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ABSTRACT
Squall is a scalable online query engine that runs complex
analytics in a cluster using skew-resilient, adaptive operators.
Squall builds on state-of-the-art partitioning schemes and
local algorithms, including some of our own. This paper
presents the overview of Squall, including some novel join
operators. The paper also presents lessons learned over the
five years of working on this system, and outlines the plan
for the proposed system demonstration.

1. INTRODUCTION
Online processing implies that results are incrementally

built as the input arrives. Thus, each input tuple produces
output and updates the system state necessary for process-
ing subsequent inputs. Online processing is ubiquitous for
many applications such as algorithmic trading, clickstream
analysis and business intelligence (e.g., in order to reach a
potential customer during the active session).

Skew occurs frequently in real-life datasets. For instance,
certain types of skewed distributions (such as zipfian distri-
bution) appear in Internet packet traces, city sizes, word fre-
quency in natural languages and advertisement clickstreams
[17]. Existing open-source online systems (e.g., Twitter’s
Storm [49], Spark Streaming [73], Flink [14]1) focus on dis-
tribution primitives (e.g., communication patterns, fault tol-
erance) and low-level performance optimizations. However,
these systems provide only vanilla database operators, such
as hash-based equi-joins (and general UDFs), which do not
perform well in the case of skew (see §3.1). Regarding non-
equi joins, Storm do not provide them. Whereas, Spark
Streaming and Flink execute non-equi joins very inefficiently
(a Cartesian product followed by a selection). On the other
hand, existing partitioning schemes that support both equi-
joins and non-equi joins (e.g., [54]) have the following draw-
backs. First, they work efficiently only for a narrow set of

1Flink provides both offline and online processing, but in
this paper we discuss only the online case.
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data distribution properties. Second, these schemes are de-
signed for offline processing, and thus, they are unable to
adapt to changing data statistics (see §5). Squall addresses
there problems.

In contrast, Squall is a system that puts together state-
of-the-art partitioning schemes, local query operators, and
techniques for scalable online query processing. We also
build novel 2-way [32, 66] and multi-way schemes (Hybrid-
Hypercube, see §3.1). Such a system allows us to leverage
the effect of various design choices on the performance, and
to seamlessly build efficient novel operators (see §3). Squall
operators achieve skew-resilience, adaptivity and scalability.

Squall is an open-source project2 that has been developed
for the last five years (mainly by the authors at EPFL, but
also with external contributions). It has been available for
several years, and it has attracted a community of users.

2. SYSTEM ARCHITECTURE
Squall is an online distributed query engine which achieves

low latency and high throughput. It supports full-history
(incremental view maintenance) and window (stream) se-
mantics. Squall uses Storm [49] as a distribution and paral-
lelization platform.

The overall system architecture is shown in Figure 1. Next,
we give an overview of various Squall concepts.
User interface. Squall offers multiple interfaces: declara-
tive (SQL), functional (a modern Scala collections API), in-
teractive (Scala) and imperative (Java). Similarly to Hive
which provides an SQL interface on top of Hadoop, Squall’s
declarative interface offers running SQL over Storm. Squall’s
functional interface provides for compositions of data trans-
formations over streams.

Squall also provides interactive interface built on top of
the Scala REPL (Read-Eval-Print Loop) that allows a user
to interactively and run construct query plans. For each of
these three interfaces, Squall translates the user input to a
logical query plan (see Figure 1). Finally, the imperative
interface gives the user full control over the physical query
plan. A user can run a query plan specified by any Squall
interfaces either locally or on a cluster, making it easy to
learn and test Squall.
Logical and Physical query plans. A logical Squall qu-
ery plan is a DAG of relational algebra operators. A physical
Squall query plan consists of a DAG of physical operators
and their requested level of parallelism. A physical operator
is specified by the partitioning scheme and local algorithm.
To minimize the number of network hops, and thus to maxi-
mize the performance, we co-locate the connected operators
that employ the same partitioning scheme. We denote a

2https://github.com/epfldata/squall/
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Figure 1: Squall architecture. An example query plan has selections (σ), projections (π), joins (1) and aggregations (Agg).

pipeline of co-located operators as a component. Compo-
nent is an execution unit in a distributed environment, and
it can be scaled out to many machines. Figure 1 shows
components as rounded rectangles in the example physical
plan. An example of a component is a data source (R, S,
T in our example) followed by a selection. All the compo-
nents are continuously processing tuples, and continuously
sending the output to the downstream components, if any.
Operators. By combining different partitioning schemes
and local join algorithms, Squall offers many join operators.
We build novel join operators: Adaptive 1-Bucket [32] and
Equi-weight-histogram (EWH) join [66]. This paper also
presents some novel multi-way joins (a multi-way join runs
within a single component, rather than using a pipeline of
2-way joins). Beside joins, Squall offers database operators
such as selections, projections and aggregations (we cur-
rently support sum, count and average aggregates). Squall
provides both full-history and window semantics for its ope-
rators. It implements typical stream primitives, such as
tumbling and sliding windows, by adding the window ex-
piration logic on top of the full-history engine.
Query optimizer. Squall’s optimizer generates a physi-
cal plan from the logical plan. The optimizer maximizes
throughput and minimizes both latency and the number of
machines used. It starts from the data sources and adds
the operators one after another, pushing selections and pro-
jections as close as possible to the data sources. Where
possible, the optimizer co-locates operators to components
to minimize network transfers. It also performs common
subexpression elimination. That is, if only expressions are
used downstream a component in the query plan, the com-
ponent sends only expressions (rather than the all the cor-
responding fields). To do so, each component decides on
its output scheme based on the fields/expressions that are
needed downstream in the query plan. Furthermore, the op-
timizer assigns the right parallelism to each component, such
that a component is neither overloaded nor mostly idle. We
refer to this as universal producer-consumer balance. The
optimizer uses heuristics to find an optimal join order and
component parallelism.
Online processing aspects. An online system must adapt
to changing data statistics. Squall collects statistics and
adjusts the operator’s partitioning scheme at run-time (see
§5). Furthermore, it offers multiple partitioning schemes
that achieve different levels of adaptivity for different skew

types (e.g., data, temporal and join selectivity skew) and
degrees of skew fluctuations.
Distribution platform. Squall uses Storm [49] as a distri-
bution platform, but our contributions and ideas are more
widely applicable. That is, all the proposed ideas are or-
thogonal to the underlying system (Storm), and are appli-
cable to other systems as well (Flink, Spark Streaming etc.).
In other words, although Squall uses Storm, we could also
use Spark Streaming. For our purpose, the two systems are
interchangeable, even though they come from different back-
grounds, Storm having been developed for realtime process-
ing using certain stream processing abstractions, and Spark
Streaming having been developed by modifying Spark, very
pronouncedly a batch processing system, to perform on-
line processing. We note that Storm is sometimes called
a data stream processor, but we think of it more as an on-
line/realtime analytics system with a very convenient pro-
gramming abstraction and excellent scalability, since it does
not of itself enforce small state or handle overload situations
(by load shedding). Along these lines, Akidau et al. [11]
explain that micro-batch or streaming systems should be
equivalent from the user perspective, that is, a user can use
either kind of systems to run the same application. The au-
thors state that micro-batch and streaming systems should
differ only in the achieved tradeoff between latency, through-
put and resource utilization.

In Storm, real-time computation is performed through
topologies. Storm executes a topology, which is a graph
of spouts (data sources) and bolts (which perform compu-
tation). A spout generates a stream(s), where a stream is a
sequence of tuples. A bolt consumes streams and produces
new ones. Each topology graph node (spout or bolt) exe-
cutes on one or more machines, according to the requested
parallelism. An edge in the topology graph is called stream
grouping, and it represents partitioning of incoming tuples
from a stream among the machines of a bolt. Squall maps
a physical query plan to a Storm topology, each component
to a Storm spout or bolt, and builds partitioning schemes
using Storm’s stream grouping.

Squall is a main-memory system. It also offers connectiv-
ity to BerkeleyDB [56], which spills tuples to disk when main
memory is insufficient. However, throughput and latency
are orders of magnitude better when only main-memory is
used. Squall assumes a shared-nothing architecture.
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Figure 2: Partitioning schemes for R(x, y) 1 S(y, z) 1 T (z, t). Uniform data (a), data-independent (b), skewed data (c, d).

3. NOVEL JOIN OPERATORS
We devise new join operators in Squall by wiring up state-

of-the-art partitioning schemes and local join algorithms.
We presented the partitioning schemes for 2-way joins of
Squall in our previous work [32, 66]. This paper introduces
multi-way joins in Squall (a multi-way join uses a single com-
munication step, that is, it runs within a single component).
These joins can outperform the corresponding pipelines of
2-way joins as they avoid shuffling intermediate data, which
can be very large [8, 74, 26]. Multi-way joins are especially
beneficial when the output of intermediate stages is big com-
pared to the size of the base relations and/or final output.
Even if this is not the case, a multi-way join may outperform
the corresponding pipeline of 2-way joins due to the follow-
ing. An optimal query plan consisting of 2-way joins is very
sensitive to the join selectivity of intermediate relations. As
a query optimizer typically lacks accurate join selectivity in-
formation, it might produce a suboptimal pipeline of 2-way
joins. In contract, multi-way joins are inherently resilient
to inaccurate statistics [40]. In an online system, the join
selectivity might vary substantially. As we explain in §5, we
could periodically adjust the join order, but the cost might
be unacceptably high due to recomputing large intermedi-
ate relations. In contrast, multi-way joins inherently bring
adaptivity to join selectivity fluctuations.

We also devise a novel multi-way join partitioning scheme
that further enhances performance by taking into account
skew degrees of different relation attributes (see §3.1). In
particular, our scheme constructs composite partitioning,
consisting of different partitioning schemes according to the
skew degree in different relation attributes. In addition,
Squall has efficient local algorithms for online multi-way
joins (DBToaster, see §3.3).

3.1 Partitioning schemes
Next, we describe partitioning schemes for multi-way joins,

their skew resilience and supported join conditions. We first
present the schemes briefly, along with some examples. A
detailed analysis of the multi-way join schemes is in §4.
Hash-Hypercube scheme [8] models the result space as
a hypercube, where each axis corresponds to a join key do-
main. Each machine covers a unique portion of the hyper-
cube space. Figure 2a illustrates this scheme for a query
with a join condition R.y = S.y AND S.z = T.z. In the
further text, we refer to this query as R(x, y) 1 S(y, z) 1

T (z, t). The Hash-Hypercube scheme is a generalization of

hash partitioning to multi-way joins. This scheme assigns
an input tuple to machines by hashing on the tuple’s join
keys and by replicating on the join keys from the other re-
lations. For example, R tuples are hashed on y and repli-
cated on z (each R tuple is replicated to a “row” of ma-
chines with coordinates (y, z) = (hash(y), ∗)). Similarly,
T tuples are replicated on y and hashed on z (each T tu-
ple is replicated to a “column” of machines with coordi-
nates (y, z) = (∗, hash(z))). Whereas, S tuples are parti-
tioned using coordinates (y, z) = (hash(y), hash(z)). The
scheme achieves correctness as each potential output tuple
tR(x, y) 1 tS(y, z) 1 tT (z, t) is assigned to a single machine
with coordinates (hash(y), hash(z)).

The operator’s performance depends on the slowest ma-
chine, that is, the machine with the highest load (number
of received input tuples). Thus, the optimization criterion
is to choose the dimension sizes, such that we minimize the
load per machine. In Figure 2a, given 64 machines and that
each relation is of size H and assuming uniform distribu-
tion, the dimensions y × z = 8× 8 minimize the load. (The
dimension choosing algorithm is presented in §4.) Thus, the
load of each machine L is |R|/8+ |S|/(8 ·8)+ |T |/8 ≈ 0.26H.
The Hash-Hypercube scheme supports skew-free multi-way
equi-joins.
Random-Hypercube scheme [74] also models the result
space as a hypercube, but each axis corresponds to a re-
lation, as shown in Figure 2b. The Random-Hypercube
scheme is a generalization of the 1-Bucket scheme [54], which
uses random partitioning over a matrix (2-dimensional hy-
percube). The Random-Hypercube scheme randomly dis-
tributes the input tuples on the axes of the originating rela-
tion, and replicates on the other axes. For example, each R
tuple is replicated on a “slice” of machines (Figure 2b shows
one such slice with diagonally engraved lines). In Figure 2b,
given 64 machines and given that each relation is of size H,
the dimensions R×S×T = 4×4×4 minimize the load. (The
algorithm for deciding on dimensions is presented in §4.) As
each machine receives 1/4 of each relation, the load per ma-
chine is 3 ·H/4 = 0.75H, where the relations are of the same
sizeH. The Random-Hypercube scheme supports multi-way
theta-joins and is skew resilient. However, it replicates tu-
ples more than the Hash-Hypercube scheme (because it uses
a 3-dimensional rather than 2-dimensional hypercube). The
Random-Hypercube scheme is skew-resilient and it achieves
perfect load balancing, but at the expense of the excessive
tuple replication.



2-way join schemes. For 2-way joins, Hash-Hypercube be-
comes hash partitioning, and Random-Hypercube becomes
1-Bucket scheme [54], which uses random partitioning over a
2-dimensional hypercube (matrix). Random partitioning is
skew resilient but replicates tuples over the matrix. For low-
selectivity band and inequality 2-way joins, range partition-
ing allows fast detection of large continuous matrix portions
that produce no output. As these portions are not assigned
to machines, range partitioning schemes outperform the 1-
Bucket scheme. Examples include the M-Bucket scheme [54]
and our Equi-Weight Histogram (EWH) scheme [66]. The
M-Bucket scheme is prone to join product skew [67]. In
contrast, the EWH scheme works well for any data distri-
bution. To do so, our EWH scheme provides an efficient
parallel scheme for capturing the input and output distribu-
tion from the join to a matrix. To evenly partition the work
(matrix) among the machines, the EWH scheme employs
our join-specialized computational geometry algorithm for
rectangle tiling.
Our Hybrid-Hypercube scheme. Consider the same qu-
ery (R(x, y) 1 S(y, z) 1 T (z, t)) on a non-uniform dataset.
For example, assume that y has uniform distribution and
that z has zipfian distribution (the skew parameter of 2)
both in S and T . The Random-Hypercube scheme performs
the same independently of skew (L = 0.75H, as before).
The Hash-Hypercube scheme with the given data distribu-
tion is shown in Figure 2c. Due to skew, it performs only
slightly better than the Random-Hypercube (the maximum
load per machine is L = |R|/8+ |S|/(8 ·2)+ |T |/2 ≈ 0.69H).

Hash- and Random-Hypercube are designed and work well
only for the cases when skew exists either in all the relations
or in none of them. We propose the Hybrid-Hypercube,
which uses hash partitioning for skew-free join keys, and
random partitioning elsewhere. Random partitioning im-
plies replication, so it is more costly than hash partition-
ing. That way, our scheme achieves skew resilience while
minimizing tuple replication. In the case of equi-joins and
skew-free attributes, the Hybrid-Hypercube produces the
same partitioning as the Hash-Hypercube. Similarly, in the
case of skew on all the join keys, the Hybrid-Hypercube is
equivalent to the Random-Hypercube scheme. Thus, our
scheme subsumes both the Hash- and Random-Hypercube
schemes. Furthermore, in contrast to the Hash-Hypercube,
the Hybrid-Hypercube supports non-equi joins (using ran-
dom partitioning therein). For instance, our scheme works
without any change if we have an inequality join condition
between S and T 3, bringing the same performance improve-
ment compared to the Random-Hypercube as before.

The Hybrid-Hypercube scheme is illustrated in Figure 2d,
and it works as follows. R and S tuples are hashed on y
and replicated in the selected “row” of machines. We can
consider R 1 S as a (replicated) hash join. We preserve
correctness as we partition R and S using the same hash
function, so the corresponding partitions from these rela-
tions are on the same set of machines. Whereas, each T
tuple randomly picks a “column” of machines to be repli-
cated on. Given that there are no skew on y, hash(y) from
R and S simulates random distribution with respect to T .
Thus, we can consider RS 1 T as a 1-Bucket join. RS 1 T
does not indicate the order of execution, but simply the dif-
ferent partitioning schemes employed. We use RS rather

3We only need to change the local join implementation to
reflect the change in the join condition.

than R 1 S notation due to the following. As R and S
use the same partitioning on y, the replication in 1-Bucket
join is the same as if we had a relation of size R + S. We
preserve correctness as follows. R and S tuples ”meet“ all
the tuples from T , as each T tuple intersects each row on a
single machine.

As a result, the maximum machine load in the Hybrid-
Hypercube is L = (|R| + |S|)/7 + |T |/9 ≈ 0.36H, which is
2.08× and 1.92× better than that of Random-Hypercube
and Hash-Hypercube, respectively. It is interesting to com-
pare these schemes with respect to total load among all the
machines. The Hash-Hypercube total load is R · 8 + S +
T · 8 = 17H, the total load for the Random-Hypercube is
R · 16 + S · 16 + T · 16 = 48H, and the one for the Hybrid-
Hypercube is R · 7 + S · 7 + T · 9 = 23H. Our scheme with
slightly higher replication than the Hash-Hypercube (due
to using random partitioning on the attributes with skew)
achieves the best maximum load per machine among all the
three hypercube schemes. This illustrates the tradeoff bet-
ween replication and skew resilience, which we talk about in
a greater detail in §5.

3.2 Important special cases
Star schema typically consists of one big fact table and

several small dimension tables. Usually, in a distributed
setting, the fact table is partitioned and dimension tables
are replicated. Interestingly, both the Hash-Hypercube and
Random-Hypercube schemes comply with this partitioning.
Namely, due to relative relation sizes, these schemes yield
p × 1 · · · × 1 partitioning (p is the number of machines),
which implies partitioning on one dimension and replication
on other dimensions. The only difference is that the Hash-
Hypercube scheme partitions the fact table on join keys,
while the Random-Hypercube scheme randomly partitions
the fact table.

Join among multiple relations on the same key ap-
pears often in practice. An example is TPC-H [5] Q9, which
joins Lineitem, PartSupp and Part on Partkey. This al-
lows execution of a multi-way join within the same com-
ponent, without any replication. Interestingly, the Hash-
Hypercube scheme yields the same partitioning, as it uses
the join keys as the hypercube axes.

3.3 Local join algorithms
Online local joins typically work as follows: a new in-

coming tuple for a relation is joined with the stored tu-
ples from the other relation(s), and stored for use by fu-
ture tuples [34, 32]. Existing local joins build indexes on
the fly (hash indexes for equi-joins, and balanced binary
tree indexes for band and inequality joins) to improve per-
formance. For example, let us consider a join condition
R.A = S.A AND 2 · R.B < S.C. In this case, we need to
build hash-indexes R.A and S.A and balanced binary tree
indexes R.B and S.C. Upon tuple arrival, we store the tu-
ple, update all of its indexes, and lookup indexes on the
opposite relation in order to produce result tuples.

However, these joins are orders of magnitude slower than
the state-of-the-art online local join, DBToaster [9]. The
gap deepens with the increase in the number of relations in
a multi-way join. In brief, the main idea of DBToaster is
to recursively maintain views for an n-way join. Instead of
maintaining only the final result, DBToaster maintains all
the intermediate (n−1)-, (n−2)-, . . . , and 2-way joins. For



instance, given 4 relations R, S, T , V , DBToaster material-
izes and maintains

(
4
2

)
2-way intermediate relations (R 1 S,

R 1 T , R 1 V , S 1 T , S 1 V and T 1 V ),
(
4
3

)
3-way inter-

mediate relations (R 1 S 1 T , R 1 S 1 V , R 1 T 1 V and
S 1 T 1 V ) and final result R 1 S 1 T 1 V . When a new
tuple comes, DBToaster updates the intermediate relations,
and produces the (delta) result by joining the incoming tuple
with the corresponding (n − 1)-way materialized join. The
savings come from the fact that DBToaster does not recom-
pute the (n− 1)-way join for each new tuple, as it would be
the case if we use indexes only on the base relations. This
is why the savings grow with the increase in the number of
relations n.

When parallelizing DBToaster, it is challenging to pre-
serve correctness of the result (exactly-once semantics) as
tuples (in the Incremental View Maintenance terminology,
updates to relations) may arrive in different order to diffe-
rent machines. Existing parallel DBToaster [53] relies on a
synchronous system (Spark/Spark Streaming) to circumvent
the problem. As we will explain in §8.1, Spark Streaming
performs synchronization at the end of each micro-batch,
so it cannot achieve low latency of Storm/Squall (tens of
milliseconds). Furthermore, in contrast to Squall, existing
parallel DBToaster [53] does not focus on skew resilience.

Regarding the system optimizations for local joins, we em-
ploy collections of primitive rather than wrapper types us-
ing Trove library [6]. Similarly, we store complex data types
(such as Strings) as byte arrays. Both of these optimiza-
tions bring significant savings in memory consumption. As
explained in [52], memory savings can translate to perfor-
mance improvements.

3.4 HyLD operator: Hypercube scheme
with Local DBToaster

Squall seamlessly parallelizes the state-of-the art local join
(DBToaster) by using separation of concerns. That is, Squall
requires no changes in the partitioning scheme and local join
when putting them together in a parallel join operator. In
particular, the hypercube schemes ensure that each machine
executes an independent portion of the join, so that each
output tuple is produced at exactly one machine. That way,
we can run a separate DBToaster instance on each machine.
We denote such an operator as Hypercube scheme with Local
DBToaster (HyLD). The HyLD operator combines network
efficiency due to a hypercube scheme and CPU efficiency
due to using DBToaster locally.

As we saw in §3.1, the Hybrid-Hypercube subsumes the
other two hypercube schemes. Hence, we need to choose
the right partitioning type for each Hybrid-Hypercube di-
mension. As already shown, random partitioning is expen-
sive (because high replication leads to increased work on all
the machines) but skew-resilient, while hash partitioning is
cheaper but prone to skew. To decide on the hypercube
scheme, we need to know if a join key is skew-free or not.
We are interested in the join keys’ distribution after applying
selection operators over the base relations. In addition, if a
relation has only a few distinct join keys, hash partitioning
assigns work only to a few machines, leaving the other ma-
chines idle. In this case, we consider the relation as skewed,
and use random partitioning therein.

Although DBToaster is an online local join operator, our
hypercube schemes are applicable both for the offline and
online scenarios. We start with the offline scenario.

Choosing among hypercube schemes: offline case.
There is a threshold in attribute skew after which random
partitioning brings better performance compared to hash
partitioning. In offline systems, we can employ sampling
and estimate the frequency of the most popular key in the
dataset. Sampling incurs negligible overheads compared to
the query execution time [71, 30, 55]. To find the optimal
partitioning for a hypercube scheme, we run the optimiza-
tion algorithm twice. In the first run, we simply compute the
load after marking the attribute skewed (which enforces us-
ing random partitioning). In the second run, we run the op-
timization algorithm marking the attribute uniform (which
opts for hash partitioning). When computing the maximum
load for hash partitioning, we take into account the top key
frequency, as all the tuples with the same key go to the same
machine. In particular, we estimate the maximum load per
machine as (L − Lmf )/p + Lmf , where L and Lmf are the
load for all the keys and for the most frequent key, respec-
tively, and p is the number of machines4. Finally, we choose
the partitioning (hash or random) with the smaller maxi-
mum load per machine. Alternatively, we could find out the
threshold analytically. In that case, we mark the attribute
as skewed or non-skewed using the information from the
sample, and we run the optimization algorithm only once.
Choosing among hypercube schemes: online case. A
good initial choice of a hypercube scheme saves us from fu-
ture adaptations. Fortunately, in many cases, even in an
online scenario, we know beforehand whether a join key is
skew-free. Sometimes we can infer this from the scheme. For
example, an attribute with the uniqueness property (such as
the primary key) cannot have skew5. On the other hand, zip-
fian skew distributions are typical in many real-life datasets,
such as Internet packet traces, city sizes, word frequency in
natural languages and advertisement clickstreams [17]. An-
other example is dealing with chain stores, where we know
ahead of time that some stores (e.g., these ones in bigger
cities) sell more items than other stores. Similarly, we may
know ahead of time that some products are very popular
(they are sold much more frequently than other products).

4. MULTI-WAY JOINS: GENERAL CASE
Until now, we illustrated the Hash-Hypercube, Random-

Hypercube and Hybrid-Hypercube schemes on a specific 3-
way join (see §3.1). Next, we discuss the optimization al-
gorithm for each scheme, which finds an optimal partition-
ing for a general join. For each scheme, the optimal par-
titioning produces a partitioning that minimizes the load
per machine, and thus, it also minimizes the total amount
of replication. We are given p machines, and the produced
partitioning is a hypercube where each dimension j is of size
pj , so that p = p1 · p2 · · · · · pl.

Hash-Hypercube. Given relations Ri from the query,
where i ∈ 1..k, the formula for load per machine is L =∑

i |Ri|/
∏

j:j∈Ri
pj [8], where hypercube dimension sizes are

p1×p2×· · ·×pl. Given the relative relation sizes (e.g., |Ri| :
|Ri| : · · · : |Rk| = s1 : s2 · · · : sk), the optimization algorithm

4We can obtain more precise estimation by using more in-
formation from the sample about data distribution, e.g., by
using J most popular keys.
5This holds for hash partitioning, which is a natural choice
in this scenario. If we use range partitioning, we could have
skew, depending on the data distribution and range bounds.



chooses the dimension sizes for the Hash-Hypercube so that
it minimizes the load per machine. This algorithm is known
as the HyperCube algorithm [8, 19].

The formula for load L reflects the fact that the load from
each relation is partitioned among dimensions that corre-
spond to the join keys from that relation. In general, not
each join key has a separate axis (equivalently, each join key
corresponds to an axis, but some axes are of size 1, so we
omit them from the hypercube dimensions). In contrast,
previous work on the optimization algorithm [8, 18] takes
as input all the attributes appearing in the query, which in-
cludes both join keys and the attributes from the SELECT
clause (GROUP BY, aggregation attributes etc.). Indeed,
we discover that using join keys is sufficient, as we will ex-
plain shortly. This observation is important as it reduces
the input to the optimization algorithm, improving its per-
formance. Using only join keys as the algorithm input also
allows us to more easily reason about the optimization algo-
rithms for the Random-Hypercube and Hybrid-Hypercube,
as we will see later.

We next explain why it suffices to use only the join keys
(rather than all the relation’s attributes appearing in the
query) as the input in the optimization algorithm. Let us
relation R which has attributes x1, x2, . . . and xn (these
are join keys), and y1, y2, . . . and yn (these are non-join
attributes). For a fixed number of partitions p for relation
R, the load per machine is the same for hypercube schemes
with different dimensions from that relation. For instance,
the load is the same for a hypercube scheme that uses only
x1 from R where p = px1 = 12, and for a scheme that has
x1, y2 dimensions from R where p = px1 ·py2 = 3·4. In other
words, the load per machine due to relation R depends only
on the number of partitions p for that relation, and not on
the number of hypercube dimensions. On the other hand,
only the joins keys increase the number of partitions (and
reduce the load) for other relations (the ones that share the
same join key). Thus, for each hypercube partitioning that
contains non-join attributes, there is one which uses only
join keys as dimensions, which is at least as good as the
partitioning with non-join attributes. In other words, the
algorithm always chooses the join keys as the hypercube di-
mensions, as this allows partitioning two (or more) relations
with a single attribute (join key).

There are different versions of the Hash-Hypercube opti-
mization algorithm. The original one [8] is computationally
expensive as it solves a system of non-linear equations in
order to find optimal dimension sizes. Beame et al. [18] ad-
dress the efficiency problem by translating the non-linear
to a linear system of equations by using some mathematical
transformations. Namely, the authors express the dimension
sizes in an exponential form, and then take a logarithm over
the obtained mathematical expressions. The full details are
out of the scope of this paper. We refer an interested reader
to [18]. Unfortunately, as explained in [26], both works [8,
18] do not handle the case when dimension sizes (obtained
from solving the equations) are not integers. For instance,
if we have 7 machines in total and 3 dimensions of the same
size, each dimension is of size 71/3 = 1.91. If we round down
this value, we fall back to sequential execution (using only
1 machine), completely wasting the remaining 6 machines.
Chu et al. [26] propose an algorithm that always proposes
integer dimension sizes. To do so, the authors use breadth-
first search to explore different configurations whose total

number of machines is less or equal than the given number
of machines. Then, the algorithm chooses a configuration
with the smallest load per machine.

To our knowledge, we are the first to introduce the terms
Hash-Hypercube and Random-Hypercube, and to discover
and analyze the common structure between the two schemes
in a principled way.

Random-Hypercube. The problem formulation is sim-
ilar as before, except that the dimensions correspond to the
relations themselves, rather than to the join keys. The load
per machine is equal to

∑
i |Ri|/pi [74], as each relation ran-

domly chooses a position on its own dimension, and repli-
cates among the other dimensions. As shown in [74], the
optimal hypercube is the one that divides its dimensions
into segments of equal size, that is, |R1|/p1 ≈ |R2|/p2 ≈
· · · ≈ |Rk|/pk. In other words, in the optimal partitioning,
the dimension sizes are in the same proportion as the rela-
tion sizes. For example, if we have 64 machines and R1 is
4× bigger than R2, the optimal partitioning is {R1×R2} =
{16× 4}. This 16× 4 partitioning implies the minimal load
per machine and minimal communication cost among all
the possible Random-Hypercube partitionings for the given
proportion among the relations sizes.

A part of our contribution is discovering a technique for
translating the Random-Hypercube partitioning problem to
that of the Hash-Hypercube. That is, we express the join
R1 1 R2 1 · · · 1 Rk as R1(x1), R2(x2) . . . Rk(xk), where
xi are quasi-attributes that we use as the dimensions in the
Hash-Hypercube optimization algorithm. As no attribute
appearing in more than one relation, and each relation has
exactly one attribute, the resulting partitioning scheme is
the same as the one produced by the Random-Hypercube
algorithm [74] for the given number of machines6. After
we compute the dimension sizes using the Hash-Hypercube
optimization algorithm, we use random rather than hash
partitioning on each dimension.

Hybrid-Hypercube. To decide on dimensions and their
sizes for a general multi-way join, we extend the optimiza-
tion algorithm for the Hash-Hypercube. Let us first more
closely look at query R(x, y) 1 S(y, z) 1 T (z, t) from §3.1.
The corresponding Hybrid-Hypercube partitioning scheme
is shown in Figure 2d. We obtain this partitioning by using
join key renaming7 and by assigning each join key name to
a separate hypercube dimension. In particular, given that
there is skew on S.z and T.z, we rename them to z′ and
z′′, respectively. To address skew at join execution time, we
use random partitioning on the renamed attributes z′ and
z′′. We have to use different attribute names (z′ and z′′),
otherwise the optimization would use the same dimension
for S.z and T.z, and as we are using random partitioning
on both attributes, we would miss many result tuples. As
we use separate dimensions for S.z and T.z, and on each of
them we employ random partitioning, this implies that we
perform S 1 T using the 1-Bucket scheme. On the other
hand, we join R and S using hash partitioning, given that
they share a common skew-free attribute y.

As we already discussed, we need to provide only join
keys (rather than all the attributes from the query) as the

6Work [74] has an additional optimization criterion of find-
ing the optimal operator parallelism. In our work, we as-
sume that the number of machines is given ahead of time.
7The renaming is used only in the optimization algorithm
and the partitioning scheme. The local joins are unchanged.



input for the optimization algorithm. In our example, and
after renaming, the input for the optimization algorithm is
R(y), S(y, z′), T (z′′). Interestingly, the fact that renamed
attributes z′ and z′′ use random rather than hash parti-
tioning changes nothing in the formulas for the dimension
sizes from the optimization algorithm. This is because we
care only about equal distribution of tuples among the rows
and columns. It is irrelevant for the formulas whether we
achieve this using a hash function on a uniform dataset or
by randomization. Thus, from the viewpoint of the Hash-
Hypercube optimization algorithm, we can consider a re-
named equi-join R(x, y) 1 S(y, z′) 1 T (z′′, t) as an equi-join
with hypercube dimensions (y, z′, z′′).

The Hybrid-Hypercube partitioning from Figure 2d has 2
rather than 3 dimensions (y, z′, z′′). The reason is the fol-
lowing. As we already discussed, an optimal partitioning
includes only join keys, that is, the attributes that appear
in multiple relations. Given that z′ only appears in rela-
tion S, and that this relation is already partitioned by y
attribute (which is a join key appearing also in R relation),
the optimization algorithms sets the dimension size of z′ to
one, effectively removing it from the hypercube dimensions.
On the other hand, although z′′ is also appearing only in
a single relation, it is the only attribute that partitions the
relation T . Thus, attribute z′′ remains in the final (y, z′′)
partitioning, which corresponds to our Hybrid-Hypercube
from Figure 2d. Each tuple from R or S is hashed on y
and replicated on z′′. Whereas, we randomize T on z′′ and
replicate it on y. In other words, we perform replicated hash
join between R and S, and a 1-Bucket RS 1 T join. By do-
ing so, the Hybrid-Hypercube saves one hypercube dimen-
sion compared to the Random-Hypercube (which directly
translates to smaller amount of replication and thus better
performance), while still providing for skew resilience.

Continuing this example, for certain relative relation sizes,
a partitioning may become a 1-dimensional one. For in-
stance, if T is really small compared to R and S, the opti-
mal partitioning (with respect to the minimal load per ma-
chine) is (y), which implies broadcasting relation T . A nice
property of our Hybrid-Hypercube is that it automatically
handles all these cases. A user needs to provide only the
relation sizes and whether each join key is skew-free or not.

Let us now consider a query R(x, z) 1 S(y, z) 1 T (z, t)
in which only T.z is skewed. In this case, we rename only
T.z to z′ and use random partitioning therein. This allows
us to share z attribute among R and S relations, lowering
the amount of replication required. From the perspective of
the 1-Bucket join S 1 T , we simulate random distribution
on S.z using hash(S.z), as S.z is a skew-free attribute. In
general, we rename attributes and create new hypercube di-
mensions only when necessary (that is, in the presence of
skew), allowing sharing of attributes among different rela-
tions whenever possible.

The Hybrid-Hypercube can save more than one hypercube
dimension compared to the Random-Hypercube scheme. For
example, if in R(x, y) 1 S(y, z) 1 T (z, t) 1 U(t) only z has
skew, the Random-Hypercube uses 4 dimensions (each corre-
sponding to one relation), while the Hybrid-Hypercube uses
only 2 dimensions (one on y attribute, and another on t).
In particular, the Hybrid-Hypercube hashes R and S on at-
tribute y to “rows” of the 2-dimensional hypercube (matrix),
and T and U on t to “columns“. In other words, we perform
replicated hash join for R 1 S and T 1 U , and a 1-Bucket

join RS 1 TU . In order to partition the data equally using
the 1-Bucket join, hashing on S.y needs to produce a similar
effect as random partitioning on S.z (the same should hold
for T.t and T.z attributes, respectively). This holds, as there
is no skew on S.y nor on T.t. Thus, we can apply dimension-
ality reduction in multiple places in the query. In general,
with the increase in the number of relations (dimensions),
the potential of our hypercube scheme for saving dimensions
(and reducing replication) grows. Similarly, increasing the
number of relations in a pipeline of 2-way joins implies net-
work transferring of more intermediate relations, while the
corresponding hypercube scheme transfers no intermediate
relations at all. On the other hand, given a fixed number
of machines, increasing the dimensionality of any hypercube
scheme (including ours) leads to higher replication. This is
due to the fact that more dimensions have to share the same
total number of machines.

Next, we analyze the Hybrid-Hypercube optimization al-
gorithm for queries with non-equi joins. Let us consider a
query R.x = S.x and S.x < T.y. From the perspective of
the optimization algorithm, we can consider this query as
an equi-join R(x), S(x), T (y) and dimensions (x, y) 8. We
do not require any renaming, and we use hash partitioning
for both x and y. Hash partitioning on S.x allows us to reuse
the same dimension for R.x attribute. From the perspective
of 1-Bucket join S 1 T , we simulate random distribution
on S.x using hash(S.x), given that S.x is a skew-free at-
tribute. Similarly, we simulate random distribution on T.y
using hash(T.y), given that T.y is a skew-free attribute9.
That way, we perform a replicated hash join R 1 S and an
1-Bucket join RS 1 T . In other words, the resulting parti-
tioning scheme replicates R and S over a “row” of machines
in the matrix (2-dimensional hypercube), and it replicates
T over a “column” of machines.

Continuing this example, let us assume that there is skew
on T.y. The dimensions (x, y) and their sizes are the same
as before. The only difference is that we need to employ ran-
dom (rather than hash) partitioning on T.y. On the other
hand, if there is skew only on S.x we need to rename this
attribute to x′, and the optimization algorithm produces a
hypercube with (x, x′, y) dimensions, using hash, random
and hash partitioning, respectively. In that case, attributes
R.x and S.x correspond to different dimensions, and we em-
ploy random partitioning over the renamed attribute S.x in
order to handle skew.

5. SKEW TYPES AND ADAPTIVITY
The data distribution in an online system can change, so

Squall offers some adaptivity techniques.
Skew due to hash imperfections. One may think that,

in the case of uniform data distribution, hashing (both for
aggregations and equi-joins) always leads to even load dis-
tribution. However, there are two situations when this is not
the case. The first one happens if the number of GROUP
BY/join distinct keys is smaller than the operator paral-
lelism. It causes some machines to be completely idle. Sec-
ond, uneven load distribution becomes very likely when the

8These changes are only for the optimization algorithm. The
local joins are unchanged.
9We could as well use random partitioning on T.y in order
to more closely mimic 1-Bucket partitioning for S 1 T . In
that case, we do not pay any extra replication cost, as there
are no other y attributes in the query.



number of distinct keys d and the operator parallelism p are
the same, or when d is a bit bigger than p. For instance, if
d = 15 and p = 8, an optimal scheme will assign no more
than d15/8e = 2 keys to each machine. However, due to
imperfections of hash functions, it is very likely that some
machine is assigned 3 keys, leading to 1.5× higher maximum
load per machine than in an optimal case. This causes se-
vere performance degradations. The performance gap deep-
ens for d = p, as it becomes very likely that one machine is
assigned 2 keys (keeping another machine completely idle),
while an optimal assigns exactly 1 key per machine. The
machine which is assigned two times more work becomes a
bottleneck. This results in a largely suboptimal query plan
in terms of resource utilization, throughput and latency.

Unfortunately, suboptimal assignments due to a small num-
ber of distinct keys d happen frequently in practice. For
example, many queries from the TPC-H benchmark [5] (e.g.
Q4, Q5, Q12) have final aggregations with only up to 25
distinct values. In particular, Q4, Q12 and Q5 have 5, 7
and 25 distinct values, respectively.

On the other hand, we typically know all the distinct val-
ues for attributes with a small domain (e.g. possible val-
ues for ship priorities in TPC-H are predefined). Squall
uses this information to optimally assign distinct values and
to achieve perfect load balancing10. Before the execution
starts, Squall creates a mapping from the predefined keys to
the machines using a round robin partitioning.
Temporal skew. There is another type of skew called tem-
poral skew, where it does not suffice for skew resilience to
have the exact data distribution (even in the case of uniform
distribution). Temporal skew occurs when a specific tuple
arrival order causes load imbalance. In contrast to skew due
to hash imperfections, temporal skew occurs only in online
systems. Different partitioning schemes have different prop-
erties with respect to temporal skew. Partitioning schemes
are commonly classified [60] to content-sensitive schemes
(e.g., joins with hash or range partitioning) and content-
insensitive schemes (e.g., 1-Bucket scheme [54], which uses
random partitioning). Content-sensitive schemes are prone
to temporal skew. In particular, for hash partitioning, in
the case of sorted tuple arrival and moderate join key fre-
quencies, only one machine will be active at a time. This
is equivalent to a sequential execution. We denote imbal-
ance in load caused by tuple arrival order as temporal skew.
Range partitioning is also prone to temporal skew. In the
case of range partitioning and sorted or nearly sorted tu-
ple arrival (e.g., a timestamp is the join key), only a few
machines at a time perform some work. In the context of
hypercube schemes, each scheme that uses hash partition-
ing on at least one dimension (with size greater than 1) is
considered content-sensitive. On the other hand, content-
insensitive schemes use random partitioning and they are
resilient to temporal skew. Namely, these schemes perform
the same independently of tuple arrival order, as the tuples
are randomly distributed among the machines.

Thus, it is insufficient to capture only the data distribu-
tion. Rather, we also need to capture the temporal skew,

10The optimal assignment for uniform distribution is as fol-
lows. If the number of different values is divisible by the
number of machines, all the machines should be responsible
for the same number of values. Otherwise, the number of
values should not differ by more than one between any two
machines.

which we can do indirectly by monitoring the machine load11.
To achieve good performance, we recommend using random
partitioning schemes in the case of data or temporal skew
(or both).
Skew fluctuations. There is an important difference in
adaptivity among hash, range and random partitionings.
Hash partitioning uniformly partitions the data, and thus,
it always yields bad performance in the presence of skew.
For range partitioning, an online operator needs to period-
ically adjust to the data distribution changes (e.g., when
a different key becomes the one with highest frequency, or
when the skew degree changes). If changes are occurring fre-
quently, the operator spends a large amount of time on state
relocations over the network. Even worse, an adversary can
change the data distribution right after the system adjusts
the scheme, thus causing the scheme to always be highly sub-
optimal. The random partitioning avoids this problem as it
randomly assigns tuples to machines, essentially removing
skew in the data distribution.
Join selectivity fluctuations. Next, we explain how multi-
way joins bring an additional adaptivity level compared to
the pipeline of 2-way joins. The join order in an optimal
query plan consisting of 2-way joins is very sensitive to the
join selectivity of intermediate relations. In other words, a
small change in the join selectivity may cause another join
order to become an optimal one. In online systems, the join
selectivity for 2-way joins can vary at run-time. Further-
more, some intermediate relations may grow very large [8,
74, 26].

A possible response is adaptive join reordering [33]. In
that case, we discard some intermediate relations (e.g., R 1

S) and rebuild new state for other intermediate relations
(e.g., S 1 T ) from scratch. This may have very adverse
and hard to predict effects in an online system, including
very large latencies for new incoming tuples. For this rea-
son, existing online systems typically do not perform join
reordering at run-time. Squall also do not reorder join at
run-time, but it offers resilience to join selectivity fluctua-
tions through multi-way joins.

In contrast to a pipeline of 2-way joins, a multi-way joins
consists of a single join operator, so there is no need for join
reordering. Furthermore, a multi-way join does not need to
change which intermediate relations are materialized (e.g.,
R 1 S to S 1 T in the example above), nor to send the
intermediate results over the network. Thus, in contrast
to a pipeline of 2-way joins, hypercube schemes inherently
bring adaptivity to the join selectivity fluctuations.
SAR principle. We introduce the SAR principle, which
summarizes this section. To achieve Skew-resilience and
Adaptivity for more skew types in an online system, parti-
tioning schemes need to increase the input tuple Replication.
Namely, for 2-way joins, hash partitioning (e.g., [34]) is
prone to skew but requires no replication (hash partition-
ing is limited to equi-joins). Whereas, with small amount
of replication, range partitioning provides resilience to re-
distribution skew (e.g., M-Bucket scheme [54]), or to both
redistribution and join product skew (e.g., our equi-weight
histogram scheme [66]). Unfortunately, range partitioning
is prone to temporal skew and skew fluctuations. Random
partitioning (e.g., 1-Bucket scheme [54]) is resilient to data
and temporal skew and skew fluctuations, but it requires a

11This requires that the partitioning scheme reflects the ac-
tual data distribution.



higher amount of replication compared to the one from a
range partitioning scheme. A multi-way join brings adap-
tivity to join selectivity fluctuations. A Random-Hypercube
multi-way join is resilient to all the skew types. However, it
requires higher replication than in the 1-Bucket scheme [54]
due to the following. Both in 1-Bucket and multi-way joins,
in order to produce the join result without requiring com-
munication among joiner machines, a potential output tuple
and all its corresponding input tuples are assigned to a sin-
gle machine. Given more relations in the join, a single tuple
needs to join with more tuples from other relations, effec-
tively increasing replication. (On the other hand, pipeline of
2-way joins may incur higher total network cost compared
to a multi-way join due to transferring large intermediate
results over the network.)
Related work. There is a lot of work on adapting to chang-
ing input rates [61, 37, 39]. However, these works focus on
a single-machine scenario, and optimizing the local join al-
gorithm accordingly. In contrast, we introduce skew fluc-
tuations and temporal skew, which concerns changing data
distribution, and influences the choice of optimal partition-
ing scheme. Flux [60] introduces transient skew which is
essentially a short-term temporal skew. The authors of [60]
propose processing tuples out of order from buffers. This
does not address a general case of temporal skew because
all the tuples in the buffer can have a single destination.
Furthermore, Flux does not discuss the behavior of different
partitioning schemes with respect to transient skew. In con-
trast, we reveal that only content-insensitive schemes can
address temporal skew.

Regarding the SAR principle, we are the first to forma-
lize it. The trade-off between skew-resilience and replica-
tion was known from before, both in the context of of-
fline (e.g., 1-Bucket scheme [54]) and online processing (e.g.,
[33]). In contrast to the previous work, we observe the con-
nection between adaptivity on one side, and skew-resilience
and replication on the other side. In addition, we provide
classifications of different partitioning schemes according to
their properties regarding skew-resilience (for different types
of skew), adaptivity and replication.
Hypercube sizes. The optimal hypercube dimension sizes
minimize replication, and thus, maximize performance. We
determine the optimal sizes from the relative base relation
sizes, as explained in §4. In an online system, the relative
sizes may change at run-time. In that case, a hypercube
scheme needs to adapt to these changes. Squall implements
an adaptive 1-Bucket join operator [32].
Fault tolerance. Squall uses Storm features to achieve fault
tolerance. However, we can sometimes design a better FT
strategy by taking into account peculiarities of the employed
partitioning schemes. In fact, if the partitioning scheme
replicates tuples, a failed node can recover its state from
some of its peers rather than from a disk checkpoint. For
example, in Figure 2b, if a machine with coordinates {1, 1,
1} fails, we can recover its state from any machine {1, *, *}
(for R), {*, 1, *} (for S) and {*, *, 1} (for T ). This improves
performance, as network accesses are several times faster
than disk accesses12. When RDMA is used, the performance
improvements are even higher.

We can employ the same optimization even if the parti-
tioning scheme only partially replicates the operator state.

12https://gist.github.com/jboner/2841832

Figure 3: Demonstration: Running a query.

Figure 4: Results and query performance metrics.

In that case, we achieve efficient fault tolerance without
replicating the entire operator. Rather, we replicate only
the parts of the operator state that are not already repli-
cated by the partitioning scheme.

6. DEMONSTRATION SETUP
The demonstration exposes scalability and skew-resilience

of Squall in high-data-rate analytics applications.
Google cluster monitoring data13 contains information
about jobs (start and end time, status, etc.), tasks (events,
resource usage) and machines (assignments, attributes). We
put ourselves in the shoes of a large cluster administrator,
who gets notified when a potential problem arises. An in-
teresting multi-way join query is finding machines that are
not production-ready, that is, List the machines which often
fail tasks belonging to production jobs. This is a 3-way join
between jobs, tasks and machines relations. Another inter-
esting query is Measure the scheduling algorithm quality. A
motivation for this query is in the fact that the scheduling
algorithm might perform badly for a particular (rare) event
order, and this can manifest only in production. Schedulers
assign jobs to machines to maximize “goodness” score [64],
which includes the machine’s number of preempted or failed
tasks, (production) jobs distribution across the cluster, pres-
ence of application dependencies, cluster failure domains etc.
For instance, it is particularly important to assign produc-
tion jobs to machines with high “goodness” score. Com-
puting the score involves joining multiple relations. We can
observe the scheduling algorithm quality by monitoring (in
real-time) the score aggregated over jobs and machines.
Demonstration. As shown in Figures 3 and 4, we allow at-
tendees to specify a query and to try out different partition-
ing schemes (Hash-Hypercube, Random-Hypercube, Hybrid-
Hypercube), local joins (traditional joins, DBToaster) and
the parallelisms (number of machines). Attendees can verify

13https://github.com/google/cluster-data



scalability by changing the number of machines for a topo-
logy. With a button click, the attendees run the specified qu-
ery plan on an in-house cluster with 220 hardware threads.
At run-time, they can continually monitor the query results,
performance metrics (throughput, latency, CPU utilization
and memory consumption) and operators’ properties such as
hypercube dimensions, replication factor and skew degree.
The replication factor is the component’s number of input
tuples divided by the total number of tuples produced by
the immediate upstream components. The replication fac-
tor is an online counterpart of the MapReduce replication
rate defined in [59] as the proportion between the output
and input size of the mappers in terms of number of tuples.
We define skew degree as the division between the largest
partition size and the average partition size.
Evaluating partitioning schemes. We allow attendees to
compare hypercube schemes by monitoring the performance
as a function of the operator’s replication factor and skew de-
gree. For instance, the Random-Hypercube scheme achieves
perfect load-balancing (no partition skew) but it replicates
tuples (as we observe from the replication factor). For each
hypercube scheme, we identify scenarios (the number of re-
lations, their sizes and skew degrees) where it performs the
best. The results validate the SAR principle and suggest
that replication is ubiquitous for reliable load balancing.
CPU-bound or network-bound? We aid attendees to
find the bottleneck in online processing. To estimate the
CPU share, we run the same query plan with different local
joins (DBToaster, traditional joins). The attendees can also
see the correlation among the operator’s memory consump-
tion and throughput. To estimate the network share, we
run the query plan with the same local joins but with diffe-
rent partitioning schemes. For instance, we replace a Hash-
Hypercube with a Random-Hypercube scheme. We quantify
the difference among the query plans (of the same query)
using intermediate network factor which we define as the
sum of all the component tasks’ input and output divided
by the sum of the query input and query output, that is,
(
∑

comp. task t inputt+outputt)/(query input+query output).
The intermediate network factor represents the amount of
intermediate network shuffling. Then, we compare the per-
formance among different query plans (of the same query)
as a function of this factor. The attendees can also verify on
real-world queries and datasets that query plans with multi-
way joins frequently outperform the ones with a pipeline of
2-way joins due to network savings.

There is an alternative way to find out if Squall query
plans are CPU-bound or network-bound. We run a query
plan and starting from data source reading, we add a sin-
gle element (computation or network). We illustrate this
process in Figure 5 on the example of Customer 1 Orders
from the TPC-H [5] dataset. For some data points, we run
the query with a no-op selection (no tuples are filtered out)
in order to estimate the computation cost of selections. The
full join has no selections. From the first three bars, the
cost of a selection over an integer field is only 1.6% of the
entire execution. Whereas, the cost of a selection over a
date field is about 16%. This is because the creation of
a Date instance (from an input String) is much more ex-
pensive than the creation of an integer. From the last two
bars, we extract the cost of network transferring and join
computation. The network transferring takes 60% of the
entire execution. Whereas, the join computation takes only
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Figure 5: Finding bottleneck in a Squall query plan. sel
stands for a no-op selection (it passes through all the tuples).

14% of the full join execution. Thus, Squall/Storm is clearly
network-bound. The input throughput of the full join is 4.19
million tuples per second for the entire cluster, and 65.000
tuples per second per join task (hardware thread). Hence,
our operators are fairly efficient.

7. EVALUATION
We evaluate different hypercube schemes (Hash-Hypercube,

Random-Hypercube and our Hybrid-Hypercube) for multi-
way joins. We also run the corresponding pipelines of 2-way
joins, where each 2-way join uses hash partitioning in the
case of skew-free equi-joins, otherwise it uses the 1-Bucket
partitioning. Furthermore, we compare the performance
among multi-way joins with the same hypercube scheme but
different local joins (DBToaster and traditional local joins).
Environment. We perform our experiments on an Oracle
Blade 6000 server with 10 Oracle X6270 M2 blades. Each
blade has two 3Ghz 6-core Intel Xeon X5675 CPUs. Each
blade runs Ubuntu 12.04 and has 72GB of DDR3 RAM and
a 1Gbit Ethernet interface. Later on, by a machine assigned
to an operator, we mean a core with an exclusively assigned
portion of the blade main memory. In this paper, we run
the experiments using Squall based on Storm14 version
0.9.4. Squall runs in Java JRE v1.7.

7.1 Datasets
We show the performance of our multi-way join operators

both on TPC-H and on real-world datasets. The first dataset
is the Hyperlink Graph of the Web from August 2012 Com-
mon Crawl Corpus [2]. In the further text, we call this
dataset WebGraph. The WebGraph dataset has one rela-
tion with {FromUrl, ToUrl} pairs, and it is available for
different domain aggregation levels. We experiment on the
“Host” and “Pay-Level-Domain” aggregation levels.

Another dataset that we use is CrawlContent, which has
crawled content from a large number of web pages [1]. We
can analyze the crawled content using different tools, such as
Readability test or Sentiment analysis tools. In the further
text, CrawlContent refers to a relation with the schema
{Url, Score}, where Score stands for the output of any text
analysis tools. As the text analysis tools are out of the scope
of this work, and the Score is not a join key (it is used only in

14http://storm.apache.org/
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Figure 6: Performance for 3-reachability query. We use 36
joiner machines.

some aggregations), the query performance does not depend
on the Score values. Thus, we synthesize them.

Finally, we use publicly available Google cluster monitor-
ing dataset15, which we describe in §6.

7.2 Multi-way vs 2-way joins
Multi-way joins may outperform the corresponding pipeline

of 2-way join, even if the corresponding pipeline is the opti-
mal one.
3-Reachability Query. We illustrate this for a 3-step
reachability query over the WebGraph dataset. The SQL
of this query is shown below:

3
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SELECT W1.FromUrl, COUNT(*)
FROM WebGraph as W1, WebGraph as W2, WebGraph as W3
WHERE W1.ToUrl = W2.FromUrl AND W2.ToUrl = W3.FromUrl
GROUP BY W1.FromUrl

This query frequently occurs in practice, as it helps to
understand the structure of the web. We could run the
same query (with W3.ToUrl in the SELECT and GROUP
BY clause) over the clickstream data, and use the query
result to suggest a better list of hyperlinks for each website.
In particular, a user may considering adding a direct link
from W1.FromUrl to W3.ToUrl, if the corresponding count
aggregate value is high.
Hypercube properties. As the query contains only equi-
joins, and the dataset is uniform, the Hash-Hypercube and
Hybrid-Hypercube schemes produce the same partitioning.
Given 36 joiners, the optimal partitioning is a 2-dimensional
hypercube (matrix) W1.T oUrl×W2.T oUrl = 6×6, as W1,
W2 and W3 are of the same size. This partitioning implies
that W1 is hashed W1.T oUrl and replicated on W2.T oUrl,
W3 is hashed on W2.T oUrl and replicated on W1.T oUrl,
and W2 is hashed on both W1.T oUrl and W2.T oUrl. Thus,
the replication factor is 6 + 6 + 1 = 13, and total network
transfer due to reshuffling data is 13× 10.2M = 132.6M tu-
ples. We run the query on 0.5% sample of the “Host” Web-
Graph (the full “Host” dataset has 2,043 million arcs, so the
sample has 10.2 million arcs), so that the pipeline of 2-way
joins can also finish (otherwise, it runs out of memory due
to large intermediate results). The total network transfer in
the pipeline of 2-way joins is 3× 10.2M + 130M = 160.6M
tuples (130M is the intermediate output of the first join).

15https://github.com/google/cluster-
data/blob/master/ClusterData2011 2.md
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Figure 7: Comparison of different hypercube schemes.

Performance results. As Figure 6 shows, our multi-way
join outperforms the corresponding pipeline of 2-way joins
by 1.43×. This is because it transfers less tuples over the
network compared to the corresponding pipeline (132.6M
tuples compared to 160.6M tuples). In both cases, we use
DBToaster as the local join operator. The speedup comes
from the fact that the intermediate results are quite large
with respect to the input relations. Thus, the shuffling cost
of the pipeline of 2-way joins surpasses the replication cost
of a hypercube.

7.3 Hybrid-Hypercube versus Hash-Hypercube
and Random-Hypercube

Next, we show two queries where our schemes outperforms
the-state-of-the-art multi-way join partitioning schemes. All
the multi-way join operators use DBToaster locally.
TPCH9-Partial Query. The first query is a subquery
Lineitem 1 PartSupp 1 Part from the TPC-H [5] Q9.
We refer to this query as TPCH9-Partial. TPCH9-Partial
is an example of a query where multiple relations share
the same join key (Partkey). Wu et al. [70] showed that
the Hash-Hypercube scheme outperforms the correspond-
ing pipeline of 2-way joins for TPCH9-Partial on an uni-
form TPC-H dataset. Indeed, the Hash-Hypercube and the
Hybrid-Hypercube produce the same partitioning (the hy-
percube is 1-dimensional with Partkey as the key).
Hypercube properties. However, for a skewed TPC-H
dataset, the Hybrid-Hypercube outperforms both the Hash-
Hypercube and Random-Hypercube schemes. We experi-
ment with different configurations (J is the number of ma-
chines): 10G/8J and 80G/100J TPC-H datasets with zip-
fian distribution and skew factor of 2. The Hash-Hypercube
scheme partitions all the relations on Partkey, as all the
three relations use this attribute as a join key. The Random-
Hypercube scheme uses relations as hypercube dimensions
and it produces partitioning Part × PartSupp × Lineitem
with the dimensions {1×1×8} for the 10G/8J configuration
(broadcasting two smallest relations) and {1×4×25} for the
80G/100J configuration. Due to skew in Lineitem.Partkey,
the Hybrid-Hypercube schemes uses random partitioning on
Partkey and hash partitioning on Suppkey. In particular,
our Hybrid-Hypercube scheme produces Partkey×Suppkey
partitioning with the dimensions {1×8} for the 10G/8J con-
figuration and {1× 100} for the 80G/100J configuration.



Table 1: Maximum and average load per machine for different hypercube schemes. M stands for millions of tuples.

Query Size Machine Load
Hypercube type

Hash Random Hybrid

TPCH9-Partial 10G
Maximum 38.5M 15.6M 22.8M
Average 8.5M 15.6M 8.6M

TPCH9-Partial 80G
Maximum N/A 35M 78.9M
Average N/A 35M 6.3M

WebAnalytics Pay-Level-Domain
Maximum 2.26M N/A 2.07M
Average 2.18M N/A 2M

Table 2: Replication factor for different hypercube schemes.

Query Size
Hypercube Replication factor
Hash Random Hybrid

TPCH9-Partial 10G 1 1.83 1.01
TPCH9-Partial 80G N/A 6.19 1.11

Performance results. Figure 7 shows the performance re-
sults. For query TPCH9-Partial and the 80G/100J configu-
ration, the Hash-Hypercube does not complete the process-
ing due to high memory requirements caused by high skew.
However, we extrapolate its completion time using the infor-
mation about the number of tuples processed before running
out of memory. The Hybrid-Hypercube outperforms the
Random-Hypercube by a factor of 2.39× and the Hybrid-
Hypercube by 1.6×. This is due to the fact that our scheme
uses hash partitioning whenever possible (on Suppkey) and
random partitioning only when necessary due to high skew
(for Partkey).
WebAnalytics Query. The second query that shows the
advantages of our Hybrid-Hypercube scheme is over the Pay-
Level-Domain WebGraph and CrawlContent datasets. It re-
ports hyperlink paths from the WebGraph dataset that have
length of two and that go through ’blogspot.com’ (which has
the highest in-degree in the dataset), and joins the result
with the CrawlContent relation that has URL and a web
page content score. The SQL for this query is shown below:
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SELECT W1.fromUrl, Score, COUNT(*)
FROM WebGraph as W1, WebGraph as W2, CrawlContent as C
WHERE W1.ToUrl = ’blogspot.com’ AND W2.FromUrl = ’blogspot.com’
AND W1.ToUrl = W2.FromUrl AND W1.FromUrl = C.Url
GROUP BY W1.fromUrl, Score

Hypercube properties. The size of WebGraph relation
is 623 million arcs. After applying selections, the size of
W1 and W2 is 1.03 and 3.9 million arcs, respectively. The
CrawlContent relation has 43 million tuples (this is the num-
ber of distinct Urls from the Pay-Level-Domain WebGraph
dataset). We compare the performance using 40 machines
for each hypercube scheme. The Hash-Hypercube scheme
employs a 2-dimensional hypercube with dimensions
W1.F romUrl(C.Url)×W2.F romUrl(W1.T oUrl) = {20×
2}. Relation W1 is partitioned among the machines using
its FromUrl and ToUrl attributes. Relation W2 is hashed
on W2.F romUrl and replicated on W1.F romUrl attribute.
Whereas, relation C is hashed on C.Url and replicated on
W2.F romUrl attribute. The Random-Hypercube scheme
creates a 3-dimensional hypercube W1×W2×C = {1×2×

20}. This schemes uses replication on all the dimensions,
and relation W1 is replicated on all the machines. The
Hybrid-Hypercube scheme creates a 2-dimensional hyper-
cube with dimensions W1.F romUrl(C.Url)×W2.F romUrl
= {20 × 2}. This scheme opts for random partitioning on
W2.F romUrl (this is optimal because WebGraph is highly
skewed, as there is only one distinct value of this join key)
and hash partitioning on W1.F romUrl attribute (this is
optimal because there is no skew on W1.F romUrl and this
attribute is the primary key in CrawlContent, so it is skew-
free). In other words, the Hybrid-Hypercube scheme per-
forms a replicated hash join W1 1 C and a 1-Bucket join
W1C 1 W2. We use DBToaster as the local join operator
for all hypercube schemes.
Performance results. Figure 7 shows the performance re-
sults for the WebAnalytics query. As this query takes more
than an hour to execute, we show the runtime for producing
the first 6.5 million output tuples (this gives us comparable
running times to the ones from the TPCH9-Partial query).
The Hybrid-Hypercube achieves 1.43× speedup compared
to the Hash-Hypercube, and 11.64× speedup compared to
the Random-Hypercube (we extrapolate its running time).
This is due to the fact that, among the hypercube schemes,
only our Hybrid-Hypercube scheme is able to employ diffe-
rent partitionings for different attributes. Furthermore, our
scheme does so in an optimal manner.
Relationship between maximum load per machine
and performance. To better understand the performance
differences and skew resiliency among different hypercube
schemes, we also extract the maximum and average load
per machine in terms of number of input tuples received.
Table 1 shows these numbers. From these numbers we can
also extract skew degree, which we define in §6 as the divi-
sion between the maximum and average load per machine.
Due to the fact that the Hash-Hypercube does not address
skew, it has very high maximum load compared to the ave-
rage load per machine. This scheme does not finish for the
TPCH9-Partial 80G configuration, and this is why we can-
not obtain its maximum and average load for this configu-
ration. In contrast, the Hybrid-Hypercube addresses skew
and thus it has smaller maximum load per machine than
the Hash-Hypercube scheme. This explains why the Hybrid-
Hypercube outperforms the Hash-Hypercube scheme, as Fi-
gure 7 shows. For the WebAnalytics query, it is interesting
that a relatively small difference in the load (1.09×) among
the Hash-Hypercube and Hybrid-Hypercube schemes leads
to a considerable difference (1.43×) in the performance. This
is due to the fact that this query is CPU-intensive (each in-
coming tuple incurs considerable computation).

The Random-Hypercube always achieves perfect load bal-
ancing due to randomization of all the input tuples. This is
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Figure 8: Multi-way joins with different local joins (traditional vs DBToaster).

why the maximum and average load per machine are always
the same for this scheme, but average load is rather high.
In contrast, the Hybrid-Hypercube scheme replicates tuples
only when necessary, and thus it has smaller average load per
machine than the Random-Hypercube scheme. On the other
hand, for TPCH9-Partial, the Hybrid-Hypercube has higher
maximum load per machine than the Random-Hypercube,
as Suppkey does not have completely uniform distribution
(the skew is not high enough to justify using randomization
on that attribute) 16. Still, the Hybrid-Hypercube outper-
forms the Random-Hypercube, as Figure 7 shows. Thus,
when choosing an optimal scheme, we need to consider not
only the actual maximum load per machine but also the to-
tal communication cost (which is the average load multiplied
by the number of machines), as network may be a bottle-
neck (i.e., network might be unable to sustain high enough
throughput among all the communicating machines).
A closer look at the replication factor. Table 2 shows
the replication factor for different hypercubes in TPCH9-
Partial. We define the replication factor in §6 as the ra-
tio between the total number of tuples the the component
receives and the number of tuples that the immediate up-
stream components (in this case, data sources) produce. A
small replication factor implies low network traffic as well
as small amount of local join processing. Table 2 illustrates
that not only the Hybrid-Hypercube has lower replication
factor than the Random-Hypercube (and thus better per-
formance), but its replication factor also scales consider-
ably better. In addition, the Hybrid-Hypercube has slightly
higher replication factor than the Hash-Hypercube. How-
ever, this is exactly the reason why it is skew-resilient, and
consequently, why it achieves better performance than the
Hash-Hypercube scheme.

7.4 DBToaster versus traditional local joins
Next, we compare multi-way joins with traditional local

joins and DBToaster local joins.
TPC-H Queries. We run TPCH9-Partial with the 10G/8J
configuration and TPC-H Q3 with the 10G/8J configuration
on the TPC-H dataset with the zipfian distribution and the
skew factor of 2. In all the TPC-H queries, we disregard
LIMIT and ORDER BY clauses, as Squall does not support
these constructs yet. The query plans with traditional joins

16Our current implementation of the Hybrid-Hypercube op-
timization algorithm assumes uniform distribution for the
attributes marked as non-skewed. Thus, the computed ma-
ximum and average load per machine are the same.

cannot finish due to high computation cost (joiners cannot
keep pace even with a minimal number of data sources), so
we extrapolate their running time. The performance num-
bers from Figures 8a and 8b show that DBToaster brings
an order of magnitude improvement compared to the tradi-
tional local joins.
Google TaskCount Query. We run a query that provides
the count of failed tasks per machine id and platform over
the publicly available Google cluster monitoring dataset:
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SELECT MACHINE_EVENTS.machineID, MACHINE_EVENTS.platform, COUNT(*)
FROM JOB_EVENTS, TASK_EVENTS, MACHINE_EVENTS
WHERE TASK_EVENTS.eventType = FAIL
AND JOB_EVENTS.jobID = TASK_EVENTS.jobID
AND MACHINE_EVENTS.machineID = TASK_EVENTS.machineID
GROUP BY MACHINE_EVENTS.machineID, MACHINE_EVENTS.platform

Hypercube properties. We run the Google TaskCount
query using 8 machines. The Hash-Hypercube creates
machineId× jobId = {1×8} partitioning, that is, it hashes
Job Events and Task Events and replicates the smallest re-
lation (Machine Events). Whereas, the Random-Hypercube
produces Machine Events×Job Events×Task Events =
{1 × 1 × 8} partitioning, that is, it replicates the small-
est two relations (Machine Events and Job Events). As
the query consists of only equi-joins, and there is no sig-
nificant skew, the Hybrid-Hypercube generates the same
partitioning as the Hash-Hypercube scheme (recall that the
Hybrid-Hypercube subsumes both the Hash-Hypercube and
Random-Hypercube schemes). The difference between the
three hypercube schemes is rather small, as the total size of
Machine Events and Job Events is only 14.5% of the re-
lation Task Events size.
Local joins. On the other hand, using different local joins
makes a big difference. As Figure 8c shows, the hypercube
schemes with DBToaster outperforms the schemes with tra-
ditional local joins by a factor of 3− 4×.

7.5 Summary
Multi-way joins avoid shuffling the intermediate results,

but typically have higher replication of the base relation tu-
ples compared to the corresponding pipeline of 2-way joins.
However, for certain queries (such as 3-Reachability), multi-
way joins reduce the total communication costs. This trans-
lates to achieving better performance compared to the cor-
responding pipelines of 2-way joins, validating the fact that



communication cost plays an important role in distributed
processing. Multi-way joins are also more amenable for on-
line processing due to their inherent adaptivity to join selec-
tivity fluctuations. Namely, due to their hypercube struc-
ture, multi-way joins completely avoid the need for join re-
ordering. Our Hybrid-Hypercube outperforms an existing
scheme by up to an order of magnitude (e.g., WebAnalyt-
ics in Figure 7). Our scheme achieves up to 1.6× perfor-
mance improvement compared to the best existing hyper-
cube scheme (TPCH9-Partial on 80G dataset using 100 ma-
chines in Figure 7). This is due to the fact that our scheme
achieves skew resilience, while reducing replication of the
base relation tuples. The maximum and average load per
machine are good performance predictors for different hy-
percube schemes. In general, if some of the relations are rel-
atively small, the performance difference between the hyper-
cube scheme drops. Finally, using DBToaster locally brings
an additional speedup of up to an order of magnitude com-
pared to the case when traditional local joins are used.

8. RELATED WORK
Offline multi-way join schemes. The Hash-Hypercube

[8] and Random-Hypercube [74] schemes, which we describe
in detail in §3.1 and 4, are originally proposed for offline
systems. (As we show in §5, we can use these schemes
in online systems as well, by periodically adjusting to the
statistics collected so far.) Similarly, our Hybrid-Hypercube
scheme is also directly applicable for offline processing. The
Hybrid-Hypercube advances state-of-the-art, as in contrast
to the Hash-Hypercube it supports non-equi joins and it
is skew resilient, while incurring significantly smaller com-
munication cost compared to the Random-Hypercube. The
main insight of the Hybrid-Hypercube is to optimize the
replication according to the join keys’ skew degree and join
conditions. We estimate the skew degree information from
a sample from each relation.

Chu et al. [26] propose an operator that combines the
Hash-Hypercube partitioning scheme with a state-of-the-art
offline local operator for cyclic joins. In contrast, we offer
different hypercube schemes, and use state-of-the-art online
local join operator for acyclic joins. Inspired by [26], in
the future we plan to combine local online cyclic joins with
our hypercube schemes. YSmart [41] studies partitioning
schemes for subqueries consisting of both joins and aggrega-
tions. It recognizes subqueries that can be executed without
any replication within a single MapReduce job.

BinHC [19] and SharesSkew [7] are partitioning schemes
for multi-way joins that separate relation’s tuples into heavy
hitters (the join keys with high multiplicity) and light hit-
ters (the remaining join keys). The main idea is to use some
variant of hash partitioning for light hitters and random par-
titioning for heavy hitters. These operators reduce replica-
tion as much as possible and they may achieve smaller load
per machine compared to the Hybrid-Hypercube in the of-
fline setting. This is due to the fact that Hybrid-Hypercube
always decide on partitioning according to the attribute
distribution on the relation as a whole, while BinHC [19]
and SharesSkew [7] partition each relation into two parts
(heavy and light hitters). Thus, an optimal partitioning
scheme for multi-way joins should support efficient execution
of both equi-joins and non-equi joins (which our Hybrid-
Hypercube does), as well as per-key partitioning for equi-

joins (as BinHC [19] does). We left the design and imple-
mentation of such an operator for future work.

However, both BinHC [19] and SharesSkew [7] are re-
stricted to equi-joins. In addition, these approaches might
be suboptimal in an online scenario. In particular, they re-
quire detailed statistics about skew, that is, key frequencies.
Although we can adjust the partitioning scheme according
the statistics seen so far, the (relative) key frequencies can
repeatedly change over time, even right after the scheme ad-
justment (we denote this pattern as skew fluctuations, and
explain it in detail in § 5). This implies frequent data mi-
grations, which affects the performance. In contrast, the
Hybrid-Hypercube requires only information about whether
the relation’s attribute is skew-free or not (this information
is used to decide on hash or range partitioning). It does
not require information about the exact degree of skew, nor
about which keys are highly skewed. The skew degree on the
relation as a whole typically changes less frequently than the
skew degree among the particular keys, causing smaller num-
ber of migration and better performance of online Hybrid-
Hypercube compared to the online counterparts of BinHC
and SharesSkew.

Local online join algorithms. There is a significant
body of work on local online 2-way join algorithms [69, 63,
61, 31, 51]. Symmetric hash join [69] requires that data fits
in memory. Works [63, 61, 31, 51] address this issue by em-
ploying different strategies for spilling to disk. MJoin [65]
generalizes XJoin [63] to (local) multi-way joins, and focuses
on strategies for spilling to disk. CACQ [48] and STAIRs [29]
execute multi-way joins using Eddies architecture [16], that
is, they decide on per-tuple basis on an optimal join order.
The main difference between DBToaster [9] that we use in
Squall and these multi-way joins is as follows. First, these
works [65, 48, 29] focus on equi-joins. Whereas, DBToaster
also supports complex non-equi joins. Second, DBToaster
materializes intermediate multi-way joins (2-way to (n− 1)-
way joins) in order to avoid re-computation. In contrast,
STAIRs only partially avoids re-computation, as it materi-
alizes intermediate tuples that results from joining of only
up to 2 relations. Finally, Squall is an extensible system, as
we can combine any of these local join algorithms with our
partitioning schemes.

Distributed online joins. BiStream [44] and Photon [13]
offer online join processing in a distributed setting. Pho-
ton [13] is designed for click-stream analytics in Google, and
it supports only equi-joins. BiStream [44] is a 2-way stream
join operator that partitions each input relation on a sepa-
rate set of machines. It focuses on scalability and elasticity,
and it supports both equi- and non-equi joins. Upon receiv-
ing an incoming tuple, BiStream always store it on exactly
one machine, and produces the output by sending the tu-
ple to all the machines that (may) contain joinable tuples
from the opposite relation. BiStream uses hash partitioning
(it sends an input tuple to two machines, one for storing
the originating relation, and another for joining with the
opposite relation) and random partitioning (an input tu-
ple is randomly assigned to a machine of the originating
relation, and sent to all the machines of the opposite rela-
tion for join processing). BiStream also proposes ContRand
partitioning, which hashes an input tuple to a subgroup of
machines. Within a subgroup, ContRand uses random par-
titioning. As BiStream always store a tuple on exactly one
machine, it has smaller memory requirements than the 1-



Bucket scheme [54]. However, when using random parti-
tioning (for non-equi joins or for equi-joins with high skew),
BiStream has higher communication cost that the 1-Bucket
scheme [54]. We illustrate this on the following example. To
simplify the analysis, we compare the two schemes assuming
that the relations are of equal sizes. In that case, each rela-
tion in the BiStream scheme uses p/2 machines. Whereas,
the 1-Bucket scheme is a

√
p×√p matrix. Thus, BiStream

sends each tuple to p/2 machines, while the 1-Bucket sends
a tuple only to

√
p machines. In other words, the 1-Bucket

scheme implies smaller communication and storage cost than
the BiStream scheme.

Distributed online joins: multiple hops. We next
describe work that executes multi-way joins using multiple
network hops. CTR scheme [35] and PSP scheme [68] op-
timize tuple routing, providing for adaptive join ordering.
PSP [68] partitions the state among the machines according
to their timestamp. CTR scheme [35] and PSP scheme [68]
support both equi- and non-equi joins, These approaches at-
tempt to address the problem of join selectivity fluctuations
by adaptive join ordering. However, CTR and PSP schemes
have the following drawbacks. First, these approaches do
not materialize intermediate results, and suffer from recom-
putation. Second, the intermediate results are sent over the
network and can be considerably large, causing high com-
munication overhead, and potentially high latency for pro-
ducing result tuples. In contrast, our HyLD operator solves
both problems. It uses local DBToaster operator that allows
reusing the previously computed intermediate results, and
it requires only one network hop to produce the result tuple.

Distributed Eddies [62, 75] are based on SteMs Eddies [58],
and they provide for per-tuple routing and thus, they also
provide for adaptive join ordering. However, Distributed
Eddies [62, 75] suffer from the same drawbacks as the CTR
scheme [35] and PSP scheme [68] (multiple network hops and
no intermediate relation reusing). Distributed Eddies as-
sume window semantics, tolerate information loss and do not
study intra-operator adaptations (as our Adaptive 1-Bucket
scheme [32] does). Furthermore, they do not materialize in-
termediate results, which leads to recomputation every time
a new tuple comes. For small windows, intermediate results
might not be frequently reused (when window expires, its
intermediate results also expire). However, reusing interme-
diate results is especially important for moderately-sized to
large windows, and for full-history queries, which are nowa-
days very popular [22, 15]. Thus, we focus on large-state
and full-history operators.

Distributed online joins: single hop. Next, we present
multi-way join operators that require only one network hop
for producing output, similarly to our hypercube schemes.
ATR scheme [35] support non-equi joins and it uses range
partitioning (with some overlapping) on timestamp, so it
replicates tuples less than the hypercube schemes. However,
ATR executes the entire window on one machine, so it might
not scale for large windows and fast incoming rates. As we
already discussed, online operators with large windows or
full-history semantics are very popular nowadays [22, 15].
We can extend Squall with ATR partitioning schemes to
support small to moderate-sized window operators.

Flux [60] is an adaptive partitioning scheme, where the
number of partitions is much higher than the number of ma-
chines. This scheme supports skew but assumes that none
of the partitions, which are specified in the initialization,

surpasses a machine capacity. As explained in [68], this is
easily violated in online scenarios. Flux is originally pro-
posed for single-input operators, but it can support some
join conditions, such as equi-joins [45]. Liu et al. [45, 46]
provide multi-way equi-join operators using Flux, inheriting
its drawbacks. Liu et al. [45, 46] do not consider partition-
ing schemes with replication, rather they focus on multi-way
joins where all the relations use the same join key. This line
of work offer moving operator states among the machines,
as well as spilling to disk. In addition, it allows changing the
join order at run-time, or even changing a pipeline of 2-way
joins to a single-hop multi-way join at run-time. However,
it requires blocking of input streams while migrating state.
This causes long stalls for operators with large state, which
is unacceptable in online systems. In contrast, our Adaptive
1-Bucket [32] is a non-blocking scheme.

8.1 Existing work on online systems
This section provides a brief overview of the most impor-

tant (and most widely used) existing online systems. For
more details about different online systems, we refer an in-
terested reader to an excellent survey [47].
MapReduce systems cannot provide online process-
ing. The challenge of real-time data processing has recently
moved to the forefront of interest among users of analyt-
ics and data warehousing systems as well as the large-scale
Web applications / NoSQL crowd. On the other hand, map-
reduce style batch processing systems [28, 4, 36] are not
amenable for low-latency processing due to the following. A
MapReduce job consists of a map and a reduce stage. A
job does not produce any output before all the input is pro-
cessed, that is, a reduce function is invoked only after the
map function processes all the input data. If the computa-
tion consists of multiple MapReduce jobs, only one job is
executing at a time, and the next stage blocks until the cur-
rent one completely delivers its intermediate result17. Thus,
latencies are very high in these systems, and we need to use
different systems to achieve low latencies.
Cohabitation of offline and online systems. Large Web
applications companies, which play a key role in the NoSQL
movement and the development of map-reduce style batch
processing systems [28, 4, 36], use batch processing sys-
tems in conjunction with large-scale realtime frontend sys-
tems. An architecture that concurrently runs fault-tolerant
batch processing and low-latency online processing for the
same application is denoted in literature as Lambda archi-
tecture [50]. In this architecture, once the exact results from
the batch processing are in place, they overwrite the corre-
sponding eventually consistent results from the online pro-
cessing pipeline. Twitter’s Summingbird [20] offers a user
the same declarative interface for offline and online process-
ing. The system uses Scalding (Cascading’s Scala API) [3]
as the backend for offline processing, and Storm [49] as the
backend for online processing. Summingbird also allows run-
ning the same application in both backends at the same time
(hybrid mode). Google DataFlow [11] provides similar func-
tionalities using FlumeJava framework [23] and MapReduce
for offline processing, and MillWheel [10] for online process-
ing. Google DataFlow focuses on time series data processing
for unbounded streams, allowing a user to choose a tradeoff
between latency, correctness and resource costs.

17If there is no data dependencies among jobs, they can ex-
ecute in parallel.



Micro-batch systems. There have been proposals that
attempted to introduce onlineness in Hadoop, the most fa-
mous examples being the Hadoop Online Prototype (HOP)
[27] and Scalla [43, 42]. We note that the paper [57] on
Nova also claims batched incremental processing of work-
flows on Hadoop, but provides little detail on the systems
aspects of it. HOP pipelines in small batches the map out-
put to reducers, and it performs multi-pass merge on the
reducers. However, it was shown in Scalla [43] that HOP
is not amenable for high-performance online processing, be-
cause sort-merge, inherited from Hadoop, has unacceptable
blocking cost. Rather, Scalla [43, 42] uses hash partition-
ing, which performs better. This system also maximizes
performance by carefully partitioning tuples among mem-
ory and disk in the case of memory overflow. Both HOP [27]
and Scalla [43, 42] focus on general micro-batch MapReduce
processing, rather than on database operators. In contrast,
Squall focuses on database operators. It uses hash parti-
tioning in the case of skew-free datasets, but we design and
implement other partitioning schemes as well (depending on
the join conditions and skew degree).

There are attempts to bring online processing to other
batch engines. Spark is an in-memory MapReduce sys-
tem where the computation is specified as transformations
over resilient distributed datasets (RDDs). RDD abstrac-
tion ensures that, in the case of a machine failure, other ma-
chines divide among themselves the work that was assigned
to the failed machine. Spark Streaming [73, 72] is based
on Spark and it simulates online processing by perform-
ing MapReduce-style computation in small batches (micro-
batching). As explained in Trill [25], Spark Streaming un-
fortunately uses the same batch size for physical batching
(which helps in achieving high performance) and semantic
batching (which is due to specific window semantics). In
contrast, these two types of batching are independent in
Squall, and query results do not depend on the physical
batch sizes. In contrast to Squall, Spark Streaming has no
skew-resilient joins18 nor multi-way joins.

All these systems [27, 43, 42, 73, 72] modify an exist-
ing batch system to perform micro-batching. Micro-batch
systems achieve better latencies than batch systems. How-
ever, micro-batching systems still suffer from high synchro-
nization penalties between machines. This is due to the
fact that the system needs to synchronize after each micro-
batch, and new incoming tuples are blocked until the whole
micro-batch is processed. If a computation contains multi-
ple stages (MapReduce jobs), the synchronization overheads
grow as the system synchronizes after each micro-batch on
each stage. This is equivalent to a coarse-grained lock-step.
Thus, the slowest machine of an operator limits the entire
operator execution. The performance degradations occur
even in the absence of skew, as one machine may be slower
due to non-deterministic reasons (small glitches in network,
or small differences in performance among the same hard-
ware). Synchronization raises latencies to the order of sec-
onds and fundamentally hinders scalability.

18Spark-skewjoin library (https://github.com/tresata/spark-
skewjoin) extends Spark with the support for skew resilience
for equi-joins. However, their partitioning scheme is very
similar to the F-Skew scheme [21], which efficiently handles
only certain types of skew (the key frequencies need to be
low in at least one relation).

Ground-up online systems. Next, we describe systems
that are designed specifically for online processing. These
systems are implemented from scratch, rather than by mod-
ifying an existing offline system. Ground-up online systems
represent the computation as a DAG of pipelined operators
(rather than a series of map and reduce stages), where each
operator produces output on a per-tuple basis.

Flink is an Apache project that emerged from a research
project called Stratosphere [12]. This system is designed for
online processing, that is, the input is unbounded stream,
and the input tuples are continuously pipelined through a
computation graph. However, Flink can also support offline
processing by treating its input in a special way (bounded
streams). Flink provides functional interface, where com-
putation is specified through operations over parallel col-
lections. This system offers two join partitioning schemes
(repartition and broadcast) and local join operators (hybrid-
hash and sort-merge). Flink is equipped with a cost-based
optimizer that chooses an optimal scheme and local ope-
rator, according to the data and memory sizes. However,
Flink currently does not provide skew-resilient nor multi-
way joins. On the other hand, Flink has better support for
UDF operators (including UDF joins) compared to Squall.
In particular, Flink may reorder UDFs (and operators in
general) to achieve better performance, while preserving the
original program semantics. Furthermore, in contrast to
Squall, Flink can run iterative analytics.

MillWheel [10] is another system for online processing. It
focuses on efficient fault-tolerance techniques such as replay
with duplicate elimination using Bloom filters. This work is
orthogonal to Squall, as we could use MillWheel’s techniques
for achieving fault-tolerance techniques in Squall.

Twitter Storm [49] has a very convenient, dataflow-like,
programming abstraction and excellent scalability. It allows
users to write arbitrary programs by specifying the compu-
tation DAG and the code within each DAG node. Storm of-
fers persistent storage and it supports at-least once, at-most
once and exactly-once semantics. To provide exactly-once
semantics, Storm uses a persistent storage. Storm’s Trident
library offers database operators such as aggregations, joins,
selections and projections. However, Storm supports only
equi-joins on skew-free datasets, as well as multi-way joins
with the same join key among all the relations. In contrast,
Squall supports complex join operators, including 2-way and
multi-way joins, both over skew-free and skewed datasets.

Heron [38] is a next-generation online processing engine
developed at Twitter. Heron and Storm are built with
the same goal in mind, and Heron is API-compatible with
Storm. In fact, Heron is built from scratch with the goal of
addressing various performance bottlenecks in Storm. The
main performance inefficiency in Storm is the presence of
multiple levels of indirection: a worker (JVM process) has
multiple executors (threads), and each executor is assigned
multiple component tasks [38]. This design causes Storm
to spend significant amount of time in multiplexing and de-
multiplexing each tuple through tasks, executors and work-
ers. That is, each received or sent tuple in Storm goes
through multiple queues and threads. In particular, a Storm
worker has one thread for receiving tuples and one for send-
ing them further down. Whereas, a Storm executor has a
thread for user logic, and a thread for sending tuples to
the worker. Thus, each input tuple has to go through 4
threads [38]. In addition, multiple levels of indirection result



in conflicting scheduling goals and thus, in scheduling inef-
ficiencies. By adopting a simpler design and by implement-
ing tuple transferring more efficiently, Heron achieves an
order-of-magnitude performance improvements19 compared
to Storm. Heron also achieves better scalability than Storm
due to limiting the maximum number of connections for
heartbeats (Zookeeper) and for tuple routing (Stream Man-
ager) via hierarchical structuring of communicating nodes.

Trill [25] is a high-performance library for online process-
ing, and Quill [24] is its parallel version. Trill and Quill
achieve high throughput mainly due to using column-store
optimizations. This line of work is orthogonal to Squall, as
we could employ their optimizations in our system.

Overall, existing open-source online systems focus on dis-
tribution primitives (e.g., communication patterns, fault tol-
erance) and low-level performance optimizations. In con-
trast to existing online systems, Squall focuses on support-
ing complex joins and on skew resilience.
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