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Abstract

We propose a methodological framework to include a wide variety of discrete
choice models in (mixed) integer optimization problems. We succeed in obtain-
ing a specification that is linear in the decision variables, allowing to use exact
methods to solve the problem. This opens the door to solving integrated supply
and demand models in many fields. This working paper describes the methodol-
ogy and proposes the full model.

1 Introduction

During the last decade there has been a growing literature on combining customer
behavior models in optimization. Several applications can be found in facility lo-
cation problems (Haase and Müller, 2014a; Zhang et al., 2012; Benati and Hansen,
2002a) as well as application of revenue management networks in different con-
texts such as transportation and hotel management (See, Talluri and Van Ryzin,
2004; van Ryzin and Vulcano, 2014; Haase and Müller, 2014a; Haensel and
Koole, 2010)

The main advantage of these integrated models is to enable policy makers to
have a better understanding about the preferences of their clients while planning
for their systems. The preferences of customers are formalized using a specific
predefined choice model (see Gilbert et al., 2014a; Gilbert et al., 2014b for exam-
ples of discrete choice models in assortment optimization).

Even though at some cases the integrated choice-based optimization models
are solvable easily, they are computationally complex. The challenge goes back
to the type of the choice model integrated inside the optimization model which
creates a great source of nonconvexity. Most of the time, a simple logit model
is used, where customers are assumed to be homogeneous in their observable
characteristics. Many techniques have been employed in order to convexify and
linearize such models, however, many of such models fail to solve real case or
large size problems (Azadeh et al., 2015).

In this paper, we are interested in discrete optimization models where supply
and demand closely interact, typically appearing in transportation problems such
as airline scheduling. Our objective is to incorporate state-of-the-art advanced
discrete choice models in optimization problem. Our method is directly derived
from the theory of utility maximization which can address two main issues in the
choice-based optimization problems.

• We eliminate the nonconvex representation of choice probabilities which
makes the optimization models computationally complex.
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• We can consider a wide class of discrete choice models, including modern
models such as multivariate extreme value models, latent variable and latent
class models.

In fact, the general methodology leads to an integrated supply and demand
model based on discrete choice that is linear in its decision variables. In this
working paper, we present the state of the art mathematical model where a supplier
needs to decide to offer some services, and to decide about the price levels of
offered alternatives in order to maximize its revenues.

2 Modeling the demand

We consider a population composed of N individuals (or groups of individuals
with an homogenous behavior). The set of products in the market is denoted by
C. Note that we assume without loss of generality that the market is closed, that is
that every customer chooses exactly one product. It is always possible to include
an artificial “opt-out” product to capture customers leaving the market. In the
considered market, each individual n has to choose one alternative within a set
Cn ⊆ C of products that are available to her. Note that this is the first level of
heterogeneity: the set of available products may vary from one customer to the
next.

Discrete choice models are based on the assumption that each individual n
associates a score, called utility, with each alternative i in the choice set Cn, that
is denoted by Uin. This utility is a function of several variables, describing the
attributes of the alternative i, as well as the socio-economic characteristics of the
individual n and interactions between the two. The main behavioral assumption
is that alternative i is chosen by individual n if the utility associated by n with i

is the highest within the choice set Cn. Assume that there is no tie, that is for each
n and i, j ∈ Cn, either Uin > Ujn or Uin < Ujn, and define the indicator

win =

{
1 if n chooses i,
0 otherwise.

∀n,∀i ∈ C. (1)

Note that win = 0 if i 6∈ Cn. Define also the indicator

yin =

{
1 if i ∈ Cn
0 otherwise

∀n,∀i ∈ C. (2)

Therefore, we have for each n and each i

win = 1 ⇐⇒ yin = 1 and Uin ≥ Ujn,∀j ∈ Cn. (3)
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In practice, the analyst does not have access to the exact specification of the utility,
and must consider it as a random variable. The most common specification is

Uin = Vin + εin (4)

where Vin is the deterministic part of the utility function, and εin is the error term,
capturing everything that the analyst has not included explicitly in the model. Note
that we assume here that Vin is linear in the variables involved in the optimization
problem. This assumption is not necessary for the derivation of the choice model
but, in our context, is important for its integration in the discrete optimization
model. With this specification, the model becomes probabilistic and (3) is now
written

Pr(win = 1) = Pr(Uin ≥ Ujn,∀j ∈ Cn). (5)

Note that the probabilistic nature of the model associates a zero probability with
ties, so that they can be safely ignored, as assumed above.

Concrete operational models can be derived from specific assumptions about
the distribution of the error terms εin. The most common one is the assumption
that εin are independent (across both i and n) and identically distributed, with an
Extreme Value distribution. In this case, it can be shown that the model (5) is
written

Pr(win = 1) =
yine

Vin

∑
j∈C yjneVjn

. (6)

It is called the logit model. Note that, this formulation is non linear as a function of
the utilities. It is also non linear in the variables yin, but linear reformulations have
been proposed in the literature (Benati and Hansen, 2002b, Zhang et al., 2012,
Haase and Müller, 2014b). Other assumptions about the distribution of εin lead to
other models, such as the nested logit, the cross nested logit or the logit mixtures

model, to cite just a few.
The demand within the market, that is the number of individuals choosing

alternative i, for each i ∈ C, is then given by

Di =

N∑

n=1

Pr(win = 1). (7)

3 A linear formulation

The demand model (7) is in general non linear. Various ways to linearize it have
been proposed in the literature. We propose here a different approach, derived
directly from (4) and (5). For each i and n, we rely on simulation to generate
R draws ξin1,. . . ,ξinR from the distribution of εin. Note that this can be done
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for a wide variety of distributions, so that the demand model is not restricted to
logit. Each draw corresponds to a behavioral scenario. Once the draws have been
generated, the probabilistic nature of the model can be captured by simulation in
the following way.

We denote by

Uinr = Vin + ξinr =
∑

k

βkxink + f(zin) + ξinr, (8)

the utility associated by individual n with alternative i, in the rth scenario. Note
that we distinguish between the part of Vin that is linear in the variables xink,
and the part that depends on other variables zin, in a possibly non linear way
defined by f. The variables xink are those involved in the optimization problem,
and the variables zin are additional exogenous variables. Note also that Uinr is not
a random variable.

For the sake of generality, in addition to the variables yin, we introduce the
variables yinr that characterize the availability of service i to individual n, in
scenario r. While yin is a decision of the operator, independent on the choices
of the customers, these new variables may account for the possible unavailability
of an alternative due to excess of demand, as illustrated in Section 4. They are
related in the following way:

yinr ≤ yin,∀i, n, r. (9)

We introduce also variables µijnr that characterize the largest between the util-
ities of i and j, that is, for each n, i, j and r:

µijnr =

{
1 if Uinr ≥ Ujnr,

0 if Uinr < Ujnr.
(10)

Note that it is possible that µijnr = µjinr if the two utilities happen to be equal,
although in practice it should happen rarely. Moreover, we have the following
valid inequality that may be included in the model:

µijnr + µjinr ≤ 1,∀i, j, n, r, (11)

Defining the constant Mnr such that

|Uinr −Ujnr| ≤ Mnr,∀i, j, (12)

the definition (10) is characterized by the following constraint:

(µijnr − 1)Mnr ≤ Uinr −Ujnr ≤ µijnrMnr,∀i, j, n, r. (13)
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To account for the availability of the alternatives, we have to consider the above
constraints only when both alternatives are available, that is when yinr = 1 and
yjnr = 1. Therefore, we define the variables ηijnr, which is 1 if both i and j are
available to individual n in scenario r, that is, for each i, j, n, r,

yinr + yjnr ≤ 1+ ηijnr, (14)

ηijnr ≤ yinr, (15)

ηijnr ≤ yjnr. (16)

Therefore, we write (13) as follows:

Mnrηijnr − 2Mnr ≤ Uinr −Ujnr −Mnrµijnr ≤ (1− ηijnr)Mnr,∀i, j, n, r. (17)

To verify the above formulation, we consider four cases:

• ηijnr = 1 and µijnr = 1. Then (17) is written

0 ≤ Uinr −Ujnr ≤ Mnr,∀i, j, n, r. (18)

The first inequality imposes that Uinr ≥ Ujnr, which is consistent with
µijnr = 1, and the second inequality is always verified, from (12).

• ηijnr = 1 and µijnr = 0. Then, (17) is written

−Mnr ≤ Uinr −Ujnr ≤ 0,∀i, j, n, r. (19)

The first inequality is always verified, from 12, and the second imposes that
Uinr ≤ Ujnr, which is consistent with µijnr = 0.

• ηijnr = 0 and µijnr = 1. Then, (17) is written

−Mnr ≤ Uinr −Ujnr ≤ 2Mnr,∀i, j, n, r, (20)

and is always verified from (12). Note that this configuration will be forbid-
den by another constraint.

• ηijnr = 0 and µijnr = 0. Then, (17) is written

−2Mnr ≤ Uinr −Ujnr ≤ Mnr,∀i, j, n, r, (21)

and is always verified from (12).
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Note that (17) is linear in the utility functions Uinr, and linear in µijmr and ηijnr.
Therefore, for each variable xink such that Uinr is linear in xink, (17) is also linear
in xink. We also impose that

µijnr ≤ yinr,∀i, j, n, r, (22)

so that i cannot be preferred to j if i is not available.
For each n, i and r, we define the choice variable winr using the maximum

utility paradigm using the following constraints.

• The chosen alternative is the one with the largest utility:

winr ≤ µijnr,∀i, j, n, r. (23)

• An available alternative is chosen

winr ≤ yinr,∀i, n, r. (24)

Note that this constraint is not necessary as it is implicitly imposed by (22)
and (23).

• Exactly one choice is performed by each individual in each scenario:

∑

i∈C

winr = 1,∀n, r. (25)

The above model specification is pretty general and is linear in the following
variables:

• any variable appearing linearly in the utility function,

• the choice variables winr,

• the preference variables µijnr,

• the availability variables yinr.

The demand within the market, that is the number of individuals choosing
alternative i, for each i ∈ C, is then given by

Di =
1

R

n∑

n=1

R∑

r=1

winr. (26)
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4 Demand based revenues maximization

We illustrate the use of the framework described above using the following ex-
ample. Consider an operator selling services to a market, and each service can
be offered at a given price to a finite number of customers, called the capacity

of the service. The demand is price elastic and heterogenous, in the sense that
each group of customers may have a different behavior. Typical examples are air-
lines, where the service is a connection between two airports, or film distributors
offering movies in various theaters.

We are interested in finding the best strategy in terms of capacity allocation
and pricing, in order to maximize the revenues of the operator. The operator is
proposing J services, each service i being accessible to a maximum of ci cus-
tomers. For the airline example, the service i can be Boston-Chicago, business
class, where ci is the number of seats available in the aircraft times the number
of flights per day, say. For the movie theater example, the service i can be Mad

Max: Fury Road at AMC Loews Boston Common, and ci the total number of
seats in the theater times the number of shows per day. In addition, we consider
a “service” with index i = 0. Customers who do not buy any service from the
operator, either because they do not buy any service at all, or they buy the service
from a competing operator, are assigned to this service.

In order to consider heterogenous demand, we assume that the market is com-
posed of N individuals, or group of individuals of homogenous behavior. In
the following, we refer only to “individuals”. The demand is modeled using the
methodology described in Sections 2 and 3. Each individual n associates a utility
function with each service i:

Uin = Vin + εin = βinpin + f(zin) + εin, (27)

where pin ∈ R is the price that individual n must pay to access service i, zin ∈ R
K

is a vector of variables describing the level of service of i for individual n, and εin
is an error term gathering variables known by the decision-maker, but unknown to
the analyst. The parameters βin and the specification of the function f are given.
For the airline example, zin may for instance contain the leg room in the cabin,
or the availability of free magazines. For the movie theater example, it may be
the type of movie on show, or the availability of food and drinks in the theater. In
our approach, the variable pin is endogenous, as it is a decision variable for the
operator. Note that the index n allows the operator to propose different prices to
different groups of individuals. In this example, we consider all other variables zin
as exogenous. Therefore, the quantity f(zsn) is a value that can be preprocessed,
and it does not matter if f is linear or not in zin.

Define the availability variables yin as 1 if individual n considers and has
access to service i, and 0 otherwise. Note that it is assumed that y0n = 1, ∀n.

7



Also, some of these variables can be fixed to 0 before hand, if a market segment
has only access to some of the services. For instance, it may be assumed that
customers have no access to a movie theater in another city. Travelers have no
access to a flight for another origin-destination pair.

The revenues obtained from service i by the operator can be derived directly
from the demand function:

Ri =
1

R

N∑

n=1

pin

R∑

r=1

winr. (28)

As p is an endogenous variable, (28) is nonlinear. It can be linearized by assum-
ing that the price of service i and customer n can only take a finite number of
predetermined different values: p1

in, p2
in, . . . , pLin

in , so that

pin =

Lin∑

ℓ=1

λinℓp
ℓ
in, (29)

where λinℓ ∈ {0, 1}, and
Lin∑

ℓ=1

λinℓ = 1,∀i, n. (30)

The revenues (28) can now be written

Ri =
1

R

N∑

n=1

Lin∑

ℓ=1

λinℓp
ℓ
in

R∑

r=1

winr. (31)

To linearize it, we introduce the variables αinrℓ = λinℓwinr, so that the formu-
lation becomes

Ri =
1

R

N∑

n=1

Lin∑

ℓ=1

αinrℓp
ℓ
in, (32)

with

λinℓ +winr ≤ 1+ αinrℓ,∀i, n, r, ℓ, (33)

αinrℓ ≤ λinℓ,∀i, n, r, ℓ, (34)

αinrℓ ≤ winr,∀i, n, r, ℓ. (35)

Accounting for the costs of proposing the services, the objective function is

1

R

N∑

n=1

Lin∑

ℓ=1

αinrℓp
ℓ
in (36)

8



4.1 Dealing with capacities

Each service i cannot accommodate more than ci customers. If the demand for
service i is larger than its capacity, a selection must be done, to decide who has
access to the service, and who has not. In a revenues maximization context, if
nothing is explicitly specified, the optimization algorithm will favor customers
who bring the largest amount of revenues to the operator. This is valid only if the
operator can decide which customers can be served and which not.

In many situations, the customers arrive in a random order, and get served in
a first-come-first-served basis. The model needs to know, for each pair of individ-
uals n and m if n has priority over m, or the other way around.

A simple way to model it is to provide a priority list of individuals, where an
individual is served only if all individuals before him in the list have been served.
Note that the construction of this priority list can account for various aspects of the
relationships between the operator and the customers, such as fidelity programs,
VIP customers, etc. The priority list is supposed to be given.

Assuming that the customers are numbered according to a priority list, we
impose that

yinr ≥ yi(n+1)r,∀i, n, r. (37)

For each scenario r the following constraint must be verified:

ci(1− yinr) ≤

n−1∑

m=1

wimr + (1− yin)cmax,∀i, n, r, (38)

where cmax = maxi ci. If yinr = 1 then yin = 1 (because of (9)), and this
constraint becomes:

0 ≤

n−1∑

m=1

wimr,

that is always verified. If yinr = 0 and yin = 1, we obtain

ci ≤

n−1∑

m=1

wimr,

meaning that the capacity has been reached due to the choices of individuals 1 to
n − 1 in the priority list. It is the scenario when service i is available to n, but
there is no room left due to the choice of other customers. Finally, if yinr = 0 and
yin = 0, we obtain

ci ≤

n−1∑

m=1

wimr + cmax,

that is always verified, as all wimr are equal to 0, because service i is not available.
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The following constraint must also be verified

n−1∑

m=1

wimr + (1− yin)cmax ≤ (ci − 1)yinr + Kn(1− yinr),∀i, n > cmin, r, (39)

where cmin = mini ci and
Kn = max(n, cmax). (40)

If yinr = 1 then yin = 1 and we obtain

1+

n−1∑

m=1

wimr ≤ ci

imposing that the number of individuals up to and including n who have chosen
service i must not exceed the capacity. If yinr = 0 then yin = 1, we obtain

n−1∑

m=1

wimr ≤ Kn,

that is always verified as
∑n−1

m=1wimr ≤ n ≤ Kn. Finally, if yinr = 0 then yin = 0,
we have

n−1∑

m=1

wimr + cmax ≤ Kn,

that is always verified, as wimr = 0 because service i is not available. Note that
no constraint is needed for individuals n = 1, . . . , cmin, as there is always enough
capacity for these customers.

4.2 Capacities as decision variables

In some applications, the capacities ci are not given, and must be decided. If
ci are decision variables, the above formulation becomes non linear due to the
constraints (38) and (39). We propose to deal with this in the following way.

• Consider a service i, and denote by c1i , . . . , c
Q
i the Q possible capacities that

this service can take;

• Use the above framework where the service i is replaced by q services in-
stead of 1;

• Impose that maximum one of these q services is open:
Q∑

q=1

yq
in ≤ 1. (41)

The rest of the framework is identical.
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4.3 The full model

Putting everything together, we have the following data

• a list of customers n = 1, . . . ,N or groups of customers, sorted according
some priority rule,

• a list of services C,

• for each n, a list of available services Cn,

• for each service i and each customer n, the parameters βk and the value
f(zin) for the utility function (8),

• for each service i, its capacity ci,

• for each service i and each customer m, the list of possible prices pℓ
in, ℓ =

1, . . . , Lin,

• for each customer i and each service i, a sequence of R draws ξinr, r =

1, . . . , R,

• for each customer n and each draw r, the bound Mnr verifying (12),

and the following decision variables:

• yin, the availability of service s for customer n, n = 1, . . . ,N, i ∈ C,

• yinr, the availability of service s for customer n and scenario r, n = 1, . . . ,N,
r = 1, . . . , R, i ∈ C,

• winr, the choice of service s by customer n in scenario r, n = 1, . . . ,N,
r = 1, . . . , R, i ∈ C,

• λinℓ, the selection of the level of price ℓ for service i, i ∈ C, ℓ = 1, . . . , Lin

and customer n.

and the technical variables

• µijnr characterizing the largest utility between service i and j for individual
n in scenario r, i, j ∈ C, i 6= j, n = 1, . . . ,N, r = 1, . . . , R,

• αinrℓ for the linearization of the objective function, i ∈ C, n = 1, . . . ,N,
r = 1, . . . , R, ℓ = 1, . . . , Lin,

• ηijnr identifying the common availability of two alternatives, i, j ∈ C, i 6= j,
n = 1, . . . ,N, r = 1, . . . , R.
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max
∑

i>0

1

R

R∑

r=1

N∑

n=1

Lin∑

ℓ=1

αinrℓp
ℓ
in, (42)

subject to

Uinr =

Lin∑

ℓ=1

βinλinℓp
ℓ
in + f(zin) + ξinr, ∀i, n, r, (43)

Mnrηijnr − 2Mnr ≤ Uinr −Ujnr −Mnrµijnr, ∀i, j, n, r, (44)

Uinr −Ujnr −Mnrµijnr ≤ (1− ηijnr)Mnr, ∀i, j, n, r, (45)

yinr + yjnr ≤ 1+ ηijnr, ∀i, j, n, r, i 6= j (46)

ηijnr ≤ yinr, ∀i, j, n, r, i 6= j (47)

ηijnr ≤ yjnr, ∀i, j, n, r, i 6= j (48)

µijnr + µjinr ≤ 1, ∀i, j, n, r, i 6= j (49)

µijnr ≤ yinr, ∀i, j, n, r, i 6= j (50)

winr ≤ µijnr, ∀i, j, n, r, i 6= j (51)

winr ≤ yinr, ∀i, n, r, (52)
∑

i∈C

winr = 1, ∀n, r, (53)

λinℓ +winr ≤ 1+ αinrℓ, ∀i > 0, n, r, ℓ, (54)

αinrℓ ≤ λinℓ, ∀i > 0, n, r, ℓ, (55)

αinrℓ ≤ winr, ∀i > 0, n, r, ℓ, (56)
Lin∑

ℓ=1

λinℓ = 1, ∀i > 0, n (57)

yin = 0, ∀i 6∈ Cn,∀n, (58)

yinr ≤ yin, ∀i, n, r, (59)

yinr ≥ yi(n+1)r, ∀i, n, r, (60)

ci(1− yinr) ≤

n−1∑

m=1

wimr + (1− yin)cmax, ∀i > 0, n, r, (61)

n−1∑

m=1

wimr + (1− yin)cmax ≤ (ci − 1)yinr + Kn(1− yinr), ∀i > 0, n > cmin, r, (62)

N∑

n=1

winr ≤ ci, ∀i, r. (63)

5 Conclusion

In this working paper, we presented a new mathematical model that integrates
choice modeling with optimization in a linear way. In fact, with the help of utility
maximization theory and simulation, we succeed to overcome the nonlinearity
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and non-convexity caused by choice probabilities. In addition, we can use general
choice model assumption for individual customer behavior. When the number of
alternatives, simulation draws and individuals grow the problem might take long
time to be solved. However, as the individuals are independent from one another,
we can use decomposition methods to solve the problem for large examples.
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