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A. Explicit computation of the SPCI sequence
To present the algorithm to compute the SPCI sequence it

is it useful to define the preset operator.
Definition 1: Given a setMj+1 ⊆ Rn at intra-period j+

1, the set Pre(Mj) is defined as

Pre(Mj+1) =: {x ∈ Rn : ∃u ∈ Uj |
Ajx+Bju+ w ∈Mj+1 ∀w ∈ Wj

gTσj+1
(Ajx+Bju) ≤ qj(ξ) + hσj+1}

Algorithm 1 SPCI Computation
1: Initialize the sets Sj := Xs

j ∪ X̄j , j = 0, 1, . . . , p − 1
and set i := 0

2: Let h = mod(i, p). Compute Q(Sh) =: Pre(Sh)∩Sσh−1
.

3: if i ≤ −p and Sσh−1
= Q(Sh) then stop. The maximal

SPCI sequence has been found.
4: if Q(Sh) is empty then stop. The maximal SPCI se-

quence does not exist.
5: Update Sh−1 = Q(Sh)
6: Set i =: i− 1, and goto Step 2.

B. Implicit Parametrization of the SPCI sequence
Consider an MPC problem formulation with prediction

horizon N and current time k. The predictions for the control
input uk+i are provided by an explicit policy parametrization
for all i ∈ NN−10 whereas, for i ≥ N a fixed controller is
assumed. To give a possible instance, let

uk+i = πi(x
k+i
k ), i ∈ NN−10 (B1)

be the explicit control policy (state-sequence feedback).
Further assume the terminal regulator to be a state-feedback
controller

uk+i = κf (xk+i), i ≥ N.

The constraint satisfaction is enforced explicitly for (B1)
through constraints on the policy π and implicitly for i ≥ N
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by requiring that the state xk+N lands in a predetermined
sequence of invariant sets associated to κf . More precisely:

Definition 2: A collection of sets (X f0 , . . . ,X
f
p−1) is a

sequence of terminal periodic invariant sets if it satisfies for
each j = 0, . . . , p− 1, X fj ⊆ X sj ∩ X̄j and

∀x ∈ X fj Ajx+Bjκf (x) + w ∈ X fσj+1
∀w ∈ Wj

gTσj+1
(Ajx+Bjκf (x)) ≤ qj(ξ) + hσj+1

κf (x) ∈ Uj .
Therefore, at time k, the constraint on the terminal state

assumes the form xk+N ∈ X fσk+N
which implicitly ensures

satisfaction of both (29a) and (29b) for all wi where i ≥ N .
Regarding the constraint on the policy parametrization for
i ∈ NN−10 , the constraint (29a) is imposed as it is whereas
the second line of (29b) is enforced implicitly as follows. We
observe that xk+1 ∈ Srkσk+1

is guaranteed if xk+i ∈ X̄σk+i

for i ∈ N+ and

E{l(gTσk+rk+i
xσk+rk+i

− hσk+rk+i
) |xk+rk+i−1, xk, vk} ≤ ξ

The previous constraint is enforced explicitly along the
prediction horizon for a given (xk, vk), all i ∈ N+ and all the
possible trajectories generated by all possible wk+rk+i−2k .

C. Proof of Theorem 1

(i) At time zero the layer index r0 = 1 and β0 = ξ. We
need to show that U0(x0, χ0) 6= ∅. But this is guaranteed by
the condition x0 ∈ S0 and the definition of S0.

(ii) At time k we assume rk = 1. Hence, feasibility at time
k implies that the state will land in S1

σk+1
at time k + 1.

To prove feasibility at time k + 1 one needs to show that
the two constraints (29a), (29b) are satisfied for, at least, an
admissible input uk+1 ∈ Uj+1. Once again, this is ensured
by the definition of S1

σk+1
. Note further that rk = 1 is the

only case when the second constraint (29b) is not redundant
since βk+1 < ξ̄σk+1

⇒ rk = 1.
For the case rk > 1 we note that feasibility at

time k implies that the state process is in Srkσk+1
=

Pre(Srk−1σk+2
)
⋂
X̄σk+2

at the next time iteration. Noticing that
rk+1 ≥ rk−1 we know that constraint (29a) will be satisfied
at time k+1 whereas constraint (29b) is redundant, as already
underlined.

(iii) Let k be the current time instant and σk the corre-
spondent intra-period time. First consider the case vk/k ≤ ξ
which can also be written as ξk−vk ≥ 0. From the definition
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of βk we have βk = ξ + ξk − vk. Hence

Ek(vk+1) = γvk + E{l(gTσk+1
xk+1 − hσk+1

|xk)}
≤ γvk + γ(ξsk − vk) + ξ = ξsk+1

as required.
Consider now a time instant when vk/sk > ξ and let τk

be the first time of return under the threshold ξ. Obviously,
whenever τk < ∞ the second line of (8) is satisfied. In the
case when τk =∞ we can define a new process

ηi := vk+i − sk+iξ, i ∈ N

As a first thing, we show that ηi is a supermartingale

Ek+i{ηi+1 − ηi}
= Ek+i{(ηi+1 − ηi)}
= Ek+i{(γ − 1)ηi + l(gTσk+i+1

xk+i+1 − hσk+i+1
)− ξ)}

≤ (γ − 1)︸ ︷︷ ︸
≤0

ηi︸︷︷︸
≥0

≤ 0

where the penultimate inequality derives from the fact that,
when τk =∞, we have E{l(gTσk+i+1

xk+i+1−hσk+i+1
)} ≤ ξ.

Therefore ητi is a supermartingale process and for Doob’s
martingale convergence theorem it converges with probabil-
ity one to some finite random variable η∞.

To conclude the proof we need to demonstrate that, in the
case τt =∞, we have vk+i/sk+i → ξ. To this aim two cases
need to be considered.

When γ = 1, sk+i = k + i→∞ as i→∞ and

lim
i→∞

vk+i
k + i

− ξ = lim
i→∞

vk+i − (k + i)ξ

k + i

= lim
i→∞

ηi
k + i

= lim
i→∞

η∞
k + i

= 0

For the case γ ∈ [0, 1) it is sufficient to prove that ηi → 0.
To this aim, given the convergence of η we just need to prove

P

( ∞⋃
t=1

{
inf
i≥0

(ηi) > 1/t

})
= 0

and, exploiting Boole’s inequality, a sufficient condition for
this to hold is

P(τ(t) =∞) = 0 ∀t ∈ N+

with τ(t) := inf{i ≥ 0 | ηi ≤ 1/t}. To show this we over-
bound the trajectories of ηi by a random walk with a drift.
Thanks to the assumptions on the loss function l(·), it is
possible to write

l(gTσk+i+1
xk+i+1 − hσk+i+1

)

≤ l(qσk+i
(ξ) + gTσk+i

wσk+i
)

Therefore

ηi+1 = γηi + l(gTσk+i+1
xk+i+1 − hσk+i+1

)

≤ γηi + l(qσk+i
(ξ) + gTσk+i

wσk+i
)− ξ

which means that the trajectories of ηi are bounded by the
AR(1) process of the form

Xi+1 = γXi + zi X0 = η0 > 0

with zi := l(qσk+i
(ξ) + gTσk+i

wσk+i
) − ξ that is an i.i.d

innovation with non-positive mean. Moreover, if τ(t) = ∞
we have ηi > 1/t which means that the trajectories of Xi

(and hence ηi) are over bounded by the random walk with
a drift

Yi+1 = Yi + zi − (1− γ)/t, Y0 = X0 = η0 > 0

The drift of this random walk, E{zi}−(1−γ)/t, is strictly
negative and bounded away from zero since E{zi} ≤ 0 and
(1 − γ/t) > 0; this implies that the expected return time
below 1/t is finite and, as a result, E{τ(t)} < ∞ which
implies P(τ(t) =∞) = 0. This finishes the proof.


