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Stratiform rain situations are generally associated with the presence of a melting layer
characterized by a strong signature in polarimetric radar variables. This layer is an
important feature as it indicates the transition from solid to liquid precipitation. The
melting layer remains poorly characterized, particularly from a polarimetric radar point of
view. In this work a new algorithm to automatically detect the melting layer on polarimetric
RHI radar scans using gradients of reflectivity and copolar correlation is first proposed.
The algorithm was applied to high-resolution X-band polarimetric radar data and validated
by comparing the height of the detected layer with freezing-level heights obtained from
radiosoundings and was shown to give both small errors and bias. The algorithm was then
used on a large selection of precipitation events (more than 4000 RHI scans) from different
seasons and climatic regions (South of France, Swiss Alps and plateau, and Iowa, USA) to
characterize the geometric and polarimetric signatures of the melting layer. The melting
layer is shown to have a very similar geometry on average, independent of the topography
and climatic conditions. Variations in the thickness of the melting layer during and between
precipitation events was shown to be strongly related to the presence of rimed particles, to
the vertical velocity of hydrometeors and to the intensity of the bright band.
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1. Introduction

The melting layer (ML) is an important feature of stratiform
precipitation, associated with the melting of snowflakes/ice
crystals below the freezing level that can be seen on precipitation
radar scans as a thin, nearly horizontal layer with a high
reflectivity factor, a feature known as the bright band (BB). The
main cause of the BB effect is the fast increase in the dielectric
constant of particles during the melting process, caused by the
transition of the total water fraction within the ice–water mixture
(Matrosov, 2008). The ML gives useful information about the
vertical structure of precipitation since the base of the ML gives
an indication of the vertical extent of liquid precipitation and the
top of the ML is close to the altitude of the 0 ◦C isotherm. The
detection of the ML has been a long-standing topic of interest
for radar meteorologists, mainly for quantitative precipitation
estimation (QPE), because mixed-phase hydrometeors may
contaminate rainfall estimates at longer distances (Giangrande
et al., 2008). Moreover, the detection of the ML makes it possible
to separate liquid from solid precipitation, which is critical
information for hydrometeor classification algorithms. Finally,
the ML is characterized by an important attenuation effect at
X-band and higher frequencies. Measurements at X-band by
Bellon et al. (1997) showed that the attenuation effect of the ML
could be 3–5 times larger than the one caused by the rain below.

On modern radars equipped with dual polarimetry, the ML is
characterized by a very distinct polarimetric signature (Figure 1).
Besides the presence of large values of ZH due to the BB effect, one
notable characteristic of the ML on polarimetric scans is the pres-
ence of distinctly smaller values of the copolar cross-correlation
coefficient ρhv. Indeed, ρhv depends on the homogeneity in shape
of the hydrometeors and is significantly lower in the ML where
phases are mixed, than in stratiform rain or in solid precipitation
(e.g. Matrosov et al., 2007). One should keep in mind that low
values of ρhv can also be caused by non-meteorological echoes
(e.g. insects, birds, aircraft). Additionally, the melting layer is
also characterized by higher differential reflectivities ZDR due to
the transition between the solid phase where ZDR is usually small
(Doviak and Zrnić, 2006) to the liquid phase where it is higher.
To summarize, the ML is characterized by the combination of a
layer of small ρhv values, a transition from high to low ZDR and
the presence of high values in ZH on polarimetric RHI scans.

Several operational algorithms for automatic detection of
the ML on PPI scans have been proposed in the literature.
Sánchez-Diezma et al. (2000) proposed an algorithm for BB
detection from conventional operational radar scans based on the
peak of reflectivity as well as the gradients of reflectivity between
the BB and the liquid and solid phases. For polarimetric radars,
Giangrande et al. (2008) proposed an algorithm for automatic
ML detection in PPI scans, which searches for all range bins with
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Figure 1. Example of the ML signature in (a) ZH, (b) ρhv and (c) *ZrmDR in a
typical stratiform rain situation collected in the south of France (29 September
2012 at 1224 UTC).

low ρhv and classfies them as ML bins if the maxima of ZH and
ZDR fall within a specified range. Matrosov et al. (2007) proposed
a simpler approach, again in PPI where the boundaries of the ML
are detected using only ρhv, a method also used by Kalogiros et al.
(2013). The ML can also be detected by using Doppler velocities.
White et al. (2002) propose a method using a wind profiler, which
relies on the detection of the peak in reflectivity and zones where
the gradient of reflectivity is negatively correlated with the vertical
Doppler velocity. Few ML detection methods exist for RHI scans.
Bandera et al. (1998) designed an algorithm that detects the ML
based on the identification of strong vertical gradients in ZH

and in the linear depolarization ratio LDR, and assumes higher
heterogeneity of radar variables within the ML.

Apart from its radar signature, the ML is also an important
process as such. Some studies focused on the seasonal and
geographical variability of the height of the ML. For example,
Das et al. (1993) measured the variability of the ML height
during 3 years in two different climatic regions of India.
Although very common, the ML is still a relatively poorly known
phenomenon and limited work has been done to date to study
its scattering and geometric signatures. Fabry and Zawadzki
(1995) analyzed vertical Doppler X-band radar and wind profiler
data to quantitatively characterize the structure of the radar
signature from melting precipitation. They suggested that the
main cause of the BB were shape and density effects as well as the
change in the refractive index of hydrometeors during melting.
Zawadzki et al. (2005) developped a model of the melting snow
and its radar reflectivity. A relationship between a large increase
in velocity through the ML and a small reflectivity difference
between the BB and the rain below was derived from the model

and confirmed with vertically pointing radar observations.
Durden et al. (1997) studied scans from a polarimetric airborne
radar operated in the context of the TOGA COARE experiment
over the Pacific ocean near New Guinea. The authors found
some relation between the BB intensity and the distance between
the maximum of reflectivity and the freezing level, which they
explained by the latent cooling effect of melting. Additionally,
they found a positive correlation between the BB intensity with
both ρhv and the vertical fall velocity within the ML.

These studies generally focused on one specific region and as
such they might not be representative of the general characteristics
of the ML. As an example, in tropical regions, the seasonal
variations in thickness and altitude of the ML are expected to
be weaker than at higher latitudes. Previous studies can also
be complemented with the use of a hydrometeor classification
scheme in order to gain a deeper understanding of the main
factors that contribute to the ML variability.

Taking advantage of the strong polarimetric gradients at the
ML boundaries, we propose a new algorithm for automatic ML
detection on RHI polarimetric scans that is able to detect the
height of boundaries of the ML all along the RHI. This algorithm
is used to provide a more complete characterization and analysis
of the structure and the polarimetric signature of the ML by using
large datasets of polarimetric radar observations from different
climatic regions (South of France, Western Switzerland, Swiss Alps
and Iowa-USA). This study is completed by an in-depth analysis
of the relationship between different characteristics of the ML.

This article is structured as follows: in section 2 the instruments
and the datasets are described as well as all pre-processing
operations transforming polar radar data into inputs to the
ML detection algorithm. The algorithm is explained in detail
in section 3 and is validated in section 4. Results of the
characterization of the ML are given in section 5, which is divided
into four parts focusing respectively on the attenuation effect, the
vertical structure, the polarimetric signature and the geometry of
the ML. These results are discussed in more details in section 6,
which focuses on the relationship between ML descriptors, with
an emphasis on the ML thickness. Finally, section 7 gives a
summary of the main results and concludes this work.

2. Data and processing

2.1. Instruments

The radar measurements used in this work come from the EPFL-
LTE X-band polarimetric radar, called MXPol, as well as from a
nearly identical radar system operated in the context of the NASA
IFloodS∗ (Iowa Flood Studies) programme (Domaszczynski,
2012). Information about the characteristics of the polarimetric
radar as well as its scanning strategy are given in Table 1.

For validation, data from the Swiss operational radiosoundings
were used. These soundings are performed twice daily (0000 and
1200 UTC) from Payerne in western Switzerland and include
measurements of temperature, pressure and relative humidity
recorded every second. This corresponds to a vertical resolution
of 5–10 m depending on the ascending velocity of the radiosonde.

2.2. Datasets

Since 2009, MXPol recorded a large amount of high-resolution
polarimetric data during several measurement campaigns. In
this work four datasets from different topographic and climatic
regions are used; they are described in Table 2 and their locations
are illustrated in Figure 2.

An interesting aspect is the high climatic diversity of the
available datasets. The Ardèche region is characterized by a
Mediterranean climate according to Köppen’s classification (Peel

∗http://gpm.nsstc.nasa.gov/ifloods/instruments.html; accessed 27 September
2015.
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Table 1. MXPol features and scanning strategy.

Frequency 9.4 GHz
Range 35 km
3dB beamwidth 1.45◦
Rad. resolution 75 m
Polarization Simultaneous H-V
Scanning PPIs at different elevations,
sequence two RHIs and a vertical PPI

(for ZDR calibration)
Scanning Interleaved pulse pair mode (PPI),
mode Full Doppler Spectrum

(RHI and vertical PPI)

et al., 2007). This climate is associated with warm summers
and occasionally strong convective showers. Heavy precipitation
events caused by the orographic updraught of wet air coming
from the sea occur frequently in autumn. An overview of the
climate of the Ardèche region and of the HyMeX (Hydrological
Cycle in the Mediterranean experiment) program is given in
Drobinski et al. (2014) and Ducrocq et al. (2014).

The region around Davos, in the Swiss Alps has a subarctic
climate (Peel et al., 2007), with long and cold winters and
mild summers. Precipitation mostly occurs in summer and early
autumn due to orographic lifting and convection.

Iowa is part of the midwestern United States and is
characterized by a humid continental climate (Peel et al., 2007)
with marked seasonal variations. Summers are very warm and
wet and are often associated with strong convection which can
lead to the formation of supercells and tornados.

Finally, the last dataset was recorded in western Switzerland
near the town of Payerne where the largest Swiss meteorological
station is located. The radar set-up took place in the context of
the PaRaDIso (PAyerne RADar and ISOtopes) programme which
aims to study the segregation of isotopes in precipitation using
combined sensors (disdrometers, radars, profilers). Compared
with the Davos region, the Payerne region experiences a more
oceanic climate (Peel et al., 2007) typical of western Europe,
with limited seasonal temperature variability and milder winters.
Precipitation occurs throughout the year with a maximum in late
summer and autumn.

2.3. Pre-processing of radar data

2.3.1. Radar variables and projections

In the context of this work, five polarimetric radar variables are
used: the reflectivity factor at horizontal polarization ZH (dBZ),
the copolar cross-correlation coefficient ρhv, the differential
reflectivity ZDR (dB), the specific differential phase shift on
propagation Kdp (◦ km−1), and the radial velocity Vrad (m s−1).

Figure 2. Locations and pictures of the four radar sites.

Only RHI scans are used, meaning that all variables are originally
in polar range–elevation coordinates. Only measurements at
a range shorter than 5 km are used in order to limit the effect
of beam broadening and to consider only data with the highest
signal-to-noise ratio. The choice of 5 km range can be justified
by the fact that, at this distance, the diameter of the radar bin
is approximately one third of the average ML thickness, which

Table 2. Description of the available RHI scans datasets.

Site Season Context Altitude Coords. Topography Scans
(m amsl) (altitude range)

Ardèche Autumn 2012, SOP1 and SOP2a 605 4.55◦E, Small hills 1763 RHI
(South of France) Autumn 2013 of HyMEX 44.61◦N and riverbeds with ML

(400–800 m asl)

Davos Spring 2010– High altitude to 2133 9.84◦E, Complex terrain 816 RHI
(Swiss Alps) summer 2011 study mixed-phase 46.79◦N across two valleys with ML

and solid precip. (1500–3000 m asl)

Iowa Spring 2014 NASA IFloodSb 379 91.86◦W, Smooth flat terrain 380 RHI
(Midwestern USA) campaign 43.18◦N (200–400 m asl) with ML

Payerne Spring 2014 PaRaDIsoc 500 6.94◦E, Rolling grassland 507 RHI
(Swiss Plateau) campaign 46.81◦N between Jura and with ML

Alps (450–700 m asl)

aSpecial observing periods. bIowa Flood Studies, to assess the feasibility of flood forecasting using small satellite precipitation data. cPayerne Radar and Isotopes, to
study segregation of isotopes in precipitation.
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should still allow resolution of the ML with sufficient accuracy.
The proposed approach should remain valid at longer ranges,
but will suffer from beam broadening.

Kdp is estimated from the total differential phase shift �dp (◦)
using a method based on Kalman filtering (Grazioli et al., 2014a;
Schneebeli et al., 2014). This approach is designed to ensure
the independence between Kdp estimates and other polarimetric
variables, and to capture the fine-scale variations of Kdp. Since
this estimation of Kdp does not depend on ZH, it remains
unaffected by the strong effect of the ML on ZH. All polarimetric
variables are censored with a mask of signal-to-noise ratio of
8 dB. Measurements at very low elevation angles (0–2◦) are
removed in order to avoid possible contamination by ground
echoes. ZDR measurements at high elevation angles (45–90◦)
are discarded, since they are strongly biased by the high angle of
incidence of the radar beam (Ryzhkov et al., 2005).

The ML detection algorithm takes ZH and ρhv projected onto a
two-dimensional Cartesian grid as input. Projection from polar to
Cartesian coordinates is done by simply assigning the value of the
nearest radar bin to every cell of the Cartesian grid. If several radar
bins fall into one Cartesian grid cell they are averaged (in linear
values). In the context of this work, a small cell size of 25×25 m2

is used to account for the higher density of radar bins at short
range. This cell size has been chosen as a compromise between
calculation time and accuracy of the Polar to Cartesian projection.
Tests showed that changing the interpolation grid size between
25 and 75 m does not bias the results presented in section 5.

2.3.2. Attenuation correction

In the liquid phase, the attenuation correction for ZH and
ZDR is directly calculated in polar data according to Testud
et al. (2000), using the relations linking Kdp, ZH, the specific
horizontal attenuation αH (dB km−1), and the specific differential
attenuation αDR (dB km−1). The power laws linking the variables
were obtained using simulated realistic drop-size distribution
fields (Schleiss et al., 2012). Since the attenuation properties in the
melting layer are not known precisely, the attenuation correction
is calculated only in the liquid phase and the correction is simply
propagated further above, using the ML detection algorithm
(section 3) as reference to detect the base of the ML. Neglecting
the attenuation in the solid phase should be acceptable since it is
usually much smaller than in the liquid phase (Doviak and Zrnić,
2006). The situation is quite different in the ML where significant
attenuation may occur (Bellon et al., 1997). More information
about the ML attenuation effect is provided in section 5.1.

2.3.3. Hydrometeor classification

In order to gain a better understanding of the ML signature, a
hydrometeor classification is performed in the solid phase above
the detected ML using the classification algorithm of Grazioli
et al. (2014b). This algorithm takes ZH, ZDR, ρhv and Kdp as well
as an estimation of the freezing-level height as input and classifies
every pixel into one of seven classes, light rain (LR), rain (R),
heavy rain (HR), melting snow (MS), ice crystals/small aggregates
(CR), aggregates (AG) and rimed particles (RI). In the context of
this work, the height of the top of the detected ML was used as an
estimation of the freezing-level height.

A flowchart summarizing all the pre-processing steps is shown
in Figure 3.

3. Automatic detection of the ML

3.1. Description of the algorithm

Instead of simply adapting an algorithm designed for PPI scans,
a new algorithm was designed that works directly in RHI scans
by taking advantage of the fact that vertical gradients in ρhv and
ZH are usually large and well defined. ZDR (dB) is not used in the

Figure 3. Flowchart of the preprocessing steps.

current algorithm because it is ill-defined at high elevation angles
and because no improvement was observed when adding ZDR as
a third input variable.

The main advantage of this algorithm is that it estimates the
ML boundaries all along the vertical profile at a high resolution.
As the main motivation of the present work is the characterization
of the ML, we only consider radar data at short range (5 km max),
in order to have reliable high-resolution observations not affected
by beam broadening.

The algorithm is divided into two parts. First, an initial
estimation of the ML is obtained by using both ZH and ρhv and
by assuming that the ML is a more or less horizontal structure.
This first part of the algorithm is similar to Bandera et al. (1998),
the main difference being the use of ρhv instead of LDR.

This initial estimation which corresponds mostly to the layer
of low ρhv can sometimes underestimate the extent of the ML.
Indeed, ZH starts to increase when the ice crystals start to melt, i.e.
when they are still large but contain a significant amount of liquid
water; howeverρhv decreases significantly only when the mixture
between ice crystals and drops is already quite heterogeneous.
This happens at a lower altitude, when sufficient melting has
already occurred. Generally the distance between the maximum
in ZH and the minimum in ρhv increases with the concentration
of hydrometeors (e.g. Giangrande et al., 2008). In the case of
intense precipitation, the top of the ML may thus be above the
layer of lower values of ρhv. The second part of the algorithm
aims to alleviate this effect: the top of the ML is estimated using
the same procedure but with gradients in ZH only.

All steps of the algorithm are explained in detail below.
Justification for the chosen values for the parameters of the
algorithm will be given in section 3.3.

Part 1: initial estimation

1. ZH and ρhv are normalized: [10, 60] dBZ → [0, 1] for ZH

and [0.65, 1] → [0, 1] for ρhv, in order to give a similar
weight to both variables. These boundaries correspond to
the range of values expected in precipitation. Experiments
showed that changing this range slightly, e.g. using [0,60]
instead of [10,60], does not change the output of the
algorithm.

2. The normalized variables are then combined into a single
image:

IMcomb = ZH · (1 − ρhv)

Note that, since the ML is characterized by high values of
reflectivity and small values of ρhv, the complement of ρhv

is used in the product.

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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3. The vertical gradient of the image is computed using a
classical vertical Sobel filter:†

hSobel =
⎡
⎣

−1 −2 −1
0 0 0
1 2 1

⎤
⎦ .

To decrease the noise, the image is filtered with a moving
average of length Lfilt,grad (in practice a length of 75 m is
used, which corresponds to 75×75 m2, i.e. a window of
3×3 pixels).

4. The gradient image is thresholded. All pixels with absolute
value larger than Tgrad,min (set to 0.02) are kept, whereas all
others are set to 0. This step is done in order to detect only
gradient extremes that are strong enough to correspond to
a potential ML edge.

5. The image is scanned column by column (i.e. a vertical
profile). The minimum and maximum of the vertical
gradient are detected for each column. The lower edge of
the ML is associated with the maximum and the upper
edge with the minium.

6. The median height of the upper boundary of the ML
(MedML,top) and the median height of the lower boundary
of the ML (MedML,bot) are computed at the end of this step.

7. Step 5 is run again, but this time after discarding
the gradient image above (1 + fML,height) · MedML,top and
below (1 − fML,height) · MedML,bot, assuming the ML is a
relatively flat structure. This helps to remove the possible
contamination by ground echoes or small embedded cells
of intense rainfall. The chosen value for fML,height is 0.3.

Part 2: correction of the ML top

8. The vertical gradient is calculated as in step 3, but on the
normalized ZH image only.

9. For every vertical column, the gradient image is cut below
the top of the ML calculated in Part 1 (Figure 4, point 2)
and above the first local maximum in the gradient in the
solid phase (Figure 4, point 4).

10. Using this new gradient image, the top of the ML is detected
again as in steps 5–7 of Part 1.

11. (Optional) Small gaps in the ML are filled if their size
is smaller than 250 m (section 3.3). Interpolation is done
separately on the lower and upper boundaries of the ML
using shape-preserving piecewise Hermite interpolation
polynomials (‘pchip’ in Matlab).

An illustration of the behaviour of the gradient of ZH, ρhv and
ZH(1 − ρhv) along a vertical profile is given in Figure 4. Point 1
corresponds to a positive peak in the gradient of ZH · (1 − ρhv)
and is associated with the bottom of the ML. Point 2 corresponds
to a negative peak in the gradient of ZH · (1 − ρhv) and a positive
peak in the ρhv gradient. It marks the upper edge of the layer
of low ρhv values. Points 1 and 2 are detected at the end of the
first part of the algorithm (step 7). Point 2 is generally lower
in altitude than the freezing level due to concentration effects.
Point 3 corresponds to a negative peak in the ZH gradient which
marks the upper bound of the BB and is closer to the real height
of the freezing level. This point is considered as the top of the
ML and is detected at the end of the second part of the algorithm
(step 10).

The gradient of ZH is generally low in the solid phase and
oscillates around zero, while it is highly variable in the liquid
phase. The gradient of ρhv is mostly 0 in the liquid and solid
phases. Points 4 and 5 illustrate why the gradient is cut above
the first local maximum in step 9 of the algorithm; it can happen

†Compared with a simple 1D finite difference, the Sobel operator is less
sensitive to isolated high-intensity point variations thanks to the local horizontal
averaging over sets of three pixels (Wenshuo et al., 2010).

(a) (b)

Figure 4. (a) Normalized values and (b) gradients of ZH and ρrmhv and the
combined image at the boundaries of the ML on a RHI scan recorded at Ardèche
(29 September 2012).

that due to some layer of higher ZH in the solid phase (in case
of riming for example) the gradient decreases again to reach a
secondary minima as in the points 5. Clearly these values do not
correspond to the ML top and may in some very rare cases be
even stronger than the ZH gradient signature of the ML top. To
alleviate this effect, the search for the minimum is stopped as
soon as a first local maximum (point 4) is encountered.

Figure 5 presents a flow chart of the proposed algorithm.
In summary, ZH and ρhv are first normalized and combined.
The vertical gradient of the combined image is then calculated
and thresholded. In a first approximation, the upper and lower
boundaries of the ML are identified by the minimum and the
maximum of the vertical gradient. This first approximation is
then refined by detecting again the upper boundary based on the
gradient of ZH only.

3.2. Outputs

Two examples of ML detection during stratiform situations of
different intensities are shown in Figure 6. The bottom of the
detected ML matches well the sharp transition to smaller values
of ρhv inside the ML and the top of the ML corresponds well
with the top of the BB. The second case shows that the algorithm
also has a good sensitivity since even a weak ML can be detected.
Small-scale fluctuations of the ML are also accurately detected.

Thanks to the algorithm, it is possible to estimate the
distribution of polarimetric variables in the liquid phase (below
the ML) and the solid phase (above). The distribution of ρhv

over all datasets (Figure 7) shows that ρhv within the detected
ML is much lower than within the liquid and solid phases,
which indicates that the detected ML corresponds to a region of
much larger hydrometeor variability, consistent with the presence
of melting. A more quantitative analysis and evaluation of the
algorithm is provided in section 5.

3.3. Algorithm parameters

The algorithm relies on four independent parameters which are
given in Table 3. The recommended values were first chosen
empirically and then verified based on sensitivity and statistical
analysis in order to assess the potential associated uncertainty.

The first parameter of importance is Tgrad,min, the threshold
on gradient magnitude. The value of 0.02 was chosen by visual

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 5. Flow diagram of the ML detection algorithm.
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Figure 6. Two examples of ML detection overlaid on (a,b) ρhv and (c,d) ZH.

Figure 7. Distributions of ρhv in the liquid and solid phases and in the
identified ML.

inspection as it was found that values of this magnitude are
very rarely observed in situations without a ML. It is meant to
avoid considering edges of too low intensity. It was observed that
this constraint does not negatively affect the detection even for
relatively weak ML situations. Increasing the threshold will lead
to fewer pixels being detected and to gaps in the detected ML,
but reduces the risk of erroneous detection. However, the output
of the algorithm is not very sensitive to small variations of this
parameter because gradients caused by the ML are many orders of
magnitude larger than gradients below or above the ML. To verify
this, the algorithm was run on all RHI scans (from all datasets)
using values of Tgrad,min ranging from 0.005 to 0.035. For every
threshold value, an agreement score with the reference (Tgrad,min

= 0.02) was calculated

Score(k)=2

∑N
i=0

∑M
j=0

(
ML

i,j
Tgrad,min=k

∩ ML
i,j
Tgrad,min=0.02

)

∑N
i=0

∑M
j=0

(
ML

i,j
Tgrad,min=k

+ ML
i,j
Tgrad,min=0.02

) ,
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Table 3. Algorithm parameters and recommended values.

Parameter Meaning Value Unit

Lfilt,grad Size of moving average filter 75 m
for gradient smoothing

Tgrad,min Threshold on gradient 0.02 m−1

magnitude
fML,height Maximum allowable relative 0.3 –

fluctuation of ML top and
bottom

Lgaps,max Maximum length of gaps in 250 m
the ML to be interpolated

Figure 8. Sensitivity of the algorithm output to variations of Tgrad, min (gradient
threshold) with respect to the reference threshold (0.02), shown by the red marker.

where N and M are the dimensions of the Cartesian radar scan
grid.

In other words, the agreement score is twice the number of
pixels that are classified as the ML for both gradient values divided
by the sum of the number of ML pixels detected for every single
threshold value. A value of 1 means a perfect agreement and 0 a
total disagreement (the two MLs do not overlap). Figure 8 shows
the agreement for every chosen threshold value. Generally the
agreement is quite good (more than 90%), which shows that the
detected MLs do not differ much.

The second parameter is the constraint on the relative height
of the bottom and the top of the ML. In the algorithm, it is
assumed that the bottom of the ML does not fluctuate below
(1 − fML,height) · MedML,bottom and the top of the ML not above
(1 + fML,height) · MedML,top. The chosen value of fML,height = 0.3
was first determined by visual inspection. To test its relevance, the
top and bottom relative heights of the ML were computed on all
available RHI scans for a maximum distance from the radar going
up to 35 km (the radar maximum range). The relative heights are
defined by:

MLtop,rel = MLtop

MedML,top
and MLbot,rel = MLbot

MedML,bot
.

The distributions of the relative heights are shown in Figure 9.
The cutting limits of 0.7 and 1.3 are displayed as red lines. The
histograms are symmetrical and do not seem to be truncated
near the cutting limits. The fluctuations stay generally well below
the red limits, even though at 35 km range the beam broadening
effect is quite important. The recommended value of 0.3 can thus
be considered as appropriate and robust.

The third parameter is the maximum size of gaps that can
be interpolated, Lgaps,max. It often happens that, on the whole
scan, a couple of pixels are not detected which leads to small
holes in the detected ML. In those cases, interpolating small gaps
could be considered as a valid option. In order to set a limit
to the maximum size of gaps that should be interpolated, the
distribution of gap sizes within the ML was computed. It can be
seen on Figure 10, that the vast majority of gaps are rather small
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Figure 9. Histogram of relative heights of (a) the top and (b) the bottom of
the ML.
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Figure 10. Normalized histogram of the distribution of gap sizes in the
detected MLs.

(<300 m) and can thus be safely interpolated. Accordingly, the
recommended value of Lgaps,max is 250 m.

Interpolation can be useful if the liquid and solid phases have to
be discriminated, for example prior to performing a hydrometeor
classification. In the context of this work, interpolation was only
used in order to get an estimation as complete as possible of the
freezing-level height for the hydrometeor classification, but was
not used in the characterization of the ML (section 5).

Finally the last parameter Lfilt,grad is the length of the moving
average filter used to smooth the gradient image, in order to
compensate part of the intrinsic noisiness of the gradient. A
length of 75 m is used in practice, which gives a moving window
of size 75 × 75 m2. The size was chosen in order to average the
gradient approximatively over one radar bin. The sensitivity of
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Figure 11. Distributions of the hydrometeor vertical fall velocities in the liquid
and solid phases. The different symbols denote the different datasets.

the algorithm to this parameter was tested in a way similar to the
gradient threshold. It was observed that doubling the size of the
window changes only slightly the output of the algorithm (85%
of average agreement) and the distributions of the ML thickness
(increase of 20 m in median), while polarimetric signatures stay
largely unchanged (variations of less than 1%). This window size
is hence not very critical.

4. Validation

4.1. Vertical hydrometeor fall velocities

A first assessment of the performance of the algorithm can be
conducted by verifying the consistency of its output. The ML
is characterized by a change in the hydrometeor fall velocity,
with a transition from low velocities in the solid phase to higher
velocities in the liquid phase (White et al., 2002). The liquid
and solid phases identified by the algorithm should confirm this
behaviour.

The empirical probability density functions of hydrometeor
vertical fall velocity in the liquid and solid phases, estimated
by the radial velocity at 90◦ elevation, are shown in Figure 11.
The overlapping coefficient, which is a measure of agreement
between two distributions and corresponds to the area of overlap
(Inman and Bradley, 1989) is respectively 0.06, 0.07, 0.06 and
0.11 for the Payerne, Davos, Iowa and Ardèche datasets, which
shows that the distributions within the liquid and solid phases
for all datasets are strongly dissimilar. Since hydrometeor fall
velocities are independent from the radar variables used as input
to the algorithm, this result tends to indicate that the algorithm
discriminates well the liquid from the solid phase.

4.2. Comparison with Payerne radiosoundings

The Payerne dataset offers a good opportunity to assess the
agreement between the output of the algorithm and the freezing-
level height measured by the radiosoundings, assuming that the
top of the ML can be associated with the 0 ◦C isotherm. To obtain a
freezing-level estimation, the algorithm was run with a maximum
range of 5000 m and the detected ML top was averaged over the
entire RHI. One difficulty in the comparison is that the distance
and the time interval between the sounding and the radar scan can
be significant. The geographical distance should not be a major
issue since, for the range of isotherm 0 ◦ heights encountered
during this campaign (1500–3000 m), the horizontal advection
of the radiosonde is reasonably small, from 3 to 10 km. The time
interval is more problematic since soundings are performed only
twice daily (at 0000 and 1200 UTC). To deal with this issue, errors
were compared when all data were used (interpolating sounding
heights linearly through time) and when only radar scans with a
maximum time interval of 30 min to the closest sounding were
used. Figure 12 shows that the correspondence is generally good

Figure 12. Heights of the 0 ◦C isotherm, radar versus soundings, at Payerne. The
1:1 line is shown as dashed blue. Red dots denote radar scans that are separated
by at most 30 min from the closest sounding.

Table 4. Bias and mean absolute error in the radar freezing level estimation for
all scans and for scans with a time interval to the radiosounding of maximum
30 min only. The bias is defined as the height of the ML top minus the sounding

freezing level height.

Bias (m) MAE (m)

All scans –55.06 94.15
Scan with �T <30 min –80.85 130.5

and follows well the 1:1 line with errors rarely exceeding 200 m.
This remains true when considering larger time intervals. The
average errors are given in Table 4.

The freezing-level height estimated by the algorithm is slightly
underestimated but this is still a good agreement considering the
radial resolution of the radar (75 m) as well as the imperfect
matching in time and space. It is worth noticing that the error
is larger for small time intervals (red), which can be due to a
sampling effect, the number of considered scans being small.
Additionally, this also tends to indicate that the effect of the time
interpolation is not too large and that freezing-level heights evolve
regularly during the day.

4.3. Comparison with an algorithm adapted from PPI scans

Most ML detection algorithm are designed for PPI scans of
operational radars at C- or S-band (e.g. Brandes and Ikeda, 2004;
Giangrande et al., 2008). In order to compare the performance
of our algorithm with a more simple approach, we adapted the
algorithm of Giangrande et al. (2008) to RHI scans. The adapted
algorithm works directly on polar RHI scans and classifies a pixel
as belonging to the ML if:

• ρhv > ρhv,min and ρhv < ρhv,max;
• The maximum of ZH within a vertical window of 500 m

below and above the pixel is >30 and <47 dBZ;
• The maximum of ZDR within a vertical window of 500 m

above the pixel is >0.5 and <2.5 dB.

The vertical window of 500 m corresponds to an equivalent
range of 500/sin θm, where θ is the elevation angle. Once the
ML has been identified in polar coordinates, it is converted to
Cartesian coordinates as in section 2.3.1.
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Table 5. Bias and mean absolute error in the radar freezing level estimation with
the modified Giangrande et al. (2008) algorithm for all scans and for scans with a

time interval to the radiosounding of maximum 30 min only.

Bias (m) MAE (m)

All scans –274.68 301.79
Scan with �T < 30 min –226.02 229.9

Giangrande et al. (2008) recommended using ρhv,min = 0.9
and ρhv,max = 0.97, but we chose to use ρhv,min = 0.85 instead
since it is closer to the lower bound of ρhv values inside the ML
(cf. Figure 7).

Table 5 shows the performance of the modified Giangrande
et al. (2008) algorithm on the Payerne dataset from section 4.2.
It clearly appears that both the bias and the errors are much
larger. The large bias shows that the algorithm underestimates
the height of the freezing level because it does not sufficiently take
into account the fact that the top of the BB can be significantly
higher than the layer of low ρhv. The performance on the scans
with �T < 30 min is slightly better but still much worse than for
the proposed algorithm (Table 4). Note that setting ρhv,min = 0.9
instead of 0.85 increases slightly the bias and the error (to −292 m
bias and 316 m MAE for all scans).

Overall, the designed algorithm accurately detects the freezing
level and separates well the liquid and solid phases. It also performs
much better than a simpler algorithm originally designed for
operational PPI scans and adapted to RHI scans. A benefit of
detecting the ML on RHI scans is that the height of its boundaries
can be detected all along the radar profile, which allows us to
get more information about the geometry and the small-scale
variability in shape of the ML.

This new algorithm is a very useful tool in the rest of this work
which will focus on the characterization of the melting layer.
It can also be used for other purposes, e.g. for comparison with
numerical weather models or as a constraint for hydrometeor
classification methods.

5. Characterization of the ML

All scans from all four available datasets were preprocessed
and fed into the ML detection algorithm. Based on the output

Table 6. List of ML descriptors by category.

Geometry Thickness of the ML (m).
Altitudes of top and bottom of the ML (m).

Polarimetry Polarimetric variables (ZH, ZDR, ρhv, Kdp)
in the ML for solid and liquid phases.
Bright-band intensity (dBZ).
Distance between the maximum of ZH

and the minimum of ρhv (m).
Gradient of ZH just above the ML (dB m−1).
Amplitude (with respect to solid phase)
of the bright-band peak (dB).

Doppler Vertical fall speeds in the ML
for solid and liquid phases (m s−1).

Hydrometeors Fractions of aggregates, ice crystals
and rimed particles above the ML (–).
Thickness of the riming layer (m).

of the ML detection algorithm, various ML descriptors were
computed, as illustred in Figure 13. They can be grouped
into four categories (Table 6). The hydrometeor classification
algorithm (section 2.3.3) was used to classify every pixel in the
solid phase into one of three classes: aggregates, rimed particles
and crystals. The fraction of hydrometeors is simply the fraction
of the pixels of one class over all pixels in the solid phase.

5.1. The ML attenuation effect

Before focusing on the ML descriptors, the potential error due
to the attenuation in the ML was investigated. Attenuation
in the ML is a poorly known phenomenon, mainly because
its quantification poses many instrumental and methodological
problems. Bellon et al. (1997) estimated the attenuation in the ML
in the vertical by comparing UHF and X-band radar reflectivity
measurements in the solid phase near the echo top assuming that
solid hydrometeors at this altitude behave as Rayleigh scatterers.
The attenuation effect was increasing with the intensity of the BB
and the total attenuation over the entire ML was estimated to be up
to 1.7 dBZ for an intensity of 36.5 dBZ. At lower elevation angles,
the attenuation effect could be even stronger, especially for low
melting layers. Klaassen (1990) estimated the attenuation effect
in the ML using a new scheme for the calculation of the dielectric

Figure 13. Schematic representation of the computed ML descriptors on a RHI scan. Computed descriptors are highlighted by a red dot. Limits of the ML are shown
as red dashed lines.
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properties of melting ice. The estimated specific attenuation effect
was variable through the ML, but would reach maximum values
of around 1.5 dB km−1 at a frequency of 12 GHz. Simulations
made by Matrosov (2008) gave an average specific attenuation
of around 0.3–0.5 dB km−1 for rain rates around 2–3 mm h−1.
Pujol et al. (2012) relied on the simulation of airborne X-band
measurements and found much smaller values of attenuation,
with a maximum specific attenuation of around 0.2 dB km−1. For
an average ML thickness of 300 m, this would be 30 times less
than Bellon et al. (1997). Additionally, to the author’s knowledge,
no study has been conducted about the differential attenuation
on ZDR caused by the ML. This effect could also be quite high but
is even more difficult to quantify since ZDR cannot be measured
at vertical incidence.

To investigate the bias caused by neglecting the melting-layer
attenuation effect, a statistical analysis of the ZH and ZDR shift
across the melting layer was performed. If the attenuation effect is
significant, there should be on average a decrease in ZH and ZDR

between the point where the beam enters the melting layer (at the
bottom) and the point where it leaves the melting layer (at the
top). To simplify the notation, we will denote by MLD the distance
travelled by the radar beam through the ML. The decrease in ZH

and ZDR should become more and more important as the MLD
increases. For a given radar radial, the MLD depends on both the
height of the melting layer and the elevation angle. It is maximal for
low elevation angles and low melting layers. It is possible to have a
rough idea of the ML attenuation effect by assuming homogeneity
of the ML and by computing the shift in the differences of ZH

and ZDR across the ML with increasing MLD. The validity of this
approach is restricted by the assumption of homogeneity, but the
very large amount of available data should alleviate the sampling
effect. For ZDR, the assumption of homogeneity is more difficult
to justify due to the high heterogeneity of particle shapes in the
solid phase which can result in a potentially large local variability
of the intrinsic (non-attenuated) ZDR. As such, this estimation of
the differential attenuation of ZDR might be biased.

To be consistent with the rest of this work, only the first 5 km
from the radar were considered (section 2.3.1). Results of this
analysis are shown as a series of boxplots in Figure 14. A clear,
almost linear shift in the distributions of ZDR differences is visible,
whereas in ZH the shift is less evident and does not vary linearly
with the distance. At a MLD of 2300 m, the shift is around 1 dB in
ZH and 0.6 dB in ZDR, which corresponds to approximately 16 and
27% of the local variability, estimated for every distance bin by
the Q90 –Q10 interquantile. This observation could give a rough
estimation of the ML specific attenuation by dividing the shift by
the distance: 0.5 dB km−1 for ZH and 0.37 dB km−1 for ZDR.

Matrosov (2008) gave a power law estimating the ML atten-
uation normalized to the vertical as a function of the rain rate:
A(dB) = 0.048R1.05. Using this power law and the classical Z –R
relation Z = 200R1.6 (Marshall et al., 1955) separately along every
radar beam crossing the ML, one can obtain the theoretical total
attenuation. Dividing this attenuation for every beam by the sine
of the corresponding elevation angle and by the MLD and aver-
aging over all profiles gives an average specific attenuation in ZH

of around 0.2 dB km−1, which is smaller than the observed value.
The measured specific BB attenuation in ZH can also be

compared with measurements by Bellon et al. (1997) who
measured the total BB attenuation at the vertical for some values
of ZH in rain. Interpolating between these measurements and
using the same method as before on every radar beam crossing
the ML, one obtains an average specific attenuation of around
2 dB km−1 which is much larger than our estimation and the
estimation of Matrosov (2008). However, one should keep in
mind the strong variability from event to event,‡ as well as the
possibility of non-negligible attenuation in solid precipitation in

‡Bellon et al. (1997) measured for example 3 dB for an event with a BB peak of
40 dBZ and then only 0.5 dB for a nearly identical event data sample two days
later.

the case of large aggregates. Another possible reason for this large
difference comes from the uncertainty of extrapolating the vertical
measurements of Bellon et al. (1997) to lower elevation angles.

This shift is small for ZH compared with the typical values in
stratiform rain or in the ML (20–40 dBZ). It is even smaller than
the usual calibration error on ZH which is around 1 dBZ. As such,
the output of the ML detection algorithm should not be influenced
by the ML attenuation effect. Additionally, considering the high
values of ZH in the ML, the effect on the overall distribution of
reflectivity in the ML should be limited.

However, the differential attenuation on ZDR seems to be quite
important compared with the usual range of ZDR values (0–3 dB).
However one should keep in mind that in the solid phase most
pixels will have a low MLD and will not be affected very much by
attenuation. The third plot of Figure 14 shows that 80% of all pixels
in the solid phase have a MLD smaller than 1300 m. Since correc-
tion of this differential attenuation effect is currently not possible,
values of ZDR inside, and to a lesser extent above, the ML should
be considered carefully, as they are certainly negatively biased.

5.2. Polarimetric signature of the ML

The distributions of ZH, ZDR, Kdp and ρhv for the four datasets
are shown in Figure 15. The two derived variables, amplitude
of the BB and distance between peak of ZH and minimum in
ρhv, are represented as well. In addition, a summary of these
distributions as quantiles is given in Table 7. The shapes of the
distributions in ρhv agree relatively well, but the Iowa and Davos
datasets are characterized by the presence of a larger number
of smaller values of ρhv. The shapes of the distributions in Kdp

are quite similar for the Davos, Ardèche and Payerne datasets,
but the Davos distribution is shifted towards larger Kdp. The
Iowa dataset differs from the others as its distribution is much
more symmetrical with fewer smaller Kdp values. Distributions
in ZH show some discrepancies between datasets. The Ardèche
dataset has much stronger ZH values, whereas the Iowa (IFloodS)
dataset has much lower values. The Iowa dataset is quite small
and was recorded during a limited period of time (April/May
2014). It is dominated by situations with relatively weak rain
rates. In contrast, the Ardèche dataset was recorded in autumn,
a season during which very heavy precipitation often occurs over
the southeast of France, so part of this discrepancy could be due
to this sampling effect. ZDR distributions generally agree quite
well with the exception of the Davos dataset which has stronger
values (by around 1 dB). Part of this bias could come from the
fact that the radar was equipped with flexible waveguides during
that campaign, which were later replaced by a rotary joint. This
could also explain the shift in Kdp in the Davos dataset.

Giangrande et al. (2008) detected the ML on S-band PPI scans
and computed the distributions of ZH, ZDR and ρhv in wet snow
over 29 h of observation. The measured distribution of ZH shows
a relatively symmetrical distribution with a mode around 30 dBZ
whereas the distribution of ZDR shows a right-skewed distribution
with a mode around 1 dB, which is in close agreement with what
we observe when merging all datasets. However there is some
difference in the distribution of ρhv which has a smaller spread
and a more symmetrical distribution, with a smaller mode (0.96),
but a similar mean. Since the size of their dataset is much smaller
than ours, this could be due to a sampling issue.

Additionally, the two derived variables (the BB amplitude and
the distance between the peak of ZH and the minimum inρhv) have
a very similar distribution on all datasets, which tends to show
that on average concentration effects and increase of reflectivity
due to the BB effect are similar. Durden et al. (1997) computed
empirical moments of some ML descriptors over the tropical
Pacific region. In terms of BB intensity (maximum of ZH) and
amplitude, our overall statistics are in good agreement with their
observations as well as the model profiles given by Brandes and
Ikeda (2004), with only a few dBZ of difference 31.75 here versus
35.4 (Durden et al., 1997) and 35 (Brandes and Ikeda, 2004).
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Figure 14. Boxplots of the distributions of the differences in (a) ZH and (b) ZDR accross the melting layer and (c) the cumulative fraction of ZDR pixels for a range
of MLDs. Since ZDR is not reliable at high elevation angles, distributions at short distances are not available. The values in the boxplots are the quantiles 10 (lower
whisker), 25, 50, 75 and 90 (upper whisker). Panel (c) gives the fraction of pixels measured in the ML and the solid phase which, in the beam of the radar, have a MLD
smaller than the indicated value in abscissa.

Note also that the average minimal value of ρhv (0.86) in the ML
is equal to the one found by Durden et al. (1997). The distance
between the peak of ZH and the minimum of ρhv has an average
of 96 m and a standard deviation of 84 m which are quite close
to those of Durden et al. (1997): 121 and 92 m respectively. The
average vertical velocity in the ML is also very similar (1.22 here
versus 1.4 m s−1 for Durden et al. (1997)). The good agreement
of our observations with those of Durden et al. (1997) indicates
again that the ML has very consistent features globally.

In summary, the polarimetric signature of the ML appears to
be quite consistent over all datasets, with the exception of ZH

which strongly depends on the intensity of the recorded rainfall
events. Additionally, the distribution of both the BB amplitude
and the distance between the maximum in ZH and the minimum

in ρhv, which is related to concentration effects, are also very
similar for all the considered climatic regions.

5.3. Vertical profiles of polarimetric variables through the ML

The polarimetric variables are not uniform within the ML and
exhibit a vertical structure. Figure 16 shows the distributions of
ZH, ZDR and ρhv as a function of the relative height inside the ML
(0 corresponds to the bottom and 1 to the top of the detected ML).
Note that Kdp is not represented because it shows no significant
dependence on height. It can be seen that the height of the peak
in ZH (maximum of the BB) is around 25% higher than the
minimum in ρhv. The ML also shows a peak in ZDR in the lower
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Figure 15. Polarimetric signatures within the ML: (a) ZH, (b) ZDR, (c) amplitude of ZH (between solid phase and ML), (d) ρhv, (e) Kdp and (f) distance between peak
in ZH and minimum in ρhv.

Table 7. Statistics describing the distributions of the polarimetric variables within
the melting layer. The bright-band (BB) intensity is simply the maximum of ZH

in every vertical column of the ML.

Variable Stat. All Davos Ardèche Iowa Payerne

ZH (a) 29.04 28.10 31.44 22.67 25.59
(b) 7.97 7.14 7.62 7.45 7.24
(c) 18.28 18.54 20.88 14.06 16.03
(d) 39.34 37.33 40.92 32.78 34.69

BB peak (a) 31.75 31.01 34.02 25.46 29.00
(b) 7.35 6.39 7.20 6.82 6.33
(c) 21.81 22.40 23.95 17.15 20.48
(d) 41.43 39.38 42.99 33.51 37.00

ZDR (a) 1.99 1.99 1.13 0.65 0.98
(b) 0.95 0.95 0.72 1.14 0.83
(c) 0.30 0.92 0.33 –0.77 0.12
(d) 2.55 3.26 2.11 1.95 2.09

ρhv (a) 0.93 0.91 0.94 0.91 0.94
(b) 0.06 0.07 0.05 0.07 0.05
(c) 0.85 0.81 0.88 0.81 0.87
(d) 0.99 0.98 0.99 0.98 0.99

Min.of ρhv (a) 0.86 0.82 0.89 0.82 0.88
(b) 0.07 0.07 0.05 0.06 0.06
(c) 0.76 0.71 0.81 0.73 0.79
(d) 0.94 0.90 0.94 0.89 0.94

Kdp (a) 0.11 0.20 0.09 0.14 0.07
(b) 0.21 0.28 0.18 0.21 0.17
(c) –0.11 –0.10 –0.11 –0.06 –0.15
(d) 0.38 0.55 0.33 0.37 0.28

(a) = Mean; (b) = St.Dev.; (c) = Q10%; (d) = Q90%.

part of the ML at the same height as the minimum in ρhv. The
lower heights of the peaks of ZDR and ρhv can be explained by
the fact that, unlike ZH, these two radar variables are insensitive
to concentration effects. The decrease in ZDR near the bottom of
the ML could be due to the break-up of large melted aggregates.
However, one should keep in mind the differential attenuation
effect of the ML on ZDR which could also contribute to the lower
height of the ZDR peak.

5.4. Geometry of the ML

5.4.1. Thickness

The detected MLs have on average a very similar geometry on all
datasets. Figure 17(a) shows the distribution of the ML thickness;

all distributions have a similar shape with a strong mode around
300 m, and a long right tail. The melting layer in Payerne is slightly
thinner (purple area) but the differences are small relative to the
radial resolution. Generally differences in the mean are small
(maximum 35 m) and quantiles also agree well between datasets;
the quantile 10% is around 250 m whereas the quantile 90% is
always around 450 m. This suggests that on average the thickness
of the ML is independent of the climatic conditions and the topog-
raphy. It can be observed that the thickness of the ML never gets
below 175 m but can reach values up to 600 m. The minimal thick-
ness is probably linked with the minimal time snowflakes need to
completely melt. The time required for complete melting can be
roughly estimated for every RHI scan by dividing the thickness of
the ML by the vertical velocity. This gives an average time (over all
available scans) of about 2 min for particles to melt completely.

Our observations of the ML thickness agree well with other
observations made in the literature. The distribution of ML
thickness observed by Giangrande et al. (2008) looks very similar
with a marked right tail and a mode around 300 m. Bandera et al.
(1998) used a similar ML detection algorithm to process 200 RHI
scans recorded over the UK and observed an average thickness
of 300 m which is very close to our observed average value
(320 m). Durden et al. (1997) found a slightly larger average
thickness of 400 m, though considering the radial resolution of
the radar (75 m) this difference is barely significant. One possible
explanation is that their estimation of the ML is based solely on
the detection of the BB whereas on the current algorithm ρhv is
also considered for the detection of the base of the ML. In the
case of strong precipitation, the lower part of the BB is not as well
defined as the upper part and this could lead to a slightly larger
thickness of the ML.

5.4.2. Horizontal variability

The horizontal variability of the ML can be quantified by the
variograms of the ML thickness and of the heights of the top and
bottom of the ML. The variogram is a function that gives half of the
average squared difference between pairs of points separated by a
given distance (Chilès and Delfiner, 1999). This gives indication
about the decorrelation distance,§ the sub-grid variability and the
smoothness of a process. The beam-broadening effect causes an
artificial trend in the thickness and boundaries of the ML with
increasing distance from the radar. To alleviate this effect, the
variograms were computed for every scan on linearly detrended

§The distance at which the variogram reaches its maximum and stabilizes, also
called range.
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(a)

(b)

(c)

Figure 16. Boxplots of the distributions of (a) ZH, (b) ρhv and (c) ZDR as a function of the relative height inside the ML. Least-square fitting polynomials of the
medians as a function of relative height hr are also shown, along with their associated norm of residuals ||e||.

variables. Additionaly, to account for the fact that datasets are of
different sizes, the variograms were normalized, i.e. divided by the
corresponding variances (of ML thickness or top and bottom ML
heights). For every dataset, the variograms were then averaged
over all scans.

The normalized variograms of the ML boundaries and
thickness (Figure 17(b)) show a similar structure between the
datasets, with a similar range and a similar slope especially at low
distances, where the variability is greatest. The ML top boundary
reaches decorrelation at around over 1500 m, whereas the bottom
of the ML seems to be smoother and does not decorrelate
completely over 2500 m. Experiments show that this is mainly
due to the use of only ZH to detect the top of the ML. Indeed,
unlike ρhv, ZH is dependent on the concentration of hydrometeors
and is more strongly influenced by large hydrometeors. The
variogram of the thickness has a similar trend but with an even
smaller decorrelation range. This can be due to the fact that, after
detrending, heights of the top and bottom of the ML are positively
yet not totally correlated (r = 0.62).

6. Correlation analysis of ML descriptors

6.1. Factors controlling the ML thickness

Although the ML has a quite consistent shape on average,
variations of the ML thickness can be quite significant between
and especially during precipitation events. This can be seen
for example on the HyMeX dataset (Figure 18), where the ML
thickness can easily vary from 250 to 500 m within the same
precipitation event.

In order to identify the possible causes of increased thickness of
the ML, a correlation analysis of all ML variables was performed.
Before calculating the correlations, the ML statistics described
in Table 6 were averaged over every single RHI scan in order
to reduce them to the same dimension.¶ Before computing the

¶All ML descriptors are not defined in the same domain, for example the
vertical velocity is only available at the vertical whereas ZDR is available only at
low elevation angles.
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Figure 17. (a) Distributions of the ML thickness for the four datasets, with
medians indicated by dashed lines. (b) Normalized (by the variance) variograms
of the ML thickness and top and bottom heights. The x-axis is the horizontal
distance along the RHI.

correlations, the variables were also log-transformed to account
for possible nonlinearities.

First of all, it is interesting to notice that there is no correlation
between the altitude of the top or bottom of the ML and the
thickness of the ML (r = 0.08 for the top and r = −0.013 for
the bottom). Consequently, the seasonal variability of the ML,
characterized mostly by variations in the freezing-level height,
does not seem to contribute significantly to the variability in the
ML thickness.

However, other descriptors have quite high correlations with
the ML thickness. These relations are shown in the form of a
correlation plot in Figure 19. Unsurprisingly, the ML thickness
depends strongly on the intensity of ZH in the ML (r = 0.77).
Such a correlation was also observed by Durden et al. (1997). The
clear linear trend between the two variables is shown in Figure 20.
The ML thickness is also strongly correlated with ZH in the liquid
phase (r = 0.72). A higher reflectivity in the liquid phase indicates
a higher rain rate which corresponds to a larger mass of ice to melt,
hence an increase in the ML thickness. This strong correlation
also shows that by simply knowing the reflectivity in rain, one
can already get some relevant information about the properties
of the ML. The intensity of ZH in the ML and the thickness are
also strongly related to the vertical extension characterized by the
distance of the 20 dBZ ZH contour from the ML (r = 0.9 and
r = 0.7 respectively). A possible explanation is the fact that intense
BBs are usually associated with higher ZH in the solid phase, due to
the presence of larger hydrometeors. Kdp in the ML is slightly less
correlated with the thickness (r = 0.42), but considering the large
amount of data this is still an important correlation. Note that
Kdp is not redundant with ZH, since their correlation is relatively
low (r = 0.36). Additionally, the thickness is also well correlated
with the vertical fall velocity in the ML (r = 0.61). This could be
due to two reasons: indirectly because dense particles, which take
longer to melt, have also higher fall speeds, and directly because
fast falling particles will travel further before melting and will
extend the ML downwards.

Another important factor is the gradient of ZH above the ML,
which is positively correlated with the ML thickness (r = 0.57);
thicker melting layers are associated with a faster decrease in
reflectivity above the melting layer. This is possibly the case when
the reflectivity in the solid phase is relatively high due to the
presence of denser and larger solid particles. Fabry and Zawadzki
(1995) also observed such a correlation and suggested that in the
case of high rainfall rates, updraughts could be strong enough to
bring considerable amounts of cloud water from below the ML
into the solid phase above, resulting in ‘particularly wet graupel
particles’, with a high reflectivity. To verify this hypothesis, the
relation between the thickness of the ML and the spectral width
within the ML both taken at vertical incidence was studied.
However, no strong correlation was detected (r = 0.18).

A thicker ML is quite often associated with the presence of a
layer of rimed particles above the ML (r = 0.56 with the thickness
of the riming layer). This could be due to the higher density of
these particles hence the increasing time it takes for them to melt
as well as their larger fall velocities (Pruppacher and Klett, 1997).
In the same way, a thicker ML is also correlated with a smaller
fraction of ice crystals, since ice crystals and rimed particles are
negatively correlated (r = −0.67). The distance between the peak
in ZH and the minimum in ρhv is also positively correlated to
the thickness (r = 0.44) which indicates that the concentration
of hydrometeors also seems to play a role. The linear trend
between the two variables is visible in Figure 20. Indeed, when
the concentration of hydrometeors is higher, the shift in altitude
between the peak in ZH and the minimum in ρhv increases, since
ZH is sensitive to concentration effects but ρhv is not. An increased
hydrometeor concentration could lead to an increase in the
diabatic cooling of the surrounding air during the melting process.
This effect can be quite important when the situation is very stable
and when horizontal temperature advections are small (Kain
et al., 2000). The cooling effect increases with the precipitation
intensity and can significantly lower the freezing level. Note
also that the minimum in ρhv in the ML is less correlated than
ZH with the ML thickness (r = −0.44). Both variables are only
weakly correlated (r = −0.26). The differences between these
two variables, computed after normalizing them by the mean,
are significantly correlated with the vertical distance between
the peak of reflectivity and the minimum of ρhv inside the ML
(r = −0.59), which seems to indicate that strong concentrations
of solid hydrometeors above the ML can lead to a decoupling of
ZH and ρhv within the ML.

According to Durden et al. (1997), the cooling effect can
increase the thickness of the ML since particles will take more time
to melt. Note that all factors described above, with the exception
of the BB amplitude, are statistically significantly correlated with
the ML thickness (at α = 1%).

Finally, it can seem surprising that the amplitude of the BB
does not seem to be correlated with the ML thickness, nor the
intensity of ZH in the ML. This can be explained by the high
correlation between ZH in the ML and ZH in the solid phase
(r = 0.8). Small amplitudes of the ML can be caused either by a
weak stratiform situation with a thin ML, where the flux is small,
or by a strong stratiform situation with high reflectivity above
the ML (aggregates and/or rimed particles). In fact, the relation
between the amplitude of ZH in the ML and the thickness of the
ML seems to be weakly quadratic. When considering only MLs
with a thickness larger than the median (> 350 m), the correlation
becomes negative (r = −0.38), which shows that thick MLs tend
to be associated with a smaller amplitude between the BB peak
and the reflectivity in the solid phase. The correlation becomes
positive (r = 0.25) when considering only MLs with a thickness
smaller than the median.

Finally, unlike Durden et al. (1997), we did not identify a
significant correlation between altitude of the ML and intensity of
the BB (r = −0.06). This might be due to the fact that, unlike in
tropical regions, variations in the ML height in temperate climate
are dominated by seasonal variations.

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 18. Event by event variability of the ML thickness on the HyMeX dataset. Each coloured line denotes a different precipitation event. (a) Timeline showing the
mean ML thickness for every scan. For visualization purposes, all lines are displayed adjacently even if they are in fact temporally separated. (b) The distributions of
the ML thickness within all precipitation events.
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Figure 19. Correlation plot of some relevant variables. Positive correlations are
in red and negative correlations in blue.

6.2. Principal component analysis

Principal component analysis (PCA) is a statistical procedure
that tries to explain the covariance structure of data by means
of a small number of orthogonal components which are linear
combinations of the original variables. Transformation is done
in such a way that the components are ordered by decreasing
variance and the first components explain the largest part of the
variability in the data.

To gain a better understanding of the relations between the
selected factors, a PCA on standardized data was performed.
The PCA was performed with ROBPCA, a robust version of
the algorithm (Hubbert et al., 2005), that does not rely on the
empirical covariance matrix. To simplify the analysis, only the first
two components were kept. They explain respectively 52 and 24%
of the total variance. The biplot representing the factors projected
into the space of the components is shown in Figure 21. The
arrows represent the loading which is the weight by which every
standardized variable should be multiplied to get the component
scores. Their length is proportional to the contribution of the
variable to the two components and the angle between two
arrows is an approximate measure of their correlation. It can
be seen that the first component corresponds mostly to the
intensity and vertical extension of the BB, the presence of riming
and the thickness. The fraction of rimed particles has a similar
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Figure 20. Scatterplots of (a) thickness versus ZH in the ML and (b) thickness
versus distance between peak of ZH and minimum of ρhv. Counts indicate the
number of points in every hexagonal bin.

and significant contribution to both components. The second
component depends mostly on the signature in ρhv and ZDR

in the ML. Considering their loading and the relative weight of
every component, it can be seen that the most important factors
explaining the variability in the ML are (in order of importance)
the fraction of riming, the gradient of ZH in the solid phase and
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the signature in ρhv of the ML. The thickness of the ML depends
both on the signature in ρhv and on the signature in ZH, which
correspond well to the first and second components; as such its
variability is a good indicator of the overall variability of the ML.
As shown in the correlation analysis, the thickness is also closely
related to the vertical velocities inside and below the ML.

7. Summary and conclusion

In this work, a new algorithm was developed to automatically
detect the melting layer (ML) on polarimetric RHI scans. This
algorithm was then used to characterize the ML on high-
resolution RHI scans collected by X-band polarimetric radars
in different climatic regions.

The ML detection algorithm is based on the identification of
strong vertical gradients in the reflectivity factor at horizontal
polarization ZH and the copolar cross-correlation coefficient ρhv.
The algorithm takes RHI scans projected to Cartesian coordinates
as input and is divided into two parts: in the first part the bottom
and the top of the melting layer are detected using both ZH and
ρhv, while in the second part the estimation of the ML top is
refined by using only ZH.

The algorithm was validated by comparing the height of the
top of the detected ML with freezing level measurements from
collocated radiosoundings. The freezing level estimation of the
algorithm was shown to be accurate, with an average error close
to the radial resolution of the radar and only a small negative bias.
In addition, the distributions of the vertical fall velocities were
compared between the liquid phase (below the detected melting
layer) and the solid phase (above). The distributions were clearly
separated with almost no overlap, showing that the algorithm
separates well the liquid and the solid phases.

The shift in ZDR and ZH across the ML was analyzed in order to
get a rough idea of the attenuation effect of the ML. It was shown
that the effect on ZDR could be important and outweighs by far
the attenuation effect caused by liquid statiform rain, whereas the
effect on ZH was only small.

The ML detection algorithm was used to characterize the ML
in terms of polarimetric and geometric signatures on four large
datasets of radar scans from different topographic and climatic
regions (south of France, Swiss Alps, Swiss plains and Iowa).
Additionally, a hydrometeor classification was performed in the
solid phase above the ML. The thickness of the ML was shown
to be on average very similar on all datasets, with a slightly right

skewed distribution and a mean between 300 and 330 m. Similarly,
the horizontal variability of the thickness and the relative heights
of the ML boundaries, characterized by their variograms, showed
very similar decorrelation ranges and slopes between datasets.

In terms of polarimetric signature, the ML had similar
distributions in Kdp, ρhv and ZDR with the exception of the dataset
from Davos in the Swiss Alps which had higher values of ZDR. This
could be due to the use of different radar waveguides. Differences
in ZH were more important, with variations in the mean ranging
from 2 to 8 dBZ between datasets. Average values of the peak of
ZH, the minimum in ρhv and the vertical distance separating them
were found to be in good agreement with observations made by
Durden et al. (1997) over the Pacific tropical region.

Even though the geometrical signature of the ML is quite
homogeneous on average, it was shown to be quite variable during
and between precipitation events. To gain a better understanding
of this variability a correlation analysis between descriptors of
the ML was carried out. Results indicate that a thick ML is
usually associated with a strong bright band, a higher vertical
extension of precipitation, as well as a larger gradient of ZH above
the ML. A thicker ML is also associated with a higher distance
between the peak in ZH and the minimum in ρhv, a factor related
to the concentration of hydrometeors. A higher concentration
of particles will increase the diabatic cooling caused by the
melting process, which could increase the thickness of the ML.
Additionally, a significant dependency on the presence of rimed
particles above the ML and the vertical velocity in the ML was
found. Rimed particles are characterized by their higher density
and their higher fall velocities, which leads to an increase in the
distance travelled by a particle before complete melting.

Finally, a principal component analysis showed that the most
important factors explaining the overall variability of the ML are
(in order of importance) the fraction of riming, the gradient of
ZH in the solid phase, and values of ρhv inside the ML.

The analysis of the ML conducted during this work could
be complemented with additional X-band radar datasets from
other climatic regions, in order to verify the consistency of the
characterization. Future work will be devoted to the extension of
the algorithm to PPI and to other frequencies, in particular to the
Swiss operational polarimetric C-band radar network.
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