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Abstract
This paper presents ESTIMA, an easy-to-use tool for extrapolat-

ing the scalability of in-memory applications. ESTIMA is designed
to perform a simple, yet important task: given the performance of
an application on a small machine with a handful of cores, ESTIMA
extrapolates its scalability to a larger machine with more cores,
while requiring minimum input from the user. The key idea un-
derlying ESTIMA is the use of stalled cycles (e.g. cycles that the
processor spends waiting for various events, such as cache misses
or waiting on a lock). ESTIMA measures stalled cycles on a few
cores and extrapolates them to more cores, estimating the amount
of waiting in the system. ESTIMA can be effectively used to pre-
dict the scalability of in-memory applications. For instance, using
measurements of memcached and SQLite on a desktop machine,
we obtain accurate predictions of their scalability on a server. Our
extensive evaluation on a large number of in-memory benchmarks
shows that ESTIMA has generally low prediction errors.

1. Introduction
Commodity machines nowadays have hundreds of gigabytes

of memory. This enables building performance-critical parallel ap-
plications, such as databases and key-value stores, that hold their
whole datasets in memory. This way, applications avoid overheads
of slow secondary storage and network, leaving the CPU as the
main performance bottleneck [9, 12, 26, 29]. Understanding the per-
formance of these applications proves to be hard, since the number
of CPU cores available during the deployment of a parallel applica-
tion can be significantly higher than that during its development and
testing. Applications developed today can be tested on machines
with 16 or 24 cores, but in a few years the same applications are
likely to be run on machines with 64 or even more cores.

Consequently, the crucial question about performance of in-
memory applications is that of their scalability with the increasing
number of cores. Answering this question is very hard. Typical
approaches include performing extensive performance evaluation
or developing detailed models of the application [15, 27], which
are time-consuming, error-prone, and require detailed knowledge
of the application and the machine it executes on.

This paper presents ESTIMA1, a practical tool that enables de-
velopers and users to predict the scalability of parallel in-memory

1 ESTIMA and accompanying files are available for download at
http://lpd.epfl.ch/site/estima.
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applications in a simple way, without having to understand in de-
tail the internals of the application or the machine it will run on.
ESTIMA enables developers to visualize the scalability of their ap-
plications, as well as to discover bottlenecks that might not be evi-
dent during initial performance benchmarking. ESTIMA can be ap-
plied with little effort to any parallel in-memory application, in con-
trast to other approaches that heavily rely on application-specific
information [4, 6, 22, 24, 25, 30, 44].

Instead, ESTIMA leverages stalled cycles to extrapolate the scal-
ability of an application. These are cycles the application spends
on non-useful work, such as waiting for a cache line to be fetched
from memory or waiting on a busy lock. Contention for shared re-
sources typically increases with the number of cores used by an
application, resulting in an increase in stalled cycles that directly
impact the application’s scalability. The application’s performance
keeps improving as long as adding more cores increases the num-
ber of useful cycles. As soon as adding more cores mostly results
in stalls, performance stops improving, or even degrades: the appli-
cation stops scaling.

ESTIMA measures stalled cycles in both hardware and software
and extrapolates them (using analytic functions) to higher core
counts to predict the overheads of using more cores. Then, ESTIMA
correlates stalls to execution time in order to produce predictions
of the execution time of the application at higher core counts. In
addition to predicting scalability, analyzing the dominating stalled
cycle categories reported by ESTIMA can reveal bottlenecks that
will appear for higher core counts and guide developers’ optimiza-
tion efforts. To the best of our knowledge, ESTIMA is the first sys-
tem to use stalled cycles for scalability extrapolations and potential
bottleneck identification.

By default, ESTIMA uses hardware performance counters to
measure hardware stalls. These are counters offered by modern
hardware that can collect the values of events that stall the exe-
cution of an application with low overhead. Measuring software
stalls requires configuring or instrumenting runtime libraries, such
as pthreads or a transactional memory library. In our experience,
software stalls can be exposed with minimal changes to the runtime
libraries, but because they are not always available, ESTIMA does
not require software stalled cycles to function.

Our evaluation shows that ESTIMA’s simple approach yields ac-
curate predictions. We illustrate the use of ESTIMA to successfully
predict the performance of a memcached and an SQLite work-
load on a server machine based on measurements on a desktop.
We then extensively evaluate ESTIMA using 21 benchmark work-
loads that span a wide range of application characteristics and syn-
chronization techniques on two different platforms: a 4-socket, 48-
core AMD Opteron machine and a 2-socket, 20-core Intel Xeon
machine. We conduct both strong scaling and weak scaling exper-
iments. Finally, we pick two applications that exhibit poor scala-
bility (streamcluster and intruder from our benchmark work-
loads) and show how stalled cycles can be used to identify their
bottlenecks. More specifically:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148020778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• ESTIMA successfully captures the scalability of all applications
we consider for its evaluation, correctly identifying the num-
ber of cores for which the applications stop scaling, for both
strong and weak scaling predictions. The predictions are fairly
accurate in absolute terms too. ESTIMA can predict performance
when doubling the number of cores with errors lower than 15%
on more than half of the workloads.

• ESTIMA accurately extrapolates scalability between different
machines with similar architectures on real-world workloads.
For our memcached and SQLite workloads measured on a
desktop machine, ESTIMA predicts their scalability on a server
machine with errors lower than 30% and 26% respectively.

• ESTIMA helps identify bottlenecks as we illustrate through two
parallel applications that exhibit poor scalability, intruder and
streamcluster from the STAMP and PARSEC benchmark
suites respectively.

The rest of the paper is organized as follows. We present the
insights behind ESTIMA in Section 2. We explain how ESTIMA
works in Section 3. We present its implementation in Section 4. We
report on its evaluation in Section 5. We discuss the related work in
Section 6 and conclude the paper in Section 7.

2. Insights Behind ESTIMA
In this section, we present the insights upon which ESTIMA is

built. We first recall what stalled cycles are and then present their
main sources and how they affect the scalability of an application.
We discuss why ESTIMA uses stalled cycles, in contrast to the
straightforward approach of extrapolating time. Finally, we present
some of the decisions we have made and how they reflect on the
capabilities of ESTIMA.

Stalled cycles. During the execution of an application, CPU cy-
cles are spent to produce useful work, while part of the cycles is
spent stalling (called stalled cycles), either at the hardware level
(i.e. waiting on a cache line miss), or at the software level (i.e. spin-
ning on a busy lock). In an ideal scenario, stalled cycles would not
constitute a significant part of the execution time and cycles that
produce useful work would be evenly distributed across processors,
resulting in almost linear speedup for the application (assuming that
the instructions executed do not change significantly when running
on more cores).

However, this is rarely the case. Stalled cycles can represent a
significant part of execution time, increasing with the number of
cores. Stalled cycles are present both in hardware and software. At
the hardware level, stalls are the result of unavailability of process-
ing units or data, which typically degrades the performance of an
application as the number of cores increases. What further aggra-
vates the problem is that parallel applications need synchronization,
which causes further increases in stalled cycles at the software level.
These stalls minimize the gains one can expect when scaling up
an application and could be the reason behind even slowdown for
higher core counts.

Hardware stalled cycles. Measuring hardware stalls is at the core
of ESTIMA. They can be divided into two big categories, depending
on the stalled execution stage. Frontend stalls are the stalled cycles
in the fetch and the decoding phase of instructions in the pipeline,
while backend stalls are the stalled cycles due to instructions being
stalled while being executed. Frontend stalls can typically be at-
tributed to waiting on an instruction fetch that missed in the instruc-
tion cache, or a target fetch after a branch misprediction. Backend
stalls are typically the result of resources or data not being avail-
able during execution. Both categories of stalled cycles have a nega-
tive effect on the performance of an application. However, frontend
stalled cycles do not change significantly for increasing core counts.
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Figure 1: Time extrapolation for kmeans.

In contrast, backend stalled cycles have a direct impact on the scal-
ability of an application, as they significantly increase when adding
more cores. We have found no benefits in prediction accuracy when
using frontend stalls. For this reason, and given that modern pro-
cessors can measure up to 4 events concurrently, ESTIMA uses only
backend stalls at the hardware level.

Software stalled cycles. Previous research has shown that IPC-
related metrics are not always useful in predicting the performance
of an application [2]. Stalled cycles are closely related to IPC calcu-
lations and can thus face the same problem. A processor can spend
time executing instructions that do not contribute to useful work,
but are also not considered stalled cycles at the hardware level. This
can lead to prediction inaccuracies. A typical source of software
stalls is synchronization (e.g. spinning on a busy lock). Another
interesting scenario is the use of an optimistic concurrency control
mechanism, such as software transactional memory (STM) [18, 36].
In applications that use STM libraries, aborted transactions discard
all work done inside the transaction.

ESTIMA solves this problem by enabling the use of software
stalled cycles. These represent cycles during which the application
is executing instructions, but which are not producing useful work.
Use of software stalled cycles is optional: users can decide to use
a runtime that reports software-level stalled cycles, or modify their
applications to provide such information, in order to improve the
accuracy of ESTIMA’s predictions.

Extrapolating time. A straightforward approach for scalability
predictions is to extrapolate the execution time of an application,
measured for low core counts. Indeed, such approaches already ex-
ist [4] and provide high accuracy for the workloads they target.
They typically function as follows: initially, they take measure-
ments of the execution time of the application for different core
counts. The next step is to use analytic functions to approximate
the measurements, and extrapolating the measurements to higher
core counts. An important drawback of this approach is that ex-
trapolation requires the behavior to be evident in the existing mea-
surements. When that is not the case, such as in the case of kmeans,
shown in Figure 1, directly extrapolating time can lead to erroneous
conclusions. In this case, the time extrapolation method predicts
that the application will continue scaling for up to 48 cores, which
is not the case. Similar cases can appear when small changes in the
execution time steer the extrapolation towards wrong predictions.
As we show in Section 5.3, ESTIMA does not suffer from these
problems, improving the accuracy of the predictions. It does so by
using lower-level information, in the form of stalled cycles.

Stalled cycles for scalability predictions. ESTIMA uses the num-
ber of stalled cycles per core to predict the scalability of an appli-
cation as the number of cores increases. We evaluate the applica-
tions used in this paper and find that for all of them, the number of
stalled cycles per core have a high correlation with execution time.
Two such examples are shown in Figure 2. They are the intruder
and blackscholes benchmarks from the STAMP [28] and PAR-
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(a) intruder stalled cycles per
core.
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(b) intruder execution time.
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(c) blackscholes stalled cycles
per core.
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(d) blackscholes execution time.

Figure 2: Stalled cycles and execution time correlation.

SEC [5] suites respectively. For both applications, there is over 98%
correlation between the number of stalled cycles per core and their
execution time. Similar high correlations are present in the rest of
the applications we evaluate.

ESTIMA relies on stalled cycles for its predictions. By default
it uses hardware performance counters, dedicated CPU registers,
used to monitor performance events, such as the number of instruc-
tions executed, cache misses per cache level, stalled cycles, as well
as I/O requests and memory accesses. Different architectures offer
various performance counter events that measure a wide range of
backend stalled cycles. There usually exist aggregate events that
measure the total backend hardware stalled cycles, as well as more
detailed events that measure different types of backend stalled cy-
cles individually [3, 20]. ESTIMA does not use the aggregate events.
Instead, it uses the performance counters that measure fine-grain
backend stalled cycles on each architecture. These counters are low-
level enough to provide insights into the behavior of the application
for higher core counts. In addition, when combined, they give a
high-level image of the scalability of the application (Figure 2).

The insight behind using fine-grain stall events is that using
an aggregate event would be similar to extrapolating the execution
time itself, since the two follow the same trends. For example, from
the aggregate backend stalls shown in Figure 2, with measurements
up to 12 cores, we do not see trends that show the poor scalability
of the applications for higher core counts. Using aggregate events
would not capture significant changes in the scalability of applica-
tions, which is the main goal of ESTIMA. By using fine-grain stalls,
trends appear in their values for lower core counts, before the effect
on the scalability of the application is significant. These trends are
helpful in predicting scalability changes that are otherwise difficult
to capture (e.g. in the prediction example in Section 3.2). A sec-
ond reason for using the individual stalled cycles is that aggregate
events do not provide any information on the scalability bottleneck.
By using the detailed events, ESTIMA can help identify the area that
prohibits scalability and guide the developer to fix the bottlenecks,
as we show in Section 5.5.

Other performance counters. Prior work [38, 41] has used per-
formance counters to measure events such as cache misses and
branch mispredictions to identify bottlenecks in applications. A
similar approach in ESTIMA would involve extrapolating counters
such as cache misses for the different levels of cache and incorporat-

ing them in the prediction process. The problem with this approach
is that cache misses require a very detailed model that takes into
account the memory access patterns of the application. This is nec-
essary in order to translate the misses captured to time and quan-
tify their effect to the scalability of the application. Using cache
misses without a detailed model would cause the predictions to be
pessimistic. The reason for this is that an increase in cache misses
does not always result in poor scalability. Identifying the complex
interactions between misses and scalability requires detailed knowl-
edge of the application, which is against the generic purpose of
ESTIMA. For this reason, we chose not to use cache misses in our
predictions. However, their effect is captured by the stalled cycles
that ESTIMA uses. In this case, their actual effect on scalability is
captured through its manifestation in stalls in the pipeline.

3. ESTIMA
The prediction process of ESTIMA is depicted in Figure 3. It

involves three main steps: (A) first, ESTIMA executes the applica-
tion on the measurements machine, collecting different types of
stalled cycles from hardware and optionally from software. (B)
Then, ESTIMA extrapolates the values of these stalls to higher core
counts, using regression analysis and a set of pre-defined function
kernels. (C) Finally, ESTIMA combines the extrapolated values and
calculates the stalled cycles per core. By correlating stalled cycles
to execution time, ESTIMA predicts the execution time of the ap-
plication for higher core counts. In the next sections, we provide
a detailed description of the internals of this process and present a
step-by-step execution example of ESTIMA.

3.1 Prediction process
A. Stalled cycles collection. The first step of the prediction pro-
cess of ESTIMA is to execute the application for different core
counts, up to the number of cores available on the measurements
machine, collecting hardware performance counters and software-
reported stalls. During the execution of the application, ESTIMA
also measures the memory resident set size, as well as the appli-
cation’s execution time. ESTIMA uses these measurements for the
execution time predictions in the last step of the process.

For the hardware stalls, ESTIMA collects the backend stalled cy-
cles (as available by the architecture). Choosing the backend stalls
for an architecture involves identifying the counters that measure
stalled cycles in the pipeline. From this set, we discard the events
that refer to instruction fetching, keeping only the stalls in the ex-
ecution phase of an instruction. We also discard events that signif-
icantly overlap, such as aggregate events for backend stalls. Intu-
itively, stalls that overlap can make predictions pessimistic, depend-
ing on the extent to which they overlap.

Processor families typically share the same set of counters,
and using ESTIMA with different processors of the same family
requires no configuration. Adding support for a new processor
family requires consulting the developer’s manual of the processor
and identifying these backend stalls. For the machines that we had
available, identifying the stalls to be used was a simple task that
was necessary only once for each manufacturer. The same counters
were then used for both desktop and server machines, without the
need to choose different counters for each machine.

When choosing the software stalls to be (optionally) collected,
the developer needs to consider the parts of (mainly synchroniza-
tion) code that, when executed, produce no useful work for the
workload. Such cases include (but are not limited to) spinning on
locks and looping on trylock operations. An interesting case is Soft-
ware Transactional Memory, where deciding on the cycles that are
not producing useful work is straightforward, and an STM runtime
can report these measurements directly.
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B. Stalled cycles regression analysis. This step consists of re-
gressing the stalled cycles measurements. ESTIMA uses function
approximation [1] to construct a set of functions for each stalled
cycle category measured. Function approximation takes the mea-
surements, a function type (e.g. a polynomial function of degree
d) and constructs a function that closely fits the measurements (e.g.
calculates the coefficients of the polynomial). ESTIMA chooses one
function for each stall category and uses it to extrapolate the mea-
sured values. The approximation process, shown in Figure 4, con-
sists of the following steps, assuming m measured values for a spe-
cific category of stalled cycles:

1) From the m available measurements, ESTIMA designates the c
measurements with the highest core counts as checkpoints. In
our experiments, we set c to 2 and 4.

2) Using the first n measurements (n = m − c), ESTIMA cre-
ates a function from the predefined kernels in Table 1. These
functions are used based on the approximation library used (see
Section 4), discarding the function types that produce functions
that are not realistic for this approximation. The process is re-
peated for i in 3..n, to avoid over-fitting the function to the avail-
able measurements. Intuitively, small deviations in the measure-
ments sometimes steer the function in the wrong direction, re-
sulting in less accurate predictions.

3) For each of the constructed functions, ESTIMA calculates the
root mean square error (RMSE) at the checkpoints. By using

Name Function

Rat22
a0 + a1n+ a2n2

1 + b1n+ b2n2

Rat23
a0 + a1n+ a2n2

1 + b1n+ b2n2 + b3n3

Rat33
a0 + a1n+ a2n2 + a3n3

1 + b1n+ b2n2 + b3n3

CubicLn a+ b ln(n) + c ln(n)2 + d ln(n)3

ExpRat e
a+bn
c+dn

Poly25 y = a+ bx+ cx2 + dx2.5

Table 1: Extrapolation function types.

only the checkpoints, functions that have deviations for low
core counts but approximate performance counter values accu-
rately for higher core counts are also considered.

4) ESTIMA chooses the function that minimizes the error and uses
it to approximate the stalled cycle values.

At this step, ESTIMA has created functions that approximate the
values of the hardware and software stalled cycles and can use them
to calculate the stalls for higher core counts.

C. Translating stalled cycles to execution time. After all the
stalled cycle events have been approximated, ESTIMA calculates
the total stalled cycles per core, using the approximated values of
hardware and software stalled cycles. In order to adjust predictions
to different workload sizes, ESTIMA adjusts the stalled cycles cal-
culated using the ratio of the measures and target dataset sizes.

The total stalled cycles per core and the execution time have
similar curves, including minima and maxima points. However,
they represent different quantities. An example has already been
introduced in Figure 2, where execution time and stalled cycles
are shown for the intruder and blackscholes applications. The
two quantities are not similar, in the sense that there is no constant
number that connects them. Their similarity factor is a function
of the number of cores. ESTIMA uses the stalled cycles and the
execution time measurements collected during the execution of the
application to calculate the values of the scaling factor function for
the available core counts. It then extrapolates this function using
the same kernels as before (Table 1). In this case, ESTIMA no longer
chooses the function that best fits the points. In contrast, it chooses
the function that produces execution time predictions that have the
highest correlation with the total stalled cycles per core. The reason
is the following: we argue that execution time and stalled cycles
have a very high correlation. As such, the produced execution time
values should retain high correlation with the total stalled cycles
per core that were calculated in the previous step.
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(a) Performance counter 0D2h extrapolation.

 0

 1x10
12

 2x10
12

 3x10
12

 4x10
12

 5x10
12

 0  10  20  30  40  50

C
o

u
n

te
r 

V
a

lu
e

Cores

Measured Values

Predicted Values

(b) Performance counter 0D5h extrapolation.

 0

 1x10
12

 2x10
12

 3x10
12

 4x10
12

 5x10
12

 0  10  20  30  40  50

C
o

u
n

te
r 

V
a

lu
e

Cores

Measured Values

Predicted Values

(c) Performance counter 0D6h extrapolation.
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(d) Performance counter 0D7h extrapolation.
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(e) Performance counter 0D8h extrapolation.
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(f) STM aborted transaction cycles.
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(g) Stalled cycles per core.
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(h) Scaling factor extrapolation.
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Figure 5: intruder prediction example.

After the factor function has been created, ESTIMA uses the
stalled cycles per core, as approximated in step (B), and the scaling
factor function to calculate the execution time of the application for
higher core counts.

3.2 Prediction example

To better explain the prediction process, we use intruder from
the STAMP benchmark suite [28] as an example. intruder is a
signature-based network intrusion detection system (NIDS) bench-
mark that scans network packets and matches them against a set of
intrusion signatures. It emulates Design 5 of the NIDS described by
Haagdorens et al. in [14]. Network packets are processed in parallel
and go through three phases: capture, reassembly, and detection. In
the version that uses transactional memory included in STAMP, the
capture and reassembly phases are each enclosed in transactions.

For this example, we use a machine with four AMD Opteron
6172 processors, each containing two chips with 6 cores each,
clocked at 2.1GHz (48 cores in total). We take measurements using
only one processor of the machine (12 cores) and target all four
processors with our predictions. Hence, the measurements machine
is a 12-core machine, while the target machine is a 48-core machine.
We also execute the application on the target machine and measure
the stalled cycles and execution time for up to 48 cores. We present
these measurements alongside our extrapolations in Figure 5. The
vertical lines in the figures represent the maximum number of cores
used for the measurements.

The first step of the process is to collect performance counters
for executions of the application when using up to 12 cores (the
application is configured to use as many threads as cores avail-
able). For this AMD Opteron machine, the performance counters

that measure backend stalled cycles are the ones presented in Ta-
ble 2 [3]. intruder uses software transactional memory as a con-
currency control mechanism. We configure the SwissTM software
transactional memory runtime [11] to report aborted transaction cy-
cles for the application and configure ESTIMA to use these cycles.

ESTIMA then approximates each stalled cycle category individu-
ally. It creates multiple functions for each category and chooses the
function that minimizes the RMSE for the existing measurements
of each stall. With one function for each stalled cycle category,
ESTIMA can extrapolate the stall values for higher core counts. In
Figures 5a-f we present the result of this process. ESTIMA uses the
measurements left of the vertical line and produces the functions
presented. In each figure, we also show the measured values on all
48 cores of the Opteron machine. It is important to notice here that
even though execution time and stalled cycles per core are decreas-
ing for fewer than 12 cores, the fine-grain stalled cycles are increas-
ing. Thus, the result of the extrapolation of these stalls helps predict
the slowdown of the application for higher core counts. intruder
also showcases why ESTIMA uses fine-grain stalls instead of an ag-
gregate event. By examining the aggregate backend stall values in
Figure 5g, we notice that for measurements with up to 12 cores, the

Event Code Event Description
0D2h Dispatch Stall for Branch Abort to Retire
0D5h Dispatch Stall for Reorder Buffer Full
0D6h Dispatch Stall for Reservation Station Full
0D7h Dispatch Stall for FPU Full
0D8h Dispatch Stall for LS Full

Table 2: Hardware performance counters used for the Opteron
machine.



slowdown of the application is not visible. As a result, if ESTIMA
simply extrapolated these values, it would fail to capture the be-
havior of intruder for higher core counts, similarly to the time
extrapolation method.

After the performance counter values have been approximated,
ESTIMA computes the stalled cycles per core, shown in Figure 5g.
The correlation of stalled cycles to execution time involves a scal-
ing factor that connects the two quantities. ESTIMA computes the
values of this factor for up to 12 cores using the stalled cycles per
core and the execution time values collected. It then approximates
this factor. For this approximation, it chooses the function that pro-
duces execution time predictions that have the highest correlation
with the stalled cycles per core. The approximation of the scaling
factor is presented in Figure 5h. Finally, using this scaling factor,
ESTIMA predicts the execution time of the application. We then
measure the execution time of intruder for up to 48 cores of the
machine and use the measurements to evaluate our prediction. Both
the predicted and measured execution times are presented in Fig-
ure 5i. ESTIMA successfully predicts the scalability of the applica-
tion and the slowdown it exhibits for higher core counts.

4. Implementation
We implement ESTIMA in Python. We integrate the functionality

in a single, easy-to-use tool. For the function approximation, we
use the pythonequation library from [33] to create functions
based on specific kernels and fit them to collected values of stalled
cycles. ESTIMA offers a variety of options for different prediction
scenarios. It can either discover the number of cores of the machine
it runs on, or take the number of cores to use as an input parameter.
ESTIMA discovers the topology of the cores and uses cores within
the same socket first. It supports current x86 processor families,
but extending it to support additional families of processors is
straightforward. By default, the user needs to specify only the input
of the application.

In order to improve the accuracy of the predictions, ESTIMA en-
ables the use of plugin components. The user can specify additional
categories of stalled cycles at the software level that can be used for
the predictions. ESTIMA takes a configuration file that includes the
path to the file the stalls are reported to (including special files like
stdout or stderr), as well as the expression that is used to report the
cycles. ESTIMA can apply a function to the collected values (e.g.
min, max, sum, average) and use the resulting values for its predic-
tions. The way ESTIMA collects software stalls can vary between
applications. In our evaluation, for the collection of synchroniza-
tion overheads and spinning times we use a thin wrapper around the
pthread library. For the applications that use transactional mem-
ory, we use SwissTM [11] with detailed statistics enabled, which
reports the duration of committed and aborted transactions.

5. Evaluation
5.1 Evaluation setup

We evaluate ESTIMA using four different machines. The first is
a desktop Intel Core i7 Haswell machine with 4 cores clocked at
3.4GHz (8 hardware threads in total). The second machine is a 4-
processor AMD Opteron 6172 one, with each CPU containing two
chips with 6 cores each, clocked at 2.1GHz (48 cores in total). In
the remainder of the text we refer to this system as Opteron. We
also use two Intel Xeon machines. The first has 2 Intel Xeon E5-
2680 v2 processors with 10 cores each, clocked at 2.80GHz (40
threads in total). The second machine has 2 Intel Xeon E5-2680 v3
processors, with 24 cores each, clocked at 2.5GHz (48 threads in
total). We refer to them as Xeon20 and Xeon24 respectively.

We use several applications to evaluate ESTIMA. These span
a variety of workloads, with different lengths of critical sections,

levels of contention and synchronization techniques. In total, we
use 21 different workloads, among which 8 are STM-based. The
STM workloads use SwissTM [10, 11].

We start with two production applications and cross-machine
predictions using ESTIMA. We then conduct experiments using
three benchmark suites. We conduct both strong and weak scaling
experiments. We show how we use ESTIMA to pinpoint the bottle-
necks in two applications and guide us towards fixing them. Finally,
we discuss ESTIMA’s strengths and shortcomings.

5.2 Extrapolating to different machines

We start our evaluation with two production applications, in a
realistic setting. We use memcached and an SQLite application.
We use a desktop machine for all our measurements and predict the
scalability of our applications on a server machine. We then execute
the applications on two different server machines and evaluate the
accuracy of our predictions.

In our first experiment, we use ESTIMA to predict the scalability
of a memcached server. We use ESTIMA on the desktop Haswell
machine and target the Xeon20 server machine with our predictions.
We run the clients on the same machine as the memcached server,
as we do not want to take network performance into account. The
client and dataset are the ones provided by cloudsuite [13],
scaled to 10x the original size. We use the number of workers and
connections that produces the highest throughput. The workload is
read-mostly and objects have a size of 550 bytes.

We use all 8 threads of the machine, letting the operating system
do the scheduling of the threads. ESTIMA collects stalled cycles and
execution time from the memcached server using up to 3 cores of
the desktop machine and extrapolates its performance to a machine
8 times its size. The performance counters that measure backend
stalled cycles for our Intel machines are presented in Table 3 [20].
As presented in Section 3.1, ESTIMA uses measured execution time
to correlate stalled cycles to the execution time of the application
for higher thread counts. In this experiment, because the machines
have processors with different frequencies, the measured execution
time is also scaled using the ratio of execution frequencies.

We then measure the execution time of the workload on the
Xeon20 machine, using all 40 hardware threads. We keep the
threads on the same processor when possible. The result of the
prediction produced by ESTIMA, as well as the time measured from
the Xeon20 machine are presented in Figure 6a. ESTIMA success-
fully predicts the scalability of the application. The absolute errors
are below 30% for all core counts. ESTIMA successfully predicts
that the server will stop scaling, using only three cores for the
measurements, while predicting for up to 7 times more cores.

The second experiment uses the SQLite in-memory DBMS, and
a TPC-C workload with 10GB of data. We use the same Haswell
desktop machine and target the Xeon24 server with our predictions.
We use tmpfs to avoid IO bottlenecks for logging and dedicate
threads on the desktop machine to the SQLite. We pin the client
threads to the rest of the hardware threads. ESTIMA collects stalled
cycles and execution time from the SQLite process for up to 4
threads of the desktop machine and extrapolates its performance to

Event Code Event Description
0487h Stalled cycles due to IQ full
01A2h Cycles allocation stalled due to resource-related

reasons
04A2h No eligible RS entry available
08A2h No store buffers available
10A2h Re-order buffer full

Table 3: Hardware performance counters used for the latest
Intel processors.
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Figure 6: Predictions for memcached and SQLite.
a machine 6 times its size. The hardware stalls are the same as in the
previous experiment. Similarly, we scale the execution frequencies
of the two machines for the predictions.

We then measure the execution time of the workload on the
server machine, using all 48 hardware threads. We keep the threads
on the same processor when possible. The result of the prediction
produced by ESTIMA, as well as the actual time measurements from
the server machine are presented in Figure 6b. ESTIMA success-
fully predicts the scalability of the application on the server ma-
chine. The execution time errors are below 26% for all core counts.
ESTIMA successfully predicts that the server will stop scaling, as
well as the number of cores for which this will happen. It does so
using only four cores for the measurements, while predicting for a
machine with 6 times more cores.

ESTIMA is successful in predicting the scalability of both ap-
plications, using measurements on a significantly smaller machine,
from a different family of processors.

5.3 Scaling-up applications

In our previous experiments, we show how we use ESTIMA to
extrapolate the scalability of production applications. We now eval-
uate the extent to which our tool can predict the scalability of appli-
cations by using 3 suites of in-memory benchmarks: STAMP [28],
Parsec [5] and standard STM micro-benchmarks (used in [10]). We
also use a modified k-nearest neighbors (KNN) calculation kernel,
commonly used in recommender systems. The benchmark suites
we use are written in C/C++ and compiled using GCC, while the
KNN calculation kernel is written in Java and compiled using GCJ.
We use one CPU of the Opteron and Xeon20 machines for our mea-
surements (12 and 10 cores respectively) and then predict for up to
4 and 2 CPUs respectively (the full machines).

In Table 4, we present the summary of our prediction errors for
both machines. The errors presented are the maximum errors ob-
served when using one processor from the respective machine and
predicting for 2, 3 and 4 processors of the Opteron machine (13-24,
25-36 and 37-48 cores) and 2 processors of the Xeon20 machine
(11-20 cores). For brevity, we discuss the strengths of ESTIMA as
well as its limitations, using predictions for the Opteron machine,
for which we have predictions for higher core counts. For compari-
son purposes, we also implement a version of the time extrapolation
method. We collect execution time measurements and use the same
function kernels to approximate these measurements. We include
the results of this process in the prediction figures and call it time
extrapolation. This approach is similar to using aggregate events
for our measurements. It fails to predict changes in the applica-
tion behavior that are not evident from the measurements, which
explains the significant differences in accuracy when compared to
ESTIMA. We highlight the biggest of these differences in accuracy
between time extrapolation and ESTIMA in Figure 7.

Our benchmark evaluation shows that ESTIMA is successful in
predicting most workloads with small prediction errors. Out of 19
workloads used for the evaluation of ESTIMA:

Opteron Errors (%) Xeon20 Errors (%)
Benchmark 2 CPUs 3 CPUs 4 CPUs 2 CPUs
lock-based HT 7.8 8.3 8.9 41.7
lock-based SL 27.7 24.3 21.4 16.1
lock-free HT 3.3 3.4 3.7 15.8
lock-free SL 13.2 10.4 9.9 24.8
stamp:
genome 4.4 4.4 4.6 6
intruder 9.2 22.1 31.9 30
kmeans 50.3 50.9 17.0 30
labyrinth 15.4 15.0 18.4 10
ssca2 2.8 4.6 8.1 21.4
vacation-high 14.7 14.3 10.3 17
vacation-low 18.9 18.5 25.0 10
yada 8.1 23.0 15.1 40
parsec:
blackscholes 3.7 4.4 2.9 14
bodytrack 1.3 3.0 5.9 8
canneal 10.7 12.4 8.3 6
raytrace 2.7 3.6 4.6 1
streamcluster 15.6 59.0 88.8 20
swaptions 10.6 14.7 20.3 9
K-NN 11.5 22.5 32.0 13

Table 4: Maximum prediction errors with measurements on
1 processor of each machine (12 cores for Opteron and 10
cores for Xeon20).

• For all extrapolations performed, ESTIMA was successful in pre-
dicting the scalability of the applications. There were no cases
where ESTIMA would incorrectly predict that an application
would or would not scale.

• When extrapolating to the Xeon20 machine with double the
number of cores than used for measurements, 15 workloads
have execution time prediction errors lower than 25% and 9 of
them have errors lower than 10%.

• When extrapolating to the Opteron machine with four times
the number of cores than used for measurements, 16 workloads
have execution time prediction errors lower than 25% and 9 of
them have errors lower than 10%.

In Figure 8a we present an example of a prediction result, us-
ing raytrace from the PARSEC benchmark suite. raytrace is
an Intel RMS application which uses a version of the raytracing
method that would typically be employed for real-time animations
such as computer games, optimized for speed rather than realism.
ESTIMA accurately predicts its scalability, with the maximum ex-
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(a) raytrace execution time predic-
tion.

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Cores

Measured Time
ESTIMA

Time Extrapolation

(b) intruder execution time pre-
diction.
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(c) yada execution time prediction.
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(d) kmeans execution time predic-
tion.

Figure 8: Predictions using ESTIMA.
ecution time prediction error observed for predictions for up to
48 cores being 4,6%. This is in contrast to the time extrapolation
method, which produces errors up to 17,3%.

The main advantages of ESTIMA appear when predicting changes
in the behavior of an application, such as the ones seen in intruder
and yada from the STAMP benchmark suite, presented in Fig-
ures 8b and 8c. intruder has already been introduced in Sec-
tion 3.2. yada implements Ruppert’s algorithm for Delaunay mesh
refinement [35]. The input consists of an initial mesh and threads
identify the triangles of the mesh for which the minimum angle is
below some threshold. Once such triangles are found, new points
are added to the mesh and the process continues with new trian-
gulations. For both workloads ESTIMA successfully predicts the
changes that appear, as well as the limits of the scalability of the ap-
plications. These cases demonstrate the advantage of using stalled
cycles for our predictions, as the trends in stalled cycles appear
before their effect in performance is significant enough. This is un-
like time extrapolation, which fails to predict their scalability trends
and has significantly higher prediction errors (up to 81% and 130%
higher for intruder and yada respectively).

Another interesting example is kmeans from the STAMP suite.
kmeans is a partition-based clustering benchmark that represents a
cluster by the mean value of all objects contained in it. We present
a scalability prediction for kmeans on the Opteron machine in Fig-
ure 8d. Although the absolute maximum error for kmeans is higher
in absolute numbers in Table 4, the prediction is a successful one.
The high error value is the result of the fluctuations in kmeans’ ex-
ecution time for different core counts, which the prediction does
not follow. Nevertheless, ESTIMA successfully predicts the perfor-
mance of the application. As with intruder and yada, the scala-
bility degradation of kmeans is not evident in the original measure-
ments. ESTIMA can successfully capture the trends in stalled cycles
and predict the performance degradation, something time extrapo-
lation is unable to do.

5.4 Weak scaling

Using a larger machine commonly means running bigger work-
loads. This is due to the larger amount of memory usually installed
in larger machines. We evaluate how we can use ESTIMA in such a
scenario. We use measurements on a machine and predict the scal-
ability of the application on a machine with double the number of
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(a) genome execution time predic-
tion
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Figure 9: Predictions with changing workload sizes.

cores and with a twice as large dataset. We use two applications:
genome and intruder from the STAMP benchmark suite, intro-
duced earlier in this section. We run our experiments on the Xeon20
machine. We use both applications with the default datasets from
the STAMP suite.

We use ESTIMA on one processor of the machine for each
application, targeting a machine with double the number of cores
(the full machine). We configure ESTIMA with a target workload
size that is two times the size used for measurements. By measuring
the memory footprint of the application and scaling its predictions
accordingly, ESTIMA produces predictions for both applications on
the target machine and for the target workloads.

We then execute the applications on the full Xeon20 using the
bigger dataset. We present both ESTIMA’s prediction, as well as
the measured execution time in Figure 9. ESTIMA successfully pre-
dicts the scalability for both applications. The predictions are ac-
curate in absolute terms too. The most significant errors appear for
single core performance of intruder on the bigger machine. The
maximum errors (excluding single core performance) are 28% for
intruder and 29% for genome. Although with higher errors than
their strong scaling counterparts, these predictions show that with
a simple technique ESTIMA is capable of accounting for changes in
workload sizes.

5.5 Identifying future bottlenecks
Throughout this paper, we present how ESTIMA can be used

to extrapolate stalled cycles in order to predict the scalability of
an application. A question that arises is the following: can we use
this knowledge to help developers identify bottlenecks in their ap-
plications, before they even appear? We now show how we can
use ESTIMA to identify bottlenecks in two applications, as well as
how we fix these bottlenecks. We use two applications that use
different concurrency control mechanisms: streamcluster and
intruder from the PARSEC [5] and STAMP [28] suites respec-
tively. For both applications we collect both hardware and software
stalls. For streamcluster, we create a thin wrapper around the
pthread library calls. For intruder, we simply configure the Swis-
sTM runtime library to report aborted transaction cycles.

We use ESTIMA to extrapolate the scalability of the two applica-
tions to the Opteron machine. We use measurements on one proces-
sor of the machine (12 threads) and extrapolate to all four proces-
sors (48 threads). We show the results of these extrapolations in Fig-
ure 10. Both application exhibit slowdown for high core counts. We
configure ESTIMA to report the intermediate extrapolations of indi-
vidual stalled cycle categories and report the ones that contribute
most to stalls. We then use the perf linux tool to pinpoint the most
significant sources of the reported stalls. For streamcluster, we
identify the source of a significant part of hardware stalled cycles
in the pthread_mutex_trylock function used for the custom PAR-
SEC barriers. This leads us to identify the mutexes used as a po-
tential scalability bottleneck. For intruder, we similarly identify



 0

 5

 10

 15

 20

 0  10  20  30  40  50

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Cores

ESTIMA

(a) Prediction for streamcluster.
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Figure 10: Predictions for streamcluster and intruder using
ESTIMA.

the main source of stalled cycles to be aborted STM transactions
in the processPackets function, and more specifically in the TMDE-
CODER_PROCESS call. By examining the code of the function,
we understand that aborted transactions are the result of contention
for a shared data structure.

For streamcluster, we replace the standard pthread mutexes
used by PARSEC with test-and-set spinlocks, based on our findings.
For intruder, we modify the application to decode more elements
in every step, contrary to the original implementation. The mea-
surements on the full Opteron machine validate our findings. The
performance of both modified applications significantly improves.
We show the original and modified applications’ performance in
Figure 11. For streamcluster, ESTIMA helps us improve its exe-
cution time by up to 74%. Similarly, we improve intruder’s per-
formance by up to 70%.

5.6 Discussion

Software stalled cycles. ESTIMA by default uses hardware stalls
for its extrapolations. However, it can be configured to include
software stalls to further improve the accuracy of its predictions.

For our experiments, we measure software stalled cycles for all
applications from the STAMP suite, by configuring the STM run-
time to report aborted transaction cycles. Because of the nature
of STM, this effect of software stalls is expected: contention for
shared resources leads to aborted transactions, which are transpar-
ent to the hardware. Useful work at the hardware level is discarded
when a transaction is aborted.

Moreover, we experiment with measurements of synchroniza-
tion cycles using a thin wrapper around the pthread library. This
wrapper measures cycles that threads spend spinning on barriers.
We measure these synchronization cycles for streamcluster

from the PARSEC suite, as well as for genome and ssca2 from
the STAMP suite.

In Figure 12 we present five applications for which software cy-
cles significantly improve ESTIMA’s predictions. We show the pre-
diction errors for the applications with and without software cycles.
Using software cycles for these applications improves prediction
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Figure 11: Improving the scalability of streamcluster and
intruder using ESTIMA’s predictions.
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accuracy by 57% on average, and for genome by up to 87% for a
machine with four times the number of cores.

Limitations. Table 4 shows that predictions for streamcluster
from the PARSEC benchmark suite exhibit high absolute predic-
tion errors. streamcluster is a clustering benchmark, which, for
a stream of input points, finds a predetermined number of medians,
so that each point is assigned to its nearest center. We show both the
extrapolated and measured execution time of the application in Fig-
ure 13a. The behavior of streamcluster changes significantly for
more than 30 cores. ESTIMA successfully captures the slowdown of
the application, but with higher absolute errors, because there is no
hint of this performance change in the measured stalls. When using
24 cores for the measurement (2 sockets of Opteron), the predic-
tion is significantly better, as seen in Figure 13b. This shows the
main limitation of ESTIMA. Although stalled cycles show trends
before they have an impact on performance, as discussed in Sec-
tion 2, there are cases where significant changes in the application
happen for higher core counts. In this example, the synchronization
overheads, together with memory bandwidth saturation cause slow-
down for core counts greater than 36. This behavior is not captured
by stalled cycles when using measurements for up to 12 cores.

Similarly, due to its nature, ESTIMA does not capture effects that
are not present in the measurements machine, such as NUMA ef-
fects. This is the reason behind the higher prediction errors for the
Xeon20 machine. In contrast, the architecture of the Opteron ma-
chine enables ESTIMA to account for NUMA effects. Each proces-
sor of the Opteron machine contains two chips, introducing NUMA
effects even for measurements using only one processor. By ac-
counting for these effects, ESTIMA has higher accuracy for extrap-
olations to significantly higher core counts. The prediction results
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(a) streamcluster execution time
prediction.
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Figure 13: Predictions for streamcluster.
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(a) intruder execution time predic-
tion
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Figure 14: Predictions with NUMA effects captured.

are similar for the Xeon20 machine when using more than 10 cores
for the measurements. We show two such examples in Figure 14.
By capturing the discontinuities in the measured cycles, ESTIMA
achieves higher accuracy in its predictions.

It is important to note that ESTIMA’s main use case involves
predictions for machines with similar architectures. ESTIMA suc-
cessfully predicts the performance of an application across such
machines. However, cross-platform predictions with significant dif-
ferences between the measurements and target architectures (e.g.
using measurements from an Intel machine to predict performance
on a SPARC machine), will in general result in less accurate predic-
tions. Similarly, ESTIMA is not meant to predict the performance of
an application for very different workload configurations, as it does
not rely on static or dynamic analysis of the target application. We
believe that these shortcomings are outweighed by the simplicity
and generality of ESTIMA.

6. Related work
The work that is most closely related to ESTIMA is that of

Crovella et al [8], in which the authors use productive and stalled
cycles collected at the software level to predict the performance of
an application. In contrast, ESTIMA relies primarily on hardware
stalls, using performance counters offered by modern hardware.
ESTIMA can leverage software-level stalls to further improve its
extrapolations, applying to a wider variety of workloads.

Barnes et al. [4], use linear logarithmic functions to predict
the scalability of message-passing scientific applications on large-
scale parallel systems. The number and the configuration of CPUs
are the inputs. The use of linear logarithmic functions results in
accurate predictions as the workloads scale almost linearly, unlike
the workloads that ESTIMA targets. ESTIMA targets applications
that use shared data, and utilizes hardware and software stalls to
extrapolate the scalability of parallel in-memory applications.

In [25], statistical techniques and regression are used to build
piecewise polynomial and neural network black-box models of
scientific programs. Neural networks are used as well in [21] to
build models of SMG2000 applications on two different large-
scale machines. Unlike ESTIMA, these models do not address the
question of application’s scalability with more CPUs than used in
the measurements.

In [31], the author extrapolates address stream profiles to study
the memory performance of an application under strong scaling.
In [7], the authors use call path profiles and expectations on the
cost differences between executions to estimate the scalability costs
incurred by different parts of the program. ESTIMA uses both hard-
ware and software cycles to extrapolate the scalability of the appli-
cation itself, identifying bottlenecks in the process.

Several systems combine the predictions of sequential perfor-
mance of single-node tasks performed by distributed cores with the
model of communication between them [6, 27, 44]. Similar cross-
platform performance predictions for large-scale machines using
a combination of known relative performance of the two systems

and partial execution of the workload are described in [42]. These
systems use different, more detailed models than ESTIMA.

Various formal modeling techniques for distributed and concur-
rent systems have been proposed [22], including Petri nets [32] and
Queueing theory [32]. They were used to develop detailed analytic
models for several applications [19, 24]. These models are very ac-
curate. They require however in-depth understanding of the appli-
cations and the system. In contrast, ESTIMA can be used with little
effort on any parallel in-memory application.

Models based on discrete-time Markov chains were developed
for several STM algorithms [15–17] to compare different STM
designs. Usui et al. [39] use a simple cost-benefit analysis to
choose between locking and transactions. The performance model
from [34] focuses on modeling transactional conflict behavior. Un-
like ESTIMA, this approach requires heavy instrumentation of the
applications in order to collect the statistics of memory accesses.

Performance counter research has mainly focused on profiling
of applications and identifying performance bottlenecks. In [37]
and [40], the authors use performance counters to increase power
efficiency, through thread scheduling and placement. In [41], the
authors use performance counters to capture performance impacts
as a function of resource usage. In [43], the author proposes a set
of new performance counters, which, together with a new analysis
method can identify performance bottlenecks in out-of-order pro-
cessors. Torrellas et al. [38] use hardware performance counters to
identify scalability bottlenecks in parallel applications running on
Distributed Shared-Memory multiprocessors. Finally, in [23], the
authors devise a model based on performance counters to predict
total power consumption. While performance counters have been
used for many different goals, the low-level information they pro-
vide has not yet been used for scalability predictions, as in ESTIMA.

7. Conclusion
We presented ESTIMA, a practical tool for extrapolating the scal-

ability of in-memory parallel applications. ESTIMA is designed to
help developers and users visualize the scalability of applications
with minimum effort. To achieve that, ESTIMA uses stalled cycle
measurements in hardware and optionally in software, and regres-
sion analysis on the collected values. ESTIMA is general and easy
to use. It can be applied to any in-memory parallel application with
minimum effort. It can also take advantage of application-specific
user input to further improve its accuracy.

ESTIMA produces accurate predictions, as conveyed by our ex-
tensive evaluation. We successfully used ESTIMA to predict the
scalability of production applications, as well as a wide range of
benchmarks. The errors when predicting for a machine up to four
times larger than the one available for measurements were lower
than 15% for more than half of the applications, and ESTIMA suc-
cessfully captured the scalability of all the applications used. Fi-
nally, we used ESTIMA to identify bottlenecks in parallel applica-
tions, showing how ESTIMA can be useful to developers.
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