Complement to the Paper Stochastic MPC for Controlling the Average Constraint Violation of Periodic Linear Systems with Additive Disturbances

Luca Fabietti and Colin N. Jones

A. Explicit computation of the SPCI sequence

To present the algorithm to compute the SPCI sequence it is it useful to define the preset operator.

Definition 1: Given a set $\mathcal{M}_{j+1} \subseteq \mathbb{R}^n$ at intra-period j+1, the set $\operatorname{Pre}(\mathcal{M}_j)$ is defined as

$$\begin{aligned} \operatorname{Pre}(\mathcal{M}_{j+1}) &=: \{ x \in \mathbb{R}^n : \exists u \in \mathcal{U}_j \mid \\ A_j x + B_j u + w \in \mathcal{M}_{j+1} \quad \forall w \in \mathcal{W}_j \\ g^T_{\sigma_{j+1}}(A_j x + B_j u) \leq q_j(\xi) + h_{\sigma_{j+1}} \end{aligned}$$

Algorithm 1 SPCI Computation

- 1: Initialize the sets $S_j := X_j^s \cup \overline{X}_j, \ j = 0, 1, \dots, p-1$ and set i := 0
- 2: Let h = mod(i, p). Compute $Q(S_h) =: \text{Pre}(S_h) \cap S_{\sigma_{h-1}}$.
- 3: if $i \leq -p$ and $S_{\sigma_{h-1}} = Q(S_h)$ then stop. The maximal SPCI sequence has been found.
- 4: if $Q(S_h)$ is empty then stop. The maximal SPCI sequence does not exist.
- 5: Update $S_{h-1} = Q(S_h)$
- 6: Set i =: i 1, and goto Step 2.

B. Implicit Parametrization of the SPCI sequence

Consider an MPC problem formulation with prediction horizon N and current time k. The predictions for the control input u_{k+i} are provided by an explicit policy parametrization for all $i \in \mathbb{N}_0^{N-1}$ whereas, for $i \ge N$ a fixed controller is assumed. To give a possible instance, let

$$u_{k+i} = \pi_i(x_k^{k+i}), \quad i \in \mathbb{N}_0^{N-1}$$
 (B1)

be the explicit control policy (state-sequence feedback). Further assume the terminal regulator to be a state-feedback controller

$$u_{k+i} = \kappa_f(x_{k+i}), \quad i \ge N.$$

The constraint satisfaction is enforced explicitly for (B1) through constraints on the policy π and implicitly for $i \ge N$

by requiring that the state x_{k+N} lands in a predetermined sequence of invariant sets associated to κ_{f} . More precisely:

Definition 2: A collection of sets $(\mathcal{X}_0^f, \ldots, \mathcal{X}_{p-1}^f)$ is a sequence of terminal periodic invariant sets if it satisfies for each $j = 0, \ldots, p-1, \mathcal{X}_i^f \subseteq \mathcal{X}_j^s \cap \overline{\mathcal{X}}_j$ and

$$\forall x \in \mathcal{X}_j^f \quad A_j x + B_j \kappa_f(x) + w \in \mathcal{X}_{\sigma_{j+1}}^f \quad \forall w \in \mathcal{W}_j \\ g_{\sigma_{j+1}}^T (A_j x + B_j \kappa_f(x)) \le q_j(\xi) + h_{\sigma_{j+1}} \\ \kappa_f(x) \in \mathcal{U}_j.$$

Therefore, at time k, the constraint on the terminal state assumes the form $x_{k+N} \in \mathcal{X}^f_{\sigma_{k+N}}$ which implicitly ensures satisfaction of both (29a) and (29b) for all w_i where $i \ge N$. Regarding the constraint on the policy parametrization for $i \in \mathbb{N}^{N-1}_0$, the constraint (29a) is imposed as it is whereas the second line of (29b) is enforced implicitly as follows. We observe that $x_{k+1} \in \mathcal{S}^{r_k}_{\sigma_{k+1}}$ is guaranteed if $x_{k+i} \in \bar{\mathcal{X}}_{\sigma_{k+i}}$ for $i \in \mathbb{N}_+$ and

$$\mathbf{E}\{l(g_{\sigma_{k+r_{k}+i}}^{T}x_{\sigma_{k+r_{k}+i}}-h_{\sigma_{k+r_{k}+i}}) | x_{k+r_{k}+i-1}, x_{k}, v_{k}\} \le \xi$$

The previous constraint is enforced explicitly along the prediction horizon for a given (x_k, v_k) , all $i \in \mathbb{N}_+$ and all the possible trajectories generated by all possible $w_k^{k+r_k+i-2}$.

C. Proof of Theorem 1

(i) At time zero the layer index $r_0 = 1$ and $\beta_0 = \xi$. We need to show that $\mathcal{U}_0(x_0, \chi_0) \neq \emptyset$. But this is guaranteed by the condition $x_0 \in S_0$ and the definition of S_0 .

(ii) At time k we assume $r_k = 1$. Hence, feasibility at time k implies that the state will land in $S_{\sigma_{k+1}}^1$ at time k + 1. To prove feasibility at time k + 1 one needs to show that the two constraints (29a), (29b) are satisfied for, at least, an admissible input $u_{k+1} \in U_{j+1}$. Once again, this is ensured by the definition of $S_{\sigma_{k+1}}^1$. Note further that $r_k = 1$ is the only case when the second constraint (29b) is not redundant since $\beta_{k+1} < \bar{\xi}_{\sigma_{k+1}} \Rightarrow r_k = 1$.

For the case $r_k > 1$ we note that feasibility at time k implies that the state process is in $S_{\sigma_{k+1}}^{r_k} = \Pr(S_{\sigma_{k+2}}^{r_k-1}) \bigcap \bar{\mathcal{X}}_{\sigma_{k+2}}$ at the next time iteration. Noticing that $r_{k+1} \ge r_k - 1$ we know that constraint (29a) will be satisfied at time k+1 whereas constraint (29b) is redundant, as already underlined.

(iii) Let k be the current time instant and σ_k the correspondent intra-period time. First consider the case $v_k/k \leq \xi$ which can also be written as $\xi k - v_k \geq 0$. From the definition

The authors are with the Automatic Control Laboratory in EPFL, Lausanne, Switzerland. {luca.fabietti, colin.jones} @epfl.ch

This work has received support from the Swiss National Science Foundation under the NRP 70 Energy Turnaround Project (Integration of Intermittent Widespread Energy Sources in Distribution Networks: Storage and Demand Response, grant number 407040 15040/1) and the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307608 (BuildNet)

of β_k we have $\beta_k = \xi + \xi k - v_k$. Hence

$$\mathbf{E}_{k}(v_{k+1}) = \gamma v_{k} + \mathbf{E}\{l(g_{\sigma_{k+1}}^{T}x_{k+1} - h_{\sigma_{k+1}}|x_{k})\} \\ \leq \gamma v_{k} + \gamma(\xi s_{k} - v_{k}) + \xi = \xi s_{k+1}$$

as required.

Consider now a time instant when $v_k/s_k > \xi$ and let τ_k be the first time of return under the threshold ξ . Obviously, whenever $\tau_k < \infty$ the second line of (8) is satisfied. In the case when $\tau_k = \infty$ we can define a new process

$$\eta_i := v_{k+i} - s_{k+i}\xi, \quad i \in \mathbb{N}$$

As a first thing, we show that η_i is a supermartingale

$$\begin{aligned} \mathbf{E}_{k+i} \{ \eta_{i+1} - \eta_i \} \\ &= \mathbf{E}_{k+i} \{ (\eta_{i+1} - \eta_i) \} \\ &= \mathbf{E}_{k+i} \{ (\gamma - 1)\eta_i + l(g_{\sigma_{k+i+1}}^T x_{k+i+1} - h_{\sigma_{k+i+1}}) - \xi) \} \\ &\leq \underbrace{(\gamma - 1)}_{\leq 0} \underbrace{\eta_i}_{\geq 0} \leq 0 \end{aligned}$$

where the penultimate inequality derives from the fact that, when $\tau_k = \infty$, we have $\mathbf{E}\{l(g_{\sigma_{k+i+1}}^T x_{k+i+1} - h_{\sigma_{k+i+1}})\} \leq \xi$. Therefore η_i^{τ} is a supermartingale process and for Doob's martingale convergence theorem it converges with probability one to some finite random variable η_{∞} .

To conclude the proof we need to demonstrate that, in the case $\tau_t = \infty$, we have $v_{k+i}/s_{k+i} \rightarrow \xi$. To this aim two cases need to be considered.

When $\gamma = 1$, $s_{k+i} = k + i \rightarrow \infty$ as $i \rightarrow \infty$ and

$$\lim_{k \to \infty} \frac{v_{k+i}}{k+i} - \xi = \lim_{k \to \infty} \frac{v_{k+i} - (k+i)\xi}{k+i}$$
$$= \lim_{k \to \infty} \frac{\eta_i}{k+i} = \lim_{k \to \infty} \frac{\eta_\infty}{k+i} = 0$$

For the case $\gamma \in [0, 1)$ it is sufficient to prove that $\eta_i \to 0$. To this aim, given the convergence of η we just need to prove

$$\mathbb{P}\left(\bigcup_{t=1}^{\infty} \left\{ \inf_{i \ge 0}(\eta_i) > 1/t \right\} \right) = 0$$

and, exploiting Boole's inequality, a sufficient condition for this to hold is

$$\mathbb{P}(\tau(t) = \infty) = 0 \quad \forall t \in \mathbb{N}_+$$

with $\tau(t) := \inf\{i \ge 0 \mid \eta_i \le 1/t\}$. To show this we overbound the trajectories of η_i by a random walk with a drift. Thanks to the assumptions on the loss function $l(\cdot)$, it is possible to write

$$l(g_{\sigma_{k+i+1}}^T x_{k+i+1} - h_{\sigma_{k+i+1}}) \\ \leq l(q_{\sigma_{k+i}}(\xi) + g_{\sigma_{k+i}}^T w_{\sigma_{k+i}})$$

Therefore

$$\eta_{i+1} = \gamma \eta_i + l(g_{\sigma_{k+i+1}}^T x_{k+i+1} - h_{\sigma_{k+i+1}})$$

$$\leq \gamma \eta_i + l(q_{\sigma_{k+i}}(\xi) + g_{\sigma_{k+i}}^T w_{\sigma_{k+i}}) - \xi$$

which means that the trajectories of η_i are bounded by the AR(1) process of the form

$$X_{i+1} = \gamma X_i + z_i \quad X_0 = \eta_0 > 0$$

with $z_i := l(q_{\sigma_{k+i}}(\xi) + g_{\sigma_{k+i}}^T w_{\sigma_{k+i}}) - \xi$ that is an i.i.d innovation with non-positive mean. Moreover, if $\tau(t) = \infty$ we have $\eta_i > 1/t$ which means that the trajectories of X_i (and hence η_i) are over bounded by the random walk with a drift

$$Y_{i+1} = Y_i + z_i - (1 - \gamma)/t, \quad Y_0 = X_0 = \eta_0 > 0$$

The drift of this random walk, $\mathbf{E}\{z_i\}-(1-\gamma)/t$, is strictly negative and bounded away from zero since $\mathbf{E}\{z_i\} \leq 0$ and $(1-\gamma/t) > 0$; this implies that the expected return time below 1/t is finite and, as a result, $\mathbf{E}\{\tau(t)\} < \infty$ which implies $\mathbb{P}(\tau(t) = \infty) = 0$. This finishes the proof.