and
the mechanical impedance (mass M,,, resistance R,,s, and
compliance Cy.).

2) Second approach: from diaphragm velocity to electrical
current: A similar approach can be followed by sensing the
diaphragm velocity instead of the total sound pressure. The
transfer function T'(s) from the diaphragm velocity V (s) to
the electrical current /(s) yields

I'(s) =
©) =7 Bl ®
The specific acoustic impedance thus takes the form
Zm(s) + BlT'(s
7 s(S) = M 9)

Sq

Fig. 2b shows the block diagram of the controlled loudspeaker
by sensing the diaphragm velocity, thus taking the form of a
feedback control architecture.

3) Control strategy: Depending on the expression of the
target specific acoustic impedance Z,;(s) and due to real-time
constraints at low frequencies, one approach may be more
appropriate than the other. As the use of a pressure sensor is
less expensive and easier to implement than a velocity sensor,
the implementation of the transfer function ©(s) has been
preferred to that of I'(s) in the following.

Discarding the electrical part of the loudspeaker and using
the signal received from a sensor thus allows for a simple
way to control the dynamic response of the diaphragm to
an external sound pressure, by modifying its mechanical
resistance and reactance simultaneously.
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D. Target specific acoustic impedance for the diaphragm

To achieve maximal sound absorption under normal inci-
dence (i.e. a = 1), the specific acoustic impedance Z;(s) may
ideally be set to a target specific acoustic resistance R, equal
to the characteristic specific acoustic impedance of the medium
Z. = pc (corresponding to the impedance matching case). This
implies that the phase between the total sound pressure P;(s)
at the diaphragm and diaphragm velocity V' (s) should be zero
over the whole frequency range. However, the specific acoustic
impedance Z,(s) in (4) includes reactive terms due to the
compliance C,,. and mass M,,; of the diaphragm, which in-
variably induces a mismatch with the desired specific acoustic
resistance R, away from the resonance frequency. As neither
the mass nor the compliance can be completely cancelled, a
practical solution is to define a complex, frequency-dependent
target specific acoustic impedance by the following parametric
model:

Mo 1%
Ret + ————

So Y SO

where 0 < p < 1 is a factor that decreases simultaneously

the effective mass uM,,s and stiffness p/C,, in order to

extend the bandwidth of maximal sound absorption. The

corresponding resonance frequency is equal to

1

fo - 2m MmsCmc

In this configuration, the bandwidth of efficient sound absorp-

tion is found to be

_ Sd (\/5 - 1>2(Rst + Zc)2 - (Rst - Zc)2
BW B 27TMMms\/ 1- (\@ - 1)2

Zsi(s) =s (10

(1)

(12)
and is only valid for

‘Rst - \/§Zc| S Zc

Note that the higher the term Sy/M,,s, the wider the band-
width BW. Moreover, the compliance C,,. is not involved
in (12), but makes it possible to adjust passively the desired
resonance frequency fy of the low-frequency electroacoustic
absorber, through the cabinet volume Vj, as can be seen in
(2) and (11). The control of parameter ;. then extends the
bandwidth of efficient sound absorption around this central
frequency. It is also conceivable to apply two different reduc-
tion factors 1 for the mass and po for the stiffness in (10), to
shift the resonance frequency f without modifying the cabinet
volume V; 2.

13)

III. NUMERICAL ANALYSIS
A. Sound absorption performance

The overall performance of the electroacoustic absorber was
first evaluated by computing the equations presented in Section
II, considering a Peerless SDS-P830657 loudspeaker mounted
in a closed-box of volume V;, = 10dm®. The mechanical
parameters of the loudspeaker were estimated from the mea-
surement of the mechanical impedance of the loudspeaker di-
aphragm, mounted at the termination of a standing-wave duct,

2This case will not be further investigated here.

TABLE I
SMALL SIGNAL PARAMETERS OF THE PEERLESS SDS-P830657
LOUDSPEAKER IN A CLOSED-BOX OF VOLUME Vj, = 10 bM3

Parameter Notation  Value Unit
Effective piston area Sa 151 cm?
Moving mass M s 14.67 g
Mechanical resistance Rms 1.31 N-s:m—1
Mechanical compliance Cme 24235 pum-N—1
Force factor Bl 5.98 N.A—?
Density of the air at 2904 K P 1.2 kg-m—3
Sound speed in the air at 294K c 344 m-s~1
TABLE II

SETTING CASES AND CORRESPONDING COMPUTED CONTROL RESULTS

Setting cases Control results

Reduction factor Target resistance Resonance frequency Bandwidth

u Rg: (Pa-sm™ 1) fo (Hz) BW (Hz)
A 1 Rms/Sq 84 -
B 0.15 pcl8 84 -
C 0.15 pc 84 410

excited by an external sound source with broadband noise.
The experimental setup is further detailed in Section IV. This
way, the acoustic radiation impedance which depends on the
environment in which the loudspeaker is located, was already
taken into account in the mechanical impedance Z,,. To avoid
numerous annotations, the mechanical impedance components
(i.e. My, Rins, and Cy, ) account for the radiation impedance
in the following. The physical parameters are reported in Table
L.

Table II presents three simulation cases (labelled A-C)
corresponding to three sets of values for the target specific
acoustic impedance parameters (1 and Rg;). Although the
proposed control strategy makes it possible to change the
resonance frequency of the electroacoustic absorber, all simu-
lated cases have the same resonance frequency. The last two
columns of Table II present the achieved control performance
in terms of resonance frequency fy and bandwidth BW of
efficient absorption. The baseline configuration A corresponds
to the passive mechanical resonator situation, where the loud-
speaker was in open circuit (no electrical current flowing
through the voice coil). Configurations B and C correspond
to control settings achieving the same diminution of 85 % of
the loudspeaker effective mass and stiffness, and assigning the
target acoustic resistances pc/8 and pc respectively.

Fig. 3a illustrates the frequency responses of the specific
acoustic impedances computed from the control setting values
listed in Table II. The expected performance in terms of
sound absorption coefficient is given in Fig. 3b. When the
loudspeaker is in open circuit (case A), the electroacoustic
absorber behaves as a passive second-order bandpass system.
At low frequencies the specific acoustic impedance is con-
trolled by stiffness, the magnitude decreasing as 1/(S3Cie f)-
Then it is controlled by resistance R,,s/Sq, with a minimum
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Fig. 3. (a) Bode plots of the specific acoustic impedances and the correspond-
ing sound absorption coefficients (b) of the electroacoustic absorber computed
in open circuit (case A) and under control (cases B and C).

amplitude at resonance, and above resonance it is controlled
by mass, the magnitude increasing as f M,,s/Sq. The phase
shift between the total sound pressure at the diaphragm and
diaphragm velocity tends to —m/2 at low frequencies, is equal
to zero at resonance, and tends to 7/2 at high frequencies.
Case C in Fig. 3a shows that the specific acoustic impedance
of the diaphragm could be matched to the characteristic
impedance of the medium pc over a large frequency range,
whereas decreasing the mass and stiffness by 85 % relative
to those presented by the passive loudspeaker diaphragm, thus
extending the control bandwidth. In case B, the target acoustic
resistance value was chosen so as to be smaller than the one
obtained with the passive loudspeaker diaphragm, to illustrate
the possibility to assign small values of acoustic resistance
with this control strategy. As shown in Fig. 4, the bode plots
of the transfer functions ©(s) computed for cases B and C
have different quality factors, according to the desired specific
acoustic resistance R,;. The phase of the transfer function also

h
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P
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Fig. 4. Bode plots of the transfer function ©(s) from the total sound pressure
at the diaphragm to the current flowing through the voice coil computed for
the setting cases B and C.

changes around the resonance frequency depending on the sign
of SqRst — Rimns-

B. Damping of low-frequency resonances

To illustrate the capability of the broadband electroacoustic
absorber to damp low-frequency resonances in a waveguide,
transfer functions from the driving voltage of the sound source
to the sound pressure level were processed along the duct,
for different terminations of the duct. The sound pressure
levels with the hard-wall condition were compared to the
cases where an electroacoustic absorber terminated the duct,
either in open-circuit (case A) or with the control (case C).
Through the simulation, it is intended to show the effect of the
active impedance control, both in terms of sound absorption
performance and attenuation of duct modes. A sound source
is located at the left end of the duct of length L = 1.97m
3. It consists of a voltage-driven loudspeaker in a closed-box
of volume V;, = 10 dm? with physical parameters summarized
in Table III (see Appendix A). The duct section S is equal
to the effective piston area S, of the electroacoustic absorber
and to that of the sound source loudspeaker, to simplify the
analytical study. If the absorber area was substantially smaller
than the cross-section of the waveguide, the hypothesis of a
uniform pressure at the boundary would not be valid anymore.
The analytical approach would require the total decomposed
field on transverse modes [15], whereas a practical approach
could be done with the help of a Finite Element Method
software [16]. A surface impedance condition is imposed at
the right end of the waveguide. In one case, to simulate the
rigid termination, the impedance is only resistive on the whole
frequency range and is equal to 16 kPa-s-m~!, which amounts
to a sound absorption coefficient o ~ 0.1. In the two other
configurations, the specific acoustic impedance corresponds to

3The parameter was adjusted to be in agreement with the experimental
setup presented in Section IV.
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Fig. 5. Space-frequency maps of transfer functions from the driving voltage of the sound source located at the left end of the waveguide to the sound pressure
level. At the right end is imposed (a) hard-wall termination or (b) electroacoustic absorber with the control settings of case C.

(10) with setting cases A (open circuit) and C (with control)
listed in Table II.

Given a surface impedance Z;, atlocation x = L, the sound
pressure satisfying the Helmholtz equation can be expressed
as

p(x)=a (e‘jkx + rLejk(w_QL)) (14)
where j2 = —1, k = 27 f/c is the wavenumber, 1 = (Z,, —
pc)/(Zs, + pe) is the reflection coefficient at location x = L,
and a is a coefficient depending on the surface impedance Z;, ,
physical parameters and driving voltage of the sound source
(see Appendix A for more details). As shown in [16], in the
case of a hard-wall termination, the resonance frequencies are

equal to
q c

f'r‘n = ni

where n € N. The anti-resonance frequencies f,,, can be
computed from (14) when p(0) = 0. Simplifying (Z,, —
pc)/(Zs, + pc) = 1 at any frequency f, nulls of pressure
occur at locations

xarn(f) =L- (2n+1)

(15)

c
af
Anti-resonance frequencies are thus found inverting (16) for
Tar, = 0:

(16)

c
4L

Fig. 5 shows space-frequency maps of transfer functions
from the driving voltage of the sound source located at the left
end of the waveguide to the sound pressure level, expressed
in dB re. 20 uPa-V~!, when the right end is closed either
by a hard-wall or by the electroacoustic absorber (case C).
As can be seen in Fig. 5a, the sound field is characterised
by an uneven acoustic energy distribution at low frequencies
when the waveguide is closed by a hard-wall. The strong
resonances (in white) appear at fixed frequencies whatever the
location in the waveguide, whereas the nulls (in black) are
shifted as the microphone position moves away from the sound
source as indicated in (16). When the electroacoustic absorber
substitutes for the hard wall (Fig. 5b), both peaks (resonances)

far, = (2n+1) (17)

and dips (nulls) in frequency spectra are significantly atten-
uated with the active control settings of case C. Additional
figures can be found in Appendix B. This analytical study
reveals the performance of the electroacoustic absorber for the
modal equalization in a waveguide over a certain frequency
bandwidth.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup and control system implementation

To experimentally validate the preceding results, a waveg-
uide was designed (length L = 1.97m and internal diameter
¢ = 150 mm) as depicted in Fig. 6. Both terminations were
closed by electrodynamic loudspeakers in closed boxes of
volume V;, = 10dm?, as presented in Section IIl. The sound
source at the left termination delivered a broadband pink noise,
whose the bandwidth was [2 Hz - 20 kHz]. The specific acoustic
impedance and sound absorption coefficient were assessed ac-
cording to ISO 10534-2 standard [17]. Three 1/2” microphones
(Norsonic Type 1225 cartridges mounted on Norsonic Type
1201 amplifier) were wall-mounted at positions z; = 1.02m,
ro = 1.51m, and z3 = 1.62m from the sound source,
sensing the sound pressures p; = p(x1,t), po = p(xe,t),
and p3 = p(zs3,t). The transfer functions Hi3 = ps/p;
and Ho3 = ps3/p2 were processed through a Briiel and Kjer
Pulse multichannel analyser. This experimental setup enabled
the electroacoustic absorber performance to be assessed under
normal incident plane waves, over a frequency range between
44-1340 Hz. The displayed frequency range was reduced to 1
kHz to focus the analysis on the bandwidth over which the
absorption was supposed to be efficient, according to Table II.

The pressure used in the control was sensed with a 130D20
ICP microphone, located at 1 cm from the electroacoustic
absorber diaphragm and close to the lateral duct wall as
depicted in Fig. 6. The transfer function ©(s) given by (6)
was first discretized in a discrete-time recursive filter, and
then was implemented onto a real-time National Instruments
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Fig. 6. Scheme of the experimental setup. The control implementation is depicted in the right-hand side including the microphone, the digital controller, and
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Fig. 7. (a) Frequency responses of the specific acoustic impedances and (b)
corresponding sound absorption coefficients of the electroacoustic absorber
measured (dotted lines) and simulated (solid lines) in open circuit (case A)
and under control (cases B and C).

CompactRIO platform supporting FPGA technology *. The
voltage signal from the microphone was digitally converted
thanks to an analog module NI9215. The output filtered
signal u,,; was delivered by an analog module N19263 to
a voltage controlled current source that drove the voice coil
loudspeaker. As illustrated on the right-hand side in Fig. 6,
the voltage controlled current source was an op-amp based
“improved” Howland current pump circuit [18], including an
operational amplifier, two input resistors R;, two feedback
resistors 2y, a current sense resistor R,. As the load was
reactive, a compensation circuit supplied by a resistance R,
and capacitance Cy was added to ensure stability with the
grounded load [19].

B. Sound absorption measurements

The setting cases used for the measurements were the same
as those used for running the simulation in Section III, and are
summarized in Table II. Figure 7 illustrates the performance
of the electroacoustic absorber in terms of sound absorption,
through the measured frequency response of the specific
acoustic impedance and the corresponding sound absorption
coefficient. These results show that the measurements are
satisfactorily consistent with the corresponding simulation (see
Fig. 3). As expected, we obtained a perfect acoustic absorption
over a broad frequency range around the natural resonance of
the loudspeaker. With this control strategy, both the acoustic
resistance and reactance of the diaphragm were modified,
to reach as close as possible the desired specific acoustic
impedance Z . The slight differences can be attributed to
imperfections in the lumped parameter model and to the
frequency response function of the microphone used in the
control loop, which was not taken into account in the control.
The resonances at 587Hz and 655Hz are due to the first
modes of the electroacoustic absorber enclosure. As discussed
in Section II, it seems obvious that the target specific acoustic
impedance can not be reduced to a constant resistive value,
due to the reactive terms of the diaphragm. The value of the
reduction factor p is limited by the stability of the closed

4The microphone sensitivity and gain of the voltage controlled current
source were included in the transfer function ©(s).
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Fig. 8. Transfer functions from the driving voltage of the sound source located
at the left end of the waveguide to the sound pressure level, measured (dotted
lines) and simulated (solid lines), at locations (a) 1 = 1.02m and (b) z3 =
1.62m from the sound source. At the right end was imposed a hard-wall
termination or an electroacoustic absorber in cases A or C.

loop system, between the electroacoustic absorber and the
environment in which it is set up. The stability robustness
may also be reduced if some characteristics of the loudspeaker
dynamics are not modelled, as the diaphragm modal behaviour
for instance.

C. Modal equalization in a waveguide

The control performance for damping low-frequency modal
resonances were then assessed in the waveguide. Figure 8
shows the measured transfer functions from the driving voltage
of the sound source located at the left end of the waveguide
to the sound pressure level, expressed in dB re. 20 yPa-V~1!,
when the duct was ended by a hard wall and by the electroa-
coustic absorber in cases A and C. The measurements are
in good agreement with the corresponding simulation. The
study focused on the global acoustic benefit at low frequencies.
From 44 Hz up to 300 Hz, the difference of sound pressure
level between the peaks and dips was 51.3dB for the rigid
termination, droped to 37.3 dB for the open circuit loudspeaker
system (case A), and was reduced down to 12.6dB for the

active electroacoustic absorber (case C). Reducing the sound
pressure level dynamics by a ratio of 4 to 1, these results reveal
the modal damping efficiency of the electroacoustic absorber
over a certain frequency bandwidth. The magnitudes of reso-
nances and anti-resonances were therefore minimized thanks
to the active electroacoustic absorber, thereby equalizing the
distribution of sound energy both along the waveguide and the
frequency axis.

D. Application to rooms

In the case of rooms, this effect of modal equalization
obtained in the waveguide is particularly desired in listen-
ing spaces, such as recording studios or home theaters, to
improve the sound quality. Changes must be made for room
applications, compared to what was presented in the previous
sections. First, analysing the acoustic energy distribution of
rooms with specific geometry makes it possible to know where
the pressure nodes are, to indicate where to place electroa-
coustic absorbers for optimal performance (in corners for
plane-parallel rooms). Then the optimal target specific acoustic
resistance can be different from the characteristic specific
acoustic impedance of the air and can vary from one mode to
another [16]. As each mode has its own central frequency, an
optimal absorber would have a frequency-dependent specific
acoustic resistance that matches these different values. Another
form of target specific acoustic impedance could then be
preferred to that given by (10). Finally for practical reasons,
the total absorbing area should be relatively small compared
to the total reflecting area of the room. Preliminary studies
showed promising results to damp resonances in several rooms
using these electroacoustic absorbers.

V. CONCLUSION

This paper presented a novel control architecture to achieve
stable broadband low-frequency sound absorption. The tech-
nique results from a sensor-/shunt-based acoustic impedance
control, combined with a current amplifier in a similar fashion
as recent sensorless acoustic impedance synthesis control
techniques. The main advantage of driving the electroacoustic
absorber with a prescribed electrical current is to minimize the
negative effects of the voice coil inductance on the control sta-
bility above the resonance frequency. Numerical analysis and
experimental assessment confirmed the improvement of per-
formance compared to the absorption techniques reported so
far, especially in terms of stability and extension of bandwidth.
The technique stands out for its low sensitivity to the voice coil
inductance, which can limit the performance of conventional
electroacoustic absorbers techniques. An application to duct
mode damping over a significantly broad frequency range
confirmed the efficiency of the electroacoustic absorber to
equalize the acoustic response in cavities. Further studies will
investigate the actual application of such hybrid sensor/shunt-
based electroacoustic absorber to rooms, and should confirm
the efficiency of the concept to damp the low-frequency
resonances in rooms.
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TABLE III
SMALL SIGNAL PARAMETERS OF THE PEERLESS SDS-P830657
LOUDSPEAKER OF THE SOUND SOURCE IN A CLOSED-BOX OF VOLUME

V, = 10DM3
Parameter Notation  Value Unit
Effective piston area Sq 151 cm?
Moving mass Mns, 12.9 g
Mechanical resistance Rms, 1.23 N-ssm~!
Mechanical compliance Chmes 260.79  pm-N -1
Force factor Bl 5.98 N-A—1L
Voice coil inductance Le, 0.38 mH
DC resistance Re, 6 Q
APPENDIX A

ANALYTICAL MODELING OF THE EXPERIMENTAL SETUP

The physical parameters of the sound source loudspeaker
are summarized in Table III. The mechanical parameters
of the loudspeaker were estimated from the measurement
of the mechanical impedance, as explained in Section III,
and its electrical parameters were simply retrieved from the
manufacturer’s data.

Denoting the blocked electrical impedance and the mechan-
ical impedance of the sound source by Z._ and Z,,_, the sound
pressure satisfying Helmholtz’s equation in the waveguide is
given by (14), with

pc Bl

= - i~ 7 Us
“ 7 Supe(l+ rpe~ kL) + 7, (1 —rpe=2ikL) Z,
(18)

where U is the driving voltage of the sound source and Z,,,, =
Zm, + (Bls)?/Z,, is the equivalent mechanical impedance of
the sound source at location =z = 0.

s

APPENDIX B
ADDITIONAL FIGURES OF THE NUMERICAL ANALYSIS

Fig. 9 shows a space-frequency map of the transfer function
from the driving voltage of the sound source located at the left
end of the waveguide to the sound pressure level, expressed
in dB re. 20 uPa-V~!, when the right end is closed by the
electroacoustic absorber in open circuit (case A).

Fig. 10 shows the superposition of the transfer functions
between the sound source driving voltage at the left end of the
waveguide and the sound pressure at all every location along
the waveguide, expressed in dB re. 20 uPa-V~!. These figures
were obtained from the normal projection on the frequency and
magnitude axes planes, illustrated in Figs. 5 and 9, according
to the configuration at the right end of the waveguide: hard-
wall termination, electroacoustic absorber in open circuit, and
under control in case C, respectively. Fig. 10 highlights the
dynamic range of sound pressure levels inside the waveguide,
represented by the distance between peaks and dips, depending
on the surface impedance condition at the right end of the
waveguide. With such a representation, the sound absorption
performance of the termination can be visualized on the area
between the maxima and minima envelopes. The smaller the
area is, the more efficient the sound absorption is.
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Fig. 9. Space-frequency map of the transfer function from the driving voltage
of the sound source located at the left end of the waveguide to the sound
pressure level. At the right end is imposed an electroacoustic absorber in
open circuit (case A).
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