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Foreword 
The punching design of flat slabs has traditionally been performed in design codes on the

basis of the properties of the slab column connection (such as the size of supported area or the
amount of moment transfer) as well as those of the slab in the vicinity of the supported area (such
as the reinforcement ratio or the utilization ratio of the bending reinforcement). This approach has
been inspired by the experimental evidence, mostly based on isolated slab specimens supported on
columns and consequently only characterised by these data. This evidence has also shown that the
deformations in the vicinity of the supported area are governing for the punching shear strength,
with larger punching shear strengths associated to lower strains and crack widths.

Contrary to isolated test specimens, actual flat slabs are usually continuous systems where redis
tributions of bending moments can occur between the regions subjected to hogging and sagging
bending moments. In addition, in plane (membrane) compressive forces may develop due to the
dilatancy in bending of concrete. The slab continuity thus influences the deformations and the in
ner forces in the slab near the column connections, normally increasing its stiffness with respect to
isolated specimens. This has an influence on the punching shear strength, as it potentially increas
es the actual resistance with respect to the estimates provided by design provisions.

The work developed by Mr. Einpaul is mostly aimed at this question. It investigates the role of slab
continuity on the deformations at the critical punching areas. These results are used in combina
tion with the strain based approach of the Critical Shear Crack Theory (CSCT) to obtain enhanced
predictions of the strength in actual (continuous) flat slabs. To that aim, Mr. Einpaul has per
formed a very large experimental programme which has helped in understanding the role of some
parameters (as the column size and slenderness) on the strain state (rotations) of the slab and on
the punching shear strength. In addition, refined numerical analyses have been performed to as
sess the role and significance of these effects. These investigations have been completed with de
tailed experimental measurements performed within the slab specimens allowing tracking the de
velopment of punching cracks inside the slab. These novel measurements confirm the basic as
sumptions and pertinence of the CSCT and constitute a significant contribution to the state of the
art. The work of Mr Einpaul is finally completed with some investigations on the strength that the
inclined strut carrying shear may have as well as on the size effect and influence of column size.

The research developed by Mr. Einpaul has significant practical consequences as it allows for re
fined assessments of the strength of actual flat slabs. On the basis of this work, beneficial influ
ences on the punching strength neglected by codes of practice can be assessed, and this may poten
tially avoid unnecessary retrofitting of punching critical existing structures.

Lausanne, February 2016

Prof. Dr. Aurelio Muttoni Dr. Miguel Fernández Ruiz
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Abstract 
Reinforced concrete slabs with uniform thickness are common in residential and commer

cial buildings but can also be found in other types of structures. Such slabs are susceptible to
punching shear failures, where a supporting column penetrates through the slab and leads to an
immediate local failure that may trigger a progressive collapse of the building. Provisions for
punching shear in most codes of practice are still mainly empirical, calibrated on the basis of ex
periments on test specimens that traditionally model only an isolated part of the slab within the
points of contraflexure around the column. However, the punching behavior of actual continuous
slabs may be influenced by effects that cannot occur in isolated specimens, such as moment redis
tribution between hogging and sagging moments, which changes the location of the points of con
traflexure, and compressive membrane action. These effects can lead to higher punching strengths
of actual continuous slabs compared to isolated specimens.

The first part of the thesis introduces an axisymmetric model to analyze the influence of these ef
fects on the flexural deformations of continuous flat slabs. Combined with the failure criterion of
the Critical Shear Crack Theory, the model can be used to predict the punching capacities of such
slabs. Good agreement was found between the model predictions and the results of some uncon
ventional punching tests from the literature. A simplified method, sufficiently straightforward to
be used in design or assessment and given in a format compatible with the punching provisions of
the Model Code 2010, is also proposed for calculating the load rotation curves of continuous slabs.

The second part of the thesis contains the results of a test campaign comprising 13 isolated sym
metric punching specimens. The study focuses on the influence of the size of the supported area
and the slenderness of the slab. Other investigated parameters are the flexural reinforcement ratio
and the presence of shear reinforcement. A novel experimental approach is used for tracking the
formation and development of internal cracks. Measurement points were installed inside small
holes drilled on the slab soffit on two sides of the column in the regions were punching cracks
were expected to appear. Displacements of these points at various stages of loading were followed
with a high precision coordinate measuring arm. In most cases, the punching failure cracks were
seen to develop independently of the flexural cracks, either appearing at the moment of failure or,
in some cases, already at earlier stages of loading. Although the slabs were nominally axis
symmetric, different crack development patterns could be observed on the two monitored sides of
the columns.

On the basis of the experimental evidence, a new punching model is proposed for slabs without
shear reinforcement. Punching failures are assumed to occur due to reaching a critical triaxial
stress state below the flexural cracks in the compression strut and a consequent formation and
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propagation of a failure crack. The proposed model uses the theory of plasticity with a general
triaxial yield criterion together with an effectiveness factor based on fracture mechanics that is a
function of the depth of the compression zone and the size of the column. The influence of mem
brane forces in continuous slabs on their punching strength is taken into account by adjusting the
depth of the compression zone.

Keywords 

continuous slabs, compressive membrane action, Critical Shear Crack Theory, interior slab column
connections, Model Code 2010, moment redistribution, punching shear model, punching tests,
reinforced concrete flat slabs
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Résumé 
Les dalles de béton armé d’épaisseur constante sont fréquemment utilisées, entre autres, pour la
construction de bâtiments commerciaux et résidentiels. L’un des modes de rupture de ce type de
dalles est le poinçonnement qui se produit à la connexion avec une colonne. La colonne pénètre
dans la dalle ce qui cause une rupture locale qui peut entraîner un effondrement progressif de tout
le bâtiment. Les recommandations des codes de construction pour le calcul de la résistance au
poinçonnement des connexions dalle colonne ont traditionnellement été calibrées à l’aide de résul
tats d’essais sur des spécimens isolés. Ces spécimens représentent la partie de la dalle continue qui
se trouve entre les points de contreflexion, autour de la colonne. Toutefois, la résistance au poin
çonnement d’une dalles continue réelle peut être influencée par des effets non présent dans un
spécimen isolé tel que la redistribution des moments positifs et négatifs, qui modifie la position
des points de contreflexion, et l’effet de membrane, due au confinement du reste de la dalle. Ces
deux effets peuvent mener à une résistance au poinçonnement plus élevée et une capacité de dé
formation réduite.

La première partie de cette thèse introduit un modèle axisymétrique pour analyser l’influence de
ces effets sur les déformations de dalles plates continues en flexion. Combiné avec le critère de
rupture de la théorie de la fissure critique, le modèle peut être utilisé pour prédire la résistance au
poinçonnement de dalles continues. Les prédictions du modèle et les résultats d’essais non
conventionnels trouvés dans la littérature montrent une bonne concordance. Une méthode simpli
fiée est proposée pour calculer la courbe force rotation de dalles continues dans un format compa
tible avec les dispositions du Model Code 2010 pour le calcul de la résistance au poinçonnement.
Cette méthode est suffisamment explicite pour être utilisée lors de la conception ou l’évaluation de
dalles.

La seconde partie de la thèse contient les résultats d’une campagne d’essais sur treize dalles axi
symétriques et isolées représentants une connexion dalle colonne intérieure. L’étude se concentre
sur l’influence de la taille de la zone de support et l’élancement de la dalle. Les autres paramètres
étudiés sont le taux de renforcement en flexion et la présence de renforcement à l’effort tranchant.
Une nouvelle méthode expérimentale est utilisée afin de suivre la formation et le développement
de fissures à l’intérieur de la dalle. Des points de mesure ont été installés à l’intérieur de petits
trous percés à l’intrados de la dalle, sur deux côtés de la colonne, dans les régions où les fissures de
poinçonnement sont attendues. Le déplacement de ces points à différentes étapes du chargement a
été suivi à l’aide d’un bras de mesure des coordonnées spatiales à haute précision. Dans la plupart
des cas, les fissures de rupture au poinçonnement se sont développé indépendamment des fissures
de flexion. Elles apparaissent soit au moment de la rupture, soit, dans certains cas, déjà à des ni
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veaux de chargement plus faibles. Bien que les dalles testées fussent supposément axisymétrique,
différents patrons de développement des fissures ont été observés sur les deux côtés de la colonne
où les mesures étaient réalisées.

Sur la base des évidences expérimentales, un nouveau modèle pour le calcul de la résistance au
poinçonnement est proposé pour les dalles sans renforcement à l’effort tranchant. Il est supposé
que la rupture au poinçonnement se produit à la base de la bielle de compression, soumise à un
état de contraintes triaxial, par la formation d’une fissure de rupture. Le modèle proposé utilise la
théorie de la plasticité avec un critère de plastification triaxial général et un facteur d’efficacité qui
est fonction de la hauteur de la zone comprimée et de la taille de la colonne. L’influence de l’effet
de membrane sur la résistance au poinçonnement des dalles continues est prise en compte en ajus
tant la hauteur de la zone comprimée.

Mots-clés 

dalles continues, effet de membrane, théorie de la fissure critique, connexion dalle colonne inté
rieure, Model Code 2010, redistribution des moments, modèle de résistance au poinçonnement,
essais de poinçonnement, planchers dalles en béton armé
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Zusammenfassung 
Stahlbetonflachdecken mit konstanter Dicke sind häufig in Wohn und Bürogebäuden,

aber auch anderen Bauwerken, vorzufinden. Solche Decken sind anfällig für Durchstanzversagen,
bei dem eine Stütze die Decke durchdringt und zu sofortigem lokalem Versagen führt, welches
einen progressiven Einsturz des Gebäudes nach sich ziehen kann. Normative Regelungen zur
Berechnung des Durchstanzwiderstandes von Stützen Decken Verbindungen wurden gewöhnlich
an Versuchen kalibriert, die mit dem Bereich innerhalb der Momentennullpunkte nur einen
begrenzten Teil der Decke abbilden. Das Durchstanzverhalten echter, durchlaufender Decken
kann aber sowohl durch Umlagerung zwischen positiven und negativen Momenten, welche die
Lage der Momentennullpunkte ändert, als auch durch Druckkräfte, welche durch die
Membranwirkung entstehen, beeinflusst werden. Diese Effekte können bei Versuchen an
Plattenausschnitten nicht auftreten, können aber zu einer Erhöhung des Durchstanzwiderstandes
und einer Verminderung der Verformungskapazität führen.

Im ersten Teil dieser Dissertation wird ein achsensymmetrisches Modell vorgestellt, mit welchem
der Einfluss der genannten Effekte auf die Biegeverformungen durchlaufender Flachdecken
analysiert werden kann. Kombiniert mit dem Versagenskriterium der Theorie des kritischen
Schubrisses kann das Modell dazu benutzt werden die Durchstanzkapazität solcher Decken zu
berechnen. Bei Vergleichen der mit dem Modell gemachten Vorhersagen mit den Ergebnissen
unkonventioneller Durchstanzversuchen aus der Literatur wurde eine gute Übereinstimmung
(zwischen Berechnung und Versuchsbeobachtung) erzielt. Zur Berechnung der Last Rotations
kurve durchlaufender Decken wird eine vereinfachte Methode vorgeschlagen, die ausreichend
direkt ist, um bei Bemessung und Überprüfung eingesetzt zu werden und in einem mit dem
Model Code 2010 kompatiblen Format präsentiert wird.

Der zweite Teil der Dissertation enthält die Resultate eine Testreihe an 13 isolierten symmetrischen
Durchstanzkörpern, die innere Decken Stützen Verbindungen darstellen. Diese Studie konzen
triert sich auf den Einfluss der Auflagergrösse und der Schlankheit der Decke. Ausserdem
untersucht werden der Einfluss des Biegebewehrungsgehaltes und des Vorhandenseins von
Schubbewehrung. Eine neuartige Messtechnik wurde angewendet, um die Entstehung und
Ausbreitung der Risse im Inneren des Versuchskörpers zu verfolgen. Dazu wurden Messpunkte in
kleinen Löchern fixiert, die auf zwei Seiten der Stützen, dort, wo die Rissbildung erwartet wurde,
in die Unterseiten der Platten gebohrt wurden. Die Verschiebungen dieser Punkte in
verschiedenen Laststufen wurden mit einem hochpräzisen Messarm aufgenommen. In den
meisten Fällen wurde beobachtet, dass die Risse, die zum Durchstanzversagen führten, sich
unabhängig von den Biegerissen entweder im Augenblick des Versagens oder manchmal auch
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schon in früheren Laststufen bildeten. Obwohl die Versuchskörper nominell achsensymmetrisch
waren, konnten auf den beiden Seiten der Stützen an denen gemessen wurde verschiedene Muster
der Rissbildung beobachtet werden.

Basierend auf den experimentellen Ergebnissen wird ein neues Durchstanzmodell für Flach
decken ohne Schubbewehrung vorgeschlagen. Darin wird angenommen, dass Durchstanz
versagen durch eine Lokalisierung des Schadens in einem Riss in der Druckzone, die sich in einem
dreiachsigen Spannungszustand befindet, ausgelöst wird. Im vorgeschlagenen Modell wird die
Plastizitätstheorie mit einem generellen dreiachsialen Fliesskriterium unter Berücksichtigung eines
Effektivitätsfaktors verwendet, der von der Tiefe der Druckzone und der Grösse der Stütze
abhängt. Der Einfluss der Membrankräfte auf den Durchstanzwiderstand kontinuierlicher Decken
wird durch eine Anpassung der Tiefe der Druckzone berücksichtigt.

Stichworte 

durchlaufende Decken, Druck Membranwirkung, Theorie des kritischen Schubrisses, innere
Decken Stützen Verbindungen, Model Code 2010, Momentenumlagerung, Durchstanzmodell,
Durchstanzversuche, Stahlbetonflachdecken
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Kokkuvõte 
Ühtlase paksusega punkttoetusega raudbetoonplaadid on tavapärased konstruktsiooni

elemendid nii elamute ja ärihoonete vahelagedes kui ka muudes hoonetes ja rajatistes.
Raudbetoonplaatide dimensioneerimisel on määravaks faktoriks tihti plaadi ja posti ühendus
sõlme läbisurumiskandevõime. Et läbisurumispurunemise, mis oma hapruse tõttu võib kaasa tuua
kogu hoone varingu, mehaanikat pole siiani täielikult mõistetud, on ehitusnormides toodud
läbisurumiskandevõime valemid enamjaolt tuletatud empiiriliselt, katsetulemuste põhjal. Läbi
surumiskatsekehad esindavad tavapäraselt ainult plaadi negatiivse paindemomendiga osa, kus
plaadi serv vastab momendi nulljoone asukohale modelleeritavas jätkuvplaadis. Jätkuvplaatides
võib paindemoment aga ümber jaotuda, mille käigus momendi nulljoone asukoht muutub. Lisaks
võib jätkuvplaatide põikjõukandevõimet suurendada survemembraaniefekt. Neid nähtuseid
tavapäraste katsekehade põhjal uurida ei saa ja seega normide empiirilised valemid nendega
harilikult ei arvesta.

Käesoleva doktortöö esimene osa kirjeldab telgsümmeetrilist arvutusmudelit, mis võimaldab
analüüsida paindemomentide ümberjaotumise ja survemembraaniefekti mõju paindedeformat
sioonidele jätkuvplaatide poste ümbritsevates piirkondades. Kriitilise nihkeprao teooria kohaselt
määrab plaadi pööre momendi nulljoonel posti ja plaadi ühendussõlme läbisurumiskandevõime.
Esitletud telgsümmeetriline model koos kriitilise nihkeprao teooriaga võimalab edukalt ennustada
teaduskirjandusest leitud ebaharilike katsekehade käitumist. Lisaks pakub käesolev doktoritöö
välja lihtsa valemi läbisurumiskontrollil plaadi jätkuvusega arvestamiseks, mis on mõeldud
kasutamiseks koos Model Code 2010 arvutusvalemitega.

Doktoritöö teine osa sisaldab kolmeteistkümne tavapärase, negatiivse paindemomendiga
plaadiosa modelleeriva läbisurumiskatse mõõtmistulemusi ja nendel põhinevaid tähtsamaid
järeldusi. Peamised uurimisalused parameetrid olid toetuspinna (posti) läbimõõt (83 kuni 660 mm)
ja katseplaadi suurus (1.7 kuni 3.9 m). Lisaks uuriti paindearmatuuri koguse ja põikarmatuuri
olemasolu mõju. Plaadisisese pragunemise jälgimiseks arendati välja uudne monitoorimissüsteem.
Plaadi alapinda posti lähedusse puuriti enne katse alustamist erineva sügavusega augud, mille
põhja liimiti mõõtmispunktid, mille koordinaate mõõdeti koormamise käigus korduvalt kõrg
täpse mõõtekäega. Mõõtesüsteem võimaldas jälgida plaadisiseste pragude teket ja kasvamist ilma
plaadi telgsümmeetrilist geomeetriat oluliselt häirimata. Tänu uudsele monitooringusüsteemile
selgus, et kaldsed nihkepraod, mis põhjustavad plaadi läbisurumispurunemise, arenesid enamasti
eraldiseisvalt plaadi pinnal jälgitavatest paindepragudest. Nihkepraod ilmusid kas plaadi
põikjõupurunemise hetkel või mõnel juhul juba enne seda. Kuigi katseplaadid olid nominaalselt
telgsümmeetrilised, võis pragunemise areng olla posti erinevatel külgedel küllaltki erinev.
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Töö kolmas osa pakub põikarmatuurita plaatidele välja uue läbisurumismudeli. Vaatlusandmete
põhjal oletatakse, et läbisurumise põhjustab kriitiline ruumiline pingeolukord postiäärse kald
survevarda paindepragude aluses osas, kust saab seetõttu alguse kaldpragu, mis levib survetsooni
välist betooni lõhestades plaadi ülapinnani. Kriitiline pingeolukord defineeritakse sõltuvalt plaadi
geomeetiast, armeerimistegurist ja materjalide omadustest plastsusteooria alampiiri teoreemi ja
üldise kolmtelgse betooni voolavustingimuse abil. Betooni purunemise haprus võetakse arvesse,
kasutades efektiivsustegurit, mis arvestab purunemismehaanikast tuleneva betooni plastsete
omaduste sõltuvusega plaadi paksusest ja posti suurusest. Jätkuvplaatide survemembraaniefekt
suurendab uue läbisurumismudeli kohaselt kandevõimet paindepragude sügavuse vähendamise
kaudu.

Märksõnad 

jätkuvplaat, kriitilise põikjõuprao teooria, läbisurumise mudel, läbisurumiskatse, Model Code
2010, paindemomendi ümberjagunemine, raudbetoonplaat, survemembraaniefekt, sümmeetriline
plaadi posti ühendussõlm
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Notation 
Ai surface area of element i

As cross section area of a reinforcement bar

Asw total area of shear reinforcement between the column face and a perimeter at distance d
from the column

B side length of a square test slab; inner circle diameter of an octagonal test slab; diame
ter of a round test slab

D characteristic dimension of a structural element

D0 reference element size

EA0 longitudinal stiffness before cracking, per unit width

EAs longitudinal stiffness of the reinforcing bars alone, per unit width

EI0 flexural stiffness before cracking, per unit width

EI1 flexural stiffness after cracking, per unit width

EIs flexural stiffness of the reinforcing bars alone, per unit width

Ec modulus of elasticity of concrete (taken as Ec = 10 000 fc1/3)

Es modulus of elasticity of reinforcement (taken as Es = 205000 MPa)

F external force

GF fracture energy

I1 first invariant of stress tensor

J2 second invariant of deviatoric stress tensor

L distance between the axes of the columns in a continuous slab (slab span)

Nr radial in plane force in the slab

Nt tangential in plane force in the slab between r and rc

N0, horizontal force in the compression strut over an angular width

N , normal force on the critical surface in the compression strut over an angular width

P total force in the inclined compression strut (or a conical shell) around the column

T0, force in the tension chord over an angular width
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V shear force

V0 vertical force in the compression strut

V0, vertical force in the compression strut over an angular width

Vdow shear force carried by the dowel action of a reinforcing bar

VR punching shear capacity

VR,cont punching shear capacity, continuous model

VR,crush punching shear capacity, failure due to crushing of the concrete strut between the edge
of the column and the first shear reinforcement unit

VR,isol punching shear capacity, isolated model

VR,out punching shear capacity, failure outside of the shear reinforced area

VR,test experimental punching shear capacity

VR,pred predicted punching shear capacity

VR,within punching shear capacity, failure within the shear reinforced area

Vflex shear force at the flexural capacity

Vflex,beam shear force in the center of a beam at the flexural capacity

Vflex,cont shear force at the flexural capacity of a continuous slab

Vflex,isol shear force at the flexural capacity of an isolated slab

Vflex,s c shear force at the flexural capacity of a self confined continuous slab, accounting for
the influence of in plane forces

Vflex,confined shear force at the flexural capacity of a confined continuous slab

V , shear force on the critical surface in the compression strut over an angular width

a crack length; distance between the loading point and the edge of the support in a
beam; coefficient in the Ottosen yield criterion

aeff effective shear span

b width of an element; coefficient in the Ottosen yield criterion

b0 perimeter of the critical section at d/2 from the column edge

bcol perimeter of the column

bper(ri) width of a slab sector at a distance ri from the column

bs width of the support strip according to Model Code 2010
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c side length of a square column

c1, c2 length of the longer side and the shorter side of a rectangular column

cI, cII boundary conditions

ctop concrete cover of top reinforcement

d effective depth of a slab (distance from the tension reinforcement to the extreme com
pressed fiber)

dc diameter of a round column

dg maximum aggregate size (diameter)

dg0 reference aggregate size (dg0 = 16 mm)

e eccentricity of prestressing cables

fc average compressive strength of concrete (cylinder)

fcp plastic concrete compressive strength

fct tensile strength of concrete (taken as fct = 0.3 fc2/3 MPa if not shown otherwise)

fctm mean tensile strength of concrete

fy yield strength of reinforcement

h depth of an element; slab thickness

k1, k2 coefficients in the Ottosen yield criterion

kcol effectiveness factor on the plastic strength of concrete in the compression strut depend
ing of the column size

kmax factor that limits the maximum increase of shear capacity for slabs with shear rein
forcement in Eurocode 2 (amended in 2014)

ksys CSCT coefficient describing the efficiency of a shear reinforcement system

ks c factor of proportionality for load rotation relationship of self confined slabs

kx effectiveness factor on the plastic strength of concrete in the compression strut depend
ing of the depth on the compression zone

k factor of proportionality for rotation at the onset of yielding in a continuous slab rela
tive to the corresponding rotation in an isolated specimen

l length of an element; effective length of a dowel

m bending moment per unit width

mR moment capacity per unit width

mR,hog hogging moment capacity per unit width
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mR,sag sagging moment capacity per unit width

mS acting bending moment due to the applied load, per unit width

mcr cracking moment per unit width

mr radial bending moment per unit width

mt tangential bending moment per unit width

nR tensile strength of a cross section at zero moment, per unit width

ncr tensile cracking force of a cross section, per unit width

nedge in plane applied force at the edge of a slab specimen, per unit width

nr radial axial force per unit width

nt tangential axial force per unit width

ntang numbers of transverse reinforcing bars in one perimeter

q distributed load

r distance from the center of the column

r0 radius of the critical shear crack at the level of tensile reinforcement

rc column radius

rcr distance between the center of the column and the line separating the cracked and
uncracked parts in a self confined slab

ri distance from the center of the column to a point i

rq distance between the center of the column and the point of application of load

rs distance between the center of the column and the line of moment contraflexure

rslab distance between the center of the column and the symmety line in mid span of the
slab

ryl distance between the center of the column and a circular sagging yield line

r distance between the center of the column and the cross section where the critical sur
face intersects the neutral axis of the slab

s transverse slip of a dowel

s0 distance between the edge of the column and the first perimeter of transverse reinforc
ing bars

s1 spacing of transverse reinforcing bars in radial direction

scr spacing of cracks

smax transverse slip corresponding to the plastic strength of a dowel
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stop spacing of top flexural reinforcing bars

ui horizontal radial displacement of a point i in the slab

uedge horizontal displacement of the slab edge

v nominal shear stress at the control perimeter

vR nominal shear capacity at a control perimeter

vR,c nominal shear capacity at a control perimeter for slabs without shear reinforcement

vR,max nominal shear capacity at a control perimeter located at the column face according to
Eurocode 2

vS acting nominal shear stress at the control perimeter due to applied load

vi shear force per unit width at point i of the slab

w maximum vertical displacement (deflection) of the slab

wcr crack width

wi vertical displacement (deflection) of a point i in the slab

x depth of the compression zone (distance between the compressed edge of the cross
section and the neutral axis in bending)

xpl depth of the rectangular compression block

x depth of the compression zone at a distance r from the center of the column, account
ing for the inclination of the compression field

angle of a slab sector

change of curvature

N change of curvature due to the presence of normal forces

T S change of curvature due tension stiffening

potential energy

creep coefficient of concrete

diameter of a reinforcing bar

top diameter of top flexural reinforcing bars

stud diameter of shear stud reinforcing bars
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inclination of the critical surface in the compression strut from the horizontal

P inclination of the resultant force of the compression strut from the horizontal

R inclination of the critical surface corresponding to the punching capacity

efficiency factor of the bending reinforcement (due its orthogonal placement)

axial strain on the central axis of a cross section

c axial strain of the most compressed fiber of a cross section

cr axial strain on the central axis immediately before cracking

r radial axial strain

s axial strain in the level of tensile reinforcement

t tangential axial strain

ratio between sagging and hogging moment capacities

fc brittleness factor of concrete

angle of similarity of a stress in Haigh Westergaard coordinates

p angle between the critical surface in the compression strut and the principal direction
of stresses

p,R angle between the critical surface in and the principal direction of stresses correspond
ing to the punching capacity

efficiency factor in the theory of plasticity

hydrostatic stress in Haigh Westergaard coordinates

tension reinforcement ratio; deviatoric stress in Haigh Westergaard coordinates

2 compression reinforcement ratio

hog ( top) hogging (top) flexural reinforcement ratio

sag ( bot) sagging (bottom) flexural reinforcement ratio

axial stress; average axial stress in a cross section

0 plastic material strength

N nominal size dependent material strength

1, 2, 3 maximum, average and minimum principal stresses

b0 axial stress in the slab at the control perimeter

c,dow average stress on the contact surface between a reinforcing bar subjected to dowel ac
tion and concrete

ct stress in the outermost tension fiber of a cross section
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edge axial stress in the slab at the edge of the slab

mcr average compressive stress that prevents flexural cracking

n axial stress in the cross section at the control perimeter

r radial average stress in the slab

s stress in tension reinforcement

s,R stress in tension reinforcement at punching capacity

t tangential average stress in the slab

normal stress on the critical surface in the compression strut

,R normal stress on the critical surface in the compression strut at punching capacity

stress parallel to the critical surface in the compression strut

shear stress on the critical surface in the compression strut

,R shear stress on the critical surface in the compression strut at punching capacity

angle of internal friction in the Mohr Coulomb yield criterion

curvature of a cross section

cr curvature of a cross section immediately before cracking

r radial curvature

t tangential curvature

y,hog curvature of a cross section at the flexural limit for hogging moment

y,sag curvature of a cross section at the flexural limit for sagging moment

rotation of slab at the line of moment contraflexure or at the edge of an isolated speci
men

’ modified rotation to take into account the axial compression at the control perimeter

R rotation of slab at the line of moment contraflexure at punching failure

cont rotation of a continuous slab at the line of moment contraflexure

crack relative rotation between the lips of the critical crack

edge rotation of the edge of a slab specimen

i rotation of slab at point i

isol rotation of an isolated slab at the line of moment contraflexure (edge of the slab)

y rotation at the flexural limit

y,isol rotation of an isolated slab at the flexural limit
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y,cont rotation of a continuous slab at the flexural limit, in plane forces neglected

y,s c rotation of a self confined continuous slab at the flexural limit, accounting for the influ
ence of in plane forces
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Introduction Chapter 1

Reinforced concrete flat slabs, often supported on columns without capitals or drop pan
els, are very common structural elements in both residential and commercial buildings. In addition
to offering great architectural flexibility, these elements have simple formworks and are thus easy
and fast to construct. Slabs with large permanent or temporary concentrated loads can also be
found in other types of structures, such as cut and cover tunnels or slab bridges supported on col
umns. In many cases, such slabs are only equipped with flexural reinforcement and no transverse
rebars are provided.

Figure 1.1 Potential failure modes of flat slabs: (a) flexural failure; (b) punching shear failure

Capacity of flat slabs in the vicinity of columns is governed either by flexural or shear strength.
Flexural failures occur after large deformations (Fig. 1.1(a)). This can provide warning signs for the
users and may allow, in the case of unforeseen or accidental loadings or support settlements, the
internal forces to be redistributed between the different load carrying actions in the slab. Several
analytical methods, from simple strip method to linear or non linear finite element method or
yield line theory, exist to design and verify slabs against flexural failures. In contrast, deformations
of shear critical elements are typically very limited before a failure occurs, especially when no
shear reinforcement is used (Fig. 1.1(b)). This makes punching shear a particularly dangerous fail
ure mode.

Punching tests are typically conducted on slab elements with load applied at the edges and sup
port reaction concentrated on a column in the center of the specimen (Fig. 1.2). More than 500 such
tests have been performed. The provisions for punching design and verification in several codes of
practice comprise empirical formulas developed on the basis of these experiments.

(a)

(b)
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Figure 1.2 Full scale punching test on an isolated specimen, supported on a column in the
center an loaded at 8 points close to the perimeter [Ein16a]

The unitary shear strength of specimens subjected to two way action (such as flat slabs supported
on columns) has been observed to be higher than the shear capacity of one way elements (such as
slabs on linear supports). The very few experiments that have been conducted on continuous slabs
(such as the test by Ladner et al. [Lad77] shown in Fig. 1.3) have suggested that actual slab column
connections may have even higher capacities than predicted on the basis of isolated specimens.
However, due to the lack of experimental data and because the mechanism of punching is still not
completely understood, this increase is typically not accounted for in engineering practice. A better
understanding of the punching phenomenon is therefore needed in order to develop more precise
and physically sound design methods for the evaluation of existing structures as well as for
developing new and innovative designs.

Figure 1.3 Reduced scale punching test on a continuous slab by Ladner et al. [Lad77],
supported on 16 columns and loaded uniformly on the top surface (picture courtesy to

Mr. Heini Lippuner and Dr. Marc Ladner)
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1.1 Objectives 

The objective of this research is to improve the knowledge about the phenomenon of punching of
reinforced concrete slabs. Several different theories exist that can in some cases provide conflicting
design outcomes. While in the case of one way elements, the formation of cracks and the devel
opment of strains can be directly observed on the specimen’s side surfaces, in punching tests, the
cracks appear inside the slab and therefore cannot be directly followed. For the present research, a
measurement system was developed that allowed measuring the propagation of internal cracking
during a punching test and validate the previously made assumptions regarding the punching
failure mechanism.

From previous experiments, it is known that continuous or edge restrained specimens, which
model actual slab column connections more precisely, show smaller flexural deformations and
higher punching capacities than conventional isolated specimens. The empirical models that have
been calibrated on the basis of test results on isolated specimens are therefore believed to give con
servative predictions. While this can be considered suitable for the design of new structures, as
sessment of existing structures may require more precise estimates of the actual capacities. The
present thesis therefore also studies the strength enhancement of actual slab column connections
in continuous slabs in comparison to isolated specimens.

1.2 Scope 

Only axisymmetric loading conditions and geometries are discussed in this thesis. Extensions to
non axisymmetric cases, such as edge or corner columns, unequal reinforcement ratios and span
lengths or the cases where significant moment transfer occurs between the columns and the slab,
are not considered. However, the punching strength enhancement due to slab continuity is also
expected to occur in the case on non axisymmetric punching of interior columns. These effects are
less significant in edge and corner column connections or in the presence of large openings in slabs
close to the supports.

The study on punching of continuous slabs is performed using the Critical Shear Crack Theory.
According to this theory, the punching capacity of a slab column connection is a function of flex
ural deformations of the slab around the connection. The enhanced punching strength of continu
ous slabs can thus be estimated by studying the influence of slab continuity on its flexural defor
mations.

Regarding the comparisons between experimental results and provisions of the design codes, as
well as development of calculation models, all the safety factors are taken equal to unity. The safe
ty format against failures is not discussed in this thesis. Furthermore, loading is assumed to be
short term, unless specifically noted otherwise.

This thesis considers reinforced concrete flat slabs made of normal or high strength concrete (ex
cluding ultra high performance and fiber reinforced concretes) and ordinary reinforcing steel with
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sufficient ductility. The detailing of reinforcement (bar spacing, development lengths and anchor
age) is assumed to correspond to the requirements of the codes of practice. All the failure modes
associated to anchorage or bond failures or rebars are thus neglected.

1.3 Organization 

The present thesis covers two main topics. Firstly, the punching behavior of slab column connec
tions in continuous flat slabs is investigated with respect to the possible differences compared to
typical punching test specimens, which only model an isolated part of the slab in the vicinity of the
connection. Secondly, the mechanisms of punching failures are studied on the basis on experi
mental results obtained by measuring the coordinates of points inside the slab during tests. A new
punching model based on the experimental observations is thereafter proposed.

The thesis is organized into eight chapters. After the first introductory chapter, the contents are as
follows:

Chapter 2 presents a brief overview of the state of the art. Various proposed physical ap
proaches to punching design are described. The state of the art regarding punching of con
tinuous and confined slabs is also presented.

Chapter 3 introduces an axisymmetric numerical model that can simulate the flexural be
havior of slabs on small supports, taking into account the influence of compressive mem
brane action. Depending on applied edge conditions, the model can analyze continuous
slabs with various levels of confinement as well as edge restrained test specimens. The
model is validated by comparing its predictions to the results obtained from unconvention
al punching tests. This chapter is based on two papers, one published in Engineering Struc
tures and one accepted for publication in ACI Structural Journal.

Chapter 4 shows the derivation of a simple analytical relationship to predict the load
rotation response of continuous slabs without external confining elements. Slabs with and
without membrane action (where the emergence of membrane forces is hindered) are con
sidered. The results of this analysis are presented in a paper accepted for publication in ACI
Structural Journal.

Chapter 5 gives the principal results of a test campaign performed within the current re
search. The test results are compared to the main codes of practice. This chapter is based on
a paper published in ACI Structural Journal.

Chapter 6 describes a novel internal measurement technique and the results obtained by
applying it to follow the development of flexural cracks and the localization of shear failure
cracks inside punching test specimens. This chapter is based on paper “Measurements of
internal cracking in punching test slabs without shear reinforcement” submitted for publi
cation inMagazine of Concrete Research.
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Chapter 7 proposes a new punching failure model based on the lower bound theorem of
the theory of plasticity that is applied to predict the failure load of the compression zone. A
general stress based failure criterion is used together with an effectiveness factor account
ing for the size effect. The predictions of the model are compared to test results from the
literature.

Chapter 8 presents the conclusions drawn from the previous chapters and gives an outlook
for further research.

1.4 Personal contributions 

The main personal contributions of the author were:

Implementing and improving an axisymmetric numerical model that predicts the flexural
response of flat slabs, accounting for the influence of membrane forces in the slab, and val
idating the model by comparing its predictions the results of tests on various edge
restrained slabs from the literature;

Performing a series of parametric studies with the numerical model to study the differences
between the flexural behaviors and predicted punching strengths of actual continuous
slabs and isolated test specimens;

Deriving a simplified analytical relationship, in a format compatible with the punching
provisions of Model Code 2010, for calculating the load rotation response of continuous
slabs, taking into account either only the redistribution between hogging and sagging mo
ments or also accounting for the influence of compressive membrane action;

Carrying out a series of full scale symmetric punching tests on slabs with and without
shear reinforcement (slab depths 250 mm and sizes from 1.7 x 1.7 to 3.9 x 3.9 m) and com
paring their results to various codes of practice and the CSCT;

Developing a measurement system to track the coordinates of points inside a specimen
during a punching test and programming a number of tools to analyze the measured data;

Performing the internal measurements (in total, on 20 specimens for various research pro
jects) and treating the test results to obtain an overview of crack initiation and development
which then allowed identifying the mode of failure of the specimens;

Proposing a new punching model where the capacity of the slab column connection is as
sumed to be governed by the strength of the compression zone, which can be calculated
based on the lower bound theorem of the theory of plasticity, and comparing the proposed
model to the experimental results from the literature.
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State of the art Chapter 2

Punching of reinforced concrete flat slabs under concentrated loads has been in the focus
of research for several decades. This chapter gives a short overview of the state of the art in the
field and describes some of the previously suggested analytical models regarding punching shear
behavior of symmetric interior slab column connections. The scope of this review is not to give a
complete overview of all the proposed models but to briefly describe only the models that have
inspired or influenced the approach of the present thesis. Empirical calculation formulas as well as
numerical approaches (such as finite element analyses with three dimensional solid elements) are
also not presented in this chapter.

Figure 2.1 Typical cracking patterns on saw cuts through the column region after punching
failures (Specimens PE9 ( = 0.75%) and PE8 ( = 1.50%) of Einpaul et al. [Ein16a])

In order to study the resistance of flat slabs without shear reinforcement, more than 500 large scale
punching tests have been performed, mostly on symmetric specimens supported on a column stub
in the center and loaded along the perimeter of the slab. Such specimens normally fail either in
bending or in punching. Bending failures are accompanied by yielding of reinforcement and
crushing of concrete, showing large deformations and a long plateau of residual strength. In con
trast, punching failures typically occur suddenly with formation of a diagonal crack that separates
a punching cone from the rest of the slab (Fig. 2.1). Slab deformations prior to failure are often
small and residual strength after punching low. Whereas flexural failures are well understood and
both the strength and deformations can be predicted with sufficient precision, predicting shear
failures as precisely is still a challenge.

2.1 Shear resistance models 

The analytical models of shear resistance in reinforced concrete have to include several simplifica
tions due to the complex actual behavior that combines the response of two materials, concrete and
reinforcement. In addition, the behavior of concrete depends strongly on three dimensional state
of stresses and strains and is also different before and after cracking. Therefore, physically precise
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modeling of the response (for example, with non linear finite element method) has not yet been
successful. Various simplified approaches are mostly used in practice and in research.

2.1.1 Upper bound and lower bound models of plasticity 

Simplified models based on the theory of plasticity have been successfully applied to many differ
ent problems related to the design and verification of reinforced concrete structures. The constitu
tive material law is assumed as rigid plastic with stresses equal to either zero or the compressive
or tensile strength of concrete or reinforcing steel (Fig. 2.2(a)). Because the actual material behavior
is not rigid plastic, stresses on the failure surface have to be corrected with an effectiveness factor
that accounts for the softening of the material, cracking and local stress concentrations [Hoa98].

Regarding punching shear, both upper bound and lower bound models have been suggested. Ac
cording to upper bound models, the failure occurs when a kinematically admissible failure mech
anism forms along yield surfaces. Figure 2.2(b) shows a possible mechanism for punching as sug
gested by Nielsen [Nie84]. The load causing the mechanism of failure can be determined from the
requirement of energy equilibrium of the work performed by external loads and the work per
formed by internal forces. According to the upper bound theorem of plasticity, an actual failure
load cannot be higher than the load calculated with any of the kinematically admissible mecha
nisms. Therefore, to determine the load bearing capacity of a structure, a mechanism has to be
found that gives the lowest failure load. It should be noted that, the effectiveness factor has to be
recalibrated for each type of problem as it is dependent on both material and geometric parame
ters.

σ

ε

(b)

(a) concrete: steel:

(c)

actual response

admi�ed law

compression struts

tension tie (tensile 
stress in concrete)

tensile reinforcement

yield surface

fct

ν·fc

σ

ε

fy

Figure 2.2 Upper bound and lower bound plasticity models: (a) admitted material laws for
concrete and reinforcing steel; (b) an admissible failure mechanism for punching [Nie84];

(c) strut and tie model for elements without transverse reinforcement

Alternatively, lower bound models of plasticity have been suggested (for example, by Alexander
and Simmonds [Ale87]). According to the lower bound theorem of the theory of plasticity, if a dis
tribution of stresses can be found that satisfies static equilibrium and does not exceed material
strength at any point of the element, the element does not fail. This approach forms the theoretical
basis of the strut and tie and stress field models [Mut96]. In the case of shear in elements without
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transverse reinforcement, a statically admissible strut and tie model requires that some ties rely on
tensile stresses in concrete (Fig. 2.2(c)). As the actual tensile behavior of concrete differs considera
bly from the rigid plastic assumption, the choice of a suitable efficiency factor is very important
in these models in order to obtain reasonable predictions. However, for slabs with shear rein
forcement, where all tension ties are provided with reinforcement, strut and tie models may be
appropriate [And81]. Also, these models can be relatively easily modified to account for moment
transfer or non axisymmetric geometries (such as edge and corner columns) [Sim87].

2.1.2 Kinematic models 

Models based on the theory of plasticity make very rough simplifying assumptions regarding the
material behavior of concrete. In order to use physically more precise constitutive laws, strains in
the materials have to be known. Kinematic models attempt to predict the deformations by dividing
the structure into elements that are assumed to act as rigid bodies and establishing laws for the
relative displacements along the boundaries of the elements.

Figure 2.3 Kinematic model of an isolated hogging moment area around a small support
[Kin60]: (a) division of the slab into sector elements; (b) load rotation curve calculated from
the equilibrium equations of the element; (c) forces and moments acting on the element

A widely accepted kinematical model of the deformations of a reinforced concrete slab around
interior slab column connections in regular span slabs was proposed by Kinnunen and Nylander
[Kin60]. Their model describes the deformations of a hogging moment area around the column
that is isolated form the rest of the slab by the line of moment contraflexure. The deformed shape
of this area resembles a truncated cone (Fig. 2.3(a)). Radial curvature r in the conical part of the
slab is zero and tangential curvature t is proportional to the slab rotation . A relationship be
tween load V and slab rotation (Fig. 2.3(b)) can be calculated from the moment equilibrium equa
tion of a sector element (Fig. 2.3(c)), where the tangential and radial moments mt and mr are calcu
lated from the curvatures t and r using non linear moment curvature laws. More details about
this model are given in Chapters 3 and 4 of the present thesis.

χt=−ψ/r

mt
mr

V·
Δφ
2π

ψ

ψ

line of moment
contraflexure

load from the
rest of the slab

flexural limit

(a)

(b) (c)

V·
Δφ

Δφ

2π

V

ψ
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According to Kinnunen and Nylander, shear force is carried to the column by a conical compres
sion strut. This strut is predicted to fail and cause a punching failure when tangential strains on the
compressed concrete surface reach a critical value. These strains depend on the flexural defor
mations of the slab, making the predicted punching strength effectively a function of the flexural
capacity of the isolated hogging moment area.

The model of Kinnunen and Nylander has been extended and improved by several researchers
[Kin63, She89, Bro90, Hal96, Mut08b]. The improvements have been focused on refining the crite
rion at which the punching failure is predicted to occur. Among them, the Critical Shear Crack
Theory (CSCT) proposed by Muttoni [Mut08b] will be more thoroughly described in Section 2.2.

2.1.3 Size effect in punching shear 

Tensile and shear failures of reinforced concrete elements, if governed by the failure of concrete as
opposed to reinforcing steel, are known to exhibit size effect: if geometrically similar specimens of
different sizes are tested, the obtained nominal stresses at failure are higher in smaller specimens
than in larger specimens. This effect has a high practical importance, as many laboratory experi
ments are performed on smaller scale than the actual structures that they are modeling and may
thus potentially give overestimated capacities. It has been attempted to explain the size effect us
ing the concepts of fracture mechanics, namely energy equilibrium at the process of crack propaga
tion [Baž84].

An example of a brittle tensile failure is shown in Figure 2.4. An external applied force F causes a
tensile stress in the element. When at some point of the element the tensile strength of the mate
rial is reached (in section A A Fig 2.4(a), = fct), the element starts to crack and the applied force F
begins to decrease (Fig. 2.4(b)). In the uncracked portion of section A A, the stress remains at = fct.
In the rest of the element (for example, in section B B), the stress decreases due to the reduction of
the applied force. Therefore, the elastic strains also decrease ( B B in Fig. 2.4(c)) and the potential
energy stored in the material at loading is released ( d in Fig. 2.4(d)). The process of crack propa
gation consumes energy because new material surfaces are created. This spent energy has to be in
equilibrium with the released potential energy. As the volume of the material where the stress re
lease occurs depends on the element size, the energy that is available for propagating the crack is
also size dependent. In linear elastic fracture mechanics (assuming that the stress release is elastic
and linear and occurs in the whole length of the element), size effect turns out to be proportional to
h 1/2, where h is the height of the cross section of the specimen. In quasi brittle materials such as
concrete, the release of stress is localized into a crack band, the width of which depends on the
properties of concrete (such as maximum aggregate size). This reduces the influence of size effect
for smaller element sizes, as in this case the width of the crack band constitutes a larger part of the
element [Baž84].
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Figure 2.4 Size effect in fracture mechanics: (a) tensile failure of a brittle element; (b) stress
strain curve for the whole element; (c) stress strain curves for sections A A (with a crack)
and B B (without a crack); (d) released potential energy in section B B; (e) tensile stress

transfer in fictitious cracks according to Hillerborg [Hil83]; (f) stress strain law in uncracked
concrete; (g) stress crack opening law in the crack

Consumption of energy at crack propagation can also be expressed as a work of a fictitious tensile
force that resists the opening of the crack. This interpretation is often used in finite element model
ing of cracking in concrete where transmission of tensile stresses is assumed between crack lips (as
suggested by the fictitious crack model of Hillerborg [Hil76, Hil83], Fig. 2.4(e)). It is important to
note that whereas stresses in uncracked concrete are related to strains (Fig. 2.4(f)), the residual ten
sile stress transferred between the crack lips is a function of crack width wcr (Fig. 2.4(g)). The resid
ual stress multiplied with crack opening gives fracture energy GF that may be considered a materi
al parameter.

Plastic punching models account for a size effect through the efficiency factor that varies as a
function of slab depth [Nie84, Nie11]. Several empirical models, such as the model used in the
punching provisions of the current Eurocode 2 [CEN04], account for size effect as a function of the
effective depth of the slab. The punching failure criterion in the kinematical model of Kinnunen
and Nylander [Kin60] does not include a factor for size effect. Instead, the failure criterion ac
counts for strain effect, as the failure is predicted to occur when concrete surface strain reaches a
critical value. This strain depends on, in addition to slab rotation, the height of the compression
zone, which is proportional to slab depth.

The models of Shehata [She89] and Broms [Bro90] modify the failure criterion and introduce a size
effect factor that increases the allowable concrete strains for smaller elements. In Hallgren’s model
[Hal96], also fracture energy of concrete is taken into account and the size effect factor is formulat
ed on the basis of experiments on unreinforced concrete beams used to determine the fracture en
ergy. The CSCT of Muttoni [Mut08b] described in the next section considers size and strain effects
together.
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2.2 Critical Shear Crack Theory 

2.2.1 Assumed kinematics of shear failures 

According to the Critical Shear Crack Theory (CSCT), the shear failure is assumed to occur along a
critical shear crack. For one way beams without shear reinforcement, a comprehensive model de
scribing the kinematics and the contributions of different shear transfer actions was proposed by
Fernández Ruiz et al. [Fer15] with kinematics shown in Figure 2.5(a). The assumed center of rota
tion of the relative displacement between the two rigid bodies is located at the tip of the crack. The
load is transferred between the bodies by dowel action of tensile reinforcement, aggregate inter
lock and residual tensile strength along the crack as well as the inclined compression in the com
pression zone above the crack tip. Stress displacement laws allow quantifying the contribution of
each action and establishing their dependency on the opening width wcr of the crack. It is shown
that the load transfer capacity between the two bodies decreases with increasing crack opening.
The crack opening is then correlated to a reference axial strain d that can be obtained from cross
sectional analysis of the element (Fig. 2.5(b)).

residual tensile strength

ε0.6d

d
0.6d

compression zone

aggregate interlock

contact surfaces

dowel action

center of rotation
(a) (b)

27°

(c)

wcr∝ε0.6d·d

wcr∝ψ·d

ψcrack

ψ

center of rotation

spalling of concrete

Figure 2.5 The CSCT for one way elements: (a) assumed kinematics of the critical crack in
one way elements by Fernández Ruiz et al. [Fer15]; (b) reference strain ; (c) assumed kine

matics of the critical crack in two way elements by Guidotti [Gui10a]

Guidotti [Gui10a] proposed a simpler kinematic failure mechanism for two way slabs without
shear reinforcement. The critical crack is assumed to be straight and inclined at 45 degrees. The
center of relative rotation between the rigid bodies is taken at the edge of the support (Fig. 2.5(c)).
With the assumed kinematics, the average crack width is proportional to the relative rotation be
tween the rigid bodies (crack lips) crack times the effective depth d. It is further assumed that the
rotation between crack lips is proportional to the slab rotation . The flexural deformation (slab
rotation) can be calculated with any physically based model that accounts for the non linear be
havior of reinforced concrete and thus models correctly the moment redistribution between radial
and tangential mechanisms. In axisymmetric cases, the model of Kinnunen and Nylander [Kin60]
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can be used. As the center of rotation is assumed to be located at the edge of the column, the con
tribution of the compression zone is not accounted for. The capacity of dowel action of tensile rein
forcing bars to transfer forces between the rigid bodies is greatly reduced by spalling cracks at the
level of tensile reinforcement. Therefore, this contribution is also neglected. Shear force is assumed
to be transferred through residual tensile stresses in the crack (in the part of the crack where its
opening is small) or through aggregate interlock action. The contribution of aggregate interlocking
depends on the kinematics (width and the direction of opening) of the crack, as well as the size of
aggregates and their packing density. With these parameters, the area of contact between the crack
lips can be calculated that gives an estimate of the magnitude of stresses transferred through the
crack. In the model of Guidotti, the punching failure crack is assumed to slide at an angle of 27
degrees relative to the crack surface (Fig. 2.5(c)) as was observed in the push off experiments per
formed by Walraven [Wal80]. With these assumptions, Guidotti established a law that relates the
capacity of the crack to carry shear forces to d, as the failure criterion of Muttoni [Mut08b].

2.2.2 Failure criterion 

As described above, the shear strength of an element without shear reinforcement depends on its
state of flexural deformations – reference strain 0.6d in the control section in the case of one way
elements or slab rotation in the case of two way elements. In order to verify the punching capaci
ty of a slab column connection, slab rotation due to the applied load has to be determined first.
Then, the shear strength for the determined rotation vcrit can be calculated. The shear capacity is
sufficient if the shear stress due to applied load is lower than the calculated shear capacity (vS < vcrit
in Fig. 2.6(a)). The exact shear capacity vR can be found where the load rotation curve intersects the
failure criterion (Fig. 2.6(b)).

Figure 2.6 (a) Verification of punching strength according to the CSCT; (b) determination of
punching capacity; (c) failure criterion of Eq. (2.1) [Mut08b] and experimental results of 128

tests from the literature ([Gua09], [Kin60], [Els56], [Moe61], [Tol88], [Hal96], [Ram96],
[Gui10b], [Tas11], [Ein16a], [Sis97], [Lip12], [Tom93])

Based on the results of 99 punching tests, Muttoni [Mut08b] proposed a failure criterion as a func
tion of a parameter d. This parameter is related to the opening width of flexural cracks in the
shear critical region. The failure criterion was given as:
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where d is the effective depth of the slab, b0 is the length of the control perimeter located at a dis
tance d/2 from the column face, fc is the concrete cylinder compressive strength, is the rotation of
the conical slab portion (at the edge of an isolated specimen or, in a general case, at the line of
moment contraflexure), dg is the maximum aggregate size and dg0 = 16 mm is a reference aggregate
size. The maximum aggregate size in Equation (2.1) accounts for the roughness of the crack surfac
es that influences the capacity of shear transfer by aggregate interlock [Gui10a]. The consistency of
the CSCT with the fracture mechanics approach is further described and discussed elsewhere
[Fer15].

The general approach of the CSCT can also be used to treat slabs with irregular column layout and
uneven loading [Sag11] as well as punching of rectangular columns [Sag14]. However, in the cur
rent research, only cases that can be approximated by an axisymmetric model (interior column
connections in regular span slabs under uniform loading) are considered.

2.2.3 Influence of in-plane forces 

Clément et al. [Cle14] proposed that the influence of prestressing on punching behavior of flat slabs
can be accounted for by considering three potentially beneficial phenomena. Firstly, if the place
ment of tendons is eccentric, the bending moments they introduce can reduce the rotation due to
the applied load. This reduction can be taken into account in the calculation of slab rotation. Sec
ondly, if the tendons are inclined, part of the shear force can be carried by the vertical component
of the axial force in the tendons. Finally, the axial compression at the column perimeter can in
crease the punching capacity by reducing the width of the critical shear crack. This effect was sug
gested to be accounted for in the failure criterion [Cle14]:

gg0

c0

R

dd
dfdb

V (2.2)

where ’ is a modified rotation:

c

n

E
(2.3)

where n is an axial stress at the column perimeter (compression is negative) and Ec is the modulus
of elasticity of concrete.

2.2.4 Punching of slabs with shear reinforcement 

Fernández Ruiz and Muttoni [Fer09] have extended the CSCT to also cover slabs with shear rein
forcement. Different failure modes that have to be verified are summarized in Figures 2.7(a–c).
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According to this approach, shear reinforcement that intersects the critical crack carries part of the
shear force. In this case, the punching capacity VR can be found by summing the concrete and rein
forcement contributions (Fig. 2.7(a)). The contribution of concrete can be calculated in the same
manner as for slabs without shear reinforcement (Eq. (2.1)). Thus, it decreases with increasing slab
rotation (due to increasing crack opening). The shear force carried by shear reinforcement depends
on the strains in them, which increase with increasing opening of the critical shear crack, which
these elements intersect (Fig. 2.7(a)). Thus, with increasing rotation, the concrete contribution de
creases and the steel contribution increases. The maximum contribution of the transverse units is
limited by the yield strength of shear reinforcement or their anchorage conditions in the case of
some reinforcement systems. The described failure mode is referred to as failure within the shear
reinforced area and it is usually governing for low amounts of shear reinforcement.

activation of shear reinforcement

(a) (b) (c)

concrete
contribution

contribution
of shear
reinforcement

ψ ψ ψ

V

crushing criterion

V

VR,crush
VR,within

V

VR,out failure criterion
outside

Figure 2.7 Punching failure modes of slabs with shear reinforcement: (a) failure within the
shear reinforced area; (b) failure inside the shear reinforced area (between the edge of the
column and the first shear unit perimeter; (c) failure outside of the shear reinforced area

In the case of large amounts of shear reinforcement, shear failure may also occur by crushing of the
concrete strut between the edge of the supported area and the first perimeter of shear reinforce
ment units. This failure typically occurs before transverse reinforcement reaches yielding and is
assumed to be independent of the shear reinforcement ratio (Fig. 2.7(b)). According to the CSCT,
the punching capacity in this failure mode is influenced by the same parameters as punching
without shear reinforcement since both are governed by the strength of concrete in shear. This is
considered in the CSCT by multiplying the concrete contribution failure criterion with a factor ksys.
Position and anchoring properties of shear reinforcement also have and influence on this failure
mode so that ksys depends on the performance of the shear reinforcement system. Its value should
be determined, specifically for each system, by testing.

Punching failure may also occur outside the shear reinforced area (Fig. 2.7(c)). In this case, relative
ly good estimates in comparison to the experimental results have been obtained by considering the
shear reinforced zone as supported area with a control perimeter outside the last perimeter of
transverse reinforcement units. In this case, the compression strut is supported on the anchorage
zone of the last shear units. Therefore, the part of the cross section that is below this anchorage
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zone has to be subtracted from the effective depth of the slab in Equation (2.1). If the radial spacing
of the transverse elements is too large, the failure can also occur between the perimeters of shear
reinforcement units.

2.3 Behavior of continuous slabs 

2.3.1 Redistribution between hogging and sagging moments 

Most punching tests are performed on specimens that model an isolated hogging moment area
according to the suggestion of Kinnunen and Nylander [Kin60]. Such specimens are round or
square, supported on a small column stub in the center and loaded close to the perimeter
(Fig. 2.8(a)). Size of the hogging moment area is usually determined by means of an elastic analy
sis. In the case of small columns, this leads to the location of the line of moment contraflexure at
rs 0.22 L (Fig. 2.8(a)). When cracking of concrete or yielding of reinforcement occurs in the vicinity
of the column, bending moments can be redistributed between radial and tangential directions
(Fig. 2.8(b)). In this regard, isolated specimens are suitable to model the region of the slab around a
slab column connection.

However, in continuous slabs, moment redistribution can also occur between hogging moments
around the column and sagging moments in mid span. This redistribution shifts the location of the
line of contraflexure (Fig. 2.8(c)). This phenomenon cannot occur in isolated specimens where the
line of moment contraflexure of a prototype slab is represented by the edge of the specimen. There
fore, it can only be experimentally studied by testing real continuous slabs or larger specimens
with rotationally restrained edges. However, such experiments are significantly more time
consuming and expensive to perform and are thus rarely done.

Kinnunen and Nylander [Kin60] justified the applicability of the isolated specimen’s results on
continuous slabs by requiring that sagging reinforcement should be designed so that it remains in
the elastic phase up to a punching failure. Thus, the curvatures and moments in the sagging mo
ment area can be assumed to vary in a parabolic manner. This approach requires increasing the
amount of reinforcement in mid span compared to the results of conventional design for bending.

According to the strip model of continuous slabs proposed by Alexander [Ale99], shear forces are
carried to the column through support strips. Shear stresses on the surfaces between the rest of the
slab and the support strips can be redistributed in a fully plastic manner. Capacity of the slab
column connection is assumed to be limited by the flexural resistance of the support strips, which
are calculated as continuous beams. This way, the influence of the amount of sagging reinforce
ment on the punching strength is accounted for.
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Figure 2.8 (a) Continuous slab and a corresponding isolated test specimen; (b) Redistribu
tion of tangential moments in an isolated element after reinforcement yielding; (c) Redistri
bution of radial moments in a continuous slab due to cracking and/or reinforcement yield

ing

2.3.2 Compressive membrane action 

Compressive membrane action is a phenomenon where the flexural strength (mR) of a reinforced
concrete element is enhanced by compressive axial forces in the slab ( n) (Fig. 2.9(a)) that appear
due to rigid lateral supports that restrain the expansion of the element, which is caused by shifting
of its neutral axis at flexural cracking. An example of a structure where the influence of lateral
supports is important is a bridge deck slab that is confined between stiff beams linked with dia
phragms shown in Figure 2.9(b). The in plane forces significantly increase both the flexural
strength and also the flexural stiffness of such structures.

Lateral expansion (dilation) of isolated punching test specimens after cracking (Fig. 2.9(c)) has been
observed in the experiments (an example of slab PG19 of Guidotti [Gui10b] is shown in Fig. 2.9(d)).
In continuous slabs, this expansion is constrained by surrounding slab portion that is uncracked
and therefore does not dilate. To resist the dilation, tangential tensile stress (a tension ring) appears
around the cracked zone (Fig. 2.9(e)) and induces axial compressive stress within the hogging
moment area (Fig. 2.9(f)) that increases the flexural stiffness and strength of the slab. In this thesis,
this effect is called self confinement, as it is provided by the continuous slab itself without any ex
ternal confining elements.
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Figure 2.9 Compressive membrane action: (a) influence of normal force on the flexural
strength of a reinforced concrete element; (b) compression arch in confined slabs; (c) dilation
of an isolated slab; (d) measured dilation of specimen PG19 [Gui10b]; (e) formation of a ten
sion ring in the slab portion around the hogging moment area; (f) compressive forces in the

hogging moment area due to restrained expansion

Although Wood [Woo61] argued that if the compressive in plane forces in the hogging moment
area have to be equilibrated with tension around it, additional reinforcement is required, and con
cluded that accounting for compressive membrane action in slabs without external confining ele
ments therefore does not result in any reduction in the total quantity of required reinforcement,
later researchers have attempted to study the influence of self confinement on the flexural capacity
and deformations of continuous slabs more precisely.

An ASCE ACI report described the appearance of self generated compressive in plane stresses in
continuous flat slabs in a qualitative manner in 1974 [ASC74]. Significant effort has thereafter been
made by researchers to evaluate the influence of these in plane stresses quantitatively. Traditional
yield line analysis (that neglects the influence of in plane forces) results in plastic flexural strength
Vflex that is independent on the deflection of the center point of the slab (Fig. 2.10(a)). Methods
based on rigid plastic analysis [Par80, Bra80a] allow modeling the dome effect of the forces arising
from the changes of geometry. Assuming infinite in plane stiffness, these methods lead to a maxi
mum flexural strength value at zero deflection and a subsequent decrease of strength with increas
ing deflection due the reduction of the height of the compression arch (Fig. 2.10(b)). When the
magnitude of the deflection is similar to the thickness of the slab, the flexural strength approaches
the yield line strength of an unconfined slab as the height of the compression arch reduces to zero.
If the slab is equipped with sufficient amount of longitudinal reinforcement that is properly an
chored at the supports, tensile membrane action may arise (Fig. 2.10(c)). However, this resisting
mechanism can only be activated in the presence of very large deformations and can be used in the
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engineering practice only for extreme cases as post failure behavior [Mel98]. This kind of mem
brane action is not a subject of the present thesis.

Figure 2.10 Rigid plastic and elastic plastic analysis of confined slabs: (a) flexural strength of
a slab in the vicinity of the support according to yield line analysis (Vflex is independent of

the deflection); (b) influence of compressive membrane action, rigid plastic analysis; (c) ten
sile membrane action; (d) compressive membrane action, elastic plastic analysis.

The rigid plastic analyses assumed that the influence of the in plane deformations of the slab and
the lateral displacement of the supports are negligible compared to the second order effects due to
the slab deflection. Therefore, in the case of small deflections (which is the most relevant regime
for engineering applications and the main interest of this thesis), an elastic plastic analysis [Bra80b]
has to be performed. If the surrounding structural elements are significantly stiffer than the slab,
an assumption can be made that the stiffness of the lateral supports is infinite. Therefore, only the
elastic deformations of the concrete slab itself have to be taken into account in order to determine
the ascending branch of the load deflection curve [Kir84] (Fig. 2.10(d)). This approach has been
accepted by some codes of practice [UKH02] as a basis of a design formula for designing bridge
deck slabs between laterally stiff beams (such as shown in Fig. 2.9(b)). However, these assump
tions are not valid in the cases where the surrounding elements are not significantly stiffer than the
slab. In these occasions, the stiffness of the supports has to be taken into account. In a simplified
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manner, this can be done by attributing the lateral supports a stiffness value that describes both the
rigidities of the tension ring in the slab and the restraining elements (Fig. 2.10(d)). In that case, the
horizontal support reaction necessary to create the compression arch is only generated at non zero
deflections. However, determining a suitable stiffness is in most cases still performed empirically
[Hew75, Kua93, Eyr07].

In the present thesis, both redistribution between hogging and sagging moments as well as self
generated compressive membrane action are analyzed on the basis of an axisymmetric numerical
model. A load rotation curve of a slab column connection in a continuous slab is obtained from the
analysis. Punching strength of the connection is thereafter predicted using the failure criterion of
the CSCT.
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Numerical model for continuous slabs Chapter 3

This chapter, based on a paper published in Engineering Structures [Ein15], describes a
numerical model that allows analyzing the flexural deformations and, by applying the failure cri
terion of CSCT, punching strengths of slabs with various edge conditions, such as unconventional
configurations for symmetric punching tests but also interior slab column connections in continu
ous flat slabs. The model is validated by comparing its predictions to uncommon punching test
specimens found from the literature.

3.1 Description of the numerical model 

3.1.1 Equilibrium equations and compatibility conditions 

The numerical approach presented in this section assumes axisymmetric conditions (extension of
the model for non axisymmetric geometries is discussed in Section 3.1.4). A region of the slab
around an interior column is divided into sector elements (Fig. 3.1(a)) [Gua05, Gui10a]. For each
element, equations for the equilibrium of moments (3.1) and forces (3.2) as well as for the geomet
rical compatibility of deformations due to bending (3.3) and normal forces (3.4) are written (nota
tion in Fig. 3.1(b) and (c)):
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The relationship between forces and deformations can be provided by any suitable moment
curvature and moment dilation law for the considered level of axial load. Such law can be general
ly obtained using a layered non linear sectional analysis. To facilitate the calculation procedure, in
the current thesis, a simpler multi linear law is used (Fig. 3.2), where different linear branches of
the law are related to uncracked, cracked and reinforcement yielding regimes:

multilinfnm (3.5)
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For the details about the derivation of the multi linear law, refer to Section 3.1.3. The sectional re
sponse is calculated independently in tangential and radial directions (thus the value of the Pois
son’s ratio is taken as 0).

mr,i
nr,i

nt,i
mt,i

mt,i
nt,i

mr,i+1
nr,i+1

vi+1

vi

q

ri Δri

ri+1

Ai

χt,i
εt,i

χr,i+1
εr,i+1

χr,i
εr,i

ui

ψi

wi+1

wi

χt,i
εt,i

C

element i

q

V

L

(a) (d)

(b)

(c)

i
ii

ii rww Δ⋅
+

+= +
+ 2

1
1

ψψ

i
irir

ii rΔ⋅
+

−= +
+ 2

1,,
1

χχ
ψψ

i
ii

ii ruu Δ⋅
+

+= +
+ 2

1
1

εε

N
ex

t e
le

m
en

t

For load q

U
pd

at
e 

χ r,1
 a

nd
 ε

r,1

N
ex

t l
oa

d 
st

ep

Last element?

yes

no

no

yes

Edge conditions?
(for example mr,last= 0 , nr,last= 0)

Assume χr,1 and εr,1

(mr,1 , nr,1) = fmultilin(χr,1 , εr,1)

(mt,1, nt,1) = fmultilin(χt,1, εt,1)

(χr,i+1 , εr,i+1) = f −1
multilin(mr,i+1 , nr,i+1)

mr,i+1 from (3.1) nr,i+1 from (3.2) 

χt,i from (3.3) εt,i from (3.4) 

Figure 3.1 (a) Sector of an axisymmetric slab; (b) internal forces acting on an element; (c) de
formations and displacements of the element; (d) numerical solution procedure

A block diagram of the numerical solution procedure is shown in Figure 3.1(d)). For each element,
Equations (3.1)–(3.5) can be used to find the internal forces and deformations at the outer edge of
the element if the internal forces at the inner edge of the element are known. The increase of rota
tion and vertical as well as horizontal displacements within an element can also be obtained. By
assuming a state of deformations ( , ) at the inner edge of the centermost element and repeating
the calculation for each subsequent element, taking into account the external loads q applied on the
slab, two boundary conditions are reached at the edge of the slab. The response of the slab can thus
be determined by finding for each loading case the state of deformations in the center that leads to
the appropriate boundary conditions. This is done by means of an iterative calculation procedure.

A simpler calculation can be performed by neglecting the influence of in plane forces in the multi
linear sectional law (Eq. (3.5)) so that only the equilibrium of moments (Eq. (3.1)) and compatibility
of flexural deformations (Eq. (3.3)) is required.
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Figure 3.2 Moment curvature (m ) and dilation curvature ( ) relationships for different
levels of axial force (n): results of a non linear sectional analysis and the simplified multi

linear law (calculated with Response 2000 [Ben00])

3.1.2 Boundary conditions 

The boundary conditions in at the edge of the slab are:

for an isolated specimen, the radius of the axisymmetric calculation model corresponds to
the radius of the specimen. Radial moment at specimen’s edge has to be zero (mr,edge = 0) and
if the loading system is designed as to avoid in plane forces and no prestressing is applied,
the radial normal force at the edge of the slab has to be zero as well (nedge = 0) (Fig. 3.3(b));

for a continuous slab, the radius of the model rslab corresponds to the distance between the
column and the symmetry line in mid span. The first boundary condition is therefore zero
rotation at the edge of the model ( edge = 0). The radius of the slab rslab is selected so that in
the elastic uncracked phase, the axisymmetric model has to yield the same radius of mo
ment contraflexure rs of 0.22 L as it is in a regular continuous slab. This leads to the choice
of rslab 0.7 L (refer to Section 3.1.4 for discussion). The second boundary condition may be:

for a flat slab on supports that carry only vertical reactions (a self confined slab), the
second boundary condition is nedge = 0 (Fig. 3.3(c));

for a flat slab that is perfectly confined between external elements (like, for example,
very stiff shear walls), the second boundary condition is uedge = 0 (Fig. 3.3(d)).

Other cases can also be easily modeled, including tests on additionally confined isolated slabs,
slabs with partially rotation restrained edges, or slabs with bending moments applied at some dis
tance from the center.
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Figure 3.3 (a) Axisymmetric calculation model; (b) Boundary conditions for an isolated slab;
(c) Boundary conditions for a slab without external confining elements (self confined);
(d) Boundary conditions for a slab with perfectly rigid external confining elements

3.1.3 Multi-linear sectional analysis 

A simplified multi linear relationship between the internal forces acting on a cross section and its
deformations is used in this numerical model. The internal forces considered are the bending mo
ment m and the axial force n, whereas the related deformations are curvature and dilation of the
axis . The law is based on an approach used by Muttoni [Mut08b] and Clément et al. [Cle14] but it
is modified to describe the dilation of the axis and to approximate the response of a section under
high tensile forces in a more suitable manner. The resulting curves and a comparison with a lay
ered non linear analysis are presented in Figure 3.2.

A number of simplifications are made to ensure the continuity of the curves and to facilitate the
use of the multi linear law in the iterative calculations of the numerical model. The moment
curvature and the curvature dilation relationships are assumed to consist of linear phases, as
shown in Figure 3.4 for some different levels of axial load:

In the uncracked phase, the slope of the moment curvature relationship is equal to the
stiffness of a full concrete cross section EI0. The influence of the tension and compression
reinforcement can be normally neglected (Fig. 3.5(a)). This phase describes the response be
tween zero moment and cracking moment (mcr). Cracking moment is defined, depending
on the level axial force, as a bending moment that induces a tensile force equal to fct in the
outermost tension fiber of the cross section [Cle14]. Compressive axial force increases the
cracking moment, whereas tensile axial force decreases it. In the presence of high tensile
forces, the tensile stress in concrete may exceed the tensile strength in the whole cross
section (n > ncr). In this case, the cross section is cracked in tension at zero bending moment
and the uncracked phase does not apply (Fig. 3.4(c)).
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Figure 3.4 Moment curvature and moment dilation relationships for different levels of axial
load: (a) no axial force; (b) axial compression; (c) axial tension

Figure 3.5 Sectional analysis: (a) uncracked phase; (b) partially cracked phase; (c) fully
cracked phase

The dilation of the axis in the uncracked phase mainly depends on the deformation due to
the axial force 0 (Fig. 3.5(a)).

If the applied moment exceeds the cracking moment, a cracked phase applies. In this phase,
the m relationship is assumed to be linear with a slope equal to the stiffness of a fully
cracked cross section ( EI1) that is composed of the compression zone and the reinforcing
bars (Fig. 3.5(b)) multiplied by an efficiency factor . The efficiency factor takes into account
the orthogonal placement of the reinforcing bars, which is not equivalent with the polar
placement that is assumed in the axisymmetric model. A suitable value of has been
shown to be 0.6 [Mut08b]. The contribution of concrete in tension is neglected when calcu
lating EI1. However, the contribution of the tensile stresses in the concrete around steel re
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bars due to bond between the reinforcing bars and concrete are taken into account with a
tension stiffening factor [Mut08b]:

hE
f

s

ctm
TS

(3.6)

Applying an axial force on the cross section affects the height of the compression zone. As
a simplification, however, this change is neglected in the present multi linear law. The in
fluence of the axial forces is taken into account by modifying the curvature due to different
stiffness of the tension tie and the compression chord (Fig. 3.5(b)). The change of the curva
ture due to the axial load is [Cle14]:

cs
N Ex

hd
Ed
xh

xd
n (3.7)

The total contribution of the aforementioned effects is thus:

NST (3.8)

The contribution of tension stiffening T S is always positive (decreasing the curvature).
The contribution of the normal force N can be positive (decreasing the curvature) in the
case of compression (Fig. 3.4(b)) or negative (increasing the curvature) in the case of tensile
axial forces (Fig. 3.4(c)). In the case of high compressive forces, may be so large that the
curvature at cracking cr is less in the cracked phase than in the uncracked phase. In this
case, the value of is limited to yield the same in the cr cracked phase as in the
uncracked phase [Cle14] (leading to no cracking plateau in Fig. 3.4(b)).

At the onset of cracking, the dilation of an element is known to increase abruptly while the
cracks are formed. After their initial formation, the cracks will start growing and the in
crease of dilation will become more stable. In the current analysis, this phenomenon is ne
glected and the dilation in the cracked phase is assumed to increase linearly from the dila
tion in the uncracked phase 0 (Fig. 3.5(b)):

xh (3.9)

As seen in Equation (3.9), the dilation is calculated using the modified curvature ( – ).
In this manner, the effect of tension stiffening is taken into account.

In presence of high tensile axial forces (n > ncr), the whole concrete cross section may be
cracked in tension. In this case (Fig. 3.4(c)), the stiffness of the cross section consists of the
stiffness of only rebars EIs (Fig. 3.5(c)). In the case of different compression and tensile re
inforcement ratios, the influence of this asymmetry on the location of the neutral axis
should be taken into account. It should be noted that the slope can be negative if the
amount of compression reinforcement exceeds the amount of tensile reinforcement.
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Between the uncracked and cracked phases, a crack development plateau is usually as
sumed. In the current paper, the slope of the plateau is taken equal to EIs as in the previous
ly described phase (Fig. 3.4) to ensure continuity between different levels of axial load.
However, as a simplification, the curvature dilation relationship is found with
Equation (3.9) similarly to the cracked phase.
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Figure 3.6 (a) Axial force dilation relationship with no bending moment; (b) Strains and
forces at the cross section in the case of high compressive axial forces; (c) adapted axial load

moment capacity relationship

The multi linear law used for determining the dilation at zero moment 0 (Fig. 3.5(a)) is shown in
Figure 3.6(a). Similarly to the moment curvature relationship, uncracked and cracked phases are
distinguished with the respective stiffnesses of EA0 and EAs. As a simplification, tension stiffen
ing is neglected in this law. The tensile capacity of the cross section at zero moment nR is reached
when the bars on the side with lower reinforcement ratio start to yield.

The flexural capacity of the cross section (mR) is calculated assuming yielding of tensile reinforce
ment and a rectangular compression block in concrete:

plplcyyR xhxfhdfdhdfdm (3.10)

where the depth of the rectangular compression block xpl depending on the level of axial force can
be found as:

cpypl fnfdx (3.11)

In the case of high compressive axial force, tensile reinforcement may not be yielding at the flexur
al limit ( s < fy/Es in Fig. 3.6(b)). In this case, the moment capacity is limited by the strength of the
compression zone. By assuming that the ultimate compressive strain of concrete is 3.5‰, stress in
tension reinforcement can be calculated (Fig. 3.6(b)):
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ss E
x
xd (3.12)

By further assuming that the depth of the rectangular compression block is 0.8x, the moment ca
pacity can be found:

xhxfhdfdhddm cysR (3.13)

The equilibrium of normal forces yields an equation:

xffddn cys (3.14)

The depth of the compression zone x and moment capacity mR can be determined by solving the
system of Equations (3.13) and (3.14). This leads to increasing moment capacity with increasing
axial compression but with a slower increase than in the previous phase (Fig. 3.6(c)).

If the depth of the compression zone reaches the height of the cross section, increasing the axial
force will start to decrease the moment capacity. However, in the current research, high axial com
pression is only found in the center of the slab and it appears simultaneously in radial and tangen
tial direction. Therefore, the ultimate strain and stress of concrete can be significantly higher due to
the biaxial compression (confinement). Due to this, for the current analysis it is assumed that the
moment capacity does not decrease with increasing axial force (the confined case in Fig. 3.6(c)).

In Figure 3.2, the simplified multi linear law was compared to the results of a non linear layered
sectional analysis [Ben00]. The approaches yield similar results, except for a larger discrepancy
regarding the dilation of the cross section in the case of compressive normal forces and large cur
vatures. The difference is caused by neglecting concrete compression softening in the simplified
law (which reduces the total normal force in the non linear analysis). However, in the present
analysis, large curvatures combined with high axial compressive forces occur in the center of the
slab, where the concrete is bi axially confined and the softening effect is therefore reduced.

3.1.4 Conversion of a regular-span continuous slab to an axisymmetric model 

Compared to the geometry of actual slabs and conventional placement of reinforcing bars, the ax
isymmetric model is developed assuming several simplifications.

Firstly, in the axisymmetric case, the deflection of the slab at its outer edge is considered constant
along the whole edge. However, in the case of a continuous slab supported on a regular grid of
columns, the deflection is smaller on the axes and larger in the middle of the fields (Fig. 3.7(a)).
Therefore, the choice of the radius for the continuous model that would predict correctly the de
formations of the slab in the vicinity of the column is not as straightforward as in the case of the
radius for an isolated element.
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Figure 3.7 Conversion of an actual slab to an axisymmetric model: (a) comparison of slab de
flections (represented by shading); (b) simplification of the reinforcement layout; (c) com

parison with a non linear parametric study by Tassinari [Tas11]

In this research, the radius of the slab rslab has been chosen so that in the elastic uncracked phase,
the axisymmetric continuous model has to yield the same radius of moment contraflexure rs of
0.22 L as an elastic analysis of a regular span slab. This leads to rslab 0.7 L. The radius is larger
than it would be based on purely geometrical considerations (the same contributive area, for in
stance) because of the overestimate of the tangential curvature in the outer part of the axisymmet
ric model, which leads to overestimating the contribution of tangential moments in comparison to
the sagging moment area of an actual slab. The overestimate of the radial stiffness can be compen
sated for by increasing the extent of the slab in the axisymmetric model. The distributed load on
the slab is correspondingly decreased by a factor of 0.72 = 1.54 to yield an equal column reaction.

Secondly, in the axisymmetric model, the reinforcement is assumed to be laid in the radial and in
the tangential directions. In actual slabs, however, the reinforcement is placed orthogonally and
may therefore cross the radial and the tangential planes at oblique angles. In these cases, the stiff
ness of the tension chord of the cross section is reduced. This effect is taken into account in the
multilinear moment curvature law with an efficiency factor that reduces the stiffness of a cracked
cross section (refer to Section 3.1.3). For uniformly reinforced isolated test specimens, an average
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value of = 0.6 gives good results in comparison to the test results [Mut08b] and the same value
has been used in the current research.

Thirdly, in the axisymmetric model, top and bottom reinforcement ratios are considered constant
over the whole slab. However, in actual slabs, top reinforcement is usually concentrated in strong
bands (support strips) between the supports (Fig. 3.7(b)) and significantly lower amounts of flex
ural reinforcement are provided in the areas between these strips. This results in redistribution of
internal forces and concentration of bending moments on the support strips due to the higher flex
ural stiffness of these strips after cracking.

When applying the present model for actual slabs, the influence of the distribution of hogging re
inforcement can be taken into account analogously to the Model Code 2010 [FIB13], where the
width of the support strip bs for interior columns is defined as 75% of the width of the elastic hog
ging moment area (1.5 rs). As a practical rule, it is suggested that the sagging reinforcement ratio
be also defined as an average ratio over the width of the column strip. This value may be higher
than the geometrically weighted average over the whole sagging moment area. However, consid
ering firstly the concentration of bending moments on the stiffer support strips and secondly, the
higher factor of these strips compared to the span strips (as the reinforcement in the strong strips
is placed parallel to the direction of principal moments (Fig. 3.7(b)), this approach is believed to be
reasonable and realistic. A comparison with numerical non linear solutions [Tas11] for square
spanned slabs with the reinforcement concentrated in strips shows a reasonable (possibly slightly
prudent) agreement with the axisymmetric model (Fig. 3.7(c)).

3.2 Modeling results 

3.2.1 One-way, isolated two-way and continuous elements 

Figure 3.8 shows the unitary shear force rotation curves for a one way member (a beam), an isolat
ed two way slab specimen and a continuous slab (or a slab with flexural edge restraints), calculat
ed using the axisymmetric numerical model described in Section 3.1, not accounting for the influ
ence of in plane forces. All the compared elements have the same thicknesses and flexural rein
forcement ratios. The beam (Fig. 3.8(b)) and the isolated slab (Fig. 3.8(d)) have identical values of
shear slenderness (rq/d, where rq is the distance from the load application point to the support). The
model of the continuous slab is subjected to uniformly distributed loading and extends to the mid
span symmetry line where the slab rotation is required to be zero. The span of the continuous slab
L (Fig. 3.8(f)) is selected based on the consideration explained in the previous section. The shear
force associated to the flexural capacity of each element (Vflex) can be found with yield line method
based on kinematic mechanisms shown in Figure 3.8(b, d, f). The isolated slab has higher flexural
capacity than the beam due to the radial plastic hinges that activate the reinforcement in the whole
slab (Fig. 3.8(e)). In turn, the continuous slab has higher flexural capacity than the isolated slab due
to a circular plastic hinge that also activates the sagging reinforcement (Fig. 3.8(g)). It is worth not
ing that the stiffnesses of the different contributions are not equal and the rotation y at which Vflex



3.2 Modeling results

31

is reached varies for the three cases (Fig. 3.8(a)). Due to the lower stiffness of the sagging mecha
nism, the load rotation curves for the isolated and continuous slabs are similar until the first yield
ing of hogging reinforcement occurs. After that, however, stiffness of the hogging mechanism
starts to decrease and the difference between the isolated and the continuous slabs becomes more
significant. After full yielding of hogging reinforcement, the load on the continuous slab can still
increase, although with lower stiffness than in the previous phase, as the additional load is only
being resisted by sagging reinforcement.
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Figure 3.8 Comparison of a beam, an isolated slab and a continuous slab with equal shear
slenderness factors (rq/d): (a) normalized shear stress rotation curves; (b) flexural failure
mechanism of a beam; (c) distribution of bending moments in a beam at the flexural limit;
(d) failure mechanism of an isolated slab; (e) bending moments in an isolated slab at the

flexural limit; (f) failure mechanism of a continuous slab; (g) bending moments in a continu
ous slab at the flexural limit
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3.2.2 Location of the line of moment contraflexure 

Flexural reinforcement of flat slabs is nowadays conventionally designed using linear elastic finite
element programs (with or without a redistribution of hogging moments) or simplified analytical
methods, as the “direct design method” [ACI14]. Both approaches normally result in placing rela
tively large amounts of flexural reinforcement in the support regions. However, many existing flat
slabs have also been designed using the theory of plasticity (yield line method or strip method),
which allows the designer freely choose the amount of moment redistribution. This leads to poten
tially large variation in the ratios between the amount of reinforcement at the support and in mid
span. The method described in the present research allows taking into account the influence of the
actual reinforcement distribution and is thus a very useful tool to investigate existing flat slabs
with unusual hogging to sagging reinforcement distributions.

Due to the different stiffnesses of various mechanisms described in Section 3.2.1, redistribution of
bending moments takes place in slabs when concrete cracks or reinforcement yields. In isolated
specimens, the only possible redistribution of moments is that of between tangential and radial
directions. In continuous slabs, bending moments can also be redistributed between hogging and
sagging contributions. This redistribution is accompanied by changes in the location of the line of
moment contraflexure. A common approach for selecting a representative specimen size in punch
ing tests is to determine this location by assuming linear elastic material response with uncracked
concrete behavior. In this manner, for a continuous slab supported on regularly spaced small sup
ports and assuming an elastic uncracked behavior, the line of moment contraflexure is located ap
proximately at a radius of 0.22 L from the column axis (Fig. 3.9) [Kin60].

Figure 3.9 (a) isolated hogging moment area; (b) radius of the hogging moment area de
pending on the size of the column

As will be shown in Chapter 5, a correct choice of the slenderness ratio of a test specimen is im
portant in order to model the behavior of an actual slab suitably. As the actual response of rein
forced concrete is non linear and redistribution of bending moments develops, the choice made
according to elastic calculation might not be correct for all load levels. Figure 3.10(a), shows the
distance rs between the column axis and the line of moment contraflexure depending on the load
level (shown as the support reaction), calculated using the axisymmetric numerical model with
distributed load. In plane forces are neglected in this analysis in order to investigate only on the
influence of moment redistribution. It can be seen that after an initial elastic uncracked phase, the
line of moment contraflexure shifts closer to the column (shear slenderness decreases) due to the
loss of stiffness in the hogging moment area near the column. After cracking of concrete due to
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sagging moment in mid span, shear slenderness starts to increase again. At the load levels where
the radial reinforcement in the hogging moment area has started to yield, the line of moment con
traflexure approaches once again the elastic estimate. This occurs because in this range, the stiff
nesses of the hogging and sagging moment areas (at column and mid span, respectively) are simi
lar. The shear slenderness starts to decrease again once that all the hogging reinforcement is yield
ing (which would correspond to the flexural failure of an isolated specimen). Similar results re
garding the changes of shear slenderness due to the non linear behavior of reinforced concrete
were obtained using a non linear finite difference analysis of continuous flat slabs [Tas11].
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Figure 3.10 Radius of the line of moment contraflexure (influence of the in plane forces ne
glected): (a) radius of the line depending on the load; (b) load rotation relationship for an
isolated specimen and a continuous slab (parameters: L = 7 m, h = 250 mm, d = 210 mm,

c = 260 mm, fc = 35 MPa, fy = 550 MPa, dg = 16 mm; hog = 1.0%; sag = 0.5%)

3.2.3 Influence of moment redistribution 

Figure 3.10(b) presents a load rotation curve that is calculated using the axisymmetric model rep
resenting a continuous slab with twice the amount of hogging reinforcement compared to the sag
ging reinforcement. As a comparison, the load rotation curve of a corresponding isolated specimen
with rs = 0.22 L is also shown. The continuous slab is loaded with distributed load, whereas the
isolated specimen is loaded with an identical distributed load and a linear load at the edge of the
specimen that corresponds to the shear force of the distributed load on the rest of the slab. It can be
seen that the rotation of the continuous slab for a given level of load (compared to the one of an
isolated specimen) depends on its actual shear slenderness rs/d at that load level (Fig. 3.10(a)). For
load levels where the shear slenderness of a continuous slab is smaller than the size of the isolated
specimen, the rotation is also lower. It is also evident that the ultimate flexural strength of a con
tinuous slab is higher than that of an isolated specimen due to the contribution of sagging yield
lines in the failure mechanism (Fig. 3.8(d, f)). However, in a wide range of practical cases, punch
ing occurs at loads below the flexural strength of an isolated specimen. The failure criteria of CSCT
[Mut08b] for punching of slabs without shear reinforcement around columns with diameters of
c = d and c = 4 d are shown in Figure 3.10(b) as examples. It can be seen that in these cases, the
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strength and the deformation capacity of an isolated specimen are very similar to the behavior of a
continuous slab.

Figure 3.11 Comparison of punching strengths of two slabs with equal plastic moment ca
pacity but different support and span reinforcement distribution (parameters: refer to

Fig. 3.10)

On the other hand, in the case of slabs with very low amount of hogging reinforcement, neglecting
the influence of sagging reinforcement can lead to a significant underestimate of the punching
strength. Figure 3.11 shows an example of two slabs with equal yield line capacities. In the case of
slab 1, the flexural reinforcement is placed according to an elastic calculation (leading to relatively
high hogging moments), thus the amount of hogging reinforcement is chosen as twice the amount
of sagging reinforcement in mid span. Slab 2 is designed assuming significant plastic moment re
distribution, with twice less hogging reinforcement on the support than sagging reinforcement in
the span. It can be seen that the prediction of punching strength of the isolated element corre
sponds reasonably well to the strength of the continuous slab in the first case. In the case of the
second slab, the flexural stiffness and therefore the punching strength are underestimated by the
analysis based on the isolated element. The difference is even more significant for slabs with shear
reinforcement (calculated with ksys = 2.8 [FIB13, Fer09]). The isolated specimen representing only
the hogging moment area may reach its flexural limit at a load level lower than the punching
strength of a continuous slab. This kind of failure has been observed in punching tests of slabs
with shear reinforcement even when using high flexural reinforcement ratios [Lip12]. Stein, Ghali
and Dilger [Ste07] argued that the flexural capacity of a specimen should be chosen at least 70%
higher than the predicted punching strength. However, this would lead to unrealistically high
flexural reinforcement ratios for slabs with large amounts of highly efficient shear reinforcement,
and lead to misleading conclusions about the necessary amount of flexural reinforcement in col
umn regions. The current analysis demonstrates that the distinction between a punching shear and
flexural failure cannot be made only based on isolated specimens as suggested by Stein et al.
[Ste07].
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3.2.4 Influence of compressive membrane action 

Compressive in plane forces delay the cracking of reinforced concrete in bending and stiffen the
moment curvature response of a cracked cross section. The compression may result from pre
stressing [Cle14] or from restrained lateral expansion due to external rigid elements (like shear
walls) or the rigidity of the surrounding slab portion. The numerical model allows analyzing all
these cases by varying the boundary conditions of the axisymmetric slab.
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Figure 3.12 Effect of various levels of confinement on the response of a slab: (a) radius of the
line of moment contraflexure; (b) load rotation curves (parameters: refer to Fig. 3.10)

Figure 3.12(b) shows load rotation curves for different boundary conditions. Curves 2 and 3 repre
sent an isolated slab and a continuous slab with the influence of membrane effect neglected
(Fig. 3.10(b)). Points A and B represent the formation of the flexural mechanism for the slabs
(Fig. 3.8(d)). Curve 4 in Figure 3.12(b) shows the load rotation response of a self confined flat slab
(free to dilate, no in plane force applied at the outer edge). In this case, the compressive membrane
force in the center part of the slab results from the tangential tensile forces in the outer portion of
the slab (the tension ring). The flexural limit of the slab is reached when a full yield line mecha
nism (Fig. 3.8(f)) forms (point C). This occurs at both higher load and larger rotation than in the
case of curve 3 due to the increased flexural capacity and curvature at yielding of a reinforced con
crete slab (Fig. 3.4(b)). The stiffness of the response is also significantly higher up to the point D,
which corresponds to the formation of a circular yield line due to yielding of radial sagging rein
forcement. The yield line appears further from the column than in the case of curve 3 (point B)
(Fig. 3.12(b)) because of the radial compression in the region closer to the column. The formation of
this yield line does not produce a flexural mechanism because the radial hogging yield lines are
not yet formed inside the circular one. The significantly reduced rotation at point D on curve 4
compared to the point B on curve 3 is explained by the presence of a region in the slab which is
under radial compression that is high enough to prevent the cracking of concrete, therefore reduc
ing the maximum rotation.
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Curve 5 in Figure 3.12(b) shows the load rotation response of a perfectly confined slab. Dilation is
not allowed at the edges and therefore significant compressive forces are induced which increase
towards the center of the slab. Unlike in the case of prestressed slabs where the normal force in the
slab can be considered independent of the load, the compressive stress in the center of a perfectly
confined slab increases with a rising load level and rotation. If concrete softening for large com
pressive strains was considered, the load would start decreasing because of the decreasing mo
ment capacity under high axial compression. However, in the current analysis, this effect is ne
glected because of the bi axial state of compression in the center of the slab. Geometrical second
order effects are also not considered in this analysis. These effects would start decreasing the flex
ural strength at very large deflections [Bra80a].

3.3 Validation of the numerical model 

Most punching tests found in literature have been performed on specimens that model the isolated
hogging moment area of an actual continuous slab. Shear force can be applied by loading the col
umn while the specimen is supported along its edges or by applying the load at the edges and
supporting the specimen on a column in the center. This type of slab specimens only allows for
redistribution between radial and tangential hogging moments (Fig. 3.8(e)). In order to also permit
redistribution between hogging and sagging moments (that changes the location of the line of
moment contraflexure as shown in Fig. 3.10(a)), multi span slabs or members with in plane and/or
rotational restraints along the slab edges have to be tested.

In this section, the numerical model is applied to predict the deformations of specimens in some
unconventional punching tests reported in the literature. Only the tests on slabs thicker than
100 mm are considered as the punching shear phenomenon is known to exhibit significant size
effect and the results of experiments on very thin elements are difficult to extrapolate to a realistic
scale (also, small variations in placing of reinforcement may lead to significant strength variations).
Tests on isolated slabs with confining elements (like [Bel15]) are also excluded from the analysis
because the stiffness of a steel confinement ring is typically much smaller than the stiffness of a
reinforced concrete tension ring in a continuous slab. Therefore, the arising axial forces are low
and do not influence the response of the slab in a significant manner. The contribution of such el
ements can mainly be seen as related to an increase of the flexural strength.

The punching strengths are predicted using failure criterion of CSCT [Mut08b]. The failure criteri
on may be modified to include the beneficial influence of the axial compressive forces acting on the
control perimeter [Cle14], which can also be obtained from the numerical analysis. The capacity
obtained in this manner is also presented for the applicable cases. For comparison purposes, the
slabs are also modeled as conventional isolated specimens, where the size of the specimen rs is
chosen to correspond to the edge of the elastic hogging moment area.
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3.3.1 Test by Ospina et al. 

One such test was performed by Ospina et al. at the University of Alberta (Canada) as a part of an
experimental study on the behavior of concrete slabs strengthened or rehabilitated after punching
failure [Osp01]. The test slab ER1 VS was square with side length of 4.2 m, thickness h = 152 mm
and had a measured average effective depth d = 109 mm and 119 mm for top and bottom rein
forcement, respectively. The slab had 400 mm square column stubs in the center protruding
300 mm above and 330 mm below the slab. Mean cylinder (152 x 304 mm) concrete strength at the
time of testing was 29.8 MPa and maximum aggregate size 19 mm.

Figure 3.13 Reinforcement layout of the specimen (dimensions in mm)
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Figure 3.14 Test setup: (a) section cut; (b) view of the test specimen and the edge restraint
system (dimensions in mm)
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As the study was focused on rehabilitation of old structures, the flexural reinforcement of the slab
was designed to comply with the requirements of ACI 318 71 [ACI71] in terms of minimum slab
thickness and amount of reinforcement as well as distribution of design flexural moments (using
the direct design method) and per CSA A23.3 94 [CSA94] in terms of cut off points, development
length and integrity steel. Top reinforcement (refer to Fig. 3.13) consisted of 15M (As = 200 mm2)
and 10M (As = 100 mm2) bars (with yield strengths of 428 MPa and 441 MPa, respectively). The top
reinforcement was concentrated in the center of the slab, so that the reinforcement ratio varied
from 0.92% within column wide strips to 0.25% close to the edges. The bottom reinforcement was
more uniformly distributed – the reinforcement ratio was 0.25%, except in the column strips where
two 15M (As = 200 mm2 each) integrity bars were placed. However, only half of the bottom bars
were continuous along the whole slab with the other half being cut in the middle. All bottom bars
were developed with 180 degree hooks, whereas the top bars had straight ends.

cracks on bo�om surface
cracks on top surface
punching crack on top surface
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(a)

(b)
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w

punching
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Figure 3.15 Specimen ER1 VS [Osp01]: (a) load deflection response; (b) cracking pattern af
ter the punching failure
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Rotations of the edges of the test slab were restrained by a system consisting of four steel square
hollow columns bolted down to the slab along each side and connected at the top with steel tie
rods (Fig. 3.14). The load was applied by jacking up the central column stub and restraining the
displacement in 16 equally loaded points. Prior to the start of the test, the edge restraining system
was prestressed to provide moment distribution similar to that in a corresponding continuous slab
under self weight (assuming that the sections where the steel columns were fixed represented span
center lines). The test slab was brought up to punching failure after imposing five load cycles. The
cyclic loading intended to simulate conditions in an actual slab due to service loads.

The first observed cracks were flexural cracks that formed on the slab top surface at a load of
96 kN, barely above the self weight of the slab and the testing apparatus (89 kN). The cracks
formed along the two centermost bars of the topmost reinforcement layer. These cracks progressed
from the column towards outer slab regions followed by similar cracks along the other axis and
reached the edge of the slab at approximately 260 kN. This point can be seen as a change in the
slope of the load deflection curve (Fig. 3.15(a)). The first yielding of top reinforcement according to
strain gauge measurements was observed around the column at 386 kN and the first yielding of
bottom bars occurred at 448 kN. A sudden punching failure took place at a load of 542 kN. The
crack pattern after the failure is shown in Figure 3.15(b).

Figure 3.16 Axisymmetric numerical model of ER1 VS [Osp01]

The behavior of the test specimen ER1 VS was compared to the response calculated with the nu
merical model. The geometry of the slab, including the distribution of reinforcement, was assumed
to be axisymmetric (with the radius of the axisymmetric model rslab equal to half of the slab width)
and top and bottom reinforcement ratios constant over the whole slab (Fig. 3.16). The influences of
rotational edge restraint and compressive membrane action (CMA) were analyzed separately by
performing two numerical analyses. At first, a simpler model was considered that did not account
for in plane forces and deformations. The only applied edge condition was edge rotation (that was
required to correspond to the measured value). Therefore, only the effect of redistribution between
sagging and hogging moments was modeled. In the second model, the influence of axial defor
mations due to cracking of concrete and consequent membrane forces (with their influence on axial
deformations) was taken into account as well. The second edge condition applied was that the axi
al force at the edge of the slab was required to be zero (actually, a negligibly small axial compres
sion equal to the force in the tension ties was present in the tested slab).
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Figure 3.17 Comparison of measured and predicted response (slab ER1 VS [Osp01]) with the
failure criterion of CSCT (the failure criterion curves are different for the models with CMA
and without CMA due to the different deformed shapes of the slabs, where an equal rota

tion at the line of moment contraflexure leads to different deflections w)

Figure 3.17 shows the resulting load deflection curves from the two analyses together with the
observed response curve. Prior to first flexural cracking (predicted at 91 kN), dilation of the slab is
zero and no membrane force is generated. Therefore, in this range, both models predict the same
response. After cracking, the cracked portion of the slab starts to dilate but the dilation is re
strained by the uncracked part of the slab around it. Thus, in the model with CMA, a tension ring
develops close to the edge of the slab. This induces compressive forces in the hogging moment
area which stiffens the response compared to the model without CMA. At 325 kN, stresses in the
tension ring reach the tensile strength of concrete over the whole slab thickness, leading to through
cracking of the tension ring. After this, the rate of increase of compressive stress in the hogging
moment area decreases significantly. The tangent stiffnesses of the curves are similar, but the sec
ond model shows considerably smaller deformations at a given level of load. Yielding of top rein
forcement at the face of the column is predicted at 350 kN in the first model and at 440 kN in the
second. Punching failure is predicted to occur at the intersection between the response curve and
the failure criterion of the CSCT [Mut08b] at 420 kN when CMA is neglected and at 475 kN when
CMA is accounted for (the failure criterion is defined as a function of slab rotation but plotted for
deflection of the prediction models in Figure 3.17). The actual punching failure occurred at 542 kN,
slightly higher than predicted, possibly due to the effect of compressive stresses in the punching
perimeter that were not accounted for in the failure criterion.

A comparison between the observed and predicted load deflection curves in Figure 3.17 shows a
very good agreement between the experimental results and the calculation that includes the CMA
effect. Differences between the predicted and observed cracking and yielding loads can be ex
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plained by the differences between the axisymmetric simplification of the numerical model and the
actual geometry, where column corners, orthogonal layout of reinforcement and load application
points can cause concentrations of stresses and deformations. Local stress concentrations may also
explain the observed yielding of bottom reinforcement, although the numerical model does not
predict it before the punching failure.

The numerical model predicts the formation of a thoroughly cracked tension ring along the perim
eter of the specimen. This effect explains the observed propagation of top surface radial cracks to
the specimen’s edge, even though the measured edge rotation is small and thus the tangential
moment should not cause cracking. The cracks at the edge of the slab at rather low levels of load
therefore indicate that tensile axial force is present in the cross section.

Table 3.1 Modeling parameters of tests of Ospina et al. [Osp01], Choi and Kim [Cho12],
Clément et al. [Cle14], Chana and Desai [Cha92] and Ladner et al. [Lad77]

Ref. Test
fc,

[MPa]
fy,

[MPa]
Asw,

[mm2]
hog,
[%]

sag,
[%]

h (d),
[mm]

rc,
[mm]

rslab (rs),
[mm]

Edge conditions

[Osp01] ER1 VS 29.8 428 0.92 0.14 152 (109) 200
2100
(1500)

edge [rad] =
9.0 106 V [MN]

nr =0

[Cho12]
MRA 37.0

404
1.06 0.31

152 (121) 178
2100
(1500)

edge [rad] =
6.67 106 V [MN]

nr =0
MRB 30.5 0.83 0.43
MRC 34.6 0.58 0.57

[Cle14]

PC1 44.0 583 0.84 1.06 250 (192)

130 1611
PC2 45.3 549 1.64 1.05 250 (192)
PC3 43.8 591 0.83 1.65 250 (194)
PC4 44.4 602 1.65 2.00 250 (190)

[Cha92]

FPS1 21.4

500*
0.85
0.27**

0.85
0.55**

250 (210) 200
4500
(1320)

mr,edge = 0
nedge = 0
wedge = 0

FPS2 27.4 942
FPS3 27.2 402
FPS4 30.7 1257
FPS5 25.8 1570

[Lad77]

C6

44.4 550 1.80 0.94 110 (80)

50
1680
(528)

mr,edge =0
nedge =0

C7 120
C10 100
C11 160

* – nominal value, ** – outside of r = 1925 mm

3.3.2 Tests by Choi and Kim 

Choi and Kim [Cho12] performed three tests on 4.2 x 4.2 m slabs with rotationally restrained edges
using the same test setup as Ospina et al. [Osp01] (Fig. 3.14). The test campaign focused on study
ing the effect of moment redistribution in continuous slabs. The amounts of reinforcement of the
slabs were designed to provide similar flexural capacities but the proportions between the sagging
and hogging reinforcement ratios varied significantly, from 3.5:1 to 1:1 (refer to Table 3.1 for de
tails). The load was applied in three steps, on each step in a cyclic manner ( V = 100 kN). The rota
tion of the edges was partially restrained by steel columns connected by steel ties on top identical
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ly to the experiments of Ospina et al. [Osp01] (Fig. 3.14). The edge rotation and the forces in the ties
were measured which allowed calculating edge moments.

Despite the variation in the distribution of reinforcement, the observed punching strengths for the
three specimens were similar (refer to the results given in Table 3.2). This observation contradicts
the predictions of empirical design models (such as the one used in Eurocode 2 punching provi
sions [CEN04]) that have been established on the basis of isolated elements and thus consider only
the influence of hogging reinforcement, predicting lower capacities for slabs with lower amount of
reinforcement (such as MRC in comparison to MRA in Fig. 3.18). The influence of sagging rein
forcement was, however, correctly predicted by the numerical model (that took into account the
influence of in plane forces). For the slabs tested by Choi and Kim, the increase of the amount of
sagging reinforcement and compressive membrane action were sufficient to compensate for the
decrease of hogging moment capacity and provide similar punching shear strengths in spite of the
very different hogging reinforcement ratios. It should be noted that the experimental failure loads
were consistently lower than predicted (Table 3.2), likely due to the influence of the cyclic loading
sequence – all specimens failed during cycling the applied load between 80–100% of the maximum
load (even a low number of cycles at load levels close to the shear capacity is known to noticeably
reduce the shear strength [Nat15]).
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Figure 3.18 Comparison of the numerical model to the experimental results, specimens MRA
and MRC of Choi and Kim [Cho12]

3.3.3 Tests by Clément et al. 

Clément et al. [Cle14] performed four tests on square 3 x 3 m slabs with thickness of 250 mm (Ta
ble 3.1). Sagging moment was applied at the edges of specimens by means of stiff L shaped steel
elements and hydraulic jacks between them (refer to Fig. 3.19(a)). Shear force was applied close to
the edge of the slab with a separate set of jacks. The moment was increased proportionally to the
shear force up to a previously defined limit. The numerical model is able to predict the flexural
response of the slabs with a very satisfactory precision (Fig. 3.19(b)). It can also be noted that the
influence of in plane forces is less significant in this test series due to the smaller extent of the sag
ging moment area and therefore a narrower tension ring. A parametric analysis with variable edge
moment and a comparison to the test results on Figure 3.19(c) show that for this series, the edge
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moment has a significant influence on the punching strength. The influence of accounting for the
in plane forces becomes more significant with increasing edge moment. In addition, due to the
beneficial influence of edge moment (sagging moment in actual slabs) and in plane compression,
punching strength of continuous slabs is less dependent on the hogging reinforcement ratio than
in the case of isolated specimens without edge restraints (refer to the decreasing gap between the
curves for = 1.64% and 0.84%).

Figure 3.19 Tests by Clément et al. [Cle14]: (a) moment application frame; (b) comparison be
tween the flexural responses of the test specimens and the model predictions; (c) punching

strength of the specimens as a function of applied edge moment

3.3.4 Tests by Chana and Desai 

Chana and Desai [Cha92] tested five 9 x 9 m full size slabs; four of which were equipped with
shear reinforcement. The slabs were supported on a column in the center and on a linear support
at the perimeter (Fig. 3.20). The perimeter support allowed both rotation and horizontal displace
ment. The load was applied in eight points placed at a radius of 1.2 m from the center. All the slabs
had similar concrete strengths, the other parameters were identical. Figure 3.20 shows the predict
ed load deflection response from the numerical model compared to the measured deflections. A
load deflection curve for the corresponding isolated element is also shown. It can be seen that the
edge restrained model predicts the deflections correctly, whereas the deflections of the isolated
specimens exceed the measured values several times. Due to this, all the punching loads are signif
icantly underestimated by the isolated model (Table 3.2). The edge restrained model slightly over
estimates the strength of the slab without shear reinforcement. Regarding the slabs with shear rein
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forcement, where the stresses in shear reinforcement units are predicted to remain low due to
small slab rotation (refer to the activation phase of shear reinforcement in Fig. 2.7(a)), the capaci
tites of the specimens are underestimated by the CSCT.
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Figure 3.20 Load deflection curves of specimens of Chana and Desai [Cha92]
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Figure 3.21 Column reaction deflection curves of the experiment of Ladner et al. [Lad77]

3.3.5 Tests by Ladner et al. 

Ladner et al. [Lad77] performed tests on a 7.2 x 7.2 m slab supported on 16 columns of different
sizes. The slab was loaded with uniform pressure to the failure of a slab column connection. After
each failure, the slab was repaired and the loading was continued, until all the connections had
failed in punching. In addition to the reaction force at each column, the deflection of the slab was
measured at different points under the slab. Figure 3.21 compares the measured deflections
around the interior columns on the strong and on the weak axis to the curves predicted by the
numerical model. Also presented are the failure criterion of CSCT and the load rotation curves of
corresponding isolated elements [Mut08b]. It can be seen that the numerical model predicts the
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deflections very well, whereas the calculations that are based on isolated elements always underes
timate the stiffness. The predictions of punching strength that are based on the deformations of
isolated hogging moment areas are more conservative because of the deflections that are overesti
mated in this model (Table 3.2).

3.3.6 Summary of the comparisons 

A comparison of the punching strengths predicted using differnet models is given in Table 3.2. The
calculations are performed using the following approaches:

V according to the Model Code 2010 [FIB13];

V of an isolated element according to the 4 linear model [Mut08b];

V of the presented continuous model, taking into account the effect of moment redistri
bution but neglecting the influence of in plane forces;

V of the presented continuous model, taking into account both the effect of moment re
distribution and the membrane action;

V of the presented continuous model, taking into account both the effect of moment re
distribution and the membrane action, with a failure criterion with modified rotation ’
[Cle14] (Eq. 2.2).

Table 3.2 Comparison between the test results and predictions based on isolated elements
and continuous slabs

Ref. Test
VR,test /b0 d fc
[ MPa]

VR,test /VR,pred
(isolated)

VR,test /VR,pred
(continuous,
without CMA)

VR,test /VR,pred
(continuous,
with CMA)

VR,test /VR,pred
(continuous,
modified crit.)

[Osp01] ER1 VS 0.469 1.53 1.29 1.14 1.13

[Cho12]
MRA 0.345* 1.06* 0.88* 0.80* 0.76*

MRB 0.327* 1.07* 0.87* 0.77* 0.73*

MRC 0.335* 1.36* 1.00* 0.82* 0.77*

[Cle14]

PC1 0.574 1.17 1.10 1.04
PC2 0.658 1.24 1.20 1.11
PC3 0.632 1.07 0.98 0.83
PC4 0.690 1.12 1.05 0.85

[Cha92]

FPS1 0.558 1.36 1.13 0.94
FPS2 0.608 1.29 1.23 0.99
FPS3 0.716 1.68 1.34 1.21
FPS4 0.771 1.61 1.41 1.25
FPS5 0.805 1.50 1.35 1.26

[Lad77]

C6 0.574 1.18 1.09 1.03 0.94
C7 0.658 1.27 1.22 1.15 1.07
C10 0.632 1.28 1.22 1.14 1.08
C11 0.690 1.46 1.44 1.33 1.26

mean 1.42 1.24 1.13 1.03
COV 12 % 9 % 10 % 13 %

* – cyclic tests, not included in the calculation of mean and coefficient of variation
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3.4 Parametric analysis 

In the previous sections, a model was introduced that allowed describing how slab continuity and
compressive membrane action influence the flexural deformations and punching capacity of actual
flat slabs. In the current section, results of a parametric study are presented, which analyzes the
influence of several factors on the prediction of the punching capacity of a self confined (without
external confining elements) continuous slab. The punching strengths are calculated using the
same five approaches listed in Section 3.3.6.

Figure 3.22 Parametric study: (a) influence of slenderness; (b) influence of the hogging rein
forcement ratio and the amount of sagging reinforcement, for slabs without shear rein

forcement and for slabs with large amounts of double headed stud shear reinforcement (pa
rameters: L = 7 m; h = 250 mm; d = 210 mm; c = 350 mm; fc = 35 MPa; fy = 550 MPa; = 0.6;

dg = 16 mm)

Figure 3.22(a) shows the influence of slab slenderness L/d on the punching capacity. Although the
slenderness effect is not taken into account in many codes of practice [CEN04, ACI14], it is well
known [Sta01] and can be successfully accounted for by using the CSCT [Mut08b] or the Model
Code 2010 [FIB13]. All the studied methods show a similar influence of the slab slenderness on the
punching strength. The effect can be seen to be more important for slabs with shear reinforcement.

Figure 3.22(b) shows the influence of the hogging reinforcement ratio on the punching strength.
The presented curves are for slabs without and with shear reinforcement (maximum punching
shear resistance due to concrete crushing (ksys = 2.8)). Two possible design cases are investigated.
First, a case where the amount of sagging reinforcement equals to the amount of hogging rein
forcement (plastic design) and a second case where the amount of sagging reinforcement is half of
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the amount of hogging reinforcement (corresponding to a typical elastic design). The ratio of hog
ging reinforcement is known to have an important influence on the stiffness and punching
strength of isolated test specimens and the influence is considered in many codes of practice
[CEN04, FIB13]. However, other design codes [ACI14] neglect its influence. The present analysis
shows that in the case of low hogging reinforcement ratios, the flexural and axial stiffness of the
surrounding portion of the slab might be able to stiffen the load rotation response in a considera
ble manner and therefore reduce the influence of hogging reinforcement ratio on the punching
capacity of continuous slabs.

The influence of the amount of sagging reinforcement on punching strength is currently not in
cluded in design codes [CEN04, ACI14, FIB13]. However, comparing the curves corresponding to
plastic and elastic designs in Figure 3.22(b) indicates this factor may nevertheless have an im
portance. In the presented example, doubling the amount of sagging reinforcement led to a punch
ing strength increase of approximately 5% for slabs without shear reinforcement and up to 10% for
slabs with shear reinforcement. This increase may be useful, for example in the assessment of exist
ing structures.

3.5 Influence of shrinkage and creep 

The present model of self confined slabs assumes that the axial force at the edge of the slab is zero
and the compressive membrane action arises only by the confinement provided by the slab itself.
In actual non prestressed slabs, compressive in plane stresses can also arise when the dilation of
the slab is restricted to some extent by adjoining structural elements such as walls, stiff columns or
edge beams that induce compressive axial force at the edge of the slab. Therefore, the actual behav
ior of a slab should mainly fall between that of a perfectly confined and a self confined slab
(Fig. 3.23(a)).

Figure 3.23 Influence of shrinkage: (a) load rotation curves; (b) edge displacements due to
shrinkage and due to slab dilation caused by cracking; (c) compressive stresses in the center

of the slab in self confined and fully confined cases (parameters: refer to Fig. 3.10)

However, it should be noted that shrinkage of concrete may reduce the compressive force in the
slab. In the case where lateral shrinkage (relative to that of adjoining elements) is larger than the
dilation caused by cracking, tensile restraining forces may appear at the edge of the slab instead of
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compressive forces. This reduces the efficiency of the compressive membrane action (the actual
response tends to the curve with no membrane action in Figure 3.23(a)). The influence of this phe
nomenon is illustrated in Figure 3.23(b), where the dilation of a self confined slab is compared to
the corresponding displacement at its edge due to a shrinkage strain of 0.5‰. For low levels of
load, the influence of shrinkage exceeds that of dilation, thus potentially reducing the compressive
membrane forces (which will be smaller than those shown in Fig. 3.23(c) for self confined slabs). In
these cases, curve with no membrane forces provides a safe estimate of the actual behavior. For
higher levels of rotation, the shrinkage strains will be compensated by the dilation of cracked con
crete and compressive membrane forces may again appear. However, in many cases, a self
confined model with zero axial force at the edge of the slab can be regarded as a lower bound of
the confinement effect for actual flat slabs.

Figure 3.24 Parametric study: (a) influence of reduced modulus of elasticity of concrete;
(b) influence of reduced tensile strength of concrete, for slabs without shear reinforcement
and for slabs with large amounts of double headed stud shear reinforcement (ksys = 2.8, con

crete crushing criterion governing) (parameters: refer to Fig. 3.22)

Long term behavior of flat slabs is influenced by creep of concrete that will lead to an increase of
slab rotation and potential decrease of the punching strength (as follows from the failure criterion
of CSCT), at least in the case when the increase of strength of concrete in time is not taken into ac
count. The presented approach can be used in a simplified manner to model the effect of creep by
using a reduced value of modulus of elasticity of concrete Ec/(1+ ) (where refers to the creep
coefficient and low variations of concrete stresses are assumed during the creep process) for calcu
lating the deformations due to long term loads. In Figure 3.24(a), the predicted punching re
sistances calculated with Ec are compared to predictions obtained with 50% Ec (to account for a
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reduced influence of creep effects in the cases where the ratio between permanent and maximum
loads is lower than one). The reduced stiffness is observed to reduce the punching strength simi
larly for both isolated slabs (up to 4%) as well as for continuous slabs with no membrane effect (up
to 5%) and self confined slabs (up to 7%). Therefore, it seems that tests on isolated specimens could
be suitable for further studies on the influence of creep on punching strength of flat slabs.

The axial stiffness of the tangential tension ring that confines the hogging moment area in a self
confined slab is largely provided by the contribution of uncracked concrete in the tension ring.
This effect is referred to as tension stiffening [Mar98] and it can significantly increase the axial
stiffness of the slab. It follows that the value of the tensile strength of concrete fct has a significant
influence on the punching strength predictions for continuous slabs. In order to illustrate this, Fig
ure 3.24(b) shows the influence of reducing the value of fct two times. However, for design purpos
es, average value of concrete tensile strength (fctm) should be used.

3.6 Summary and conclusions 

In this chapter, a numerical method was presented for determining the load deformation response
of axisymmetric slabs. This model allows quantifying the influence of moment redistribution and
the development of compressive membrane action in a continuous flat slab around interior col
umns. The model was validated by comparing its predictions to the results of punching tests with
unconventional edge conditions. In combination with the failure criterion of the CSCT, the pre
sented method is able to predict the punching strength of interior columns in continuous flat slabs.

The main conclusions are:

Flexural behavior may be different in actual flat slabs than in isolated test specimens.
Therefore, punching tests on such specimens may not always correctly represent the
strength of actual slabs, especially in the case of large columns and the presence of shear re
inforcement.

The flexural capacity of a continuous slab is higher than of an isolated element for the same
amount of hogging reinforcement. The stiffness of the load deformation response also
normally increases due to a reduction of the shear slenderness and the influence of com
pressive membrane action. Nevertheless, these effects do not seem to be accounted for in
the punching provisions of current design codes.

Compressive membrane action may arise from the restraint against the expansion of the
slab provided by stiff surrounding structural elements but also due to the restraint against
the expansion of the hogging moment area provided by the in plane stiffness of the sagging
moment area. This effect does not require any external confinement, is not sensitive to im
posed deformations such as shrinkage and can therefore be considered as a lower bound of
the behavior for actual continuous flat slabs.
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Due to the effects described above, the deflections of a continuous flat slab are smaller than
the ones of a corresponding isolated specimen. This leads to lower crack widths and poten
tially larger punching strength.

These aspects lead to potentially higher safety margins on the design for punching strength
around interior columns of actual flat slabs than presumed in the current codes of practice
as the provisions of those have been calibrated using tests on isolated specimens. Such in
crease in strength should be considered, particularly for the assessment of existing struc
tures in order to avoid unnecessary strengthening.

The Model Code 2010 punching previsions that are based on the CSCT can be adapted to
take these effects into account. A numerical approach is presented in the current chapter.
Comparisons to test results confirm the pertinence of these aspects.
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Simplified analytical model Chapter 4

The numerical model introduced in the previous chapter is able to succesfully predict the
flexural response of edge restrained specimens. This chapter presents background information for
a simplified analytical approach derived on the basis of the numerical model that can predict the
load rotation response of continuous self confined slabs. The model was also presented in a paper
accepted for publication in ACI Structural Journal [Ein16c]. It is derived using idealized distribution
of internal forces and deformations in flat slabs around inner slab column connections. The predic
tions of the simplified analytical model are also compared to the results of numerical modeling.

4.1 Isolated specimens 

4.1.1 Load-rotation curve 

According to the Critical Shear Crack Theory (CSCT), punching failure of a slab column connec
tion occurs when the slab rotation, caused by loading, reaches a critical value [Mut08b]. For con
tinuous or confined slabs, the load rotation relationship can be calculated using the numerical
model presented in the previous chapter. In the case of isolated test specimens, the flexural re
sponse can also be calculated from the moment equilibrium equation of an axisymmetric slab sec
tor [Kin60, Mut08b]:
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However, for using the CSCT in engineering practice, a simpler model was needed. Muttoni has
thus proposed a simplified relationship for approximating the load rotation curve of isolated slab
elements [Mut08b, Mut13]. This formula is also used for predicting the slab rotation is the punch
ing provisions of Model Code 2010 [FIB13]:
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Equation (4.2) includes physical parameters rs (radius of the hogging moment area) and Vflex (flex
ural strength the isolated hogging moment area). These parameters can be adapted for continuous
or confined slabs. The radius of the isolated element rs can be substituted with the distance to the
line of moment contraflexure in continuous slabs which, as shown in the previous chapter, actually
varies as a function of slab deformations. The flexural capacity Vflex can be calculated accounting for
the influence compressive in plane forces due to compressive membrane action (CMA) on the
flexural capacity. The level of in plane compression also varies depending on slab deformations.
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For continuous or confined slabs, Equation (4.2) thus becomes:
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where rs( ) and mR,hog( ) are non linear functions of slab rotation . In Equation (4.3), the ratio
(V/Vflex) is expressed as the ratio of average acting hogging moment in the support strip (calculated
with a linear elastic model) to the hogging moment resistance of the slab (mS,hog/mR,hog), as Vflex,isol

mR,hog when linear elastic slab response is assumed.

(g)

(d)

2.5

2

1.5

1

0.5

0

1 0
2

3
4

0.5
1.0
1.5

012 34

0.5

1.51.0

0 0
ψ [mrad]

60 0604020
ψ [mrad]

4020
ψ [mrad]

604020

0 0
ψ [mrad]

60 0604020
ψ [mrad]

4020
ψ [mrad]

604020

0 0
ψ [mrad]

60 0604020
ψ [mrad]

4020
ψ [mrad]

604020

V 
[M

N
]

6

4

5

3

2

1

0

−σ
n [

M
Pa

]

1.5

0.5
1.0

0.5
1.0
1.5

elastic
approximation

1.5

1.0

0.5

1.0

1.5

0.5

(h)

1.5

0.51.0

(i)

(e) (f)

1
0

0
4
2
34

(a)

ρsag

ρhog

ρhog

0.5

0.4

0.3

0.2

0.1

0

r s
/L

(b) (c)

 fct 

continuous slabs
isolated slabs
CSCT failure 
criterion

 fct 

 fct 

ρsag

ρsag

ρhog

Figure 4.1 Parametric analysis on continuous self confined slabs in comparison to isolated
specimens: (a–c) influence of hog [%], sag [%], and fct [MPa] on the position of the line of

moment contraflexure; (d–f) influence of hog [%], sag [%] and fct [MPa] on the development
of compressive stresses in the perimeter of the column; (g–i) influence of hog [%], sag [%]
and fct [MPa] on the load rotation curves (parameters, if not shown otherwise: L = 7 m,
h = 250 mm, d = 210 mm, c = 350 mm, fc = 35 MPa, fct = 3.2 MPa, fy = 420 MPa, dg = 16 mm;

hog = 1.0%; sag = 0.5%)
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Figure 4.1 shows the influence of the amount of reinforcement and its distribution, as well as the
tensile strength of concrete, on the response of self confined continuous slabs. The first row shows,
as a function of slab rotation, the distance between the center of the column and the line of mo
ment contraflexure (rs) due to non linear response of the slab. As was also shown in the previous
chapter, this distance is close to the elastic approximation of 0.22 L in the elastic phase before
cracking and also in the phase where both hogging and sagging moment areas are cracked and the
stiffnesses are therefore similar. In the phases where the stiffness of the hogging moment area is
smaller compared to that of the sagging moment area (due to concrete cracking or reinforcement
yielding), its size also decreases.

The second row shows the generated in plane average compressive stresses (that could potentially
increase the hogging moment resistance) in a slab around the slab column connection. This com
pression only appears after cracking of the slab and increases with increasing slab rotation as it is
generated by the dilation of the slab due to cracking (unlike prestressing that delays the cracking
and is not significantly influenced by the deformations of the slab). The compressive stress is
strongly influenced by the tensile strength of concrete because the tensile strength affects the crack
ing and stiffness of the tension ring around the hogging moment area.

In the third row in Figure 4.1, load rotation curves are shown together with the failure criterion of
the CSCT. As a comparison, with dotted lines, the load rotation curves for corresponding isolated
slabs are also shown. It can be seen that the difference between continuous and isolated slabs is
especially significant for the case of low amounts of hogging reinforcement (Fig. 4.1(g)).

It can be seen in Figure 4.1 that the parameters rs( ) and mR,hog( ) are complex functions of that
additionally depend on several other parameters. In order to model the flexural response of a con
tinuous or confined slab suitably, both parameters have to be determined with a sufficient accura
cy. In addition, as the rotation is not known, applying Equation (4.3) would require iterations
that are not desirable in design formulas. Therefore, a different approach is considered in the pre
sent research.

4.1.2 Internal forces and deformations at the flexural limit 

In order to simplify Equation (4.3), the internal forces and deformations of an axisymmetric isolat
ed slab at the flexural limit are compared to those of edge restrained elements. The load rotation
curve for a slab submitted to a load at the edge and supported in the center is shown in Fig
ure 4.2(a). A flexural mechanism of such slab is reached when the top reinforcement (correspond
ing to hogging reinforcement in an actual continuous slab) in the whole slab yields. The last part of
the slab to reach its flexural resistance is the outermost tangential strip of the specimen [Kin60,
Mut08b] (Fig. 4.2(c)). At that moment, the tangential curvature at the edge of the slab (which can
be calculated as t = /rs because the deformed shape of the slab part outside the immediate vicini
ty of the support is conical) equals the curvature at the onset of yielding due to hogging moments



Chapter 4 Simplified analytical model

54

y,hog (Fig. 4.2(e)). From these two equations, the slab rotation at the onset of the flexural plateau can
be calculated as (Fig. 4.2(f)):

shogyisoly r (4.4)

where y,hog = mR,hog/EI1 TS. Alternatively, in a simpler manner, the curvature of a reinforced con
crete cross section at a flexural limit ( y) can be assumed to be proportional to the yielding strain in
the reinforcement (fy/Es) divided by the effective depth d (when the depth of the compression zone
is neglected). Replacing this into Equation (4.4) yields an equation for the slab rotation at the flex
ural limit (V = Vflex) that is consistent with the simplified relationship proposed by Muttoni
[Mut08b] (Eq. (4.2)):
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Figure 4.2 Internal forces and deformations in an axisymmetric isolated slab at the onset of
a flexural plateau, calculated with the numerical model: (a) quadrilinear load rotation curve;
(b) slab deformations; (c) bending moments (radial – continuous lines, tangential – dashed
lines); (d) in plane forces; (e) curvatures (radial – continuous lines, tangential – dashed

lines); (f) slab rotation
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4.2 Continuous slabs with the influence of CMA neglected 

4.2.1 Internal forces and deformations at the flexural limit 

In order for the flexural limit in an axisymmetric edge restrained slab element to be reached, both
hogging and sagging yield lines need to develop (Fig. 4.3(b)). The load leading to a flexural failure
Vflex,cont, according to yield line analysis, is proportional to the sum of hogging and sagging flexural
strengths (Vflex,cont mR,hog + mR,sag). The rotation at the flexural limit cannot be calculated with Equa
tions (4.4) or (4.5) similarly to isolated elements, because yielding of tangential hogging reinforce
ment at rs does not yet imply reaching a flexural limit of the slab (Fig. 4.3(c)), as the sagging yield
line might not be fully developed at this stage.

Figure 4.3 Internal forces and deformations in an axisymmetric continuous slab element at
the onset of a flexural plateau, calculated with the numerical model neglecting the influence
of in plane forces and deformations: (a) load rotation curve; (b) slab deformations; (c) bend
ing moments (radial – continuous lines, tangential – dashed lines); (d) in plane forces (ne

glected); (e) curvatures (radial – continuous lines, tangential – dashed lines); (f) slab rotation

It is known that the rotation at the outer edge of the element is zero (representing a mid span
symmetry line of a continuous slab). Thus, the rotation at the line of moment contraflexure can be,
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in a general manner, determined by integrating radial sagging curvatures between the edge of the
element (rslab) and the line of moment contraflexure (rs). As seen in Figure 4.3(c), at the flexural limit
(just before the formation of a a circular sagging yield line), the radial moment in most of the sag
ging moment area is close to the flexural resistance mR,sag. If the radial sagging moment is assumed
to be constant at mR,sag, the corresponding curvature may also be taken constant at y,sag (Fig. 4.3(e)).
Under these assumptions, the slab rotation at rs can be calculated:

sslabsagyconty rr (4.6)

It may be interesting to compare the hypothesis of a constant (plastified) radial sagging moment
with the assumption of Kinnunen and Nylander [Kin60] that the radial sagging moments remains
in the elastic range until the punching failure (as described in Chapter 2). However, it should be
noted that the present hypothesis is made for the limit state at the onset of flexural yielding (for
mation of a circular sagging yield line) and does not attempt to describe the slab behavior in the
earlier stages of loading.

Figure 4.4 (a) Equilibrium of a slab sector inside the line of moment contraflexure (rs);
(b) Failure mechanism of an axisymmetric slab element

The size of the hogging moment area at the flexural limit (radius rs) can be determined by solving
the equilibrium equation (Eq. 3.1) of a slab sector inside the line of moment contraflexure
(Fig. 4.4(a)):

csiscssslabcshogRchogR rrqArrrrrqrrmrm (4.7)

Flexural capacity of the element can be determined with yield line method. The governing yield
line strength Vflex,cont is the lowest one obtained by varying the distance from the center of the slab to
the yield line ryl (Fig. 4.4(b)):
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4.2.2 Load-rotation curve 

As shown in Chapter 3, in continuous slabs with CMA neglected, the stiffnesses of hogging and
sagging mechanisms are different. The hogging mechanism develops fully at a rotation y,isol

(Eq. (4.4)), whereas the sagging mechanism reaches its capacity at a rotation y,cont (Eq. (4.6)). The
full load rotation response can be calculated by adding the contributions of sagging and hogging
mechanisms (Fig. 4.5(a,b)):

VVV sagisolcont (4.9)

where the function isol(V) can be calculated with (Eq. (4.1)) and the function sag(V) describing the
response of the sagging mechanim is assumed to be linear with Vflex,sag (determined as Vflex,cont –
Vflex,isol) reached at rotation y,cont (Fig. 4.5(a)).

A comparison presented in Figure 4.5(c–d) between the load rotation curves obtained with the
numerical analysis (with in plane forces neglected) and the simplified analytical formula (Eq. (4.9))
with hogging contribution calculated with the quadrilinear model (Eq. (4.1)) shows very good
agreement.

A simpler load rotation relationship can be established when the simplified parabolic curve given
by Equation (4.2) [Mut08b] is used for calculating the contribution of hogging mechanism ( isol) in
Equation (4.9). In addition, when calculating the rotation at the flexural limit (both hogging and
sagging reinforcement yielding) with Equation (4.6), it is assumed that rs 0 (refer to Fig. 4.1(a–
c)). In this case, the ratio y,isol/ y,cont rs/rslab y,hog/ y,sag. When y,hog and y,sag are taken equal and
rs/rslab = 0.22/0.7 0.3 (refer to Chapter 3), the load rotation relationship can be written as:
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Simplified curves calculated with Equation (4.10) compare reasonably well to the numerical ones
in Figure 4.5(e–f). A curve based on isolated specimens (Eq. 4.2) is also shown. It can be seen that
the contribution of sagging reinforcement, albeit limited, decreases the slab rotation for a given
level of load. However, at loads exceeding the flexural strength of an isolated specimen (cases
where significant moment redistributions between hogging and sagging mechanisms are account
ed for), the slab rotation calculated with Equation (4.2) may not be conservative.
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Eq. (4.9)
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Figure 4.5 Load rotation curves for continuous slabs with CMA neglected, comparison of
the simplified analytical approach (Eq. (4.10)) and the numerical model: (a) contributions of
hogging and sagging mechanisms; (b) total load rotation response; (c–d) comparisons of the
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shown otherwise: L = 7 m, h = 250 mm, d = 210 mm, c = 350 mm, fc = 35 MPa, fct = 3.2 MPa,
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4.3 Continuous slabs with CMA 

4.3.1 Internal forces and deformations at the flexural limit 

In continuous slabs with no external confining elements (self confined slabs), the edge conditions
at rslab (representing a mid span symmetry line) are zero rotation and zero in plane force. There
fore, the in plane compression that appears in around the slab column connection is only generat
ed by the restraint provided by the tension ring in the external part of the slab element.
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Figure 4.6 Internal forces and deformations in an axisymmetric continuous slab element at
the onset of a flexural plateau, calculated with the numerical model that accounts for the in
fluence of in plane forces and deformations: (a) load rotation curve; (b) slab deformations;
(c) bending moments (radial – continuous lines, tangential – dashed lines); (d) in plane forc
es (neglected); (e) curvatures (radial – continuous lines, tangential – dashed lines); (f) slab

rotation

Figure 4.6 shows the internal forces and deformations of an axisymmetric portion of a self
confined slab. The tangential compression in the middle of the slab has to be equilibrated with
tangential tension at the outer edge (Fig. 4.6(d)). Due to CMA, the tangential moment is increased
in the parts of the slab under tangential compression and decreased in the parts under tangential



Chapter 4 Simplified analytical model

60

tension (Fig. 4.6(c)). These two effects partly compensate for each other and thus the total influence
of self confinement on the flexural capacity of a slab is not very significant.

However, another effect has an important influence on the slab rotation at the flexural limit. As
shown in Figure 4.6(e), radial curvatures in a central part of the slab are significantly decreased
compared to a model where the in plane forces are neglected (Fig. 4.3). This reduction is caused by
compressive stresses in the slab that arise from the tensile stresses in the tension ring (Fig. 4.6(d)).
The reduction of radial curvatures is especially significant in sections where the radial compres
sion is sufficiently high in order to avoid flexural cracking (refer to the moment curvature law pre
sented in Fig. 3.4). In a simplified manner, the radial curvature can be assumed to be zero in the
part of the slab that is not cracked due to radial sagging moments (Fig. 4.6(b)). Outside of this part,
the radial curvature is estimated to be constant at the yielding curvature y,sag as in the case of the
analysis where the in plane forces are neglected (Fig. 4.6(c) and Fig. 4.3(c)). If the limiting radius
between the cracked and the uncracked parts is rcr, the rotation at flexural limit at the line of mo
ment contraflexure, calculated by integrating the curvatures between rslab and rs, is:

crslabsagycsy rr (4.11)

Comparing Equations (4.6) and (4.11), it can be seen that the rotation at the flexural limit decreases
considerably if in plane forces are accounted for, as rcr > rs (Fig. 4.6(b)).

Figure 4.7 (a) Stresses in an elastic cross section (b) Equilibrium of in plane forces in a slab
sector between rcr and rslab

The value of rcr is estimated by making the following assumptions. In an uncracked reinforced con
crete cross section (with the influence of reinforcing bars neglected), stress in the outermost ten
sion fiber ct can be calculated as (Fig. 4.7(a)):

h
m

ct
(4.12)

where m is a bending moment per unit width and = n/h is an in plane stress (compression is neg
ative). Cracking occurs when this stress reaches the tensile strength of concrete fct. Necessary in
plane compressive stress mcr that prevents cracking due to a bending moment m can thus be de
termined from Equation (4.12):

nt= σt·h
nr= σmcr·h

nedge= σedge·h

σct

Δφ

nt= σt·h

−n
m

rslab
rcr
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h
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h
mfctmcr

(4.13)

The equilibrium equation of axial forces for a slab sector limited by rcr and rslab is (Fig. 4.7(b)):

crslabtcrmcrslabedge rrhrhrh (4.14)

The force in the tension ring nt (Fig. 4.8(a)) is dependent on both on the dilation of the cracked cen
tral part of the slab (larger dilation generates higher stresses) as well as the axial stiffness of the
ring (higher stiffness causes higher stresses). The tensile stiffness of the ring decreases considerably
after cracking of concrete (Fig. 4.8(b)). After that, much larger dilation of the central slab portion is
needed to reach the same compressive stresses in the ring. However, the stiffness of the ring after
cracking does not drop abruptly but a crack formation phase occurs where the force stays at a con
stant level due to tension stiffening effect [Mar98]. The force starts increasing again only when the
dilation is sufficiently large to cause higher stresses with fully cracked stiffness of the ring.

Figure 4.8 Tensile stresses in the tension ring: (a) tangential and radial in plane forces; (b)
stress strain relationship for the tensile ring

Therefore, it is conservative to assume that the tangential tensile stress t is equal to fct and the lim
iting radius rcr where the concrete is cracked due to radial sagging moment can be calculated from
Equation (4.14):

slabedgecrslabctcr
sagR

ct rrrfr
h
m

f (4.15)

From Equation (4.15):

slab
sagR

edgect
cr r

m
hf

r (4.16)

By noting that (fct,eff h2)/6 is equal to the cracking moment mcr of the slab without an axial force and
effective tensile strength of concrete fct,eff = fct – edge, where edge is the radial stress at the edge of the
element (corresponding to a mid span symmetry line of an actual continuous slab), Equation (4.16)
becomes:
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r (4.17)
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It can be seen that the reduction of slab deformations due to the influence of in plane forces is es
pecially significant for slabs with low amounts of sagging reinforcement (when mR,sag mcr). Also,
a compressive stress ( edge < 0) at the edge of the element increases the size of the uncracked slab
portion rcr whereas a tensile stress ( edge > 0) reduces it. Slab rotation at the flexural limit can be thus
calculated from Equations (4.11) and (4.17):

sagR

cr
slabsagycsy m

mr (4.18)

4.3.2 Load-rotation relationship 

As explained in the previous section, in plane forces influence the load rotation response of con
tinuous slabs in two ways. Firstly, in plane compression increases the flexural strength in the parts
of the slab where compressive stresses are induced. However, in the case of self confinement, parts
of the slab (the tension ring) are under axial tension, where the flexural strength is reduced. There
fore, these effects partly counteract each other. Secondly, it was shown that the slab rotation at the
flexural limit of a self confined slab is reduced compared to a case where the in plane forces and
deformations are neglected. In addition, the two phases of first activating the hogging reinforce
ment and then the sagging reinforcement cannot be distinguished in confined slabs (compare Fig
ures 4.3(a) and 4.6(a)). This is caused by the fact that the sagging portion of a self confined slab also
contributes to the load bearing mechanism by generating compressive stresses in the hogging
moment area and it is therefore activated at lower load levels. This phenomenon allows describing
the load rotation relationship of self confined slabs with a single phase law.

Therefore, the load rotation curve of continuous self confined slabs can be approximated with a
parabolical curve, analoguosly to isolated elements (Eq. (4.2)):

csflex
csycs V

V (4.19)

where rotation at the flexural limit y,s c is given by Equation (4.18). If y,sag is approximated similar
ly to isolated slabs (Eq. (4.5)) and the fact that the flexural strength Vflex,s c is proportional to
mR,hog + mR,sag is taken into account (the possible influence of membrane action on the flexural
strength is neglected), Equation (4.19) becomes:
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Denoting the ratio between sagging and hogging moment capacities as mR,sag/mR,hog = , Equa
tion (4.20) can be rewritten as:
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where

s

slabcs

r
rkk (4.22)

For practical purposes, Equation (4.21) can be further simplified by using a constant value of
chosen for a case where the reinforcement is designed according to the direct design method of
ACI 318 [ACI14] ( = 0.5, which indicates that the amount of hogging reinforcement is twice the
amount of sagging reinforcement) and by assuming that in this case, the factor k is equal to one.
The influence of redistribution between hogging and sagging moments and CMA can then be ac
counted for by modifying the expression suggested by Muttoni [Mut08b] and utilized in Model
Code 2010 punching provisions (Eq. (4.2)) with a factor (1 – 2 mcr/mR,hog):
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Figure 4.9 Load rotation curves for continuous slabs with accounting for the influence of in
plane forces, comparison of the simplified analytical approach (Eq. (4.23)) and the numerical
model: (a–c) variable hogging reinforcement ratio hog = 1.50%; (d) variable sagging rein
forcement ratio (parameters: L = 7 m, h = 250 mm, d = 210 mm, c = 260 mm, fc = 35 MPa,

fct = 3.2 MPa, fy = 550 MPa)

Figure 4.9(a–c) shows a comparion between the load rotation curves calculated with the isolated
approach (Eq. (4.2)), Equation (4.23) and the numerical analysis. It can be seen that the stiffness
increase of the load rotation response of continuous slabs compared to that of isolated specimens
is more significant for lower hogging reinforcement ratios. This is due to the larger dilation and
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higher induced compressive stresses in the hogging moment area in the case of larger flexural de
formations of that area. Also, the difference between the numerical and the simplified approaches
increases with more overestimated rotations (thus being more conservative for punching calcula
tions) for decreasing hog. This is due to the previously made assumption when deriving Equa
tion (4.23) that tensile stress in the tension ring does not exceed fct.

It should be noted that Equation (4.23) does not account for the influence of sagging reinforcement
ratio. Whereas it is true that the flexural strength of continuous slabs is significantly influenced by
this parameter, the present analysis has shown that the influence is much less important on the
stiffness of the response at lower levels of load (Fig. 4.9(d)). This is explained by the fact that the in
plane force in the tension ring (that induces in plane forces in the hogging moment area) is nor
mally governed by tensile stresses of concrete and not by the amount of reinforcement in the ten
sion ring. Therefore, the stiffness enhancement of the slab on lower levels of load is not significant
ly influenced by the sagging reinforcement ratio. Therefore, for simplicity, this parameter is omit
ted in Equation (4.23). However, it can be taken into account in the future improvements of the
model by modifying the parameter k .

It can also be remarked that Equation (4.23) does not allow for distinction between the effects of
moment redistribution and compressive membrane action. In fact, the possible redistribution be
tween hogging and sagging moments is already considered in the Model Code 2010 formula
(Eq. (4.2)) by not limiting its application range to the cases where mS/mR,hog < 1.

When applying Equation (4.23) in practice, the cracking moment mcr should be calculated using a
value of concrete tensile strength that can be activated by tension stiffening in the crack develop
ment phase (normally the average value fctm can be used). As given by Equation (4.16), possible
radial tensile forces at the edges (for example, caused by restrained shrinkage of the slab) have to
be substracted from the tensile strength. When these forces exceed the tensile cracking capacity of
the slab, the isolated approach (Eq. (4.2)) provides a lower bound for the load rotation curve.

A minimum value for the factor (1 – 2mcr/mR,hog) has to be provided in order to avoid underestimat
ed rotations in the case of very low hogging reinforcement ratios (where mR,hog mcr). In the fol
lowing parametric study, a value of 0.4 is used as this limit.

4.4 Parametric study 

Figure 4.10 compares the punching strengths calculated with Equation (4.23) to the strengths of
self confined slabs determined using load rotation relationships from the numerical model. Predic
tions for corresponding isolated specimens (radius of specimens 0.22 L, load rotation curve deter
mined with Eq. (4.2)) are also shown. All the strengths are calculated in combination with a failure
criterion of the CSCT [Mut08b].

Figures 4.10(a) and (b) show the influence of hogging reinforcement ratio on the punching capacity
of slab column connections. Experiments on isolated specimens have shown that increasing the
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amount of hogging reinforcement increases the punching strength. Following this observation,
flexural reinforcement ratio in the vicinity of the column is taken into account in the punching
provisions of several codes of practice [FIB13, CEN04], although also neglected by some [ACI14].

The present analysis indicates, consistently with the experimental observations of Choi and Kim
[Cho12], that in the case of continuous slabs, the amount of hogging reinforcement has a lower
influence on punching capacity than in isolated specimens. This can be explained by the fact that
the influence of compressive membrane action and the contribution of sagging reinforcement are
both more significant in the case of low amounts of hogging reinforcement and considerably in
crease the flexural stiffness of such slabs (as seen by comparing the continuous and dotted load
rotation curves in Fig. 4.1(g)). The proposed formula for continuous self confined slabs (Eq. (4.23))
increases the Model Code 2010 punching strength predictions in the case of low reinforcement
ratios and can be of particular interest for assessment of existing slabs. The constant punching
shear strength used in ACI 318 is seen to be conservative for all the reinforcement ratios in the ana
lyzed range.
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Figure 4.10 Comparison of the punching strengths calculated with load rotation relation
ships from Model Code 2010 (dashed line), the proposed expression (continuous line) and
the numerical model (dotted line): (a, b) influence of the hogging reinforcement ratio; (c) in
fluence of the sagging reinforcement ratio; (d) influence of the slab slenderness with con
stant h (slenderness effect); (e) influence of the effective depth with constant slenderness
(size effect); (f) influence of the column size (parameters, if not shown otherwise: L = 7 m,
h = 250 mm, d = 210 mm, c = 350 mm, fc = 35 MPa, fct = 3.2 MPa, fy = 420 MPa, dg = 16 mm;

hog = 1.0%; sag = 0.5%)
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As explained in the previous section, the amount of sagging reinforcement does not have a signifi
cant influence on the stiffness of the flexural response (Fig. 4.9(d)). Thus, as shown in Fig
ure 4.10(c), the influence of this parameter on punching strength is also limited and neglecting it in
the simplified formula (Eq. (4.23)) is justified.

Figures 4.10(d–f) show the influence of different geometrical parameters on the punching shear
strength of self confined slabs. The slenderness effect [Mut08b] that exists in isolated specimens is
shown to be also present in continuous slabs in Figure 4.10(d). According to this, when slab depth
and column size are kept constant, punching shear strength of the slab column connection de
creases with increasing slab span. The influence of size effect in the analyzed models (with respect
to slab depth) is shown in Figure 4.10(e). The depth of the slab as well as slab span are varied (with
a constant slab slenderness L/h = 28) while the column size is kept constant. Accounting for the size
effect is especially important for the cases where predictions for actual structures are made on the
basis of experiments performed on reduced scale models. The proposed approach considers the
size effect similarly to Model Code 2010 because it is taken into account in the failure criterion of
CSCT. ACI 318 does not account for the size effect and provides conservative predictions for thin
ner slabs.

Figure 4.10(f) shows the influence of column size on the punching shear strength. Whereas the
total punching capacity of a slab column connection increases with column size, the unitary
strength on the control perimeter decreases according to the CSCT because a higher total load
leads to larger rotations and wider cracks around the column (note that the column size does not
influence slab rotation in either of the simplified Equations (4.2) and (4.23). The difference between
the numerical and the simplified models is caused by the assumption made in the simplified ap
proaches that the size of the hogging moment area is independent of column size (rs = 0.22 L). In
the numerical model, rs increases with increasing column size, leading to larger rotations and low
er unitary punching strengths. In the punching provisions of ACI 318, influence of column size on
the unitary shear strength is only accounted for very large columns (providing a transition from
two way to one way shear strength), which is outside of the range of the present parametric study.
For small columns, the predictions of ACI 318 are conservative.

4.5 Summary and conclusions 

The present chapter describes the derivation of simplified analytical formulas for predicting the
load rotation response of continuous and self confined slabs. The main conclusions of this chapter
are:

An approach based on the slab rotation at the flexural limit gives consistent results with the
parabolic load rotation curve proposed by Muttoni [Mut08b] that is used in the punching
provisions of Model Code 2010 [FIB13]. Therefore, it can be extended to account for the ef
fects of moment redistribution between hogging and sagging mechanisms and compressive
membrane action that are present in actual continuous slabs;
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Slab rotation that is needed to activate the sagging mechanism is larger than the rotation to
activate the hogging mechanism. In the cases where the compressive membrane action
cannot be relied on, this has to be taken into account by considering separate phases of the
load rotation response before and after full yielding of hogging reinforcement;

Compressive membrane action that occurs due to the tangential tensile stresses generated
in the sagging moment area allows activating the sagging portion of the slab at lower levels
of load. Therefore, a simpler single phase load rotation curve can be used in this case;

The proposed formula to predict the load rotation relationship of continuous self confined
slabs compares very well to the curves obtained from the numerical analysis described in
Chapter 3.
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Experimental study Chapter 5

This chapter is based on a paper published in ACI Structural Journal [Ein16a]. It presents
the results of a systematic experimental campaign consisting of thirteen symmetric punching tests
on interior slab column connections. The study focuses on the influence of varying the size of the
supported area and the slenderness of the slab. Other investigated parameters are the flexural rein
forcement ratio and the presence of shear reinforcement. The results of the present campaign and
of previous tests are compared to the predictions of different codes of practice and to the CSCT.

5.1 Introduction 

The punching provisions in several codes of practice [CEN04, ACI14] are based on empirical for
mulas developed on the basis of experimental data. Nevertheless, in some cases they can lead to
very different strength predictions. In fib Model Code 2010 [FIB13], the punching provisions are
based on the Critical Shear Crack Theory (CSCT) developed by Muttoni [Mut08b, Mut13], which
has shown wide consistency and generality. Similarly to the first mechanical model of Kinnunen
and Nylander [Kin60] it assumes that the punching shear strength of a slab is a function of its flex
ural deformations (referring to a strain effect on punching shear). Larger flexural deformations
(slab rotation ), such as in the case of lower amount of flexural reinforcement or more slender
slabs (Fig. 5.1(a)), lead to wider cracks in the vicinity of the column and thus decrease the strength
of a shear carrying concrete strut, thereby lowering the punching capacity (VR). Some empirical
formulas, as those of Eurocode 2 [CEN04] punching provisions, account for the influence of the
flexural reinforcement ratio. Yet, the effect of slab slenderness is neglected in Eurocode 2 as in most
codes of practice [CEN04, ACI14].

The mechanical model of the CSCT also provides a physical explanation for the effect observed by
Vanderbilt [Van72] that increasing column size decreases the nominal punching shear strength per
unit length of a control perimeter close to the column face. This is explained by the fact that when
the length of the shear critical perimeter increases, punching failures occur at higher loads. How
ever, increasing the column size has only a limited influence on the load rotation response of a slab
(Fig. 5.1(b)). Therefore, higher loads lead to increased rotations and larger crack widths in the criti
cal zone of the slab around the column that decrease the capacity of concrete to transfer shear
stresses between the slab and the column. This is, again, related to a strain effect. As a conse
quence, the CSCT predicts that the unitary punching shear strength on a control perimeter of a
slab column connection decreases with increasing column size in agreement to the observations of
Vanderbilt.
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Figure 5.1 Load rotation response and punching strength of slab specimens: (a) influence of
specimen slenderness; (b) influence of column size

Another effect that may reduce the punching capacity of large square or rectangular columns is
related to possible stress concentrations in the column corners [Sag14]. Figure 5.2 shows the shear
fields [Vaz08] and distribution of shear stresses (calculated assuming linear elastic slab behavior)
in a slab at a distance d/2 from the column edge for different column sizes and shapes. Whereas the
distribution for small square columns (Fig. 5.2(a)) as well as for circular columns (Fig. 5.2(c)) can be
assumed as uniform, higher stresses in column corners can be noted in the case of large square
columns (Fig. 5.2(b)). To account for this effect, the CSCT recommends assuming that only the
parts of the control perimeter that are close to the column corners (at distances smaller than 1.5d)
are active in carrying shear stresses.

Figure 5.2 Linear elastic shear fields in the vicinity of columns and distribution of shear
stresses on a control perimeter at d/2 from the column edge: (a) small square column; (b)

large square column; (c) large round column
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The predictions of CSCT for punching of slab column connections with variable column sizes, re
lated to the described phenomena, have been confirmed by previous test results [Lip12] (refer to
Fig. 5.3(a)). It should yet be noted that all these tests were performed using square columns. In
order to avoid stress concentrations in the column corners, a new test series that is presented in
this chapter is performed using round columns. Very wide range of column diameters is used
(83 mm to 660 mm). Four of the slabs have a flexural reinforcement ratio of 0.75% and four slabs
1.50%. All other parameters are kept constant.
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Figure 5.3 Predicted punching strengths according to the CSCT [Mut08b] and the results of
previous tests [Lip12, Fer10b]: (a) influence of column size; (b) influence of specimen size

As previously explained (Fig. 5.1(a)), slenderness of a specimen also has an influence on the
punching strength. This is shown in Figure 5.3(b) where available tests results are compared to the
CSCT. Unfortunately, tests on specimens with constant thicknesses but varying slendernesses (de
fined as B/2d) are scarce in the scientific literature [Sis97] (Fig. 5.3(b)). In order to provide extended
test data on this topic, a second test series is presented in this chapter where the size of the column
and slab thickness are kept constant but the specimen slenderness ratio B/2d is varied between 4.0
and 9.6. Three of the second series slabs are also equipped with shear reinforcement. In this cases,
the predicted influence of slenderness is especially strong (refer to the corresponding curve in
Fig. 5.3(b)).
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5.2 Punching provisions in codes of practice 

In all major codes of practice, punching strength of flat plates is verified by comparing the nominal
shear strength of an element to a nominal shear stress on a unit length of a control perimeter
around a column or a loaded area (Fig. 5.4):

R
0

v
db

Vv (5.1)

The control perimeter b0 should be defined in a manner that allows using nominal shear strengths
that are independent of the column shape and size. It should be noted that, for this reason, the con
trol perimeter and the actual failure surface are not directly related. Therefore, the definition of a
control perimeter may be governed by very different rules depending on the code. Its location may
vary between the edge of the loaded area and a distance 2d from it, its corners may be rounded or
sharp and the length may be reduced in the vicinity of openings, slab edges or in the case of long
straight edges of the loaded area (Fig. 5.4).

Figure 5.4 Control perimeters for punching verification in codes of practice

5.2.1 Influence of column size 

The different location of control perimeters in various codes affects the influence of the loaded area
size on their punching shear strength predictions. In addition, the codes account for different pa
rameters in their punching strength formulas. Figure 5.5 shows the resistance of a continuous slab
to a concentrated load (as nominal shear strength on the ACI 318 control perimeter) as a function
of the size of the loaded area with respect to the slab depth according to different codes of practice
and for two different reinforcement ratios. The capacity of the slabs may be governed by punching
shear or flexural failure. The flexural strengths are calculated using the yield line method with a
fan shaped mechanism (Fig. 5.6), where the location of the positive yield line is ryl that had to be
optimized in order to obtain the minimal flexural strength. To that purpose, the amount of positive
flexural reinforcement in the slab investigated in Figure 5.5 is assumed to be half the amount of
negative reinforcement. It should be noted that, depending on the geometry of the slab, folding
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mechanisms may also be governing. Punching failure can be avoided in the case of using suffi
ciently large columns (relative to slab depth) and low reinforcement ratios, or when using shear
reinforcement. In these cases, bending may limit the load bearing capacity of the slab (with en
hanced deformation capacity). However, in many cases, a brittle shear failure is predicted before
the full development of yield lines.
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Figure 5.5 Comparison of the punching predictions of Eurocode 2, ACI 318 and Model
Code 2010, without shear reinforcement and with large amounts of shear reinforcement
(double headed studs), depending on the column size to slab depth ratio (for square col
umns): (a) slabs with = 0.75% and no shear reinforcement; (b) slabs with = 1.5% and no
shear reinforcement; (c) slabs with = 0.75% and double headed shear studs; (d) slabs with

= 1.5% and double headed shear studs (parameters: L = 7 m; d = 210 mm; fc = 35 MPa;
fy = 420 MPa; = 0.75% or = 1.5%; dg = 16 mm)

Since 1963, the punching or two way shear provisions of ACI 318 [ACI14] are largely based on the
work of Moe published in 1961 [Moe61]. For cases in between one way and two way slab action,
such as rectangular or very large loaded areas, modifications were made in 1977 where the predic
tions tend towards one way shear strengths for elongated columns (c1/c2 > 2) or large column size
to slab depth ratios (c/d > 4) [ASC74]. In comparison to the other codes, it can be seen that ACI 318
predicts significantly higher shear capacities for slabs with lower reinforcement ratios and medium
c/d ratios (between 2 and 4) (Fig. 5.5(a)). In these cases (corresponding to typical floor slabs with
low slenderness that do not require large quantities of flexural reinforcement), the column size
does not lead to the reduction of nominal shear strength. Such reduction is based on the tests of
Vanderbilt [Van72] that were performed on very thin slabs (h = 51 mm). As the phenomenon of
punching is known to exhibit significant size effect (a decrease in nominal shear strength for in
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creasing slab thickness), these tests may have overestimated the punching strength of slabs on
large supports (such as drop panels).

Figure 5.6 Yield line pattern for a flexural failure of a continuous slab

The punching provisions of Eurocode 2 [CEN04] are based on Model Code 1990 [CEB93] and due
to the location of the control perimeter further than in ACI 318, exhibit less significant influence on
column size to slab depth ratio. In 1986, Regan [Reg86] reported that the British standard of that
time [BSI85], which used a control perimeter at 1.5d from the column edge, provided unsafe pre
dictions in the case of very small c/d ratios (less than 0.75) and recommended that additional verifi
cation on a smaller control perimeter be introduced. Similar verification was also added in Euro
code 2 that checks the shear stress at a control perimeter located at a column face (refer to b0,EC2(II) in
Fig. 5.4) with a higher nominal strength (vR,max). This verification is governing in the case of very
small values of c/d can be seen in Figure 5.5 as different regime in the Eurocode 2 predictions. This
formula only considers the concrete strength and the slab depth as parameters and does not ac
count for other influences, including the flexural reinforcement ratio. Therefore, the provisions of
Eurocode 2 lead to more conservative results for slabs with large amounts of flexural reinforce
ment supported on small columns.

The punching provisions of Model Code 2010 [FIB13] are based on the CSCT [Mut08]. A consistent
approach for all column sizes is used. The CSCT directly accounts for the flexural deformations of
the slab and allows accounting for the size and strain effects on its punching strength model
[Fer15]. The control perimeter is located at d/2 similarly to ACI 318, but the nominal shear strength
is dependent on slab rotation , decreasing for increasing column size. Therefore, the influence of
column size is more similar to the predictions of Eurocode 2 than to ACI 318. By accounting for the
influence of the flexural deformations, it allows a gradual reduction of the punching strength
when flexural limit is approached, describing the transition between shear and flexural failures.

Differences between the codes of practice are even more important in the case of slabs with shear
reinforcement (Fig. 5.5(c,d)). Such slabs fail at higher load levels and at larger deformations than
slabs without shear reinforcement [Fer09]. For low or moderate amounts of transverse reinforce
ment, increasing the shear reinforcement ratio also increases the punching capacity. However, tests
[Lip12] have indicated that for very large amounts of shear reinforcement, concrete close to the
edge of the loaded area governs the behavior and may crush before the shear reinforcement yields.
For such cases, the punching capacity no longer increases with larger amounts of transverse rein
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forcement [Fer09]. In this failure mode, punching strength depends on the type of shear reinforce
ment and detailing rules (anchorage type, rebar spacing). Therefore, design codes define a limit on
the maximum punching strength of shear reinforced slabs. In ACI 318 and Model Code 2010, the
limit depends on the shear reinforcement system with highest resistances for double headed studs.
In Eurocode 2, the maximum punching resistance of shear reinforced slabs is limited by the same
verification of vR,max at the edge of the column as for slabs without shear reinforcement. This leads
to lower predictions compared to the other codes for small column size to slab depth ratios (up to
approximately 1), as according to this approach, using shear reinforcement does not increase the
punching resistance. Predictions for larger column sizes, however, lead to higher strengths. Until
recently, Eurocode 2 punching provisions did not include any other limitation on the punching
strength of slabs with shear reinforcement. In 2014, an amendment [CEN14] to Eurocode 2 punch
ing provisions was published (to be implemented by the end of 2015) so that the punching re
sistances of shear reinforced slabs were limited to 1.5 times the resistances of similar slabs without
shear reinforcement. That leads to similar predictions to those of Model Code 2010. However, the
limitation of vR,max remained unchanged and thus the punching strength predictions of Eurocode 2
for the connections of slabs to columns having small sizes with respect to slab depth (that are
common in European practice) are more conservative than the provisions of ACI 318 and Model
Code 2010 (Fig. 5.5(c,d)).

5.2.2 Influence of slab slenderness 

Punching tests are normally performed on isolated test specimens that represent a negative mo
ment area of a continuous slab, separated from the rest of the slab by the line of moment contra
flexure. In slender slabs with regular spans L, according to a linear elastic calculation, the distance
from the center of the column to this line is approximately 0.22L [Kin60] (in the non linear analysis
presented in Chapter 3, this was also observed to be a reasonable approximation for cracked con
tinuous slabs). Therefore, the slenderness of a specimen (B/2d) corresponds to 0.22 times the slen
derness of an actual flat plate (L/d). Experimental results have shown that increasing specimen
slenderness reduces both its flexural stiffness and shear capacity [Sta01]. This suggests that punch
ing shear strength of an actual slab decreases with increasing span if the depth of the member re
mains constant. It is thus instrumental to select the size of a specimen considering the slenderness
of the actual slab that is modelled in the experiment. Despite this fact, in many experimental cam
paigns, the size of specimens is chosen only based on existing laboratory conditions.

The mechanical model of Kinnunen and Nylander [Kin60] as well as a design method based on
their model from Swedish concrete handbook of 1990 [Nyl90] account for the slenderness effect.
Also the CSCT [Mut08b] (Fig. 5.7(a,b)) and the codes that base their punching provisions on this
theory (Model Code 2010 [FIB13] and since 2003 the Swiss code for concrete construction [SIA03])
take this effect into account. However, slenderness is not accounted for as a parameter in the de
sign equations of ACI 318 [ACI14] and Eurocode 2 [CEN04] (Fig. 5.7(c,d)). It only affects the flex
ural strength of a slab, which may become the governing failure mode for more slender slabs with
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fairly low amounts of flexural reinforcement or for slabs with shear reinforcement. According to
those codes, the shift from shear to flexural failure is considered without a transition phase. Ac
cording to Model Code 2010, a pure flexural failure is predicted for much more slender slabs with
a transition phase where the governing failure mode is still punching but with large flexural de
formations due to yielding of flexural reinforcement in the column area. Increasing the slab slen
derness has a similar influence as reducing the flexural reinforcement ratio, as the punching
strength is based on the state of flexural deformations. This allows calculating the reduction of
strength and deformation capacity close to the flexural limit in a more refined manner.
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Figure 5.7 Influence of slab slenderness on punching shear strength: (a) load rotation curves
of specimens with different slenderness ratios and the failure criterion of the CSCT; (b)

punching shear strength predictions of the CSCT; (c) comparison of the punching strength
predictions of Eurocode 2, ACI 318 and Model Code 2010, slabs with = 0.9% without shear
reinforcement; (d) comparison in the case of slabs with large amounts of shear reinforce

ment (double headed studs) (parameters: refer to Fig. 5.5; c = 350 mm)

5.3 Experimental campaign 

The punching tests were performed in the Structural Concrete Laboratory at École Polytechnique
Fédérale de Lausanne (EPFL). In total, 13 slabs were tested. The test series is complemented by two
previous punching tests performed in the laboratory with similar parameters (PL7 [Lip12], PV1
[Fer10b]). The tested specimens (refer to Table 5.1) are grouped in two series, the first one investi
gating the influence of column size, while keeping the size of the slab constant, as the second one
varies the size of the slab, while keeping the column size constant (Fig. 5.8(a)). In the first series,
the columns were round in order to avoid the influence of possible stress concentrations in the
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corners of large columns [Sag14]. The shapes of the first series’ slabs were octagonal to be more
comparable to an axisymmetric geometry. In the second series, the columns and the slabs were
square.

For applying the load, eight round openings formed by steel tubes were left in the slabs at casting.
The centers of these openings were located 120 mm from the slab edge. Thus, the distance rq from
the loading points to the center of the column also varied together with the specimen size. The slab
thickness, in all cases, was 250 mm, representing a typical flat plate in buildings.

All the slabs were cast with normal strength concrete (fc = 30.8 – 44.1 MPa) with mainly limestone
alluvial gravel aggregate with maximum size of 16 mm. Compressive strength of concrete fc was
determined experimentally for each specimen by compression testing concrete cylinders
(150 x 300 mm) cast at the same time and from the same batch of concrete as the test specimens.
Concrete tests were performed at 7, 14 and 28 days after casting as well as on the day of the slab
test (Table 5.1) in order to follow the development of concrete strength.

Tensile (top surface) reinforcement consisted in all the cases of conventional hot rolled reinforcing
steel rebars that had a clearly defined yielding plateau (ductility class C of Eurocode 2 [CEN04]).
Yield strength of reinforcement fy (Table 5.1) was determined by tension testing four samples of
each diameter bars. The flexural reinforcement was uniformly distributed over the whole slab. The
rebars were placed in four orthogonal layers, two on the bottom and two on the top surface. The
top most and the bottom most reinforcement layers were oriented in the same direction. This is
referred to as the strong axis, whereas the other direction is referred to as the weak axis. Close to
the edge of the slab, the top reinforcement was anchored with 180° bends. The diameter of top sur
face rebars was 16 mm (for 4 slabs in the first series) or 20 mm (for 4 slabs in the first series and for
all the second series slabs) and the spacing correspondingly 125 mm or 100 mm, which gives a
nominal flexural reinforcement ratio of 0.75% or 1.5%. The bottom reinforcement consisted of cold
formed 10 mm rebars with spacing equal to that of the top reinforcement.

In the first series, the shape of the specimens was octagonal (with overall width of 3000 mm)
whereas the columns were round (with diameters ranging from dc = 83 mm to dc = 660 mm)
(Fig. 5.8(a)). The reinforcement layout was orthogonal. In the second series, both the slabs and the
columns were square. The columns had a side length of c = 260 mm while the side length of the
slabs varied from B = 1700 mm to B = 3900 mm. Two of the slabs of the second series and a refer
ence slab PV1 [Fer10b] did not have shear reinforcement, whereas three slabs were equipped with
double headed studs as shear reinforcement (made of ordinary 16 mm ribbed reinforcing steel
with yield strength of fy = 560 MPa and hot formed heads with diameters equal to 3 times the di
ameter of the shaft), fixed on rails in the bottom end to facilitate their installation. The stud rails
were placed radially in a star like pattern (according to the European practice) with 12 studs in
each perimeter (Fig. 5.8(b)). The distance from the edge of the column to the first stud was s0 = 80
mm (0.38 d) and the radial distances between subsequent studs s1 = 150 mm (0.71 d). The number of
stud perimeters was 4, 6 and 8 for slabs PP4, PP5 and PP6, respectively. The amount of shear rein
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forcement was selected to achieve the highest possible performance of the system that would lead
to concrete crushing failure between the column and the first perimeter of studs [FIB13, Lip12,
Fer09].

Figure 5.8 Test specimens: (a) geometric parameters; (b) placement of double headed shear
studs in specimens PP4, PP5 and PP6

Table 5.1 Main parameters of test specimens

Slab
B,
m

rq,
m

c,
mm

dc,
mm

d,
mm

fy,
MPa

fc,
MPa

PE10 3.0 1.505 83 210 0.77 538 40.4
PE11 3.0 1.505 166 215 0.75 538 37.5
PE9 3.0 1.505 330 218 0.74 538 44.1
PE12 3.0 1.505 660 212 0.76 538 37.6
PE6 3.0 1.505 83 215 1.46 542 38.4
PE7 3.0 1.505 166 213 1.47 542 42.5
PE8 3.0 1.505 330 214 1.47 542 42.0
PE5 3.0 1.505 660 210 1.50 542 36.7
PE4 1.7 0.765 260 197 1.59 517 35.1
PV1 [Fer10b] 3.0 1.505 260 210 1.50 709 31.1
PE3 3.9 1.926 260 204 1.54 517 34.2
PP4 1.7 0.765 260 211 1.49 510 30.9
PP5 2.3 1.120 260 205 1.53 510 31.5
PL7 [Lip12] 3.0 1.505 260 197 1.59 583 35.9
PP6 3.9 1.926 260 203 1.55 510 32.7

A view of the test setup is shown in Figure 5.9. For all specimens (except for PV1, for which the
details can be found elsewhere [Fer10b]), the load was applied by means of 4 hydraulic jacks con
nected to a common oil circuit under a strong 800 mm laboratory floor. The load was spread to
eight loading points close to the perimeter of the slab at a distance rq from the slab center. The slab
was supported on a central steel column, on which a steel plate representing the column was

Series I
(a) (b)

Openings for
load application

Rails with studs

Series II

c

s0s1

BB

dc
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placed. A thin layer of plaster was placed on the steel plate before placing the specimen to avoid
stress concentrations due to possible surface irregularities. The load was applied by manual pump
ing at a rate of approximately 25 kN/min.

Figure 5.9 Test setup

The applied load was measured with two independent sets of load cells on the hydraulic jacks as
well as on the load distribution elements (Fig. 5.9) and by strain gauges on the steel column. The
differences between the results obtained with the three measurement systems were negligible. The
slab rotation was measured with 4 digital inclinometers located on the main axes at a distance of
1380 mm from the center of the slab. Vertical displacements of the slab surface were measured
with linear variable displacement transducers (LVDTs).

5.4 Test results 

The main results of the tests are shown in Table 5.2 and the load rotation curves in Figure 5.10.
Slabs without shear reinforcement failed with a sudden drop of load. The rotations at failure var
ied between 5 and 35 mrad, indicating a transition from brittle to a more ductile failure type (it can
be noted that slab PV1 had reinforcement with higher yield strength, but no yielding occurred and
thus the load rotation curve is not affected by this issue). At failure, the steel plate simulating the
column suddenly penetrated into the slab with a loud noise. Exceptions were the slabs supported
on the smallest columns (PE6 and PE10), where the failure was more gradual and accompanied by
quieter cracking sound during few seconds. A diagonal failure crack was revealed after saw
cutting the specimens (Fig. 5.11). The failure cracks were irregular, with an average angle between
the slab surface and the failure crack of approximately 45° or lower in most cases (refer to the pho
to of a typical crack in Fig. 5.12(a)). In some specimens, the failure cracks had different shapes and

Specimen

Steel column

Tension bars
Steel spreader elements

Tension bars

Load cells

Load cells
Hydraulic jacks

Strong laboratoy floor
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angles on different sides of the column. In addition to the failure crack, several flexural cracks were
seen on the saw cuts that were inclined towards the column.

Figure 5.10 Load rotation curves of the specimens: (a) slabs with round columns,
nom = 0.75% and no shear reinforcement, variable column diameter; (b) slabs with round

columns, nom = 1.5% and no shear reinforcement, variable column diameter; (c) slabs with
nom = 1.5% and no shear reinforcement, variable specimen size (slenderness); (d) slabs with

nom = 1.5% and double headed shear studs, variable specimen size (slenderness)

The slabs with shear reinforcement failed at much larger flexural deformations. In slabs PP5 and
PL7, the load rotation curve reached a short plateau before failing with a sudden decrease of the
load, whereas in the case of PP6 (the most slender slab), the testing system did not allow reaching
sufficiently large deformations in order to achieve a punching failure. The cracking patterns on the
saw cuts of all slabs with shear reinforcement showed that the failure zone was severely damaged
by flexural and shear cracks as well as by cracks in the anchorage zones of shear studs
(Fig. 5.12(b)). The column plates penetrated also deeper in these slabs. Failure cracks (the cracks
with the widest opening after the failure) were located either between the first perimeter of studs
and the edge of the column plate or between the first two stud perimeters. The cracks crossing the
shear reinforcement had much smaller widths. This suggests that shear reinforcement did not
yield prior to failure which was also indicated by strain gauge measurements close to the top and
bottom heads on the studs. Similarly to the slabs without shear reinforcement, the cracking pat
terns were not symmetric around the columns.
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Figure 5.11 Saw cuts of the slabs along the weak axis

Figure 5.13 shows the obtained punching shear strengths for series I (normalized with respect to
concrete strength, control perimeter of ACI 3181 and effective depth) as a function of the column
diameter (Fig. 5.13(a)) and for series II, as a function of the slab slenderness (Fig. 5.13(b)). The shear
strengths predicted by ACI 318 and CSCT are also plotted (in dashed and in continuous lines, re
spectively). In the case of round columns, the predicted nominal strength according to ACI 318 is
constant up to column diameters of 5.4d (for square columns, the limit is at c = 4d). In the experi
mental results, a decrease of the nominal punching shear strength with increasing column size can
already be seen for smaller dc/d ratios. Although the ACI 318 predictions were conservative for all
the slabs in the present test campaign, the margin of safety decreased with increasing column sizes
and decreasing reinforcement ratios.
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Table 5.2 Experimental results and predicted punching strengths of test specimens, present
study and the experiments of Lips et al. [Lip10], Regan [Reg86] and Sistonen et al. [Sis97]

Series Slab
d

mm
c/d dc/d B/2d

R,test

mrad
VR,test
kN

VR,test /
Vflex

VR,test /
VR,ACI

VR,test /
VR,EC2

VR,test /
VR,CSCT

VR,test /
VR,MC

present
study

PE10 210 0.40 7.14 6.5 530 0.53 1.29 1.19** 0.92 1.12
PE11 215 0.77 6.98 10.1 712 0.67 1.36 0.96 1.05 1.29
PE9 218 1.51 6.88 13.8 935 0.79 1.12 1.01 1.04 1.29
PE12 212 3.11 7.08 29.4 1206 0.84 1.02 1.11 1.09 1.41
PE6 215 0.39 6.98 4.5 656 0.33 1.58 1.50** 0.99 1.10
PE7 213 0.78 7.04 6.7 871 0.42 1.58 0.93** 1.07 1.21
PE8 214 1.54 7.01 8.7 1091 0.48 1.38 0.98 1.05 1.20
PE5 210 3.14 7.14 12.7 1476 0.53 1.27 1.10 1.12 1.32
PE4 197 1.32 4.31 5.3 985 0.38 1.38 1.03 0.98 1.14
PV1* 210 1.24 7.14 7.6 978 0.35 1.33 0.99 1.07 1.22
PE3 204 1.27 9.56 10.0 961 0.47 1.30 0.97 1.11 1.31
PP4 211 1.23 4.03 16.8 2076 0.75 1.41 1.46** 0.97 1.24
PP5 205 1.27 5.61 21.5 1812 0.85 1.27 1.29** 1.02 1.22
PP6 203 1.28 9.61 32.0 1569 0.78 1.09 1.09** 1.06 1.25

mean 1.31 1.12 1.04 1.24
COV 12.0% 15.8% 5.5% 6.8%

[Lip10]

PL1 193 0.67 7.77 5.2 682 0.36 1.36 0.91** 1.03 1.16
PL3 197 2.64 7.61 11.7 1324 0.54 1.16 1.06 1.08 1.29
PL6 198 0.66 7.58 16.6 1363 0.71 1.30 1.77** 1.02 1.20
PL7 197 1.32 7.61 27.6 1773 0.86 1.23 1.23 1.09 1.29
PL8 200 2.60 7.50 2256 0.91 0.98 1.18 1.05 1.26

mean 1.21 1.23 1.05 1.24
COV 12.2% 26.5% 2.9% 4.7%

[Reg86]

V/1 118 0.46 6.78 170 0.33 1.35 1.17** 0.81 0.98
V/2 118 1.44 6.78 280 0.50 1.37 1.10 0.94 1.18
V/3 118 0.93 6.78 265 0.49 1.63 1.14 1.05 1.29
V/4 118 0.86 6.78 285 0.53 1.35 1.15 1.02 1.26
V/5 118 1.27 6.78 285 0.51 1.48 1.15 1.12 1.38

mean 1.44 1.14 0.99*** 1.22***

COV 8.5% 2.2% 12.1% 12.5%

[Sis97]

L1 172 1.17 5.15 503 0.72 1.44 1.26 1.08 1.46
L2 176 1.15 5.03 537 0.75 1.49 1.30 1.12 1.52
L3 173 1.16 5.12 530 0.77 1.51 1.32 1.13 1.53
L4 170 2.36 5.79 686 0.65 1.30 1.26 1.05 1.42
L5 172 2.32 5.73 696 0.65 1.31 1.26 1.05 1.42
L6 175 2.32 5.63 799 0.73 1.45 1.41 1.18 1.59
L7 177 1.14 5.56 478 0.53 1.53 1.13 1.05 1.34
L8 174 5.17 7.10 1111 0.55 1.28 1.25 1.11 1.51
L9 172 5.22 7.18 1107 0.56 1.29 1.26 1.12 1.53
L10 173 5.21 7.14 1079 0.54 1.25 1.22 1.08 1.48

mean 1.39 1.27 1.10 1.48
COV 7.9% 5.7% 3.7% 4.9%

all tests, mean 1.34 1.18 1.05 1.30
all tests, COV 11.3% 15.2% 6.7% 11.2%

* – reference test, Fernández Ruiz et al. [Fer10b]
** – vR,max is governing in the Eurocode 2 prediction
*** – dg is not reported for these experiments, dg = 16 mm [0.63 in.] is assumed (assuming dg = 10 mm [0.39 in.] would give
a mean of 1.04 and 1.28 for CSCT and Model Code 2010, respectively; assuming dg = 20 mm [0.79 in.] would give 0.96 and
1.18)
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Figure 5.13(b) confirms the CSCT [Mut08b] prediction that increasing specimen slenderness de
creases its punching capacity. Consistently with the predictions of Model Code 2010 [FIB13]
(Fig. 5.7), the effect is more pronounced for slabs with shear reinforcement.

(a)

(b)

Figure 5.12 Photos of typical punching cracks on a saw cut: (a) slab without shear rein
forcement (PE7); (b) slab with shear reinforcement (PP4)

All the slabs analyzed in the present research failed below their respective flexural strengths (refer
to the calculated VR,test/Vflex ratios in Table 5.2, where the values of Vflex are calculated using the yield
line formulas given in Appendix B of the thesis. The VR,test/Vflex ratios increased with increasing col
umn sizes and slenderness ratios. However, the load rotation curves in Figure 5.10(d) suggest that
a limit may have been reached for the specimens with shear reinforcement. These failures may be
interpreted as failures due to combined effects of bending and shear. Such combined failures are
also possible in continuous slabs in actual structures. However, the flexural strength of an actual
slab may be higher than the flexural strength of an isolated test specimen. In Chapter 3, an exten
sion of the CSCT was presented that allows predicting the punching capacities of continuous slabs
and can also consider the influence of compressive membrane action in such slabs. Of the com
pared models, only the CSCT and the Model Code 2010 provide a physical method for assessing
and comparing the behavior of both continuous and isolated slabs.

5.5 Comparison of test results to code predictions 

Figure 5.14 compares the results of the present test campaign to the predictions of ACI 318
[ACI14], Eurocode 2 [CEN04], CSCT [Mut08b] and Model Code 2010 [FIB13] (Level of Approxima
tion II). The details about the formulas used in the calculations can be found in Appendix A of the
thesis. Previous results of similar campaigns by Lips et al. [Lip12] with variable column sizes, Re
gan [Reg86] with very small columns as well as Sistonen et al. [Sis97] with variable slab slender
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ness and column size to slab depth ratios are also included. The comparisons are shown as a func
tion of c/d or dc/d and specimen slenderness ratio (B/2d). The values are also given in Table 5.2.

The design formula of ACI 318 yields conservative predictions (the average measured to predicted
strength of all the experiments is 1.34). However, the predictions are less conservative for larger
column sizes in combination with lower reinforcement ratios and round columns (the lowest ratio
of experimental load to prediction in current campaign is 1.02 for slab PE12). The slenderness ef
fect is also neglected and thus a reduction in the margin of safety can be seen for higher slender
ness ratios. The coefficient of variation (COV) for all the tests is 11.3%.

Figure 5.13 Normalized nominal shear stresses at failure on the ACI 318 control perimeter
and comparison to the CSCT (continuous lines) and ACI 318 (dashed lines) predictions: (a)
depending on column diameter (series I); (b) depending on specimen slenderness (series II)

The predictions of Eurocode 2 for the tests of the present test campaign fit the test results well if
the governing verification is the one performed at the basic control perimeter located at 2d from
the column edge. However, when the governing failure mode is exceeding vR,max at the column
edge, the results show larger scatter. This limit also governs for the three slabs with shear rein
forcement tested in the current campaign, as it assumes the same strength for both slabs with and
without shear reinforcement. This lack of agreement has also been presented in previous studies
[Lip12], showing a clear increase of punching capacity as a result of using shear reinforcement
even in the case of small columns (with respect to slab depth). Thus, these predictions of Euro
code 2 are fairly conservative for these cases. On the contrary, Eurocode 2 gives excellent predic
tions for the five tests of Regan [Reg86] with c/d ratios between 0.46 and 1.44 where vR,max governs
in only one case. These inconsistencies show that the Eurocode 2 verification of punching of small
columns may not capture the actual influencing parameters correctly. For all the results, the aver
age measured to predicted strength is 1.18 with a COV of 15.2%.

Regarding the predictions of both ACI 318 and Eurocode 2 for slabs with shear reinforcement
(plotted with square markers with white fill in Fig. 5.14), a trend can be observed that leads to less
conservative predictions for increasingly slender slabs. This is caused by the fact that although
Eurocode 2 punching provisions account for the flexural reinforcement ratio, neither of the codes
take the influence of slab slenderness into account.

(a)
0.6

0.4

0.2

0

1.2

0.8

0.6

1.0

0.4

0.2

0

dc /d
0 63 4 521

(b)

B / 2d
121062 4 80

VR,ACI

VR,studs,ACI
VR,ACI

ρ =1.50%, with shear reinforcement

ρ = 0.75%, without shear reinforcement
ρ =1.50%, without shear reinforcement

V
/(

b 0,
A

CI
·d

·  
f c) 

[  
M

Pa
]



5.6 Summary and conclusions

85

V R,
te

st
 /

V R,
pr

ed
 

CSCT

B / 2d B / 2d B / 2d B / 2d
0 128 10642 8 10642 8 10642 8 10642

2

1

1.5

0.5

0

Model Code 2010 (LoA II)

0 12

Eurocode 2

0 12

ACI 318

0 12

round columns
square columns

V R,
te

st
 /

V R,
pr

ed
 

CSCT

c /d
0 64 5321 0 64 5321 0 64 5321 0 64 5321

2

1

1.5

0.5

0

Model Code 2010 (LoA II)

c /d

Eurocode 2

c /d

ACI 318

c /d

with shear reinforcement
tests by Regan [Reg86]

tests by Sistonen et al. [Sis97]

Figure 5.14 Comparison of test results to the codes of practice (for round columns,
c = /4 dc)

The CSCT provides consistent results for all column size and specimen slenderness ratios. The
mean ratio of experimental to predicted strength is 1.05 and the coefficient of variation 6.7%. For
the smallest columns (PE6 and PE10 with dc = 83 mm and V/1 of Regan [Reg86] with dc = 54 mm),
an overestimate of the punching strength can be seen. In these cases, the compressive stresses at
failure under the column were close to 3 fc (in other specimens, the average stress under the col
umn plate always remained below fc) and a different failure mode than typical to punching may
have been attained in these tests. This hypothesis is also supported by the observations during the
tests of the present experimental campaign and saw cut patterns that showed a more gradual fail
ure with crushing like noise and steeper failure cracks.

The punching provisions of Model Code 2010 are based on the CSCT and the predictions are there
fore similar. The differences can be explained by the different level of safety (the failure criterion
curve of Model Code 2010 has been calibrated so that 5% of the experimental results are below the
predicted strength, whereas the CSCT failure criterion corresponds to a mean of test results) and
the fact that the non linear load rotation curve is replaced with a simplified parabolic relationship
in Model Code 2010. The mean of the predictions is 1.30 and COV 11.2%. The influence of the two
investigated parameters (column size with respect to slab depth and slab slenderness) is yet suita
bly reproduced.
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5.6 Summary and conclusions 

In this chapter, the results of an experimental campaign investigating the influence of specimen
slenderness, column size and flexural reinforcement ratio on the shear strength of interior slab
column connections are presented. The results are compared to the predictions of ACI 318, Euro
code 2, the CSCT and Model Code 2010.

The main conclusions are:

Experiments show that slenderness of a specimen influences the stiffness of its load
rotation response. Through influencing the crack widths, it also affects the punching
strength. This effect is significant in the slabs with shear reinforcement and has to be con
sidered when selecting the specimen size in the design of punching tests.

Contrary to the experimental evidence, this parameter is not considered in the Eurocode 2
and ACI 318 punching provisions.

Punching tests on slabs with varying support sizes indicate that the unitary nominal shear
strength on a control perimeter at d/2 from the column face decreases with increasing col
umn size. This effect can also be explained by the influence of cracking developing in the
vicinity of the supported area.

The decrease of the unitary nominal shear strength in ACI 318 for large columns may lead
to an overestimate of the punching strength in the case of lower reinforcement ratios and
thicker slabs. However, if the perimeter is located at 2d as in Eurocode 2, the punching
strength of very small columns is overestimated. The deformation dependent nominal
shear stress of CSCT describes the punching phenomenon in a physical manner and pro
vides good estimates for all different column sizes studied.

The verification in Eurocode 2 that limits the shear stress at a control perimeter located at
the column face neglects the influence of several important parameters and therefore may
lead to very conservative results in the case of slabs with shear reinforcement.

The CSCT and the punching provisions of Model Code 2010 consistently account for the in
fluences of column size and slab slenderness. They provide the best mean and coefficient of
variation for the ratio of experimental to predicted punching load amongst the compared
models.
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Internal measurements Chapter 6

In the test campaign described in the previous chapter, development of cracking inside
some selected specimens was tracked by means of a novel measurement system based on a coor
dinate measuring arm. This chapter analyzes these observations in detail and compares them to
the measurements of the conventional instrumentation on slab surfaces. The main differences be
tween the shear behavior of two way specimens and that of previously studied one way elements
are discussed. This chapter is based on paper “Measurements of internal cracking in punching test
slabs without shear reinforcement” submitted for publication inMagazine of Concrete Research.

6.1 Previous work 

In shear tests of one way elements (beams or slab strips), formation and propagation of flexural
and shear cracks has been observed and measured by mechanical [Cam13, Vol14] or optical means
[Cav15]. Through the rigorous experimental work, good overview of shear transfer actions in
beams has been obtained, both in the case of elements with shear reinforcement [Cam13] as well as
without it [Fer15].

In punching tests, the development of shear cracks is even more challenging to follow, as the
cracking occurs inside the element. Several methods have been used to study the mechanism of
punching failures. Moe [Moe61] tested slabs with large openings close to the slab column connec
tion and studied the growth of cracks on the sides of the openings. According to his observations,
diagonal flexural cracks developed towards and eventually through the compression zone similar
ly to the behavior of one way elements. Kinnunen and Nylander [Kin60] attempted to estimate the
aggregate interlock stresses between the lips of the diagonal cracks. They eliminated this action in
some of their test slabs by placing an impregnated cardboard cone in the place of the expected di
agonal crack. The results showed a reduction in the failure load, in some cases very limited (10%),
in another cases more significant (up to 54%). The disadvantage of this method was the pre
defined shape and length of the diagonal crack that may have influenced the results. In the tests of
Regan [Reg83] and Ramos [Ram03], precast concrete blocks with strain gauges glued on the sur
faces were placed in the punching specimens during their fabrication with the aim of measuring
the magnitude and direction of radial strains inside the slab. These measurements showed the de
velopment of an inclined compression strut close to the column. However, this method could not
detect concrete cracking, as cracks may have formed between the strain gauges. Crack openings
have also been measured in the tests performed at EPFL, starting from Guandalini et al. [Gua09].
This has been done with LVDTs that have been fixed on the top and bottom surfaces of the slab
measuring the thickness variation through a small hole drilled through the slab. Yet, these meas
urements only represent the vertical component of the opening of the internal cracks.
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Although all the aforementioned experiments gave valuable information about the punching fail
ure mechanism, information obtained with these methods was either incomplete or required sig
nificantly modifying the geometry or composition of the slab in a way that may have influenced its
punching behavior. To avoid these shortcomings, Clément et al. [Cle12] performed three punching
tests where the formation of cracks at various loading steps was followed using a robotic arm to
measure the coordinates of a number of measurement points inside the slab. The same measure
ment system is used in the campaign described in the present chapter.

Figure 6.1 Comparison between the cracking patterns: (a) one way (beam) specimen SC12b
of Campana et al. [Cam13] ( = 1.5%); (b) saw cut surface of two way (slab) specimen PF22
of Clément et al. [Cle12] ( = 1.5%); (c) saw cut surface of specimen PG3 of Guandalini et al.
[Gua09] with low flexural reinforcement ratio ( = 0.33%); (d) punching cone of specimen

PT23 of Sagaseta et al. [Sag11] with unequal reinforcement ratios in two directions

In Figure 6.1, cracking of some of the previously tested specimens is compared. In a sufficiently
slender beam (such as SC12b [Cam13] shown in Fig. 6.1(a)), tension chord is normally cracked over
the whole length of the element. The flexural cracks reach down to the neutral axis and may prop
agate into the compression chord. According to Fernández Ruiz et al. [Fer15], shear resistance of
the element is controlled by one of these cracks, called the critical shear crack, which may either
progress to become the failure crack (as in specimen SC12b shown in Fig. 6.1(a)) or trigger a sud
den development of a new crack that leads to the failure [Cav15].

The cracking patterns observed on the saw cut surfaces after a punching test is often different from
the cracking on the sides of one way elements [Mut10]. The internal measurements of Clement et
al. [Cle12] indicated that the development of cracks differs as well. Figure 6.1(b) shows a two way
slab specimen (PF22 [Cle12]) with similar geometry (slab depth 400 mm, distance between the load

(a) (b)

(c) (d)
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critical shear crack
98%·VR

VR

95%·VR

VR

ρmin=0.35%

failure crack

critical shear crack
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and the support 1380 mm) and reinforcement ratio ( = 1.5%) as the previously described beam
SC12b. Flexural cracks on the saw cut are concentrated in a zone located directly above the sup
port. The furthermost flexural crack from the column edge (called the critical shear crack) is in
clined at approximately 45°. This crack was detected by the internal measurement system after the
appearance of flexural cracks on the surface of the slab and seen propagating to the vicinity of the
compression chord, influencing its stress state. In contrast, the failure crack was not detected by
the internal system even at the last measurement step at 95% of the failure load, which suggests its
sudden appearance and propagation. Furthermore, this crack does not touch the critical shear
crack. On the saw cut, it can be seen as having much flatter inclination and straighter shape than
the typical failure cracks in beam specimens (such as in SC12b in Fig. 6.1(a)).

However, it should be noted that in some other punching tests, different observations have been
made. For instance, on the saw cuts of specimen PG3 of Guandalini et al. [Gua09], which had low
amount of flexural reinforcement ( = 0.33%), the failure cracks were seen having steeper angles
(Fig. 6.1(c)) and turning quasi vertical close to the tension chord. This suggests that these cracks
had a flexural origin and that the flexural parts of the cracks were coincident with the critical shear
crack. Moreover, in slabs with non symmetric flexural reinforcement (as PT23 of Sagaseta et al.
[Sag11] in Fig. 6.1(d)), the two types of failure cracks have been observed to occur in the same spec
imen. In the direction with lower amount of flexural reinforcement, a steeper failure crack can be
seen, whereas the failure crack in the direction with higher reinforcement ratio has a lower angle
similarly to that of PF22 (Fig. 6.1(b)).

This chapter describes in detail the measurements, both internal and external, performed during
punching tests of six symmetric specimens (PE11, PE9, PE12, PE7, PE8 and PE5) from the test cam
paign presented in the previous chapter. Three different diameters of the support plate (166, 330
and 660 mm) and two flexural reinforcement ratios (nominal values 0.75% and 1.50%) were used.
For further information about the specimens, refer to Chapter 5.

6.2 Measurement devices 

6.2.1 External measurements 

The slabs were instrumented with various measurement devices (Fig. 6.2(a)):

the applied load was measured using four load cells on the load distribution elements and
four load cells between the strong floor and the hydraulic jacks (Fig. 5.9);

the slab rotation was tracked with four inclinometers on the main axes on the top surface
close to the edges of the slab;

vertical displacement profiles on the top and bottom slab surfaces were measured with lin
ear variable differential transformers (LVDTs) on the E W axis (west from the column)
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(Fig. 6.2(b)). Additional four LVDTs measured the vertical displacement close to the four
edges of the slab;

column settlement and rotation were measured with three vertical LVDTs (in the analysis,
it was assumed that the column plate did not deform);

tangential concrete surface strains were measured with 3 strain gauges (base length 50 mm)
glued on the concrete surface on the bottom face of the slab south from the column and
perpendicular to the N S axis;

radial concrete surface strains were measured with 3 strain gauges oriented along the E W
axis west from the column.

All the measurement readings were set to zero before starting the test, assuming that the slab de
formations under self weight of the slab and the testing equipment were negligible (approximately
65 kN, added later to the measured load).

Slab rotation

Tangential concrete
surface strains

Column se�lement
and rotation

Radial concrete
surface strains
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Figure 6.2 Instrumentation of the specimens: (a) plan view of the soffit of the specimen;
(b) section view of the specimen (only LVDTs, inclinometers and internal points shown);
(c) coordinate measurement points close to the column on the slab soffit; (d) section cut of

the specimen through the internal coordinate measurement points

6.2.2 Internal measurements 

The internal measurements were performed with a commercial coordinate measuring arm
(FaroArm® Quantum) that could determine the location of its probe in the space by measuring the
rotations of its 7 axes. In order to follow the internal cracking of the slab, 48 to 64 holes were
drilled on the bottom surface (soffit) of each specimen with a 10 mm drill bit. The holes were
cleaned of concrete dust and small steel cylinders with conical sockets as measurement points
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were glued in the ends of the holes. To access the measurement points with the probe, the arm was
extended with a stainless steel bar (length 200 mm, diameter 7 mm). Because the deformations of
the extension bar, in comparison to the expected precision of the system, were not negligible, they
were followed by means of strain gauges glued close to the fixed end of the extension bar. The ob
tained coordinates of the internal points were corrected using these strain measurements. The
manufacturer declared precision (radius of the point cloud) of the measuring arm was 0.020 mm.
Calibration of the strain gauges on the extension bar, which was performed before each test, re
sulted in a standard deviation of the additional error below 0.010 mm.

Figure 6.3 Performing the internal measurements with the robotic arm

The internal measurement points were located along the two main axes of the specimens in the
north (strong axis) and east (weak axis) directions from the column in three or four lines (depend
ing on the size of the column) with 8 points in each line (Fig. 6.2(c)). The distance between the
points along each line, as well as between the lines was approximately 50 mm. The depth of the
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holes for the internal points varied between 40 and 180 mm so that the points formed a regular
mesh in a vertical plane (Fig. 6.2(d)). Reference points were glued on the slab surface between the
holes, as well as on the column plate. The actual layout of the points varied slightly due to the pre
cision of drilling and the need to avoid rebars.

The specimen was loaded by pumping oil into the hydraulic jacks. The load was applied in steps
with larger load increments in the beginning of the test and smaller ones closer to the failure. After
applying each load increment, the pumping was stopped which caused the load to decrease slight
ly. After approximately 10 minutes, when the rate of decrease of load had diminished, the coordi
nates of each point were measured sequentially (Fig. 6.3). One measurement step typically lasted
for 10 to 15 minutes.

In addition to the accuracy of the measurement arm and the strain gauges on the extension bar,
potential sources of erroneous measurements included accidental contacts of the extension bar
with the walls of the drilled holes, dust or concrete debris on the measurement points, as well as
loose points due to failure of the glue or cracks in concrete where the points were glued. As the
points were located in narrow holes, these aspects were difficult to check visually. Also, slab
movements or crack propagation during a measurement sequence may have influenced the calcu
lated relative displacements between the points. In order to filter out inaccurate measurements, all
the coordinates were carefully compared against the measurements at other load steps and the
points that were judged clearly erroneous were removed from the analysis.

6.3 Test results 

As explained in the previous chapter, all the analyzed specimens failed in punching with a sudden
drop of the level of applied load. It is interesting to note that in several specimens, the failure oc
curred while the loading was stopped to perform measurements and the load had decreased be
low the maximum that had been reached. In these cases, the punching capacity VR refers to the
maximum load.

After the test, in order to observe the internal cracking patterns, all specimens were cut along the
east west (weak, Fig. 6.2(a)) axis, whereas the northern halves were additionally cut along the
north south (strong, Fig. 6.2(a)) axis. One wide crack, referred to as a “failure crack”, was clearly
distinguishable on all the saw cut surfaces (Fig. 6.4). This crack extended from the edge of the col
umn plate on the slab soffit to the tensile reinforcement layer (except on the east side of PE12,
where the crack started at some distance from the column edge). The shapes and angles of this
crack varied significantly between the specimens and even between the different sides of one spec
imen. On most saw cut faces, some narrower flexural cracks were also visible above the column
that extended from the top surface either to the bottom half of the slab or to the failure crack. The
presence of the holes for internal measurements did not seem to have a significant influence on the
cracking patterns and on punching performance compared to similar previously tested specimens.
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Figure 6.4 Saw cuts of the specimens, along the weak axis (zone with holes for internal
measurements is to the left (west) side of the column) and the strong axis (northern half)

6.3.1 Flexural response of specimens 

According to the mechanical model of Kinnunen and Nylander [Kin60], the deformed shape of an
axis symmetric specimen can be approximated as conical between a radius r0 (located at some dis
tance from the column edge) and the edge of the specimen and as spherical within r0 (Fig. 6.5(a)).
The radius r0 is determined by the location of the critical shear crack. It has been suggested to be
selected as r0 = rc + d, which corresponds to an inclination of the critical shear crack of 45° [Mut08b].
Regarding the flexural response of a specimen, as shown in Figure 6.5(b), three phases can be ob
served, characterized by different stiffnesses of the load rotation curve:

Elastic uncracked phase before the first flexural cracks appear in the center of the slab. In
this phase, slab deformations can be suitably predicted by means of linear elastic slab theo
ry;

Cracked phase, where circular flexural cracks develop around the column. These cracks are
inclined towards the center of the column due to the influence of shear stresses in the slab.
The furthermost circular flexural crack (the critical shear crack) extends to the vicinity of
the column edge. In addition, radial cracking starts spreading towards the edge of the slab.
Starting from this phase, flexural behavior is suitably approximated by the conical model of
Kinnunen and Nylander [Kin60].

After yielding of radial reinforcement within the radius r0, only tangential moments in the
conical part can carry the additional load. The stiffness of the load rotation response there
fore decreases. Flexural strength of the specimen is reached when tangential reinforcement
in the whole specimen reaches yielding.

PE11

PE5

PE8

PE7

PE12

PE9
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Figure 6.5 (a) Assumed deformed shape of a specimen [Kin60]; (b) Load rotation curve

6.3.2 Deformations of the slab soffit 

The behavior of punching test specimens cannot be characterized only by the flexural model. Fig
ure 6.6(a) shows the deviations of the actual soffit deflections of specimen PE8 from the theoretical
conical shape, measured with a series of LVDTs on the west side of the column. In the elastic
uncracked phase, the slab has a curvature both in the tangential as well as in the radial direction,
as predicted by the linear elastic slab theory. Due to the radial curvature, compressive radial
strains appear on the slab soffit (refer to the insert in Fig. 6.6(a)). After cracking of concrete due to
the radial moments, this curvature starts to concentrate in the column region (the spherical slab
portion in Fig. 6.5(a)) and thus the rate of increase of the radial compressive strains on the soffit
decreases (at some distance from the column edge). After the circular cracks are fully developed,
the radial strains on the soffit are nearly constant.

In addition, at already early stages of loading, penetration of the column plate into the slab is ob
served (this can be also in part explained by crushing of the thin layer of plaster placed between
the column plate and the slab). However, the column penetration is only a local phenomenon as it
does not have any effect on the radial soffit strains further from the column edge (Fig. 6.6(a)).
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Figure 6.6 Deformations of the slab soffit: (a) deviations of the slab soffit from the assumed
conical shape of specimen PE8; (b) deviations of the slab soffit of the specimen PE5

At load levels close to the punching strength, the development of strains on the slab soffit enters a
new phase where the radial compression on the soffit begins to decrease. At failure, even tensile
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strains have been measured in some of the previous experiments [Gua09]. Sometimes, this phase
starts immediately before the failure (or even when the load is, in fact, decreasing, as in the speci
men PE8 (Fig. 6.6(a)) or already at 80% of punching strength, as witnessed, for instance, in the
specimen PE5 (Fig. 6.6(b)). The decrease of compressive strains is also measured by radial strain
gauges further from the column edge (200 or 300 mm), although the reduction is less substantial
there. Such slab behavior can be attributed to shear deformations of the slab soffit in the vicinity of
the column (Fig. 6.6(b)). It can also be noted that the maximum soffit deviation from the conical
shape ( wmax) starts to increase faster in this phase than in the earlier stages of loading.

6.3.3 Internal cracking 

Internal cracking of the specimens was monitored with the coordinate measuring arm on the east
ern (weak axis) and the northern sides of the column (strong axis). Widths and opening directions
of the cracks at different levels of load were calculated from the coordinates by dividing the mesh
of measurement points into triangles. Strains on all sides of each triangle ( i j = li j/li j) (Fig. 6.7(a))
were then converted into principal strains ( I,1 2 3 and II,1 2 3 in Fig. 6.7(b)). The directions and mag
nitudes of the principal compressive strains in the triangles show the compressive stress field in
the slab. However, the mesh of internal points was too coarse and the precision of the system too
low to obtain reliable information about the compressive strains in concrete. In contrast, the preci
sion was sufficient to follow the formation and kinematics of cracks. Crack widths wcr and their
opening directions at different load steps were calculated by multiplying the maximum principal
tensile strain in each triangle with the length of the triangle in the direction of the strain
(Fig. 6.7(c)). This represents an assumption that the tensile strain in a triangle was concentrated
into a single crack that was perpendicular to the direction of the principal tension. The resulting
crack widths and their opening directions are plotted in Figures 6.9(g)–6.14(g) for internal cracking
on the weak axis and Figures 6.9(j)–6.14(j) for cracking on the strong axis, together with the cracks
on the saw cut surfaces. These plots confirm the assumption that the principal tensile strain direc
tions are mostly perpendicular to the observed cracks.
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Figure 6.7 Conversion of the measured displacements to crack opening wcr: (a) strains at the
edges of the triangles; (b) principal strains; (c) crack opening in the direction of principal

tensile strain

The cracks detected with the internal measurement system were always also found on the saw
cuts. On the other hand, in some places where no strains were measured before the failure in any
of the measurement steps, wide failure cracks were present on saw cut surfaces. Such cracks are
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shown with dashed lines in Figures 6.9(f, g, i, j)–14(f, g, i, j) (for example on the strong axis of PE8
in Fig. 6.10(i, j)) in the locations where the absence of a crack was confirmed by reliable coordinate
measurements. For all the measured cracks, the direction of crack opening did not change signifi
cantly between load steps and was approximately perpendicular to the crack lips (it should be not
ed that the plotted crack widths are projections on a vertical plane and some variability may thus
be related to actual variations in crack angles between the measurement points). The exact centers
of rotation of the slab sectors could not be detected due to the insufficient precision of the coordi
nate measurements. However, as the points on the slab soffit moved towards the column and the
points deeper inside the slab moved further from the column, the vertical position of the center of
rotation has to be located within the specimen.

6.4 Discussion of the test results 

6.4.1 Development of the critical shear cracks 

The critical shear crack (the furthermost circular crack of flexural origin) was followed in all the
cases, except in the east direction (weak axis) of specimen PE8 (Fig. 6.10(g)). These cracks (1, 3, 5–
11, 13–15 in Fig. 6.9–6.14) were first observed already at approximately 50% of the failure load.
Widths of the critical shear cracks in different specimens, measured at the level of higher most
internal measurement points (approximately 170 mm from the bottom face of the slab), are shown
as a function of slab rotation in Figure 6.8. The slabs with = 1.5% are shown on the top and the
ones with = 0.75% on the bottom row. It can be seen that the cracks widths at a punching failure
were larger in slabs with lower reinforcement ratios. The maximum measured crack width did not
depend significantly on the column size.
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However, it can be noted that in the case of larger columns, the cracks outside the perimeter of the
column plate started opening at larger rotations. This can be explained by other flexural cracks
closer to the center of the column developing first (outside of the monitored range). This is con
firmed by the measurements performed on slab PE12, where two flexural cracks were located
within the region of the internal measurement points (Fig. 6.12(j)). It can be seen that the crack that
was closer to the center (crack 9) started opening at a lower rotation. However, another crack
(crack 10) began opening further from the column and became the critical shear crack later. In the
case of smaller columns, fewer circular cracks were located between the monitored region and the

Figure 6.9 Specimen PE5: (a) cracks on saw cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal

cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and

opening directions of internal cracks (N)
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center of the column and the development of the measured crack thus started at an earlier loading
stage. It can be concluded that for an equal slab rotation, crack widths are lower if the column size
is larger, as the flexural deformation is distributed between a larger number of cracks.

6.4.2 Development of the failure cracks 

With the internal measurement system, two types of failure cracks could be distinguished. In some
cases, the punching failures progressed along cracks that had been first observed as critical shear
cracks. However, in the other cases, the failure cracks developed independently of the critical shear
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Figure 6.10 Specimen PE8: (a) cracks on saw cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal

cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and

opening directions of internal cracks (N)
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cracks (refer to Fig. 6.1(c) and (b), respectively).

Development of the punching failure along the critical shear crack was observed in the specimens
with the largest column sizes (dc = 660 mm): on the north side of the column (strong axis) in speci
men PE5 (crack 3 in Fig. 6.9(j)) and on the east side of the column (weak axis) in specimen PE12
(crack 8 in Fig. 6.12(g)). In both cases, the eventual failure cracks were first detected at load levels
clearly below the punching capacity: at 76% of VR in specimen PE5 and at 85% of VR in specimen
PE12. Yet, in both of these specimens, the failure cracks in the other monitored regions were of the
second type and appeared in the slab portion below the critical shear crack. In specimen PE5, at the
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Figure 6.11 Specimen PE7: (a) cracks on saw cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal

cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and

opening directions of internal cracks (N)
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last measurement step at 90% of the maximum load, the failure crack on the east side of the col
umn (inclined at 18° from horizontal) had a width of approximately 0.3 mm (crack 2 in Fig. 6.9(g)).
However, in specimen PE12, where the failure crack on the east side of the column had even lower
inclination, it was not detected even at the last measurement step, although the measurements
were performed at 98% of VR.

Regarding the deformations on the slab soffit, which were measured on the west side of the col
umn, the development of shear deformations started already at approximately 75% of VR in both
specimens with the largest columns. This was indicated by the beginning of the reduction of radial
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Figure 6.12 Specimen PE12: (a) cracks on saw cuts; (b) rotations; (c) radial strains on sof
fit; (d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to
the column edge on the weak axis (E); (f) displacements of the internal points relative to
the edge of the column (E); (g) widths and opening directions of internal cracks (E); (h)
cracks close to the column edge on the strong axis (N); (i) displacements of the internal

points (N); (j) widths and opening directions of internal cracks (N)
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compressive strains on the soffit (Fig. 6.9(c) and 6.12(c)) and concurrent increase of maximum de
viation from the conical shape (Fig. 6.9(d) and 6.12(d)).

In the specimens with intermediate size columns (dc = 330 mm: PE8 in Fig. 6.10 and PE9 in
Fig. 6.13), the failure cracks developed independently of the critical shear cracks in every region
with internal points. Both of the specimens failed during or after performing the internal meas
urements while the load had decreased below VR. In the strong (north) direction, no strains were
measured at the location of the eventual failure crack in either of the slabs. In contrast, on the east
side of the column of specimen PE8, a failure crack (with an inclination of 30°) was observed to

(e) (f) (g)

(h) (i) (j)

NEW

(b) (c) (d)

ψ [mrad]
0 40302010

V 
[k

N
]

V
/V

R

1600

800

1200

100%
80%
60%
40%
20%
0

400

0

εc,r [mm/m]
0 −0.8−0.6−0.4−0.2

Δwmax [mm]
0 −1.5−1−0.5

ψN-S Δwmax,West

ψE-W

ψpred

1mm
scale for crack opening:
scale for displacements:

1mm

(a) PE9 (dc= 330 mm; ρ = 0.75%)

100%·VR94%89%84%78%67%46%

13

11

12 EE

NN

εr=465,West

εr=365,West

εr=265,West

Figure 6.13 Specimen PE9: (a) cracks on saw cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal

cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and

opening directions of internal cracks (N)
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start opening at 86% of VR (Fig. 6.10(g)). The width of the crack, uniform over the whole measured
length, increased to 0.7 mm before the failure.

However, on the west side of the column of PE8, shear deformations (Fig. 6.10(c) and (d)) started
to increase only while performing the final measurements. The failure of the specimen occurred
approximately 20 minutes after the loading was stopped, during which period the applied load
had dropped from the maximum of 985 kN to 835 kN. In specimen PE9, the failure occurred while
the measurements were being taken. During the final measurements, on the east side of the col
umn, a failure crack with an opening of 0.3 mm (crack 12 in Fig. 6.13(g)) was detected. Yet, increas
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Figure 6.14 Specimen PE11: (a) cracks on saw cuts; (b) rotations; (c) radial strains on sof
fit; (d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to

the column edge on the weak axis (E); (f) displacements (magnified) of the internal
points relative to the edge of the column (E); (g) widths and opening directions of inter
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and opening directions of internal cracks (N)
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ing shear deformations were measured in this specimen on the west side of the column already at
earlier loading stages (Fig. 6.13(d)).

In the specimens supported on the smallest columns (dc = 166 mm), the failure cracks were not de
tected prior to punching in any of the cases. In specimen PE11, the radial compressive strains at the
soffit, that had been decreasing before, started to grow again immediately before the failure. Simi
lar behavior has also been observed in other specimens with even smaller column sizes (refer to
Chapter 5) and in compact footings (by Simões et al. [Sim16]). This suggests that a different failure
mode may govern in the case of very high compressive stresses in the punching region.

6.4.3 Tangential crack propagation 

It is interesting to note that the development of failure cracks in two sectors of the same slab could
be remarkably different, in spite of the specimens being nominally axisymmetric. In some slab sec
tors, the eventual failure cracks appeared at lower load levels than in the other sectors, sometimes
already at 75–80% VR. This can be compared to the observations of Campana et al. [Cam13] as
well as Cavagnis et al. [Cav15] regarding the shear behavior of beams, which showed that different
cracking patterns, with consequent differences in mechanical shear transfer actions through the
cracks, can emerge in beam specimens of similar geometries and mechanical properties. These dif
ferences can also explain the significant scatter between the shear strengths measured in various
beam specimens.

In slab specimens, however, the detected initiation of a failure crack did not yet prompt a sudden
punching failure. In several cases, the load could still be increased and the development of the
failure crack could continue in a stable manner without significantly influencing the overall re
sponse of the specimen. This suggests that the reduction of the shear carrying capacity of the sec
tor elements with growing failure cracks was compensated by redistributing the shear force to ad
jacent sectors, where the failure cracks had not yet appeared. Similar redistribution of shear forces
along the support has also been observed in non symmetric punching test specimens by Sagaseta
et al. [Sag11] and in shear tests of slabs with concentrated loads near linear supports by Natário
et al. [Nat14].

Redistribution of shear forces in slabs also changes the associated moment fields. In axisymmetric
punching test specimens, tangential shear redistribution due to the development of a failure crack
should lead to locally reduced tangential moments in the slab sector with the failure crack
(Fig. 6.15(a)). In most cases, this local reduction could not be directly observed, as the tangential
soffit strains were measured in the experimental campaign only on one side of the column. How
ever, the local reduction of bending moments was indirectly indicated by:

in specimen PE7, decreasing tangential compression on the slab soffit was measured on the
strong axis when the loading was stopped at 95% VR (Fig. 6.15(b));
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in the other specimens, the tangential soffit compression on the strong axis, which should
have a linear dependence on slab rotation in axisymmetric slabs, started increasing faster at
loads close to the failure, especially in the specimens with the largest column sizes, PE5 and
PE12 (Fig. 6.15(c)). This may indicate the development of failure cracks and consequent de
crease of tangential moments on the other sides of the column (on the weak axis);

an increase of the average slab rotations in comparison to the predicted curves (shown with
dashed lines in Figures 6.9(b)–14(b)) at load levels close to the punching failures. Again,
this effect was observed to be stronger in specimens with larger column sizes (especially
PE12, refer to Fig. 6.12(b)), where failure cracks were wider and detected at lower levels of
load.
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for the axisymmetric specimens

It should also be noted that the ultimate tangential strains on the slab soffits (at 100 mm from the
column edge) ranged from 1.5‰ to 2.6‰ (Fig. 6.15(c)). These strains are lower than the strains
corresponding to the compressive strength of normal strength concrete in biaxial compression, as
reported by Kupfer [Kup73]. Therefore, on the basis of these measurements, no strain softening of
concrete in compression was observed to have occurred.
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6.5 Summary and conclusions  

Formation and growth of cracks inside 6 full scale punching test specimens was successfully moni
tored with a newly developed system for internal measurements. The results were also compared
to conventional measurements performed on slab surfaces. Both flexural as well as the eventual
failure cracks were tracked. The main conclusions made on the basis of the observations are:

The main results (punching strengths and critical deformations) of the slabs with holes for
internal measurements were consistent with the results of previously tested full slabs;

Based on their mode of development, two types of cracks could be distinguished in the
punching regions, namely the critical shear cracks and the punching failure cracks;

The critical shear cracks were of flexural origin and developed as predicted by the sector
model of Muttoni [Mut08b]. The directions of crack opening were approximately perpen
dicular to the crack lips. The widths of the furthermost flexural cracks depended on the to
tal number of cracks within the supported area. Therefore, for equal rotations, the cracks
were narrower in specimens with larger column sizes;

The observed development of punching failure cracks was different between the specimens
and even between the different sides of the column in the same specimen;

Except for some sides of the largest columns, punching failures did not occur along the pre
existing critical shear cracks but by formation of new (lower angled) failure cracks;

The initiation of a failure crack did not always cause an immediate punching failure of the
specimen. Instead, in several cases, the load could still be increased by up to 20%;

The capacity of the specimens to resist increased loads after the formation of a failure crack
can be explained by tangential redistribution of shear along the perimeter of the support.
The associated changes of the moment field were also indicated by strain measurements on
slab soffit.
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Punching failure model Chapter 7

This chapter proposes a new punching model for slabs without shear reinforcement. The
model is based on the experimental evidence obtained in the test campaign presented in the previ
ous chapter. The failure is assumed to be governed by a triaxial state of stresses in the compression
strut around the edge of the support. Possible contribution of dowel action of tensile reinforcement
is also considered. Size effect and the influence of crack propagation around the column are taken
into account with semi empirical factors. Comparison to 100 punching tests on slender specimens
from the literature suggests a good agreement between the model predictions and the experi
mental results.

7.1 Mechanisms of shear transfer in reinforced concrete elements 

7.1.1 Shear transfer mechanisms in beams and two-way slabs 

Shear force in an element is associated with variations in acting bending moments. Bending mo
ment in a beam can vary along the span either through changing the lever arm between the com
pression and tension chords with forces in them remaining constant, or by changing the forces in
the chords. In the former case, the shear force in a beam is carried by the vertical component of the
force in the compression chord. This mechanism is referred to as arching action. In the latter case,
forces need to be transferred between the tension and compression chords. In cracked reinforced
concrete elements without transverse reinforcement, the possible mechanisms of shear transfer
include so called beam shear transfer actions that were described by Kani [Kan64]. These mecha
nisms utilize tensile stresses in concrete, dowel action of tensile reinforcement and stress transfer
through the cracks, which include aggregate interlocking stresses between crack lips and residual
tensile strength of cracked concrete. The contributions of these actions in slender beams were re
cently studied by Fernández Ruiz et al. [Fer15], who used idealized crack shapes and kinematics
and concluded that all the actions are eventually dependent on the widths of the cracks. However,
a recent detailed experimental investigation by Cavagnis et al. [Cav15] has shown that force trans
fer through aggregate interlock stresses is strongly dependent on the shape of the cracks, which
can be highly variable between similar specimens.

Experimental evidence and theoretical considerations have shown that shear behavior of a beam is
strongly influenced by its shear slenderness ratio (defined as a/d for beams with concentrated loads
or asM/Vd in a general case (Fig. 7.1(a)) and the relative contributions of the different mechanisms
of shear transfer depend on this parameter [Kan64, Kan66]. In the case of compact beams, the
compression chord can be inclined, allowing for the development of a direct strut, or arching ac
tion. Shear failures occur with a loss of capacity of the strut, which may be decreased due to trans
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verse tensile strains. In contrast, in slender beams, cracks developing through the direct strut limit
its capacity and the strength of an element is governed by beam shear transfer actions and their
capacities (aggregate interlock, dowel action or the tensile strength of concrete).
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Figure 7.1 Distribution on bending moments and shear forces in (a) one way beams and
(b) two way slabs

Shear behavior of two way slabs in the vicinity of columns or concentrated loads differs from the
behavior of beams in three important aspects. Firstly, with increasing distance from the column,
the width of the slab sectors increases (Fig. 7.1(b)) and, consequently, shear force per unit width
decreases. Therefore, the shear strength of a slab at some distance from the column, where the
beam shear transfer actions would govern in beams, is normally sufficient and punching failure
occurs instead in the immediate vicinity of the column edge. Secondly, as explained in Chapter 3
as well as shown in Figure 7.1(b), bending moments in two way slabs can be distributed in two
directions. Therefore, in comparison to beams with similar loads and distances between the load
ing points and the support, bending moments in a single direction are lower in two way slabs. As
a result, the effective shear slenderness ratio (M/Vd or aeff/d (Fig. 7.1(b))) is reduced, meaning that,
close to the column, shear force can be carried by the inclination of the compression strut [Mut10].
However, thirdly, unlike in beams where yielding of tensile reinforcement close to the support
results in a flexural failure of the element, redistribution of bending moments into tangential direc
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tion means that the load can still increase in two way slabs. Therefore, strains in the tensile rein
forcement, as well as in the compression zone, can be significantly higher before a punching failure
occurs in two way slabs than at shear failure in compact beams. This leads to crack localization in
slabs, whereas uniform softening of the strut governs the behavior of compact beams.

7.1.2 Contribution of aggregate interlock action 

According to the CSCT of Muttoni [Mut08b], punching failures are caused by the failure of a radial
compression strut that is intersected by an inclined flexural crack (referred to as the critical shear
crack), which propagates through the strut into the radial compression zone (Fig. 7.2(a)). Shear
stress is transferred via friction between the crack lips due to their macro roughness (aggregate
interlock) [Gui10a]. Capacity of the crack to carry shear stresses is assumed to be a function of its
opening width, which is estimated to be proportional to d, and of the roughness of the crack lips,
which is assumed to depend on the maximum aggregate size dg (Fig. 7.2(b)). The failure is expected
to occur when the aggregate interlock capacity is exceeded (that can happen either at a large
punching load V or due to large crack opening wcr).

Figure 7.2 Critical Shear Crack Theory: (a) theoretical strut through the critical shear crack
[Mut08b]; (b) aggregate interlock between sliding crack lips; (c) opening of the critical shear
crack in the case of non negligible depth of the compression zone; (d) opening of the critical

shear crack after failure of the compression strut in the compression zone

Aggregate interlock stresses can be activated when crack lips slide relative to each other. However,
as observed in the slabs described in Chapter 6, the measured crack opening displacements were
in all cases larger than sliding displacements along the crack lips. It is suggested that this can be
explained by the rigidity of the compression zone (Fig. 7.2(c)), due to which the sliding of crack
lips could only occur after a compression zone failure (Fig. 7.2(d)). In the experiments, the failure
of the compression strut in the compression zone, however, always led to an immediate collapse of
the slab. In addition, in several cases, the failure did not develop along the existing critical shear
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crack but by opening of a new, so called failure crack. This crack appeared either prior to or at the
moment of failure and often had a very low inclination.
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Figure 7.3 Contribution of the compression strut: (a) model of Kinnunen and Nylander
[Kin60]; (b) model of Moe [Moe61]; (c) model of Broms [Bro90]; (d) model of Shehata and

Regan [She89]

7.1.3 Previously proposed models based on the compression strut 

Several previously proposed models account for the contribution of stresses in the compression
strut below the flexural cracks to the punching capacity of a flat slab. The first mechanical model
by Kinnunen and Nylander [Kin60] described the deformed shape of the slab by dividing it into a
spherical part above the column and a conical part around it. The two parts were separated by an
inclined flexural crack, which is referred to as the critical shear crack by Muttoni [Mut08b]. Shear
force was assumed to be transferred from the conical part to the column through a cone shaped
shell at the tip of that crack, subjected to uniform compression c,cone (Fig. 7.3(a)). The geometry of
the compression shell, including the inclination of the resultant force P, were calculated from the
equilibrium equations of internal forces acting in the conical slab portion (including tangential
moments not shown in Figure 7.3(a)). The failure criterion was defined as a function of strains and
not stresses in the compression shell, as concrete strength was considered to be reduced by the
large strains. A critical strain state was assumed to be attained with reaching a critical value of the
tangential compressive strain on the slab soffit resulting from flexural deformations.

On the basis of experimental investigation, Moe [Moe61] assumed that most of the shear force is
carried by the compression zone that is subjected to a complex non uniform triaxial stress state.
Moe did not attempt to model the realistic distribution of stresses nor the actual triaxial failure
criterion, but showed that in most cases the largest principal stress in the compression zone was
tensile (Fig. 7.3(b)). Therefore, splitting of concrete was considered to govern the punching re
sistance, making it a function of the tensile strength of concrete (assumed to be proportional to
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square root of fc). A simplification of this model, where the depth of the compression zone is as
sumed to be constant, is still used as a basis of the punching provisions of ACI 318 [ACI14].

The model of Kinnunen and Nylander was simplified and developed further by Broms [Bro90],
who added an additional failure criterion for radial stresses in the conical shell ( cone 1.1 fc). This
criterion governs the strength of stiffer slabs, where the tangential soffit strains had been observed
to remain below the failure criterion of Kinnunen and Nylander (Fig. 7.3(c)). In addition, a factor
accounting for the size effect was added and the model was simplified by assuming a constant
P = 15°.

Shehata and Regan [She89] proposed a model where the stress in the compression zone (after the
formation of inclined flexural cracks) was assumed to remain constant but the inclination of the
resultant force P varied (Fig. 7.3(d)). Splitting of the compression zone was predicted to occur
when P reached 20°, causing the maximum principal stress in the compression zone to become
tensile. In the model of Broms, as well as of Shehata and Regan, the inclination of the critical shear
crack (variable in the model of Kinnunen and Nylander) was fixed to 30° and 20°, respectively.
This was justified by the low angle of failure cracks typically observed on saw cut surfaces of
punching test specimens.

7.2 Stress-based failure model for the compression strut 

The new punching model proposed in this chapter assumes, as originally suggested by Kinnunen
and Nylander [Kin60], that the punching strength of a slab column connection is governed by the
failure of a cone shaped shell below the flexural cracks in the direct compression strut. In accord
ance with the lower bound theorem of the theory of plasticity, stresses in the conical shell are as
sumed to be uniformly distributed. The strength of the conical shell is predicted using a stress
based yield criterion proposed by Ottosen [Ott77] (also adapted in Model Code 2010 [FIB13] as a
general failure criterion for concrete under multi axial loading). This approach was inspired by a
global criterion of failure of the compression zone that was proposed by Gustafsson and Hillerborg
[Gus88] to complement a linear elastic finite element analysis of beams subjected to bending mo
ment and shear force. Section 7.3 proposes a method to estimate the forces that are transferred
through the critical shear crack by dowel action of the tensile reinforcing bars, accounting for the
stresses in the reinforcement as well as the slip of the bars. Finally, in Section 7.4, a suitable effec
tiveness factor, which has to be applied when plastic behavior of concrete is assumed, is calibrated
on the basis of experiments.

7.2.1 Critical surface in the conical shell 

In the proposed model, the failure is expected to occur when a critical triaxial stress state is
reached in the conical shell. Similarly to the previously proposed models and in agreement with
the lower bound theorem of the theory of plasticity, an assumption is made that the distribution of
stresses in the conical shell is uniform.
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A triaxial stress state in the conical shell can be described by the maximal and the minimal princi
pal stresses 1 (tension) and 3 (compression) on a radial vertical plane, inclined at an angle p from
the horizontal (Fig. 7.4(a)), as well as a lateral stress due to the tangential bending moment, which
acts horizontally and constitutes the intermediate principal stress t = 2. In order to determine
these stresses, a critical surface is regarded that cuts diagonally through the conical shell at an an
gle . Stresses along that surface and stresses perpendicular to it, as well as shear stresses
act on that surface (Fig. 7.4(b)). For determining these stresses, a triangular element is considered
that is limited by the critical surface, the slab soffit and a vertical plane at the intersection of the
critical surface with the neutral axis of the slab (Fig. 7.4(b)). The forces N , and V , acting normal
and parallel to the critical surface in a sector of that element with an angular width are calcu
lated from the equilibrium equations (it should be the noted that normal stress along the critical
surface ( ) does not influence the equilibrium of forces acting on the triangular element):

tNVNN (7.1)

tNVNV (7.2)

where N0, and V0, are normal and shear forces, over an angular width , on a vertical section at
the intersection of the critical surface with the neutral axis of the slab, located at a distance r from
the center of the column, and Nt is the tangential force over the length of the triangular element,
r – rc (Fig. 7.4(b)). The distance r can be calculated as:

xrr c (7.3)

where rc is the radius of the column.

The inclination of the critical surface , which determines the geometry of the conical shell, is se
lected using the lower bound theorem of the theory of plasticity. This theorem states that any
stress state is admissible if it is statically in equilibrium and remains below or equal to a yield crite
rion. Therefore, the governing inclination of the conical shell is the one that gives the highest load
(VR) for which the corresponding stress state is at the yield criterion. It should be noted that the
geometry of the conical shell is independent of the location of the tip of the furthermost flexural
crack (the critical shear crack). This assumption is supported by the observations of internal crack
ing described in Chapter 6 where, in several cases, the lower angled failure cracks, which are typi
cally seen on saw cut surfaces, did not develop from the existing cracks of flexural origin but
propagated as splitting cracks independently of them. Therefore, when the governing angle is
such that the conical shell reaches the neutral axis closer to the column than the tip of the critical
shear crack, the failure of the conical shell is followed by opening of the previously existing critical
shear crack, as occurred, for example, on the north side of the column in specimen PE5 (Fig. 7.4(c)).
In the cases where the tip of the critical shear crack is closer to the column edge, which was a more
common case in the tests described in Chapter 6, a new failure crack develops (as for example on
the east side of the column in specimen PE5 in Fig. 7.4(d)).
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Propagation of the failure crack in the region above the neutral axis is associated to very low con
crete resistance and high brittleness (concrete subjected to triaxial tension). Therefore, the present
model does not account for the potential contribution of this zone. Also, possible shear force trans
fer by dowel action of flexural reinforcement at the opening of the failure crack is not expected to
contribute to the maximum punching capacity of the connection. It should be noted that dowel
action of flexural reinforcement through the critical shear crack can reduce the force acting in the
compression strut. This contribution will be discussed in Section 7.3.
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Figure 7.4 (a) Conical shell in the compression strut; (b) Critical surface in the conical shell,
equilibrium of forces on a triangular sector element (positive directions shown); (c) Failure
of the conical shell followed by opening of a flexural crack, north side of the column in spec
imen PE5; (d) Propagation of a new shear crack at failure, east side of the column in PE5

The geometry of the conical shell is influenced by the shape of the furthermost flexural crack (the
critical shear crack). This crack is assumed to extend until the neutral axis of the slab, which de
fines the depth of the compression zone. The depth of the compression zone x of an element in
bending can be calculated, assuming a fully cracked cross section with linear elastic behavior of
concrete and steel and neglecting the influence of compression reinforcement, by solving an equa
tion for x [Cle14]:

d
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E
Ex
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c

c

s (7.4)

where r is the average radial stress in the cross section due to in plane forces (compression is neg
ative). In plane forces may occur due to pre stressing, but also due to edge restraints or slab conti
nuity, as shown in Chapter 3. In isolated specimens, the in plane forces are small and can be ne
glected. In this case, the depth of the flexural compression zone can be found directly [Mut08b]:
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However, shear stresses may influence the development of flexural cracks. Due to these stresses,
the critical shear crack, observed in the tests described in Chapter 6 to start developing at a dis
tance approximately equal to d from the column edge, propagates towards the column in an in
clined manner. In experiments, the inclination of the critical crack has been observed to be about
45° [Kin60, Mut08b]. As explained earlier, the magnitude of the stresses transferred through that
crack is assumed to be limited in the proposed model. Therefore, the force in the tension chord at a
perimeter r0 = rc + d, where the critical shear crack intersects the level of tensile reinforcement, has
to be in equilibrium with compression in a narrower compression chord at r (Fig. 7.5(a, b)). Con
sidering that the ratio between the lengths of the perimeters (and thus the widths of the com
pressed zone) is r0/r , the depth of the compression zone at r , accounting for the influence of the
inclined compression strut, can be calculated as:

xrrx (7.6)
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Figure 7.5 (a) Increase of the depth of the compressed zone due to the influence of inclined
flexural cracks; (b) Radial forces in the tension and compression chords of a slab sector

7.2.2 Mean stresses on a vertical surface in the compression strut 

In order to determine the radial horizontal force N0 in the compression chord, the radial force T0 in
the tension chord has to be calculated. This can be done with the help of the kinematic model of
Kinnunen and Nylander [Kin60] that allows calculating the load rotation relationship of axisym
metric isolated slabs (Eq. 4.1) (refer to the specimen PE11 that is shown as an example in Fig
ure 7.6(a)). Due to the assumption that the deformed shape of the slab within r0 is spherical, radial
curvatures are constant in this part of the slab ( rr ). Using the assumption of plane sections,

the strain s at the level of tensile reinforcement can then be calculated as xdrs

(Fig. 7.6(b)) and the stress s in the reinforcing bars as:

y

s
s

f

Exd
r (7.7)

The value of factor in Equation (7.7), which accounts for the reduced stiffness of the tension cord
due to the orthogonal layout of reinforcing bars, has to be consistent with the one used in calculat
ing ( = 0.6 as suggested by Muttoni [Mut08b] is used in the present analysis). When constant
depth of the compression zone is assumed (suitable for a cracked cross section), stress in the radial
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reinforcing bars at r0 depends linearly on slab rotation up to yielding of reinforcement. An example
of the load reinforcement stress curve (for specimen PE11) is shown in Figure 7.6(c).
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Figure 7.6 Radial force in the tension chord: (a) load rotation curve of specimen PE11;
(b) strains in the tension chord; (c) load reinforcement stress curve for specimen PE11

The mean horizontal stress in the compression strut below the neutral axis at a cylindrical sur
face at r from the center of the column can be calculated using the equilibrium equations of radial
forces and bending moments (Fig. 7.5(a)):
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hd

x
h

x
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r
r rs (7.8)

If no in plane stress is present in the slab, Equation (7.8) can be simplified:

x
d

x
d

r
r ss (7.9)

The mean vertical stress on the same surface at r depends on the applied load V:

rx
VV

rx
V dow (7.10)

where Vdow is the shear force carried by the dowel action of flexural reinforcing bars that will be
discussed in Section 7.3.

The average tangential compression over the critical surface (that extends up to x ) can be calculat
ed by noting that within r0, the deformed shape of the slab is spherical and radial and tangential
stresses in the tension chord are therefore equal:

x
d s

t
(7.11)

7.2.3 Mean stresses on the critical surface 

The mean stresses on the critical surface can be calculated using the equilibrium equations of hori
zontal and vertical forces acting on a sector of an element limited by the conical critical surface, a
cylindrical surface at r and the slab soffit (Fig. 7.7). In addition to the forces on the cylindrical and
inclined surfaces, tangential compressive forces have to be accounted for.
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Figure 7.7 Forces acting on a sector of an element in the compression strut (positive direc
tions are shown)

The mean normal and shear stresses on the critical surface are:

t
c rr
r (7.12)

t
c rr
r (7.13)

Figure 7.8(a) shows the mean normal and shear stresses on the critical surface of specimen

PE11 ( = 0.75%; dc = 166 mm) as a function of the applied punching load V and the angle . If the
critical surface is vertical ( = 90°), the mean shear stress (on the vertical axis) increases propor

tionally with the level of load. The mean normal stress (on the horizontal axis) is propor

tional to the stresses in radial reinforcing bars s (Eq. (7.9)) and thus reaches a plateau when the
flexural reinforcement yields. For lower values of (corresponding to flatter critical surfaces), the
normal force N decreases and the shear force V increases. However, because a flatter surface also
obtains a larger area, both mean stresses begin to decrease. If 0°, the mean value of both nor
mal and shear stresses approaches zero (Fig. 7.8(a)).

However, it should be noted that the mean normal and shear stresses and the tangential

compression t do not completely describe the stress state on the critical surface. In addition, a

stress parallel to the critical surface is present. This stress cannot be derived from the force equi
librium equations (Eq. (7.12) and (7.13)), because the area where this stress acts is infinitely small
and the force therefore tends to zero. Instead, it is determined using the lower bound theorem of
the theory of plasticity.

The complete state of mean stresses on a radial vertical plane on the critical surface can be repre
sented by a Mohr’s stress circle. Mohr’s circle is a graphical representation of the stress state that
shows the relationship between the principal stresses and stresses on surfaces that are at an angle
p from the principal stress directions (Fig. 7.8(b)).
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Figure 7.8 (a) The mean normal and shear stresses on the critical surface depending on the
applied load V (in kN) and angle of the surface in specimen PE11 ( = 0.75%; dc = 166 mm);
(b) two examples of the possible mean stresses on the critical surface for the same shear

force V and inclination of the critical surface (stresses in MPa)

Using the Mohr circle, the maximal and minimal principal stresses can be calculated:

p

p (7.14)

p

p (7.15)

where p is the angle between the critical surface and the direction of principal stresses acting on it
(Fig. 7.8(b)).

Examples of two of the possible stress circles are shown in Figure 7.8(b), corresponding to different
values of but to the same stresses from Figure 7.8(a). In order for the stresses to be ad
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missible (according to the lower bound theorem of the theory of plasticity), the whole stress circle
has to be located within a yield criterion. The limit state is thus attained when the circle touches
the yield criterion at a single point.

7.2.4 Yield criteria for concrete 

Several different multi axial yield criteria have been proposed for concrete [Che82]. One of the
simplest criteria that have given realistic results in various applications of theory of plasticity is the
Mohr Coulomb yield criterion that, as a function of principal stresses, can be expressed as:

c
c

ff
f (7.16)

The angle of internal friction is normally selected as = 37°. This leaves only fc as a required mate
rial parameter. The Mohr Coulomb yield criterion is often augmented with Rankine’s tension cut
off criterion, which assumes that the failure occurs when the maximum principal stress reaches the
tensile strength of concrete fct. Rankine’s yield surface is thus:

ctf ; ctf ; ctf (7.17)

According to the Mohr Coulomb criterion with Rankine’s cut off, yielding of concrete can occur
either as a sliding failure if the Mohr Coulomb criterion governs or as a separation failure if the
Rankine’s criterion is attained first. The criteria for different concrete strengths are shown on a
plane in Figure 7.9(a). The tensile strength of concrete fct is calculated with the formulas given in
Model Code 2010 [FIB2013]:

cct ff for cf (7.18)

ccct fff for cf

where fc = 8 MPa.

Figure 7.9 Multi axial yield criteria for concrete on plane: (a) Mohr Coulomb criterion
with Rankine’s tension cut off; (b) Ottosen criterion, without lateral stress; (c) Ottosen crite

rion, with lateral stress (stresses in MPa)
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The Mohr Coulomb criterion with a tension cut off is a three parameter yield criterion – three ma
terial parameters (compressive strength fc, angle of internal friction and tensile strength fct) have
to be known to predict a failure in a general multi axial stress state. It should be noted that the cri
terion does not take into account the intermediate principal stress 2 and therefore cannot model
the influence of lateral compression.

In order to model the triaxial behavior of concrete, Ottosen [Ott77] proposed a four parameter
yield criterion:

cpcpcp f
Ib

f
J

f
JaJIf (7.19)

where I1 and J2 are stress invariants, a and b are coefficients and (cos3 ) is a function given as:

kk (7.20)

where is the angle of similarity k1 and k2 are additional coefficients.

Equation (7.19) constitutes a smooth and convex surface (Fig. 7.9(b)) and, unlike the Mohr
Coulomb criterion, also accounts for the influence of the intermediate principal stress (Fig. 7.9(c)).
Experiments with four different stress states are needed to calibrate the yield criterion (typical cal
ibration uses tests with uniaxial compressive strength, uniaxial tensile strength, compressive
strength under equal biaxial stresses and triaxial compressive strength in the case where one of the
compressive stresses is smaller than the other two). However, in this thesis, all the parameters are
calculated from uniaxial compressive strength fc following an approach given in Model Code 2010
[FIB13] (refer to Appendix C). The Ottosen criterion predicts slightly lower strengths than the
Mohr Coulomb criterion with Rankine’s cut off in the range where the maximal principal stress is
tensile and the other principal stresses are compressive (that will be shown to be the governing
case for punching).

7.2.5 Resistance of the compression strut 

According to the lower bound theorem of the theory of plasticity, the conical shell can transfer a
punching load V from the slab to the column until the stress state on a governing critical surface
(inclined at R) is such that no Mohr’s stress circle can be found that fits within a yield criterion for
any values of p. Graphically, that corresponds to a case where the stresses on the critical surface

RR , corresponding to (VR, R) as shown in an example in Figure 7.8(a), are on the yield crite

rion that is tangent to the governing stress circle. Therefore, the normal of the yield criterion at the
point RR defines the angle 2 p and the magnitudes of the principal stresses.

Figure 7.10 shows the governing stress circles at failure loads for different yield criteria. Specimen
PE11 is used as an example (for that specimen, the mean stresses on the potential critical surfaces
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with varying inclinations at different load levels were shown in Fig. 7.8(a)). The Mohr Coulomb
yield criterion (Fig. 7.10(a)) has a constant slope on plane (equal to the angle of internal friction
that is usually assumed = 37° for concrete). Therefore, its normal is inclined at 53° from the hori
zontal at every point. Due to this, the principal stresses can be directly calculated from Equa
tions (7.14) and (7.15) and placed into the failure criterion that was given by Equation (7.16).
Graphically, the punching resistance VR is reached for a load V for which the corresponding curve
in Figure 7.8(a) touches the Mohr Coulomb yield criterion. If all the curves remain below the yield
criterion, flexural failure governs the strength of the specimen.

Figure 7.10 Mohr’s stress circles (left), critical surfaces and principal stresses at maximum
loads (right) according to various yield criteria for specimen PE11: (a, b) Mohr Coulomb;

(c, d) Mohr Coulomb with Rankine’s tension cut off; (e, f) Ottosen criterion (stresses in MPa)

In the case of specimen PE11, the predicted punching failure load according to Mohr Coulomb
yield criterion is VR = 825 kN and governing inclination of the critical surface R where the curves
touch is 45°. Figure 7.10(b) shows the critical surface and directions of principal stresses at the edge
of the column. However, it can be noted in Figure 7.10(a) that the maximum tensile stress 1 is ap
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proximately 5 MPa, which exceeds the uniaxial tensile strength of concrete. Therefore, if the Mohr
Coulomb failure criterion is applied together with Rankine’s cut off, the predicted punching
strength decreases to VR = 732 kN, because the separation criterion ctf governs (Fig. 7.10(c)).

The inclination of the governing critical surface R decreases but as the angle p between the criti
cal surface and principal stresses is lower as well, the direction of the principal compression in the
conical shell stays similar (Fig. 7.10(d)). The mean principal compressive stress in the conical shell
is higher and the tensile stress is lower than in the case where the Mohr Coulomb criterion is ap
plied.

The Ottosen yield criterion provides a smooth transition between the sliding and the separation
criteria. The highest tensile stress can be reached at the hydrostatic axis (where 1 = 2 = 3) and
deviations from it (as compressive stresses perpendicular to the principal tensile direction) reduce
the capacity of concrete to withstand tensile stresses. Therefore, the maximum principal stress 1

on the critical surface at failure is lower than fct (2.8 MPa in the case of specimen PE11) and the
predicted failure load decreases to VR = 632 kN (Fig. 7.10(e, f)).

Table 7.1 Punching failure predictions of the proposed model with Ottosen yield criterion
(without the effectiveness factors and contribution of dowel action)

rc
mm %

B
mm

rq
mm

R
x ,R

mm
s

MPa MPa MPa
p,R

1

/fct
t

/fc
3

/fc
VR,pred
kN

VR,test
kN

VR,test
/VR,pr

PE10 42 0.77 3000 1505 33° 82 397 0.85 7.68 14.7° 0.81 0.19 0.70 485 530 1.09
PE11 83 0.75 3000 1505 32° 79 470 1.11 6.86 14.3° 0.85 0.25 0.69 632 712 1.13
PE9 165 0.74 3000 1505 34° 76 538 1.64 6.72 13.5° 0.87 0.26 0.60 968 935 0.97
PE12 330 0.76 3000 1505 38° 71 538 1.76 5.57 12.7° 0.90 0.32 0.61 1320 1206 0.91
PE6 42 1.46 3000 1505 32° 96 285 0.92 7.33 14.5° 0.82 0.24 0.71 631 656 1.04
PE7 83 1.47 3000 1505 32° 92 355 1.17 7.40 14.0° 0.83 0.28 0.67 845 871 1.03
PE8 165 1.47 3000 1505 32° 89 420 1.56 6.55 13.2° 0.86 0.35 0.63 1201 1091 0.91
PE5 330 1.50 3000 1505 35° 87 446 1.68 5.46 12.3° 0.87 0.44 0.64 1681 1476 0.88
PE4 166 1.59 1700 765 38° 91 218 1.85 5.10 13.2° 0.95 0.21 0.57 952 985 1.03
PV1 166 1.50 3000 1505 32° 90 372 1.30 5.50 13.2° 0.87 0.42 0.71 1023 978 0.96
PE3 166 1.54 3900 1926 30° 85 471 1.15 6.11 13.0° 0.81 0.51 0.74 1039 961 0.92

7.2.6 Punching strength predictions 

Similar analysis, using the Ottosen yield criterion, was performed for all the specimens presented
in Chapter 5. The main results are shown in Table 7.1. It should be noted that this calculation does
not account for the contribution of dowel action (Section 7.3) and the effectiveness factor, which
has to be included due to the assumption of plastic behavior of concrete (Section 7.4). The govern
ing angle of the critical surface was between 30° and 38° in all the specimens, whereas the direction
of principal stresses was approximately 13° from it. The failure occurred in all the cases with prin
cipal tension in the conical shell being between 80–90% of the uniaxial tensile strength of concrete
and principal compression about 60–70% of the uniaxial compressive strength. Comparison be
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tween the experimental results and model predictions shows a reasonable agreement, especially
considering that only standard multi axial strength parameters are used without any parameters
specific to punching. It can also be seen that the punching capacity of specimens with larger col
umn sizes is slightly overestimated. Due to similar slab depths (h = 250 mm; d 210 mm), no con
clusions can yet be made regarding the size effect.

7.3 Dowel action 

In Chapter 6 of the thesis, an experimental observation was made that the direction of opening of
the critical shear crack, which separates the spherical and conical slab portions, is approximately
perpendicular to its lips. Because the opening direction of the inclined crack does not coincide with
the direction of flexural reinforcement crossing it, the increase of crack width is accompanied by
flexural deformations of rebars (Fig. 7.11(a)). Due to the bending moments appearing in the rein
forcement, shear force Vdow is transferred between the lips of the critical shear crack by the bars. In
this section, a simple method is presented to account for the contribution of dowel action of rebars
crossing through the critical shear crack, considering the influences of tensile stresses in the rein
forcement as well as the limited magnitude of dowel displacement before a punching failure. The
dowel action of rebars through the failure crack is not considered, because it only appears when
the other shear transfer mechanisms have already lost their capacities [Fer13].

7.3.1 Dowel action of tensile reinforcement in the critical shear crack 

The flexural reinforcement in slab regions above the column is subjected to tensile stresses and can
even reach yielding before a punching failure occurs. A formula for calculating the stress s in rein
forcing bars within a radius r0 from the center of the column was given by Equation (7.7). The plas
tic flexural strength of a bar, reduced due to the stress s, may be calculated in a simplified manner
as:

sypl fM (7.21)

where is the diameter of the reinforcing bar. However, the plastic bending moment in the rein
forcing bars may not be reached, as breakout of rebars may potentially occur due to the proximity
of the surface of the slab on the right side of the crack in Figure 7.11(a). Pressure c,dow between con
crete and the dowel can therefore be limited by the tensile strength of the concrete around the bar.
Fernández Ruiz et al. [Fer10a] proposed that tensile failure of concrete will occur when the pres
sure reaches one of the criteria:

top

top

top

top

ct

dowc cs
f

(7.22)

where stop is the spacing of tensile reinforcing bars and ctop is the concrete cover.
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Using the equilibrium equations of a free body shown in Figure 7.11(b) (a part of a dowel between
the cross sections with maximum moment and with maximum shear force), where the flexural
strength of a rebar is calculated with Equation (7.21) and stress c,dow, assumed to be uniformly dis
tributed, with Equation (7.22), the maximum shear force that can potentially be transferred
through dowel action of one bar can be calculated as:

sydowcdow,max fV (7.23)

which is similar to the formula suggested by Rasmussen [Ras62] as ycmaxdow ffkV , which

assumes that the dowelling force is limited by flexural strength of the bars and the contact pressure
c,dow fc. The factor k in Rasmussen’s formula was calibrated on the basis of experiments, k = 1.5

has been found suitable [Ran13].

Figure 7.11 (a) Geometry of the critical shear crack and dowel action of top reinforcement;
(b) Free body diagram of a tensile rebar between the cross sections with zero moment and
zero shear force used to determine the dowelling force; (c) Activation of dowel action ac
cording to the experiments of Randl [Ran07]; (d) Photo of cracks on saw cuts associated to

activation of dowel action (specimen PE11)

P

Vdow

V do
w

 [k
N

]

s [mm]

T

(a)

(b)

(d)

(c)

wcr,hor

σc,dow·Φtop

Φ=20mm
60

0
0 321

20

40

Φ=12mm

Φ=16mm

σc,dow

Mpl

dowelling crack

Mpl Mpl

Vdow

T
T

s

ll

r0= rc+d

critical shear crack

failure
crack

Φtop



Chapter 7 Punching failure model

124

It should be noted that the Vdow,max does not depend on the length of the bar section l where c,dow

acts. Therefore, a delamination crack may start developing from to the critical shear crack without
reducing the capacity of dowel action. In fact, cracking along the tensile reinforcement layer close
to the critical shear crack could be observed on the saw cuts, indicating the dowelling of the rebars
(Figure 7.11(d)).

7.3.2 Activation of dowel action 

Stress transfer through the crack by dowel action has to be accompanied by a displacement per
pendicular to the axis of the dowel (shear slip s in Fig. 7.11(a)). The shear force calculated with
Equation (7.23) assumes that the slip is sufficient for the plastic hinges in the dowel to develop.
However, if the slip is limited, the shear force transferred by dowel action may be lower. Randl
[Ran13] has shown that the activation of dowel action can be approximated by a parabolic formula
that fits the experimental curves shown in Figure 7.11(c):

max
dow,maxdow s

sVV (7.24)

where smax is the slip corresponding to the formation of a plastic hinge in the dowel (recommended
to be taken approximately 0.10 – 0.20 according to Model Code 2010 [FIB13]).

When the inclination of the critical shear crack is assumed to be 45°, the crack slip is equal to the
horizontal crack opening wcr (Fig. 7.11(a)). wcr can be estimated from the reinforcement strains:

ss
E

w cr
s

s
cr

(7.25)

where scr is the average crack spacing, which, in a simplified manner, is taken equal to 100 mm.

Dowel action of all the rebars at a perimeter r0 = rc + d is:

top

cr
sydowccdow

wfkdrdV (7.26)

The value of factor k in Equation (7.26) should be reduced in comparison to the corresponding fac
tor in Rasmussen’s formula to account for the lower post peak stresses in the case when tensile
behavior of concrete governs. In this thesis, a value of 0.6 has been found suitable.

According to Equation (7.26), no force is transferred by dowel action in the cases where flexural
reinforcement reaches yielding before a punching failure occurs. However, in more rigid slabs
with only small flexural deformations, the contribution of dowel action is reduced by the limited
slip of the reinforcing bars that cross the flexural cracks. In the intermediate cases, the shear force
carried by dowel action reduces the stresses in the compression strut. Its contribution to punching
strength, shown in the parametric analysis in Section 7.5, does not normally exceed 10% of the total
capacity (refer to Appendix E).
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7.4 Effectiveness factor and size effect 

A method to predict the failure of the conical shell in the compression strut was developed in Sec
tion 7.2 on the basis of the theory of plasticity. In that plastic approach, the material response was
assumed to be perfectly rigid plastic with an infinitely long yielding plateau [Nie11]. The actual
response of concrete in compression exhibits a softening behavior after the peak load, which gets
more brittle in the case of higher concrete strengths (Fig. 7.12(a)). In order to use the rigid plastic
material model, the plastic concrete strength has to be reduced with respect to the measured com
pressive strength values. In this thesis, a brittleness factor fc [SIA13] is applied (Fig. 7.12(b)):

c
c

cfccp f
f

ff (7.27)

The actual stress strain response of concrete in tension differs even more from the assumption of
plastic material behavior. The failure occurs at a very small tensile strain and shows only limited
post peak resistance. Therefore, the range of applicability of the theory of plasticity on concrete
structures is often limited to the cases where tensile stresses can be carried by reinforcement. How
ever, as shown (among others) by Nielsen and Hoang [Nie11], plasticity approaches can give good
estimates of actual behavior even when brittle failure of concrete governs, provided that the effec
tiveness factor is suitably adjusted using relevant experimental results for calibration. Therefore, in
order to determine an effectiveness factor applicable in the case of punching without shear rein
forcement, the predictions of the proposed model are subsequently compared to test results.

Figure 7.12 Compressive response of concrete: (a) stress strain curves for concretes of differ
ent strength classes [ECP08]; (b) actual behavior and the assumed response in the model

7.4.1 Database of punching tests 

In total, results of more than 500 punching tests have been made available [Osp11, Sib14]. Howev
er, the majority of the experiments have been performed on very thin slabs (<100 mm) that are not
representative of real structures. For the analysis presented in this chapter, 119 test specimens have
been selected, including slabs from the test campaign presented in this thesis as well as previous
results reported in the literature.
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The set of 87 specimens used by Muttoni [Mut08b] was selected for the present study. However,
the specimens that failed at loads corresponding to the calculated flexural limit or within 5% from
that were excluded (refer to Appendix B of the thesis for the formulas for calculating the flexural
strengths of specimens). In addition, 31 recent full scale punching tests performed at EPFL by pre
vious researchers ([Gui10b], [Tas11], [Cle12], [Lip12]) or by the author ([Ein16a]), as well as 10
punching tests from elsewhere [Sis97] were included in the analysis. The list of the included test
campaigns is shown in Table 7.2. Figure 7.13 illustrates the range of principal parameters (effective
depth d, concrete strength fc and flexural reinforcement ratio ). All the data necessary for calcula
tions is given in Table E.1 of Appendix E of the thesis.

Table 7.2 Database of punching tests

No. Slender no. d [mm] [%] fc [MPa]
Elstner and Hognestad (1956) 18 18 114–118 1.15–3.70 12.8–50.6
Kinnunen and Nylander (1960) 12 12 117–128 0.78–1.55 23.8–30.5
Moe (1961) 6 6 114 1.06–1.53 20.8–26.5
Tolf (1988) 8 8 98–200 0.34–0.81 22.6–28.2
Tomaszewicz (1993) 13 9 88–275 1.50–2.60 64.3–119
Hallgren (1996) 5 5 240–245 0.80–1.19 85.7–94.9
Ramdane (1996) 12 12 98–100 0.58–1.28 23.9–90.5
Sistonen et al. (1997) 10 170–176 0.45–1.17 19.0–25.8
Guandalini et al. (2009) 4 4 130–520 0.33–1.50 27.6–34.7
Guidotti (2010) 11 11 194–208 0.75–1.62 31.5–51.7
Tassinari (2011) 2 2 210–214 0.84–1.48 66.3–67.0
Clément et al. (2012) 3 346–350 0.75–1.52 31.6–33.9
Lips et al. (2012) 4 3 193–353 1.50–1.63 30.5–36.5
Einpaul et al. (2016) 11 10 197–218 0.74–1.59 31.1–44.1

119 100

[Gua09]

[Els56]
[Kin60]
[Moe61]

[Hal96]

[Tol88]

[Ram96]

[Gui10]

[Tom93]

[Sis97]

[Lip12]
[Ein16a]

[Tas11]
[Cle12]

(a)
500

200

400

300

100

0

fc [MPa]
14060 1201004020 800

d 
[m

m
]

(b)
4.0

2.0

3.0

1.0

0

fc [MPa]
14060 1201004020 800

ρ 
[%

]

Figure 7.13 Database of 119 punching tests used for comparisons between the model predic
tions and experimental results (the empty markers indicate tests with distances between the

loading points and the edge of the support (rq – rc) < 4.5 d)

Applying the previously described method to the 119 tests in Table 7.2 gives an average ratio of
measured to predicted punching strengths of 1.04 with a coefficient of variation of 14.4%. It was
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noted that for the specimens with relatively small distances between the loading points and the
edge of the column, the predicted strengths were systematically lower than the experimental re
sults (this will be further discussed and explained in Section 7.5.1). The 19 tests with (rq – rc) < 4.5 d
(shown with empty markers in Fig. 7.13) were excluded from the dataset used for calibrating the
effectiveness factor. For the remaining tests, the average ratio was 1.03 and the coefficient of varia
tion 13.7%.

7.4.2 Size effect 

Brittle materials, where the failures occur by cracking, are known to exhibit size effect, according to
which a proportional decrease of all the dimensions of an element (D) leads to an increase in its
nominal resistance ( N). According to the principles of fracture mechanics this can be explained by
the consideration of energy balance at crack propagation. Forming a new crack surface during the
process of failure requires energy that is provided by a release of potential energy in the uncracked
part of the element when the stress (and thus the elastic deformation) in it decreases. Consequent
ly, the amount of released energy depends on the volume of the part of the element that is unload
ed. Failure can only occur if that amount exceeds the energy required for crack formation. Thus,
for proportionally larger size elements, the critical energy balance is reached at lower levels of
nominal stress. Assuming linear elastic material behavior, it can be shown that the nominal
strength N is inversely proportional to square root of element’s characteristic size D–1/2 [Wan96].

In spite of a nearly linear tensile stress strain relationship of concrete, linear elastic fracture me
chanics (LEFM) has failed to provide good predictions for brittle failures of concrete. Hillerborg
[Hil83] as well as Bažant [Baž84] have reasoned this with differences in the fracture process in con
crete compared to more homogenous materials, such as steel or glass. In concrete, growth of a
crack is preceded by a fracture process zone ahead of the propagating crack tip with a length that
depends on the material parameters (according to Hillerborg’s model) or accompanied by soften
ing of a crack band, the width of which is a material property (according to Bažant’s approach).
Both models conclude that size effect has to be less strong for smaller element sizes where the rela
tive length of the fracture process zone, or the width of the crack band, is larger compared to the
element’s size. The strength should only approach the LEFM predictions in the case of sufficiently
large elements. On the basis of energy release analysis [Baž84], Bažant proposed a general format
for the size effect factor in the case of quasi brittle failures:

D
D

Bk N
size

(7.28)

where 0 represents the plastic material strength, D is a characteristic element size, B is a constant
and D0 is a reference element size that represents a transitional size between the ranges where plas
tic behavior and LEFM govern. The reference size was assumed by Bažant to be proportional to
maximum aggregate size but in the present thesis it is taken independent of this parameter on the
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grounds of aggregate fracturing that was observed in the experiments. Bažant [Baž84] has suggest
ed that the constants B and D0 should be determined from regression analysis of test data, as their
theoretical derivation is complex and requires many parameters whose values cannot be known
precisely. Bažant and Cao performed such analysis for punching failures [Baž87] and found values
of B = 0.155 and D0 = 181 mm suitable. However, it should be noted that in their analysis, the nom
inal stress was calculated using the whole depth of a cross section so that the influence of the
amount of flexural reinforcement was neglected, as opposed to verifying the stresses in a conical
shell in the compression strut as in the present model.

Figure 7.14 Ratios of measured to predicted punching strengths (100 specimens, without the
size effect factor kx) as a function of the depth of the critical surface and a suitable fit for the

size effect factor kx: (a) linear plot (b) double logarithmic plot

Figure 7.14(a) shows the predictions of the proposed model for 100 punching tests of slender spec
imens (Table 7.2). The column size effect factor kcol (Section 7.4.3) is taken into account in this calcu
lation. The mean value of the ratios between the experimental punching capacities and the predic
tions is 1.06 and the coefficient of variation 11.3%. The selected size parameter, shown in the hori
zontal axis, is the length of the governing critical surface on a radial vertical plane (x ,R / sin R),
which represents the size of the conical compression shell in which plastic behavior is assumed.

To investigate the quasi brittle size effect factors in the format of Equation (7.28), it is convenient to
use double logarithmic plots of nominal strength versus element size. In such plots, the LEFM size
effect factor is a straight line with a slope of –1/2, the plastic limit is a horizontal line (no influence
of size) and Equation (7.26) defines a curve that asymptotically approaches the plastic limit for
D/D0 0 and the LEFM factor in the case of D/D0 . Figure 7.14(b) shows the comparison be
tween test results and model predictions in such format. The size effect function kx, selected on the
basis of the experimental results and shown with a dashed line, is:

x
kx (7.29)

that corresponds to B = 1.41 and D0 = 150 mm (x is in millimeters).
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7.4.3 Influence of column size 

As suggested by the experimental results described in Chapter 6, the development of punching
failure cracks does not start concurrently on the whole column perimeter. Due to local inhomoge
neities in concrete, stresses at some points of the column perimeter reach the local material
strength at lower levels of load than in the other points. However, the punching capacity of a slab
column connection is not necessarily determined by the weakest point on the column perimeter.
As Sagaseta et al. [Sag11] and Natário et al. [Nat14] have demonstrated (for the cases of punching
of slabs with unequal reinforcement ratios in two directions and for slabs with point loads close to
linear supports, respectively), tangential redistribution of shear force may take place. This allows
redistributing the load from the failed slab sectors, where the radial shear force transfer mecha
nism has lost all or part of its capacity, to adjacent sectors, where the capacity has not yet been
reached. Chapter 6 presented some additional experimental evidence of the appearance of such
redistribution even in nominally axisymmetric slabs.

At the moment when a slab column connection fails in punching, some parts of the perimeter have
already exceeded their peak shear capacities. Failure cracks, that had started opening in these parts
of the perimeter, propagate tangentially to the slab sectors that have higher shear strength. This
propagation is associated to a size effect similarly to the radial crack propagation discussed in Sec
tion 7.4.2.

Figure 7.15 Ratios of measured to predicted punching strengths (100 specimens, without the
column size effect factor kcol) as a function of column perimeter bcol and a suitable fit for the

column size effect factor kcol: (a) linear plot (b) double logarithmic plot

Figure 7.15(a) shows the predictions of the proposed model as a function of the length of the col
umn perimeter bcol (the factor kx for the size effect regarding the depth of the compression zone
(Eq. (7.29) is accounted for in this calculation). A decreasing trend of the predictions for increasing
column size can be clearly observed. A double logarithmic plot in Figure 7.15(b) shows that this
trend can be approximated in the format of Bažant’s size effect law (Eq. (7.28)), but it is weaker
(less dependent on size and thus closer to the range where the plastic approach is valid):
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col
col b
k (7.30)

where bcol is the column perimeter in meters.

Regarding the range of validity of the column size effect factor given by Equation (7.28), it should
be noted that one of the assumptions made in the development of the size effect formulation of
Bažant (Eq. (7.28)) was that the work of external forces (displacement of the load application
points) at the moment of failure is zero [Baž84]. That is the case in experiments with fixed grip
conditions where the rigidity of the testing frame significantly exceeds the rigidity of the specimen.

In order for Bažant’s size effect format to be applicable for the column size effect in punching, the
tangential redistribution mechanism should be sufficiently stiff. In the vicinity of columns in two
way slabs, bending moments are negative (hogging) in both directions. Redistribution of shear in
the tangential direction is accompanied by reduction of the tangential hogging moment. However,
the sign of both moments typically remains the same (refer to the left side in Fig. 7.16). In contrast,
close to a linear supports in one way slabs, bending moments only act in the direction parallel to
the support. Redistribution of shear forces along a linear support after the initiation of a failure
crack will thus generate positive moments parallel to the support (refer to the right side of
Fig. 7.16). When bending moments with different signs in two perpendicular directions act in a
slab, the flexural compression zones are softened by transverse tensile strains acting in the tension
chord of the other direction, considerably decreasing the stiffness of the slab response to both mo
ments. In addition, shear failure cracks in slender elements develop at a greater distance from the
edge of the support than punching failure cracks. Therefore, the flexural deformations associated
to shear redistribution are significantly larger in the case of one way shear than in punching. This
increases the work of external forces which implies that more energy is available to propagate the
failure crack along the support. Lateral crack propagation in one way elements is therefore brittle
and not significantly influenced by the element’s width.

shear failure crackpunching failure crack

negative radial moment
negative tangential moment positive parallel moment

negative perpendicular moment

Figure 7.16 Redistribution of moments after the initiation of a punching failure crack in the
case of two way action (left side) and a shear failure crack in one way slabs (right side)

It is important to note that the column size effect shown in Figure 7.15 does not provide a transi
tion between shear strengths of one and two way slabs, because the mechanism of shear redistri
bution is markedly different in these two cases. The existence of stable crack propagation phase
along the support and the associated column size effect is instead related to the distance between
the failure crack and the support as well as the magnitude of hogging moments in the direction



7.5 Parametric analysis and comparison to the CSCT and test results

131

parallel to the support. In the database used for calibrating Equation (7.30), all the specimens had
columns that were sufficiently small so that the tangential redistribution mechanisms could be
considered rigid.

7.5 Parametric analysis and comparison to the CSCT and test results 

In this section, the influence of various parameters on punching capacity is analyzed according to
the proposed model, the CSCT [Mut08b] and on the basis of experimental results (Table 7.2). For
all the 119 specimens, the mean value of the ratios between experimental and predicted strengths
is 1.03 and the coefficient of variation 12.4%. If 100 slender specimens are considered ((rq –
rc) > 4.5 d), the mean becomes 0.99 and the coefficient of variation is 8.8%. For the remaining 19
more compact slabs, the mean is 1.23 with a coefficient of variation of 10.3%. If the tests of Elstner
and Hognestad [Els56] on thin slabs with very high reinforcement ratios are also excluded from
the comparison (discussed in Section 7.5.5), the mean predicted to measured strength ratio of the
82 tests is 1.02 and the coefficient of variation 7.6%.

7.5.1 Slab slenderness 

Shear slenderness of beam specimens is known to influence their shear capacity [Kan64]. Muttoni
and Fernández Ruiz [Mut08a], similarly to Vecchio and Collins [Vec86], have explained the de
creased shear strength of more slender beams by larger longitudinal tensile strains the element,
which increase the opening of the critical shear crack [Mut08a], or decrease concrete strength in the
compression field [Vec86]. According to the CSCT [Mut08b], punching strength of a slab is a func
tion of its rotation and is thus also influenced by the specimen’s slenderness, which affects the
stiffness of its flexural response. Figure 7.17(a) shows the load rotation curves for the case of three
different slenderness ratios. The CSCT predicts the lowest punching strength for the most slender
slab, justified by the widest critical shear cracks through the theoretical compression strut.

In the proposed model, punching strength is assumed to depend on the state of stresses in the
compression strut in the vicinity of the column. The depth of the compression zone, after the for
mation of circular cracks, is assumed to be constant and the stresses to depend on the forces in ra
dial tensile reinforcement. After the reinforcement has yielded, the punching strength is therefore
independent of slab rotation (refer to the horizontal part of the failure criterion of the proposed
model in Fig. 7.17(a)). Before yielding, forces in the reinforcement increase with increasing slab
rotation (Eq. (7.6)), which leads to predicting that, in that range, the punching strength is higher for
slabs that have larger slenderness ratios. However, the shear force carried by dowel action (shaded
area in Fig. 7.17(a)), that contributes to the punching capacity only before yielding of reinforce
ment, can partially compensate for the reduced strength of the compression strut due to lower hor
izontal stresses.

Strains are not considered to influence the punching behavior due to the following reasons:
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Major part of the shear force is considered to be transferred through a conical shell in the
compression strut. Tensile strains and cracking outside of the compression zone do not in
fluence this capacity;

Tangential and radial compressive strains measured on the soffits of slabs without shear re
inforcement remained consistently below the strains that are associated to maximum
stresses in biaxially compressed concrete and correspond to the beginning of the reduction
of capacity due to large compressive strains (concrete crushing);

Shifting of the rigid slab portions towards the center of the column and subsequent in
crease of compressive strains in the compression shell, suggested by Kinnunen and
Nylander [Kin60], was not observed in test. Reduction of radial strains, measured on the
soffits of tested slabs, can instead be attributed to the development of failure cracks.
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Figure 7.17 Influence of concrete strength: (a) load rotation curves for slabs with different
slenderness ratios and the failure criteria of the CSCT and the proposed model (shading –

contribution of dowel action); (b) tests of the present thesis (continuous lines – predictions of
the present model; dashed lines – predictions of the CSCT); (c) VR,test/VR,pred ratios for 119 tests
from the database for the proposed model; (d) an example of the failure cracks in slender

specimens (PE8) and in compact specimens (PE4)
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Figure 7.17(b) shows the punching strengths of specimens PE4, PV1 and PE3. The properties of the
specimens were similar, apart from differences in the side lengths of slabs (between 1.7 x 1.7 m and
3.9 x 3.9 m) and loading spans. The predictions of the proposed model and CSCT are also shown.
Consistently with the proposed model, the punching strengths of the slabs were very close, where
as the predictions of the CSCT for the smallest and the largest slab differ by approximately 15%.

Comparison between the experimental results and the predictions of the proposed model in Fig
ure 7.17(c) shows that whereas the punching strengths of more slender specimens are well predict
ed, the model consistently underestimates the strength of more compact specimens (for slabs with
(rq – rc) < 4.5 d, the mean value of the measured to predicted strength ratios is 1.23). This can be
explained by the fact that, in compact specimens, part of the shear force can still be transferred by a
direct strut between the loading points and column even after the formation of a failure crack (re
fer to the example of specimen PE4 in Fig. 7.17(d)).

7.5.2 Concrete strength 

Experimental observations [Moe61] have shown that the punching strength of a slab column con
nection is not directly proportional to the compressive strength fc of the concrete in the slab. Based
on these results, empirical formulas in the codes of practice assume proportionality to the square
root [ACI14] or the cubic root of fc [CEN04]. The CSCT and the punching provisions of Model Code
2010 [FIB13], which are based on the former, define the punching strength as a function of square
root of fc but do not assume direct proportionality (refer to the dashed lines in Fig. 7.18(a)).

parameters: rs = 850 mm; rq = 686 mm; 
rc = 75 mm; d = 98 mm; h = 125 mm; 
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Figure 7.18 Influence of concrete strength: (a) tests of Ramdane [Ram96] (continuous lines –
predictions of the present model; shaded area – contribution of dowel action; dashed lines –
predictions of the CSCT); (b) VR,test/VR,pred ratios for 100 slender tests from the database for the

proposed model

Figure 7.18(a) shows the influence of fc on punching strength (shown as a nominal shear stress on a
control perimeter at d/2 from the edge of the column, normalized with square root of fc) and com
pares the predictions to the test results of Ramdane [Ram96]. The earlier models where the plastic
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strength of the compression strut can govern the punching capacity, such as the ones of Broms
[Bro90] as well as Shehata and Regan [She89], assume that, in this failure mode, the punching
strength is proportional to fc. According to the model proposed herein, punching failures occur due
to a triaxial stress state that is a combination of two compressive and one tensile stress, which
makes the punching capacity dependent on the combination of compressive and tensile strengths.
The influence of fc on punching strength is weaker than proportional because the increase of tensile
strength of concrete is slower than the increase of fc (refer to Eq. (7.18)). In addition, a brittleness
factor (Eq. (7.27)) is applied on the compressive strength of concrete to account for the decreased
ductility of high strength concretes that further reduces the influence of fc on punching strength. A
comparison between the predictions and the test results from the database is shown in Fig
ure 7.18(b). It should be noted that although the brittleness factor is not limited to 1 in this analysis,
punching strengths of slabs with fc < 30 MPa are not overestimated. This can be explained by the
stronger beneficial effect of biaxial compression in lower strength, more ductile concretes.

7.5.3 Effective depth 

Due to the size effect (Section 7.4.2), the increase of the punching strength of a slab is not propor
tional to the increase of the effective depth of its cross section. Full scale punching tests, where the
specimen’s depth is the main varied parameter and all the dimensions are kept proportional to it,
are scarce in the literature. Figure 7.19(a) shows the results of such test campaign by Tolf [Tol88].
In these tests, two slab depths, 120 and 240 mm were used. All the other geometric parameters,
including the diameters of flexural reinforcing bars (8 or 16 mm), concrete cover (12 or 24 mm) and
maximum aggregate size (16 or 32 mm) as well as the slab and column sizes were kept proportion
al to the slab depth. The dashed lines in Figure 7.19(a), representing the CSCT predictions, show
limited influence of slab depth, as the decrease of strength due to size effect is compensated by the
increase of strength due to the larger aggregate size. The proposed model, that does not assume
dependency of punching strength on aggregate size, predicts a more significant size effect for these
specimens and fits the experimental results very well.

Figure 7.19(b) shows the predictions for three tests [Lip12, Ein16a] that have varying slab depths
(h = 250 to 400 mm) and column sizes (c = 260 to 440 mm) but constant slab sizes (B = 3 m). With
increasing slab depth, the slenderness ratios of those specimens thus decrease. According to the
predictions of the CSCT, the nominal strength of these specimens is not expected to change signifi
cantly, as decreasing slenderness compensates for the size effect. The proposed model, in contrast,
predicts the size effect to dominate. However, for d > 280 mm, the slenderness ratio of the speci
mens decreases below 4.5 in which case, as shown in Figure 7.17(c), the predictions of the pro
posed model underestimate the actual strength.

The comparison of the model predictions to the test results, which is shown in Figure 7.19(c), high
lights the scarcity of test data on thick but slender slabs. In total, only two punching tests on slen
der slabs where the depth of the compression zone exceeds 200 mm are known to the author. More
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experimental data is needed to evaluate whether the size effect factor (Eq. (7.29)) of the proposed
model is too strong and thus provides too conservative predictions for thicker specimens.

Figure 7.19 Influence of effective depth: (a) tests of Tolf [Tol88]; (b) tests PV1 [Fer10b], PL4
and PL5 [Lip12] (continuous lines – predictions of the present model; shaded area – contri
bution of dowel action; dashed lines – predictions of the CSCT); (c) VR,test/VR,pred ratios for 100

slender tests from the database for the proposed model

Figure 7.20 Influence of column size: (a) tests of the present thesis (continuous lines – predic
tions of the present model; shaded area – contribution of dowel action; dashed lines – pre
dictions of the CSCT); (b) VR,test/VR,pred ratios for 100 slender tests from the database for the

proposed model
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7.5.4 Column size 

The influence of column size is accounted for in the proposed model by modifying the effective
ness factor with a term that is a function of column size (Eq. (7.30)). This term is calibrated on the
basis of available experiments. Therefore, a comparison between the test results and the predic
tions expectedly shows good correlation (Fig. 7.20(a, b)). In the CSCT, the influence of column size
is similar to the proposed model, although the reduction of nominal punching strength with in
creasing column size was justified by an increase of the width of the critical shear crack (as was
further explained in Chapter 3).

7.5.5 Reinforcement ratio 

The amount of flexural reinforcement (Fig. 7.21(a)) affects the punching strength mainly by chang
ing the depth of the compression zone. This was calculated (Eq. (7.5)) by assuming linear elastic
concrete response. In the case of high reinforcement ratios, especially in combination with relative
ly low concrete strengths, non linear deformations may start to occur in concrete, which can lead
to overestimated depth of the compression zone and thus overestimate the punching strength.
That may explain the apparent unconservative predictions in the case of very high values of that
can be seen in Figure 7.21(b). However, it should be noted that all such specimens are from the test
campaign of Elstner and Hognestad [Els56] on relatively thin slabs (nominal effective depths
d = 114 to 118 mm, actual values not reported) with large diameter rebars as tensile reinforcement
(19 or 25 mm) and small concrete cover (15 or 13 mm), whereas the maximum aggregate size was
25 to 38 mm. As such, these slabs did not conform to the current codes of practice [CEN04, FIB13],
which require that concrete cover of rebars be at least equal to the bar diameter in order to achieve
adequate bond. In addition, in real slabs, reinforcement ratios over 2% are uncommon. Therefore,
these specimens were kept in the database but the statistical parameters were also calculated for a
dataset where these slabs were excluded.
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Figure 7.21 Influence of reinforcement ratio: (a) tests of the present thesis (continuous lines –
predictions of the present model; shaded area – contribution of dowel action; dashed lines –
predictions of the CSCT); (b) VR,test/VR,pred ratios for 100 slender tests from the database for the
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7.5.6 In-plane forces 

If in plane forces, caused for example by pre stressing, are present in the slab, the effective depth
should be calculated by solving Equation (7.4). The increased force in the compression chord due
to n should also be accounted for in Equation (7.8). The magnitude of the in plane forces at the
column perimeter and the slab rotation can be predicted with the axisymmetric model that was
introduced in Chapter 3.

An experimental investigation on punching of pre stressed slabs was performed by Clément et al.
[Cle14]. Parametric analysis and a comparison to the results of this campaign are shown in Fig
ure 7.22. Specimens of the first series of the campaign (series N) had centric in plane compression
applied by means of an external loading frame. Three different levels of pre stress (1.25, 2.5 and
5 MPa) were applied on slabs with two different flexural reinforcement ratios (0.79% and 1.55%).
Figure 7.22(a) shows the predictions of the proposed model (continuous lines) and the CSCT
(dashed lines) with the modifications to account for the influence of in plane forces on the load
rotation response, as well as on the failure criterion [Cle13, Cle14]. Both the proposed model and
the CSCT predict that the punching strength increases with increasing pre stress levels and accord
ing to both models, that increase is limited. In the CSCT, this limit arises from the formulation of
the failure criterion, where the maximum normalized nominal stress, corresponding to slab rota
tion = 0, is 0.75. According to the proposed model, the reduction of the efficiency of high levels of
prestressing is related to a shift from a separation governed failure mode to a sliding type failure,
between which the applied yield criterion predicts a smooth transition. The trend of reducing effi
ciency of prestressing is well predicted by the proposed model. However, the estimates are slightly
conservative.
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Figure 7.22 Influence of pre stressing, specimens of Clément et al. [Cle14]: (a) slabs with dif
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Four specimens in the campaign of Clément et al. [Cle14] (series M) investigated the influence of
positive bending moments in the slab. These moments normally arise due to the eccentricity of
prestressing cables. In series M, however, the positive (sagging) moment was applied at the edges
of the specimens with a special loading frame. The non linear analysis presented in Chapter 3
showed that the total bending moment remains negative (hogging) in the center of the slab, but in
plane compressive forces arise due to the restraint provided by the applied edge moments. Ac
counting for this compression increases the depth of the compression zone and thus, according to
the proposed model, enhances the punching strength. Figure 7.22(b) shows the influence of the
applied positive moments at specimen’s edge, predicted with the proposed model and with the
CSCT [Cle14]. The predictions of both models are similar and fit the observed trends.

The three specimens of series P [Cle14] were reinforced with prestressing cables with an eccentrici
ty of 55 mm. The effects of in plane compression and positive bending moments were thus com
bined. Figure 7.22(c) shows the influence of the prestressing stress according to the investigated
models. Similarly to series N (Fig. 7.22(a)), the predictions of the CSCT are limited by the maxi
mum punching strength. The proposed model could be applied until the level of prestressing was
such that the positive moments due to eccentricity completely cancelled the negative moments due
to shear loading in the punching region.

7.5.7 Edge restraints 

Ospina et al. [Osp01], and later Choi and Kim [Cho12] tested specimens with passive flexural edge
restraints that modelled actual continuous slabs, allowing for redistributions between hogging and
sagging moments. The main investigated parameters were the provided amounts of hogging and
sagging reinforcement. Although the ratios of hogging reinforcement were notably different, the
flexural response of the edge restrained specimens did not vary as much. This can be explained by
the emergence of in plane forces due to the confinement in the hogging moment portion of the
specimen provided by a tension ring in the sagging moment portion, as predicted by the analysis
presented in Chapter 3.

Table 7.3 Comparison between the test results of edge restrained slabs and the predictions
of the CSCT (accounting for the compressive membrane action, failure criterion of Eq. (2.1))

as well as of the proposed model (* – cyclic tests)

Ref. Test
hog,
[%]

sag,
[%]

VR,test /b0 d fc
[ MPa]

CSCT
VR,pred/b0 d fc
[ MPa]

Proposed
VR,pred/b0 d fc
[ MPa]

[Osp01] ER1 VS 0.92 0.14 0.469 0.411 0.504

[Cho12]
MRA* 1.06 0.31 0.345 0.433 0.531
MRB* 0.83 0.43 0.327 0.427 0.519
MRC* 0.58 0.57 0.335 0.409 0.537

According to the proposed model, the increase of punching strength arising from the confinement
can be predicted by accounting for the compressive in plane stresses in the column perimeter. The
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results of the analysis are shown in Table 7.3. The predicted strengths for all the specimens are
very similar in spite of the differences in the distribution of reinforcement. The predictions for the
tests of Choi and Kim [Cho12] are consistently higher than the measured strengths due to a cyclic
loading at 80–100% of the failure load.

7.6 Simplifications of the model 

7.6.1 Constant inclination of the critical surface 

According to the punching strength model proposed in this thesis, the inclination of the critical
surface in the compression strut and the angle of principal stresses p relative to that surface are
defined by the state of normal and shear stresses on the critical surface where the curve
touches a yield criterion, as was shown in Figure 7.10. In Figure 7.23(a), it can be seen that the Ot
tosen yield criterion and the curves, that describe the mean normal ( ) and shear stresses ( ) as a
function of punching load V and , are nearly parallel in a relatively long range. Therefore, the
angle does not have a strong influence on the punching capacity VR. In addition, the angle of the
principal stresses p, which is related to the slope of the yield criterion, does not change significant
ly either. Thus, constant values can be selected for and p without a noticeable loss of precision of
the predictions. Based on the governing values for the 119 tests in the database, = 30° and = 12°
were selected (refer to Fig. 7.23(b) and (c) for and p, respectively).

Figure 7.23 Inclination of the critical surface and direction of principal compression p:
(a) determination of angles and p; (b) governing angles R for the 119 tests in the data

base; (c) governing angles p,R for the 119 tests in the database
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7.6.2 Stress in flexural reinforcement 

In the proposed model, punching strength of a slab column connection is assumed to be a function
of the force in the tension chord of the slab. This force depends on the flexural deformations of the
slab around to the connection and increases with increasing level of load. However, after the load
reaches a level that causes yielding of radial flexural reinforcement, forces in the tension chord and
thus the punching capacity are constant.

In addition, the shear force that is transferred to the column by dowel action of tensile reinforce
ment depends on the stresses in the rebars. An example of the evolution of punching strength as a
function of slab rotation was shown in Figure 7.17(a). As a simplification in order to avoid the need
to use iterations to determine the punching strength, stress in tensile reinforcement s can be as
sumed to be constant at a level equal to the yield strength of reinforcing steel fy (refer to the calcu
lation example given in Appendix D of the thesis).

Table 7.4 shows the ratios of the experimental to the predicted capacities for the 100 slender speci
mens from the literature, using firstly the proposed model with the governing angles and p cal
culated through iterations. In the second calculation, constant angles of = 30° and = 12° are as
sumed. Negligible differences between the simplified and the iterated results can be seen. Finally,
the punching strengths are calculated using constant stresses in the flexural reinforcement of s = fy,
which results in slightly increased scatter of the predictions. Table E.2 in Appendix E of the thesis
lists the calculated VR,test/VR,pred ratios for all the specimens.

Table 7.4 VR,test/VR,pred ratios for the slender slabs according to the proposed model

No.
variable angles = 30°; = 12° constant s

mean COV mean COV mean COV
Elstner and Hognestad [Els56] 18 0.90 7.2% 0.90 7.0% 0.97 12.4%
Kinnunen and Nylander [Kin60] 12 1.08 8.4% 1.08 8.4% 1.08 7.8%
Moe [Moe61] 6 1.04 9.3% 1.04 9.3% 1.05 8.8%
Tolf [Tol88] 8 1.04 5.6% 1.05 5.2% 1.11 4.4%
Tomaszewicz [Tom93] 9 1.05 6.7% 1.05 6.8% 1.06 6.5%
Hallgren [Hal96] 5 0.95 5.8% 0.95 5.9% 0.96 5.1%
Ramdane [Ram96] 12 1.03 9.1% 1.02 9.4% 1.03 9.8%
Guandalini et al. [Gua09] 4 1.02 13.0% 1.01 13.1% 1.06 14.1%
Guidotti [Gui10b] 11 1.02 10.3% 1.02 10.2% 1.04 6.2%
Tassinari [Tas11] 2 0.97 0.97 0.99
Lips et al. [Lip12] 3 0.97 10.2% 0.97 10.1% 1.10 10.0%
Einpaul et al. [Ein16a] 10 0.98 4.2% 0.99 4.4% 1.07 5.4%

100 1.00 9.0% 1.00 9.1% 1.04 9.4%
without Elstner and Hognestad 82 1.02 7.8% 1.02 7.9% 1.05 8.0%

As explained in Section 7.5.5, the proposed model overestimates the strength of the thin specimens
with very high amounts of flexural reinforcement tested by Elstner and Hognestad [Els56], possi
bly due to the detailing of the reinforcement in these specimens, which does not conform to the
modern requirements. The mean and the coefficient of variation for the experimental to the pre
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dicted strength ratios are thus also given for all the other specimens from the database, excluding
this campaign.

Table 7.5 VR,test/VR,pred ratios for the slender slabs according to the CSCT [Mut08b], Model
Code 2010 [FIB13] (Level of Approximation II) and Eurocode 2 [CEN04]

No.
CSCT MC2010 (LoA II) Eurocode 2

mean COV mean COV mean COV
Elstner and Hognestad [Els56] 18 0.98 7.7% 1.14 7.6% 1.17 9.5%
Kinnunen and Nylander [Kin60] 12 1.06 8.3% 1.23 8.2% 1.21 9.8%
Moe [Moe61] 6 1.04 9.0% 1.24 8.8% 1.25 9.8%
Tolf [Tol88] 8 0.99 10.0% 1.18 9.6% 1.11 13.8%
Tomaszewicz [Tom93] 9 1.10 6.1% 1.31 5.9% 1.10 9.1%
Hallgren [Hal96] 5 0.96 3.8% 1.18 5.1% 0.97 4.2%
Ramdane [Ram96] 12 1.10 10.5% 1.44 7.5% 1.27 12.5%
Guandalini et al. [Gua09] 4 1.08 8.9% 1.29 8.9% 1.08 13.4%
Guidotti [Gui10b] 11 1.09 9.8% 1.29 9.6% 1.05 5.1%
Tassinari [Tas11] 2 1.07 1.27 1.02
Lips et al. [Lip12] 3 1.08 3.8% 1.21 5.1% 1.01 8.2%
Einpaul et al. [Ein16a] 10 1.05 5.8% 1.23 7.5% 1.07 15.9%

100 1.05 9.2% 1.25 10.3% 1.14 12.9%
without Elstner and Hognestad 82 1.06 9.0% 1.27 9.8% 1.13 13.5%

Table 7.5 shows experimental to predicted strength ratios for other punching models: the CSCT
[Mut08b], Model Code 2010 (level of approximation II) [FIB13] and Eurocode 2 [CEN04]. The
CSCT shows a low scatter (mean ratio is 1.06 and COV 9.0%). The results of Model Code 2010
punching provisions are conservative but also with a low scatter (mean 1.27 and COV 9.8%). For
the considered tests, the predictions of Eurocode 2 have clearly the largest scatter (mean 1.13 and
COV 13.5%). All the results can be found in Table E.2 in Appendix E of the thesis.

7.7 Summary 

In this chapter, a new calculation model was proposed that allowed predicting the punching
strength of slab column connections. The model assumed that the shear force is transferred from
the slab to the column by an inclined compression strut and, in a smaller part, by dowel action of
tensile reinforcement. The strength of a conical shell, located below the flexural cracks in the com
pression strut, is predicted using the lower bound theorem of the theory of plasticity and the gen
eral triaxial stress based yield criterion of Ottosen [Ott77].

The proposed model assumed that punching failures occur due to crack localization in the com
pression strut. Therefore, applying the theory of plasticity requires that relevant effectiveness fac
tors be used on the yield stress of concrete. It is explained that in the case of punching, the effec
tiveness factor should depend on the slab depth to account for the size effect, but it should also be
a function of column size in order to consider the propagation of the failure crack along a support
perimeter. A semi empirical effectiveness factor is calibrated on the basis of a selection of experi
mental results.
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A comparison to test results suggests that the proposed model can successfully predict the punch
ing strength of slender specimens, where the formation of a direct strut between the load and the
support is avoided. The contribution of dowel action is shown to be up to approximately 10% of
the capacity. A simplified form of the model is also given that allows calculating the punching
strength without iterations.

The proposed model can be also used to predict the punching strength of pre stressed slabs by
considering the influence of in plane forces on the location of the neutral axis. Enhanced punching
strength of continuous or confined slabs can also be predicted when the magnitude of the in plane
compression, which arises due to confinement, is calculated with the axisymmetric numerical
model described in Chapter 3.
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Summary and conclusions Chapter 8

The present thesis consisted of an analytical study on the behavior of continuous rein
forced concrete flat slabs, an experimental campaign of punching tests on isolated specimens with
a focus on investigating the failure mechanism by means of internal measurements, and a devel
opment of a new model for axisymmetric punching that is based on the assumption that the shear
force is mostly transferred to the column through a direct compression strut. This chapter contains
a brief summary of the achieved results, the main conclusions of the work and an outlook for fur
ther research.

8.1 Summary 

The earlier mechanical models for punching have analyzed the behavior of actual slabs by consid
ering axisymmetric isolated slab elements limited by the points of moment contraflexure around
the slab column connection. In the present thesis, the behavior of continuous slabs was studied on
the basis of slab portions that extend to the mid span symmetry line of the slab. Due to the non
linear flexural response of reinforced concrete members, caused by cracking of concrete and yield
ing of reinforcement, redistribution between hogging and sagging moments occurs in continuous
slabs. The adopted approach allowed accounting for this effect as well as the consequent shifting
of the line of moment contraflexure. In addition, compressive membrane action may arise after
flexural cracking of continuous slabs due to restrained slab dilation, which can be provided either
by the lateral rigidity of the adjoining structural elements or by the radially uncracked sagging
moment portion of the slab itself. Comparisons of the model predictions to the results of punching
test on various edge restrained specimens confirmed the accuracy of the model. The model, as well
as the test results, shows that due to the effect of self confinement, even only flexural edge re
straints can generate compressive membrane forces around the column. On the basis of the numer
ical model, a simplified formula for calculating the load rotation response of continuous slabs was
proposed, adapted for use together with the punching provisions of Model Code 2010.

In the experimental part of the thesis, thirteen 250 mm deep isolated punching test specimens were
tested to failure. Ten specimens had no shear reinforcement, whereas three specimens were
equipped with double headed shear studs. The main investigated parameters were column size
and specimen slenderness ratio. The obtained punching strengths were compared to the predic
tions calculated using the punching provisions of the major codes of practice (ACI 318, Eurocode 2
and Model Code 2010) as well as the Critical Shear Crack Theory (CSCT). In some specimens, de
tailed investigation of the failure mechanism was conducted. Using a novel technique based on a
coordinate measuring arm, displacements of measurement points arranged in a grid pattern inside
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the specimen were tracked. This allowed following the initiation and development of internal
cracking in the vicinity of the column.

Finally, a new method was proposed to calculate the punching resistance of interior slab column
connections. Experimental observations on the kinematics of internal cracks in two way slabs sug
gested that the transfer of shear stresses through the cracks of flexural origin was not significant.
According to the proposed model, punching failures are considered to occur due to localization of
a failure crack in the direct compression strut below the flexural cracks. The failure crack may then
propagate to join pre existing flexural cracks or develop further independently of them. The criti
cal state of in plane and shear stresses that causes the crack localization is predicted using the low
er bound theorem of the theory of plasticity in combination with a general triaxial yield criterion.
Because the actual behavior of concrete in the case of punching failures is brittle and not plastic,
effective values of concrete strength parameters have to be used. These values should also account
for the structural size effect that is known to affect the behavior of brittle elements. In this thesis,
the effectiveness factor was shown to depend on the slab depth and column size. The new model
can also be used to predict the punching strength of slabs with in plane forces, such as prestressed
slabs or slabs where membrane forces are generated due to slab continuity.

8.2 Conclusions 

8.2.1 Punching of continuous slabs 

The size of the isolated test specimens, which corresponds to the location of moment contraflexure
points in actual slabs, is normally selected assuming linear elastic slab behavior. A non linear
analysis presented in this thesis shows that this location actually varies with the level of load in
continuous slabs. Together with the compressive membrane action, it may lead to a stiffer re
sponse of the continuous slabs than has been assumed on the basis of isolated elements. According
to the CSCT, where the punching strength of slab column connections is a function of slab rotation,
it results in increased punching capacity of actual slabs.

Especially significant differences between isolated specimens and continuous slabs appear in slabs
with low amounts of hogging reinforcement or in shear reinforced slabs, where tensile reinforce
ment in the vicinity of the slab column connection reaches yielding before a punching failure oc
curs. In continuous slabs, this leads to redistribution of bending from hogging to sagging moments
and a subsequent shift of the moment contraflexure line towards the column, which increases the
stiffness of the load rotation response and thus the punching strength. These phenomena cannot
occur in isolated specimens and may thus lead to conservative estimates of the punching strengths
of corresponding actual slabs.

Due to the described effects, edge restrained specimens are better suited for modeling the punch
ing behavior of actual flat slabs than conventional isolated elements. Whereas the development of
design formulas for punching shear on the basis on tests on isolated slabs is believed to be con
servative, the provisions for more precise calculations (such as for assessment of existing struc
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tures) should take into account the experimental and analytical evidence obtained from tests on
slabs with flexural edge restraints.

8.2.2 Experimental investigation 

The campaign of punching tests on isolated specimens with variable column sizes confirmed the
well known observation that the nominal shear strength on a control perimeter close to the column
edge decreases with increasing column size. Despite the experimental evidence, the punching pro
visions of ACI 318 assume constant shear strength on a control perimeter at d/2 from the column
edge for column side lengths up to 4d. In the Eurocode 2 provisions, the influence of column size is
accounted for by verifying the nominal shear stress on a control perimeter located further away (at
2d) from the column edge. However, in order to avoid decreasing the factor of safety in the case of
small column sizes, an empirical limit for the maximum nominal shear stress at the column perim
eter has been added. Yet, comparisons between the code predictions and the test results show a
considerable scatter, in part because the punching verification of small columns in Eurocode 2 does
not account for the beneficial influence of shear reinforcement, which has been experimentally ob
served.

The CSCT explains the reduced nominal punching strengths of larger columns by greater slab rota
tions at load levels close to the failure and consequently increased crack widths that decrease the
capacity of concrete to carry shear stresses from the slab to the column. In the experimental cam
paign, however, the flexural crack widths reached before punching failures occurred were not ob
served to be significantly affected by column size, because in the case of larger columns, the slab
deformation was distributed between a larger number of cracks. Nonetheless, the CSCT provides
the best punching strength estimates of the compared models. The predictions of the Model Code
2010 punching provisions (in the level of approximation II) are based on the CSCT and thus show
similar tendencies, while being more conservative.

The influence of slab slenderness is not accounted for in the punching provisions of ACI 318 and
Eurocode 2. In the tests on isolated specimens, the slab slenderness ratio had a significant influence
on the punching capacity of slabs with shear reinforcement. However, as all these specimens failed
after yielding of flexural reinforcement, these results do not directly predict the behavior of actual
continuous slabs. Regarding the slabs without shear reinforcement tested in the present research,
the influence of slab slenderness on the punching strength was not observed to be significant.

By means of the measurements of internal cracking during punching tests, two types of cracks
could be distinguished. Propagation of flexural cracks, inclined towards the column due to the
influence of shear, could be observed around the column. However, in most cases, the eventual
punching failures did not take place along these cracks. Instead, new lower angled failure cracks
developed. On some sides of the column in some specimens, these cracks were first detected al
ready below 80% of the maximum load. However, on the other side of the column or in other spec
imens, they appeared suddenly only at the moment of failure.
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8.2.3 Proposed punching model 

The model for axisymmetric punching proposed in this thesis uses the theory of plasticity and as
sumes uniform distribution of stresses in a conical shell in the compression strut around the sup
port. In this model, the actual non uniform stress distribution is taken into account by using the
effective values of concrete strength. The effectiveness factor is shown to be a function of the slab
depth as well as the column size. The column size effect, caused by the shear redistribution that
occurs along the support, can explain the reduction of the nominal shear strength of larger slab
column connections that was observed in the test campaign described in the present thesis. A
comparison between the model predictions and 82 tests from the literature shows a very good
agreement (average tested to predicted strength ratio is 1.02 with a coefficient of variation if 7.8%).

In the proposed model, the punching strength does not directly depend on the slab rotation.
Therefore, in the case of sufficiently slender elements, where the development of a direct strut be
tween the loading points and the support is avoided, the punching strength is not significantly
influenced by the slenderness ratio of the slab. However, more slender slabs show higher defor
mation capacities compared to the more compact ones.

The beneficial influence of in plane compressive stresses in the slab around the connection can be
accounted for by modifying the inclination of the compression strut. The enhanced punching
strength of continuous slabs can therefore be explained by the compressive membrane action,
which was shown to generate compressive forces in the slab even in the case of specimens with
only flexural edge restraints.

8.3 Outlook 

Regarding the punching behavior of continuous slabs, it should be noted that axisymmetric geom
etries, which were assumed in the models presented in this thesis, exist in practice only in very
rare cases. Actual slabs may have openings in the vicinity of the columns or in the confinement
providing mid span tension ring that, depending on their size, can restrain or completely eliminate
the influence of compressive membrane action. Furthermore, compressive membrane action due to
self confinement appears only partly in the case of edge columns. In continuous slabs, moment
redistribution may also influence the distribution of shear forces between the columns. It might be
useful to study these effects on the basis of non linear finite element analyses, which can be
adapted to more complex geometries.

Punching resistance under sustained or cyclic loading has not received sufficient research atten
tion. In self confined continuous slabs, the influence of sustained loading may be even more im
portant due to the tensile creep of concrete in the tension ring that may reduce its stiffness and
thus increase the slab rotation around the columns. The influence of pre existing cracks in concrete
due to previously applied loading cycles should also be further investigated.
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In the study of continuous slabs, the differences found between the load rotation responses of con
tinuous slabs and isolated specimens were especially significant in the case of using highly effi
cient shear reinforcement. This highlighted that tests on isolated specimens might not always be
suitable for modeling the behavior of actual shear reinforced slabs. However, tests on continuous
or edge restrained slabs with modern shear reinforcement are extremely scarce in the literature.
More such experimental data are needed to assess the level of safety of the presently used design
approaches.

The size effect factor used in the proposed punching model was calibrated on the basis of test re
sults from the literature. However, the majority of the experiments have been performed on slabs
that are thinner than the ones typically used in practice. Due to laboratory constraints, many of the
thicker punching test specimens have also had lower slenderness ratios. In order to validate the
applicability of proposed punching models on actual thick slabs, more punching tests should be
performed on thick but sufficiently slender specimens.

Further investigation is also needed on the redistribution of shear forces along the support in ax
isymmetric slabs. A numerical study should be performed on the influence of tangential shear re
distribution on the moment field and the deformations of the slab. The obtained results should be
compared to detailed experimental measurements of soffit deformations and strains at several lo
cations along the column perimeter, possibly also to the distribution of reaction forces along the
edge of the support plate. These analyses can lead to proper assessment of slab deformations asso
ciated to shear redistribution and allow for deriving a column size effect factor on the basis on en
ergy balance considerations. Such approach can also be suitable for modelling the behavior of slabs
in the vicinity of wall corners, where high concentrations of shear stresses may occur, potentially
leading to an initiation of the failure cracks at relatively low levels of load.

The proposed punching model can also be extended for slabs with shear reinforcement by account
ing for the forces in the reinforcement units that cross the critical surface. In such cases, depending
on the location and the size of the first units, the governing critical surface would be steeper and
the failure mode would shift closer to a sliding than a separation failure, which matches with the
experimental observations.

The punching model proposed in the present thesis predicts the failure of a conical shell in the
compression strut using the theory of plasticity together with a general yield criterion and a semi
empirical effectiveness factor calibrated on the basis of experimental results. The actual mecha
nisms of failure inside the conical shell were not studied. A more detailed numerical analysis,
which considers the micro mechanical behavior and fracture propagation in concrete under tri
axial stress and strain state, and more refined experimental investigation could give more infor
mation about the actual low level behavior of that region.
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Punching provisions in codes Appendix A

This appendix presents the formulas used for calculating the code predictions in Chap
ter 3 of the thesis. In the present analysis, mean values are used for material strength and all the
safety factors are taken equal to one.

In all of the considered codes, punching verification is performed by comparing the nominal shear
strength of the slab vR to a nominal shear stess on a control perimeter around a column or a loaded
area v:

db
Vv
0

(A.1)

where V is concentrated load, b0 is length of the control perimeter and d effective depth of the slab.

A.1 ACI 318-14 

In ACI 318 14 [ACI14], the perimeter where punching resistance is verified is located at a distance
0.5d from the column edge. In the case of square or rectangular columns, the corners of the control
perimeter do not have to be rounded. For square interior columns with c < 4d and normal strength
concrete, the nominal shear strength is calculated as:

cACIcR fv (A.2)

The contribution of shear reinforcement is added to a reduced value of concrete vR,c. The reduction
factor is 0.5 and only shear reinforcement within a distance d from the column edge is taken into
account. For slabs with double headed studs as shear reinforcement, the maximum punching re
sistance is limited to twice the value obtained with Equation (A.2).

For large interior columns, the shear strength is reduced with a factor 0,ACIbd .

A.2 Eurocode 2 

According to the punching provisions of Eurocode 2 [CEN04], the nominal shear strength at a con
trol perimeter located at a distance 2d from the edge of the loaded area is:

ccdEC2cR fkfkv (A.3)

where is the flexural reinforcement ratio (geometric mean of two perpendicular directions in a
strip extending to 3d on both sides of the column, taken at most 2.0%, fc is concrete cylinder com
pressive strength [MPa] and factor dk (d in mm) takes into account the size effect.
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An additional verification has to be performed at the edge of the loaded area, where shear stress
has to be lower than (according to an amendment of Eurocode 2 published in 2010 [CEN10]):

c
c

dEC2R f
f

v (A.4)

In slabs with shear reinforcement, the contribution of shear reinforcing units that are located closer
than 1.5d to the edge of the column is considered with an effective stress of

df efyt [MPa, mm] that is added to 0.75 times the resistance calculated with

Equation (A.2). According to an amendment published in 2014 [CEN14], the maximum punching
resistance of slabs with shear reinforcement is defined as kmax times the punching strength calculat
ed with Equation (A.3) (recommended value of kmax is 1.5 but higher values may be used, depend
ing on the type and efficiency of the shear reinforcement system, if they are experimentally vali
dated). The limitation of nominal shear stress at the edge of the column (Eq. A.4) is also applicable
for slabs with shear reinforcement.

A.3 Model Code 2010 

The punching formulation of Model Code 2010 [FIB13] is based on the CSCT [Mut08]. The nominal
punching strength depends on the rotation of the slab:

c
dg

CSCTcR f
kd

v (A.5)

where g0gdg ddk , dg0 = 16 mm and in the Level of Approximation II (recommended for

a typical design of new structures), slab rotation can be estimated with a simplified parabolic rela
tionship depending on the acting moment in the column strip:

R

S

s

ys

m
m

E
f

d
r (A.6)

where rs is the radius of an isolated slab or 0.22L in case of a continuous slab with regular span
lengths, fy and Es are the yield strength and modulus of elasticity of flexural reinforcement, respec
tively, mR is the moment capacity of the slab and mS is the average acting moment in the column
strip for interior columns (in slabs with sufficiently regular geometry, mS can be approximated as
mS= V/8)

The contribution of shear reinforcing units located between 0.35d and d is taken into account.
Stresses in the transverse reinforcement are found by considering the strains due to flexural de
formations. For large amounts of transverse reinforcement, the punching strength is limited to ksys
times Equation (A.5). In the case of double headed studs, ksys= 2.8. However, it should be noted
that the increase of punching load is smaller than ksys because with increased load, the slab rotation
increases as well, thus decreasing the nominal punching strength.
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Flexural capacities of test specimens Appendix B

This appendix presents governing yield line mechanisms and formulas for calculating the
flexural capacities for some of the most common types of punching test specimens.

For round specimens supported on round columns with equal displacements applied along the
specimen edge ([Kin60], [Hal96], [Tol88], [Ram96]), flexural strength can be calculated as:

averageR
q

flex m
b
DV (B.1)

Figure B.1 Yield line pattern for a circular specimen

For square or octagonal specimens with equal loads applied at points close to the slab edge (stati
cally determined elements, such as [Gua09] (slabs with h = 250 mm), [Gui10b], [Tas11], [Cle12],
[Lip12], [Ein16a]), the governing mechanism is attained by formation of yield lines parallel to the
level of upper most reinforment layer:

weakR
q2q1

flex m
bb

BV (B.2)

Figure B.2 Yield line pattern for a statically determined square specimen
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For square specimens with equal displacements applied at points close to the slab edge (statically
undetermined elements, such as specimens PG 3, PG 6 and PG 7 of Guandalini et al. [Gua09]), the
governing mechanism has yield lines in both directions. The flexural capacity is approximately:

averageR
q2q1

flex m
bb

BV (B.3)

x=c/2

bq1

bq2

B

equal displacement

c

Figure B.3 Yield line pattern for a statically undetermined square specimen

For square specimens that are supported close to the edges with corners free to lift up from the
supports, where the load is applied through a square column stub or plate in the center of the slab
(tests by [Moe61], [Tom93], [Els56]):

averageR
q

flex mBc
b

V (B.4)

x=bq·sin(π/8)

bqc

B

equal displacement

uplift of corners

Figure B.4 Yield line pattern for a square specimen simply supported at the edges, square
column
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For square specimens that are supported close to the edges with corners free to lift up from the
supports, where the load is applied through a round column stub or plate (tests by [Sis97]):

averageRc
q

flex mBd
b

V (B.5)

x≅bq·sin(π/8)

bqdc

B

equal displacement

uplift of corners

Figure B.5 Yield line pattern for a square specimen simply supported at the edges, round
column

In the presented formulas, the average flexural capacity of the slab is calculated as:

cp

yaverage
averageyaverageaverageR f

f
dfm (B.6)

where the effective concrete strength is calculated as cfccp ff , where cfc f takes into

account the increased brittleness of high strength concrete.

Flexural capacity in the weak direction is:

cp

yweak
weakyweakweakR f

f
dfm (B.7)

The reinforcement ratios are calculated as an average of the whole slab, averagesaverage dBA or

weaksweak dBA , where sA the total area of flexural reinforcement in the considered direction.
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Triaxial yield criterion for concrete Appendix C

This appendix presents the formulas used in Chapter 7 to predict the failure of the com
pression zone close to the column. The four parameter triaxial yield criterion was first developed
by Ottosen [Ott77] by fitting a smooth and convex failure surface to available test results using
membrane analogy.

The yield criterion, given in Haigh Westergaard coordinates (hydrostatic stress , deviatoric stress
and angle of similarity [Che82]), is formulated as:

cpcpcp f
Ib

f
J

f
JaJIf (C.1)

where I and J are stress invariants, a and b are coefficients and (cos3 ) is a func

tion given as:

kk (C.2)

where k1 and k2 are additional coefficients. fcp is the plastic strength of concrete that accounts for the
steeper descending branch of the stress strain curve of concretes with fc 30 MPa:

c
c

cp f
f

f (C.3)

As the calibration tests were performed on concrete cubes, cube strength should be used as the
concrete strength fc = fc,cyl / 0.8.

From the principal stresses 1, 2 and 3, the stress invariants can be calculated as:

I (C.4)

J (C.5)

IIIJ (C.6)

and the angle of similarity can is:

oct

J (C.7)
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where the deviatoric octahedral stress oct is:

Joct
(C.8)

Coefficients a, b, k1 and k2 in the failure criterion (Equation (C.1)) can be calibrated using results of
tests on concrete specimens with different combinations of uniaxial and multi axial stresses. Ot
tosen used the following types of tests:

uniaxial compressive test ( 1 = 0; 2 = 0; 3 = fcp; = 60°);

uniaxial tensile test ( 1 = fct; 2 = 0; 3 = 0; = 0°);

biaxial compressive test ( 1 = 0; 2 = f2c fcp; 3 = f2c fcp);

a triaxial test with stresses on the compressive meridian ( 1 = 2 > 3, = 60° (compression is
negative)).

The coefficient values can be determined by solving a system of Equations (C.1) and (C.2) in the
case of the afforementioned stress states with the coefficients , , k1 and k2 as unknowns. Table C.1
shows their values depending on the ratio of fct/fcp (f2c = 1.16; ( /fcp, /fcp) = ( 5, 4)).

Table C.1 Coefficient values as a function of the ratio fct/fcp

fct/fcp a b k1 k2
0.06 2.6944 5.5973 19.0831 0.9982
0.07 2.1875 4.7393 16.4548 0.9954
0.08 1.8076 4.0962 14.4863 0.9914
0.10 1.2759 3.1962 11.7365 0.9801
0.12 0.9218 2.5969 9.9110 0.9647

Model Code 2010 [FIB13] provides closed form solutions for the coefficients a, b, k1 and k2. The bi
axial concrete strength fc2c is taken as:

cp
cp

cc f
f

f (C.9)

Triaxial failure is assumed to occur at com = 240 MPa and and octahedral shear stress com:

cpcpcp
com

fff (C.10)

A parameter h is defined as:

cpcom

cpcomcpcom

f
ff

h (C.11)
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Coefficients can then be calculated as:

cctcpcc

cpcom

cctcpcc

cpcom

ffff
f

h

ffff
f

b (C.12)

cpcom f
bha (C.13)

cpcomcpcom
c f

b
f

h (C.14)

cpcom

cpcc

cpcccpcom

cpcc
t f

ff
ff

b
f
hff (C.15)

k for tc (C.16)

tck for tc (C.17)

ctk for tc (C.18)

k
k c for tc (C.19)

In the absence of other data, tensile strength of concrete fct is calculated according to the Model
Code 2010 [FIB13]:

cct ff if fc 50 MPa (C.20)

cct ff if fc > 50 MPa (C.21)
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Calculation example Appendix D

This appendix gives a calculation example of the punching strength model presented in
Chapter 7 of the thesis. Specimen PE8 is selected for the example.

Input data:
column radius rc = 165 mm
(for square columns, radius of a round column with the same perimeter should be used)
effective depth of the slab d = 214 mm
(arithmetric average of two directions)
concrete strength fc = 42.0 MPa
(cylinder compressive strength)
yield strength of reinforcing steel fy = 542 MPa
reinforcement ratio = 1.47%

Capacity of the slab column connection is verified for an applied punching load V = 1096 kN.

Calculation of mean stresses on the critical surface:
relative column size:

drc

modulus of elasticity of concrete [FIB13]:

cc fE

modulus of elasticity of reinforcing steel is assumed to be sE

relative depth of the compression zone (without accounting for the influence of the inclined
shera strut):

s

c

c

s

E
E

E
E

d
x (7.5)

the critical surface is assumed to be inclined with an angle = 30° from the horizontal.
Depth of the compression zone due to influence of the inclined strut x and the radius
where the critical surface intersects with the neutral axis r should be calculated by solving
the system of two equations:

xrr c (7.3)

xrrx (7.6)
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The solution of the equation system gives a parameter k :

dr
dr

d
xk

c

c (D.1)

which can be used to calculate r and x :

crkr (D.2)

cr
k

x (D.3)

stress in tensile reinforcement can be calculated from slab rotation (Eq. (7.7)). Alternatively,
tensile reinforcement can be assumed to be yielding:

ys f (7.7)

the effectiveness factors kx and kcol are:

x
k x (7.29)

col
col b
k (7.30)

radial normal stress in the compression zone at r :

colx
s kk

x
d (7.9)

shear stress in the compression zone at r (Vdow = 0 because s = fy):

colx
dow kk
rx
VV (7.10)

tangential normal stress in the compression zone within r0:

colx
s

t kk
x
d (7.11)

normal and shear stresses on the critical surface:

t
c rr
r

(7.12)

t
c rr
r

(7.13)
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principal stresses on the critical surface (angle p = 12° is assumed):

p

p (7.14)

t

p

p (7.15)

Calculation of the stress invariants:

I (C.4)

J
(C.5)

IIIJ (C.6)

Joct
(C.8)

oct

J (C.7)

Calculation of the strength parameters for the triaxial yield criterion:
concrete cube strength:

cylccubec ff

plastic concrete cube strength:

c
c

cp f
f

f (C.3)

concrete tensile strength:

cct ff (C.20)

biaxial concrete compressive strength:

cp
cp

cc f
f

f (C.9)

concrete strength in a triaxial stress state:

com (C.9)

cpcpcp
com

fff

(C.10)
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Calculation of coefficients [FIB13]:

cpcom

cpcomcpcom

f
ff

h (C.11)

cctcpcc

cpcom

cctcpcc

cpcom

ffff
f

h

ffff
f

b (C.12)

cpcom f
bha (C.13)

cpcomcpcom
c f

b
f

h

(C.14)

cpcom

cpcc

cpcccpcom

cpcc
t f

ff
ff

b
f
hff

(C.15)

tc

tck (C.17)

k
k c (C.19)

kk (C.2)

The yield criterion is:

cpcpcp f
Ib

f
J

f
JaJIf

The load V = 1096 kN is therefore very close to the yield criterion.
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This appendix presents the main properties of the specimens in the database that was
used to validate the punching model described in Chapter 7. The main properties of the speci
mens are shown in Table E.1, a comparison between the experimental results and the model
predictions are shown in Table E.2.

Table E.1 Main parameters of the specimens in the punching test database (specimen
type and dimensions bq1 and bq2 – refer to the figures in Appendix B)

Series Specimen 
h d c dc speci-

men 
type 

B bq1 bq2 fc dg fy   VR,test VR,test 
/Vflex 

mm mm mm mm mm mm mm Mpa mm Mpa % mm kN 
[Els56] A-1a 152 118 254 - (B.4) 1829 763 - 14.1 25 332 1.15 19 303 0.81 

A-1b 152 118 254 - (B.4) 1829 763 - 25.3 25 332 1.15 19 365 0.91 
A-1c 152 118 254 - (B.4) 1829 763 - 29.1 25 332 1.15 19 356 0.88 
A-1d 152 118 254 - (B.4) 1829 763 - 36.9 25 332 1.15 19 351 0.86 
A-1e 152 118 254 - (B.4) 1829 763 - 20.3 25 332 1.15 19 356 0.90 
A-2a 152 114 254 - (B.4) 1829 763 - 13.7 25 321 2.47 25 334 0.56 
A-2b 152 114 254 - (B.4) 1829 763 - 19.5 25 321 2.47 25 400 0.60 
A-2c 152 114 254 - (B.4) 1829 763 - 37.5 25 321 2.47 25 467 0.63 
A-7b 152 114 254 - (B.4) 1829 763 - 27.9 25 321 2.47 25 512 0.71 
A-3a 152 114 254 - (B.4) 1829 763 - 12.8 25 321 3.70 25 356 0.53 
A-3b 152 114 254 - (B.4) 1829 763 - 22.6 25 321 3.70 25 445 0.48 
A-3c 152 114 254 - (B.4) 1829 763 - 26.6 25 321 3.70 25 534 0.55 
A-3d 152 114 254 - (B.4) 1829 763 - 34.6 25 321 3.70 25 547 0.53 
A-5 152 114 356 - (B.4) 1829 763 - 27.8 25 321 2.47 25 534 0.73 
A-6 152 114 356 - (B.4) 1829 763 - 25.1 25 321 3.70 25 498 0.51 
B-9 152 114 254 - (B.4) 1829 763 - 43.9 38 341 2.00 22 505 0.76 
B-11 152 114 254 - (B.4) 1829 763 - 13.5 38 409 3.00 25 329 0.46 
B-14 152 114 254 - (B.4) 1829 763 - 50.6 38 325 3.00 25 578 0.63 

[Kin60] IA15a-5 149 117 - 150 (B.1) 1840 818 - 25.5 32 441 0.79 12 255 0.81 
IA15a-6 151 118 - 150 (B.1) 1840 818 - 24.9 32 454 0.78 12 275 0.85 
IA15b-9 150 117 - 150 (B.1) 1840 818 - 24.7 32 446 1.21 12 275 0.59 
IA15b-10 150 117 - 150 (B.1) 1840 818 - 24.7 32 448 1.21 12 275 0.59 
IA15c-11 153 121 - 150 (B.1) 1840 818 - 30.5 32 436 1.02 12 333 0.78 
IA15c-12 154 122 - 150 (B.1) 1840 818 - 29.4 32 439 1.01 12 332 0.77 
IA30a-24 158 128 - 300 (B.1) 1840 780 - 25.1 32 455 0.96 12 430 0.89 
IA30a-25 154 124 - 300 (B.1) 1840 780 - 23.8 32 451 0.99 12 408 0.88 
IA30b-28 151 119 - 300 (B.1) 1840 780 - 24.6 32 437 1.55 12 368 0.60 
IA30b-29 151 119 - 300 (B.1) 1840 780 - 24.6 32 445 1.55 12 417 0.67 
IA30c-30 151 120 - 300 (B.1) 1840 780 - 28.6 32 436 1.48 12 490 0.80 
IA30c-31 151 119 - 300 (B.1) 1840 780 - 28.6 32 448 1.50 12 539 0.87 

[Moe61]   S2-60 152 114 254 - (B.4) 1829 763 - 22.1 38 399 1.53 16 356 0.64 
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S1-70 152 114 254 - (B.4) 1829 763 - 24.5 38 483 1.06 16 392 0.81 
S5-60 152 114 203 - (B.4) 1829 789 - 22.2 38 399 1.06 16 343 0.88 
S5-70 152 114 203 - (B.4) 1829 789 - 23.0 38 483 1.06 16 378 0.81 
R2 152 114 152 - (B.4) 1829 814 - 26.5 10 328 1.38 16 311 0.76 
M1A 152 114 305 - (B.4) 1829 738 - 20.8 38 481 1.50 19 433 0.66 

[Tol88] S2.1 240 200 - 250 (B.1) 2540 1128 - 23.9 32 657 0.80 16 603 0.46 
S2.2 240 199 - 250 (B.1) 2540 1128 - 22.6 32 670 0.80 16 600 0.45 
S2.3 240 200 - 250 (B.1) 2540 1128 - 25.0 32 668 0.34 16 489 0.80 
S2.4 240 197 - 250 (B.1) 2540 1128 - 23.8 32 664 0.35 16 444 0.73 
S1.1 120 100 - 125 (B.1) 1270 564 - 28.2 16 706 0.80 8 216 0.60 
S1.2 120 99 - 125 (B.1) 1270 564 - 22.6 16 701 0.81 8 194 0.56 
S1.3 120 98 - 125 (B.1) 1270 564 - 26.3 16 720 0.35 8 145 0.89 
S1.4 120 99 - 125 (B.1) 1270 564 - 24.8 16 712 0.34 8 148 0.93 

[Tom93] ND65-1-1 320 275 200 - (B.4) 3000 1150 - 64.3 16 500 1.50 25 2050 0.45 
ND65-2-1 240 200 150 - (B.4) 2600 1025 - 70.2 16 500 1.70 20 1200 0.45 
ND95-1-1 320 275 200 - (B.4) 3000 1150 - 83.7 16 500 1.50 25 2250 0.48 
ND95-1-3 320 275 200 - (B.4) 3000 1150 - 89.9 16 500 2.50 25 2400 0.32 
ND95-2-1 240 200 150 - (B.4) 2600 1025 - 88.2 16 500 1.70 20 1100 0.41 
ND95-2-1D 240 200 150 - (B.4) 2600 1025 - 86.7 16 500 1.70 20 1300 0.48 
ND95-2-3 240 200 150 - (B.4) 2600 1025 - 89.5 16 500 2.60 20 1450 0.37 
ND95-2-3D 240 200 150 - (B.4) 2600 1025 - 80.3 16 500 2.60 20 1250 0.32 
ND95-2-3D+ 240 200 150 - (B.4) 2600 1025 - 98.0 16 500 2.60 20 1450 0.36 
ND95-3-1 120 88 100 - (B.4) 1500 500 - 85.1 16 500 1.80 12 330 0.51 
ND115-1-1 320 275 200 - (B.4) 3000 1150 - 112 16 500 1.50 25 2450 0.52 
ND115-2-1 240 200 150 - (B.4) 2600 1025 - 119 16 500 1.70 20 1400 0.51 
ND115-2-3 240 200 150 - (B.4) 2600 1025 - 108.1 16 500 2.60 20 1550 0.39 

[Hal96] HSC 0 240 200 - 250 (B.1) 2540 1138 - 89.1 18 643 0.80 16 965 0.70 
HSC 1 245 200 - 250 (B.1) 2540 1138 - 91.3 18 627 0.80 16 1021 0.76 
HSC 2 240 194 - 250 (B.1) 2540 1138 - 85.7 18 620 0.82 16 889 0.69 
HSC 4 240 200 - 250 (B.1) 2540 1138 - 91.6 18 596 1.19 20 1041 0.55 
N/HSC 8 242 198 - 250 (B.1) 2540 1138 - 94.9 18 631 0.80 16 944 0.71 

[Ram96] 1 125 98 - 150 (B.1) 1700 611 - 78.4 10 550 0.58 12 224 0.86 
2 125 98 - 150 (B.1) 1700 611 - 49.9 10 550 0.58 12 212 0.82 
3 125 98 - 150 (B.1) 1700 611 - 23.9 10 550 0.58 12 169 0.68 
4 125 98 - 150 (B.1) 1700 611 - 52.2 10 550 0.58 12 233 0.90 
6 125 98 - 150 (B.1) 1700 611 - 90.5 10 550 0.58 12 233 0.89 
12 125 98 - 150 (B.1) 1700 611 - 53.6 10 550 1.28 12 319 0.59 
13 125 98 - 150 (B.1) 1700 611 - 38.7 10 550 1.28 12 297 0.56 
14 125 98 - 150 (B.1) 1700 611 - 54.0 10 550 1.28 12 341 0.63 
16 125 98 - 150 (B.1) 1700 611 - 87.4 10 550 1.28 12 362 0.65 
21 125 98 - 150 (B.1) 1700 611 - 37.2 20 650 1.28 12 286 0.47 
22 125 98 - 150 (B.1) 1700 611 - 74.8 20 650 1.28 12 405 0.63 
23 125 100 - 150 (B.1) 1700 611 - 50.1 20 650 0.87 10 341 0.74 

[Sis97] L1 197 172 - 202 (B.5) 1770 684 - 25.8 16 621 0.46 10 503 0.73 
L2 201 176 - 202 (B.5) 1770 684 - 25.8 16 621 0.45 10 537 0.76 
L3 198 173 - 201 (B.5) 1770 685 - 25.8 16 621 0.45 10 530 0.77 
L4 197 170 - 402 (B.5) 1970 684 - 25.8 16 612 0.67 12 686 0.65 
L5 199 172 - 399 (B.5) 1970 686 - 25.8 16 612 0.66 12 696 0.65 
L6 202 175 - 406 (B.5) 1970 682 - 25.8 16 612 0.65 12 799 0.73 
L7 204 177 - 201 (B.5) 1970 785 - 19.0 16 586 0.64 12 478 0.54 
L8 205 174 - 899 (B.5) 2470 686 - 19.0 16 576 1.16 16 1111 0.54 
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L9 203 172 - 897 (B.5) 2470 687 - 19.0 16 576 1.17 16 1107 0.55 
L10 204 173 - 901 (B.5) 2470 685 - 19.0 16 576 1.16 16 1079 0.53 

[Gua09] PG-1 250 210 260 - (B.2) 3000 470 1250 27.6 16 573 1.50 20 1023 0.49 
PG-3 500 456 520 - (B.3) 6000 960 2320 32.4 16 520 0.33 16 2153 0.85 
PG-6 125 96 130 - (B.3) 1500 235 625 34.7 16 526 1.50 14 238 0.53 
PG-7 125 100 130 - (B.3) 1500 235 625 34.7 16 550 0.75 10 241 0.89 

[Gui10b] PG11 250 208 260 - (B.2) 3000 470 1250 31.5 16 570 0.75 16 763 0.66 
PG19 250 206 260 - (B.2) 3000 470 1250 46.2 16 510 0.78 16 860 0.80 
PG20 250 201 260 - (B.2) 3000 470 1250 51.7 16 551 1.56 20 1094 0.53 
PG23 250 199 260 - (B.2) 3000 470 1250 41.0 32 510 0.81 16 839 0.81 
PG24 250 194 260 - (B.2) 3000 470 1250 39.8 32 551 1.62 20 1102 0.57 
PG25 250 203 260 - (B.2) 3000 470 1250 45.0 8 510 0.79 16 935 0.89 
PG26 250 204 260 - (B.2) 3000 470 1250 41.0 8 551 1.54 20 1175 0.57 
PG27 250 200 260 - (B.2) 3000 470 1250 44.9 16 510 0.80 16 900 0.87 
PG28 250 202 260 - (B.2) 3000 470 1250 43.3 16 551 1.56 20 1098 0.54 
PG29 250 203 260 - (B.2) 3000 470 1250 39.7 32 510 0.79 16 854 0.81 
PG30 250 201 260 - (B.2) 3000 470 1250 36.6 32 551 1.56 20 1049 0.52 

[Tas11] PT22 250 214 260 - (B.2) 3000 470 1250 67.0 16 552 0.84 16 989 0.73 
PT31 250 210 260 - (B.2) 3000 470 1250 66.3 16 540 1.48 20 1433 0.66 

[Cle12] PF21 409 350 220 - (B.2) 3000 470 1250 31.6 16 541 0.75 20 1838 0.58 
PF22 405 346 220 - (B.2) 3000 470 1250 33.9 16 520 1.52 26 2007 0.36 
PF23 405 350 440 - (B.2) 3000 470 1250 32.3 16 541 0.75 20 2685 0.85 

[Lip12] PL1 250 193 130 - (B.2) 3000 535 1315 36.2 16 583 1.63 20 682 0.37 
PL3 250 197 520 - (B.2) 3000 340 1120 36.5 16 583 1.59 20 1324 0.55 
PL4 320 267 340 - (B.2) 3000 430 1210 30.5 16 531 1.58 26 1625 0.45 
PL5 400 353 440 - (B.2) 3000 380 1160 31.9 16 580 1.50 26 2491 0.35 

[Ein16a] PE10 250 210 - 83 (B.2) 3000 559 1339 40.4 16 538 0.77 16 530 0.51 
PE11 250 215 - 166 (B.2) 3000 517 1297 37.5 16 538 0.75 16 712 0.64 
PE9 250 218 - 330 (B.2) 3000 435 1215 44.1 16 538 0.74 16 935 0.74 
PE12 250 212 - 660 (B.2) 3000 270 1050 37.6 16 538 0.76 16 1206 0.80 
PE6 250 215 - 83 (B.2) 3000 559 1339 38.4 16 542 1.46 20 656 0.33 
PE7 250 213 - 166 (B.2) 3000 517 1297 42.5 16 542 1.47 20 871 0.42 
PE8 250 214 - 330 (B.2) 3000 435 1215 42.0 16 542 1.47 20 1091 0.48 
PE5 250 210 - 660 (B.2) 3000 270 1050 36.7 16 542 1.50 20 1476 0.54 
PE4 250 197 260 - (B.2) 1700 100 600 35.1 16 517 1.59 20 985 0.38 
PV1 250 210 260 - (B.2) 3000 470 1250 31.1 16 709 1.50 20 978 0.38 
PE3 250 204 260 - (B.2) 3900 470 1700 34.2 16 517 1.54 20 961 0.48 
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Table E.2 Main parameters of the specimens, predicted contribution of dowel action to
the punching strenght and comparison of the experimenal capacities to the predictions

of the proposed model, CSCT, Model Code 2010 (LoA II) and Eurocode 2

Series Specimen (rq rc) 
/d

fc d
rc/d VR,dow 

/VR,pred

VR,test /VR,pred

proposed 
model 

constant 
 and p 

constant 
s CSCT MC2010 

(LoA II) EC2 
Mpa mm % 

[Els56] A-1a 6.0 14.1 118 1.37 1.15 0% 0.98 0.97 0.97 0.99 1.19 1.13 
A-1b 6.0 25.3 118 1.37 1.15 0% 0.92 0.91 0.91 0.99 1.16 1.12 
A-1c 6.0 29.1 118 1.37 1.15 0% 0.88 0.88 0.88 0.93 1.08 1.04 
A-1d 6.0 36.9 118 1.37 1.15 0% 0.86 0.86 0.86 0.86 0.99 0.95 
A-1e 6.0 20.3 118 1.37 1.15 0% 0.99 0.97 0.97 1.04 1.22 1.17 
A-2a 6.2 13.7 114 1.42 2.47 4% 0.92 0.92 1.04 0.99 1.16 1.10 
A-2b 6.2 19.5 114 1.42 2.47 3% 0.94 0.94 1.00 1.02 1.19 1.17 
A-2c 6.2 37.5 114 1.42 2.47 0% 0.82 0.82 0.82 0.91 1.07 1.10 
A-7b 6.2 27.9 114 1.42 2.47 1% 1.03 1.03 1.05 1.12 1.31 1.33 
A-3a 6.2 12.8 114 1.42 3.70 6% 0.92 0.91 1.25 1.04 1.23 1.20 
A-3b 6.2 22.6 114 1.42 3.70 5% 0.88 0.87 0.99 1.01 1.15 1.24 
A-3c 6.2 26.6 114 1.42 3.70 5% 0.97 0.97 1.07 1.13 1.28 1.41 
A-3d 6.2 34.6 114 1.42 3.70 4% 0.87 0.88 0.93 1.04 1.17 1.33 
A-5 6.1 27.8 114 1.99 2.47 0% 0.91 0.91 0.91 0.98 1.15 1.19 
A-6 6.1 25.1 114 1.99 3.70 5% 0.78 0.79 0.89 0.89 1.01 1.15 
B-9 6.2 43.9 114 1.42 2.00 0% 0.87 0.86 0.86 0.93 1.09 1.13 
B-11 6.2 13.5 114 1.42 3.00 7% 0.85 0.85 1.20 0.92 1.09 1.09 
B-14 6.3 50.6 114 1.42 3.00 0% 0.83 0.83 0.83 0.91 1.06 1.23 

[Kin60] IA15a-5 7.0 25.5 117 0.64 0.79 0% 1.07 1.07 1.07 1.03 1.20 1.15 
IA15a-6 6.9 24.9 118 0.64 0.78 0% 1.16 1.16 1.16 1.10 1.29 1.23 
IA15b-9 7.0 24.7 117 0.64 1.21 0% 1.03 1.03 1.03 0.99 1.15 1.08 
IA15b-10 7.0 24.7 117 0.64 1.21 0% 1.03 1.03 1.03 0.99 1.15 1.08 
IA15c-11 6.8 30.5 121 0.62 1.02 0% 1.14 1.14 1.14 1.10 1.28 1.22 
IA15c-12 6.7 29.4 122 0.61 1.01 0% 1.14 1.15 1.15 1.10 1.28 1.22 
IA30a-24 6.1 25.1 128 1.17 0.96 0% 1.08 1.07 1.07 1.07 1.24 1.27 
IA30a-25 6.3 23.8 124 1.21 0.99 0% 1.08 1.07 1.07 1.08 1.25 1.27 
IA30b-28 6.6 24.6 119 1.26 1.55 2% 0.88 0.88 0.90 0.89 1.04 1.05 
IA30b-29 6.6 24.6 119 1.26 1.55 3% 0.99 0.99 1.02 1.01 1.18 1.19 
IA30c-30 6.5 28.6 120 1.25 1.48 0% 1.10 1.10 1.10 1.12 1.31 1.33 
IA30c-31 6.6 28.6 119 1.26 1.50 0% 1.22 1.22 1.22 1.24 1.45 1.47 

[Moe61]   S2-60 6.2 22.1 114 1.42 1.53 1% 0.91 0.91 0.92 0.89 1.06 1.10 
S1-70 6.2 24.5 114 1.42 1.06 0% 1.06 1.06 1.06 1.02 1.23 1.32 
S5-60 6.4 22.2 114 1.13 1.06 0% 1.09 1.09 1.09 1.07 1.26 1.30 
S5-70 6.4 23.0 114 1.13 1.06 0% 1.19 1.19 1.19 1.13 1.35 1.42 
R2 6.7 26.5 114 0.85 1.38 0% 0.99 0.98 0.98 1.13 1.35 1.12 
M1A 5.9 20.8 114 1.70 1.50 5% 0.99 0.99 1.08 0.99 1.20 1.26 

[Tol88] S2.1 5.6 23.9 200 0.63 0.80 9% 0.96 0.97 1.08 0.88 1.04 0.95 
S2.2 5.7 22.6 199 0.63 0.80 9% 0.98 0.99 1.12 0.91 1.06 0.97 
S2.3 5.6 25.0 200 0.63 0.34 0% 1.09 1.09 1.09 0.94 1.14 1.01 
S2.4 5.7 23.8 197 0.63 0.35 0% 1.02 1.02 1.02 0.88 1.07 0.95 
S1.1 5.6 28.2 100 0.63 0.80 8% 1.05 1.06 1.16 1.11 1.30 1.29 
S1.2 5.7 22.6 99 0.63 0.81 9% 1.04 1.05 1.17 1.10 1.29 1.26 
S1.3 5.8 26.3 98 0.64 0.35 0% 1.09 1.08 1.08 1.03 1.24 1.21 
S1.4 5.7 24.8 99 0.63 0.34 0% 1.13 1.13 1.13 1.07 1.29 1.25 
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[Tom93] ND65-1-1 4.0 64.3 275 0.46 1.50 7% 1.29 1.28 1.29 1.15 1.39 1.15 
ND65-2-1 4.9 70.2 200 0.48 1.70 8% 1.12 1.12 1.16 1.14 1.37 1.09 
ND95-1-1 4.0 83.7 275 0.46 1.50 7% 1.28 1.29 1.25 1.14 1.40 1.15 
ND95-1-3 4.0 89.9 275 0.46 2.50 7% 1.14 1.15 1.09 1.08 1.23 1.09 
ND95-2-1 4.9 88.2 200 0.48 1.70 7% 0.94 0.95 0.96 0.96 1.16 0.92 
ND95-2-1D 4.9 86.7 200 0.48 1.70 7% 1.12 1.12 1.14 1.14 1.38 1.10 
ND95-2-3 5.0 89.5 200 0.48 2.60 8% 1.08 1.09 1.08 1.17 1.33 1.15 
ND95-2-3D 5.0 80.3 200 0.48 2.60 8% 0.97 0.97 0.98 1.05 1.20 1.03 
ND95-2-3D+ 5.0 98.0 200 0.48 2.60 8% 1.05 1.06 1.04 1.12 1.29 1.11 
ND95-3-1 5.4 85.1 88 0.72 1.80 5% 0.97 0.97 1.01 1.07 1.36 1.29 
ND115-1-1 4.0 112.0 275 0.46 1.50 7% 1.28 1.32 1.22 1.10 1.39 1.14 
ND115-2-1 4.9 119.0 200 0.48 1.70 7% 1.10 1.12 1.11 1.08 1.34 1.06 
ND115-2-3 5.0 108.1 200 0.48 2.60 8% 1.09 1.10 1.07 1.15 1.33 1.15 

[Hal96] HSC 0 5.8 89.1 200 0.63 0.80 0% 0.97 0.97 0.97 0.97 1.20 0.98 
HSC 1 5.8 91.3 200 0.63 0.80 0% 1.03 1.03 1.03 1.02 1.26 1.03 
HSC 2 5.9 85.7 194 0.64 0.82 0% 0.94 0.94 0.94 0.95 1.17 0.96 
HSC 4 5.8 91.6 200 0.63 1.19 3% 0.87 0.87 0.90 0.92 1.10 0.92 
N/HSC 8 5.8 94.9 198 0.63 0.80 0% 0.95 0.95 0.95 0.95 1.17 0.96 

[Ram96] 1 6.3 78.4 98 0.77 0.58 0% 0.90 0.89 0.89 0.92 1.28 1.04 
2 6.3 49.9 98 0.77 0.58 0% 0.96 0.93 0.93 1.00 1.37 1.15 
3 6.2 23.9 98 0.77 0.58 0% 1.01 1.00 1.00 1.02 1.36 1.17 
4 6.3 52.2 98 0.77 0.58 0% 1.04 1.02 1.02 1.09 1.49 1.24 
6 6.3 90.5 98 0.77 0.58 0% 0.90 0.90 0.90 0.91 1.28 1.04 
12 6.3 53.6 98 0.77 1.28 0% 1.02 1.02 1.02 1.16 1.47 1.30 
13 6.3 38.7 98 0.77 1.28 5% 1.05 1.05 1.10 1.22 1.53 1.35 
14 6.3 54.0 98 0.77 1.28 0% 1.09 1.09 1.09 1.23 1.56 1.38 
16 6.3 87.4 98 0.77 1.28 0% 0.99 1.00 1.00 1.08 1.42 1.25 
21 6.3 37.2 98 0.77 1.28 8% 0.99 0.99 1.08 1.12 1.37 1.31 
22 6.4 74.8 98 0.77 1.28 3% 1.11 1.11 1.14 1.19 1.51 1.47 
23 6.2 50.1 100 0.75 0.87 0% 1.24 1.24 1.24 1.23 1.61 1.56 

[Sis97] L1 3.7 25.8 172 0.59 0.46 7% 1.26 1.25 1.34 1.08 1.45 1.27 
L2 3.6 25.8 176 0.57 0.45 7% 1.32 1.31 1.40 1.12 1.50 1.32 
L3 3.7 25.8 173 0.58 0.45 7% 1.34 1.32 1.41 1.14 1.53 1.34 
L4 3.7 25.8 170 1.18 0.67 7% 1.10 1.09 1.17 1.05 1.40 1.28 
L5 3.7 25.8 172 1.16 0.66 7% 1.12 1.10 1.18 1.06 1.41 1.28 
L6 3.6 25.8 175 1.16 0.65 7% 1.25 1.23 1.33 1.18 1.57 1.43 
L7 4.2 19.0 177 0.57 0.64 7% 1.17 1.17 1.29 1.06 1.33 1.14 
L8 3.6 19.0 174 2.58 1.16 9% 1.11 1.08 1.39 1.10 1.50 1.26 
L9 3.6 19.0 172 2.61 1.17 9% 1.11 1.09 1.40 1.12 1.52 1.28 
L10 3.6 19.0 173 2.60 1.16 9% 1.08 1.05 1.36 1.08 1.47 1.23 

[Gua09] PG-1 6.4 27.6 210 0.79 1.50 9% 1.07 1.07 1.22 1.18 1.33 1.08 
PG-3 5.7 32.4 456 0.73 0.33 0% 1.10 1.10 1.10 1.02 1.38 0.92 
PG-6 7.1 34.7 96 0.86 1.50 0% 0.86 0.87 0.87 0.98 1.12 1.07 
PG-7 6.8 34.7 100 0.83 0.75 0% 1.04 1.04 1.04 1.13 1.33 1.27 

[Gui10b] PG11 6.4 31.5 208 0.80 0.75 2% 0.98 0.98 1.00 1.01 1.23 0.98 
PG19 6.5 46.2 206 0.80 0.78 0% 0.95 0.95 0.95 1.03 1.25 0.97 
PG20 6.7 51.7 201 0.82 1.56 6% 0.89 0.89 0.94 1.06 1.20 0.98 
PG23 6.7 41.0 199 0.83 0.81 0% 1.00 1.00 1.00 0.98 1.17 1.03 
PG24 6.9 39.8 194 0.85 1.62 7% 1.05 1.04 1.13 1.11 1.26 1.13 
PG25 6.6 45.0 203 0.82 0.79 0% 1.06 1.06 1.06 1.23 1.53 1.09 
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PG26 6.6 41.0 204 0.81 1.54 7% 1.05 1.05 1.13 1.32 1.48 1.12 
PG27 6.7 44.9 200 0.83 0.80 0% 1.03 1.03 1.03 1.13 1.38 1.07 
PG28 6.6 43.3 202 0.82 1.56 7% 0.96 0.96 1.03 1.13 1.27 1.04 
PG29 6.6 39.7 203 0.82 0.79 0% 1.02 1.02 1.02 0.99 1.18 1.04 
PG30 6.7 36.6 201 0.82 1.56 7% 1.00 1.00 1.09 1.04 1.18 1.06 

[Tas11] PT22 6.3 67.0 214 0.77 0.84 0% 0.89 0.89 0.89 0.94 1.16 0.91 
PT31 6.4 66.3 210 0.79 1.48 5% 1.04 1.04 1.08 1.19 1.38 1.13 

[Cle12] PF21 3.9 31.6 350 0.40 0.75 7% 1.31 1.31 1.43 1.13 1.30 1.10 
PF22 3.9 33.9 346 0.40 1.52 8% 1.15 1.15 1.33 1.05 1.12 0.94 
PF23 3.5 32.3 350 0.80 0.75 7% 1.45 1.44 1.54 1.29 1.53 1.36 

[Lip12] PL1 7.4 36.2 193 0.43 1.63 9% 0.90 0.91 1.04 1.04 1.14 0.91 
PL3 6.0 36.5 197 1.68 1.59 8% 0.92 0.92 1.04 1.09 1.26 1.06 
PL4 4.8 30.5 267 0.81 1.58 8% 1.08 1.08 1.23 1.12 1.23 1.06 
PL5 3.5 31.9 353 0.79 1.50 8% 1.10 1.10 1.28 1.00 1.08 0.99 

[Ein16a] PE10 7.0 40.4 210 0.20 0.77 6% 0.98 1.00 1.07 0.92 1.11 1.19 
PE11 6.6 37.5 215 0.39 0.75 4% 1.08 1.09 1.13 1.05 1.28 0.96 
PE9 6.1 44.1 218 0.76 0.74 0% 1.00 1.00 1.00 1.04 1.28 1.01 
PE12 5.5 37.6 212 1.56 0.76 0% 1.02 1.02 1.02 1.10 1.39 1.11 
PE6 6.8 38.4 215 0.19 1.46 8% 0.96 0.97 1.15 0.99 1.10 1.50 
PE7 6.7 42.5 213 0.39 1.47 7% 0.98 0.99 1.09 1.07 1.20 0.93 
PE8 6.3 42.0 214 0.77 1.47 6% 0.93 0.93 1.00 1.05 1.19 0.98 
PE5 5.6 36.7 210 1.57 1.50 8% 0.98 0.98 1.08 1.12 1.31 1.10 
PE4 3.0 35.1 197 0.84 1.59 8% 1.00 0.98 1.07 0.98 1.12 1.03 
PV1 6.4 31.1 210 0.79 1.50 11% 0.94 0.94 1.13 1.08 1.20 0.99 
PE3 8.6 34.2 204 0.81 1.54 6% 0.97 0.96 1.02 1.12 1.29 0.97 
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