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Foreword

The punching design of flat slabs has traditionally been performed in design codes on the
basis of the properties of the slab-column connection (such as the size of supported area or the
amount of moment transfer) as well as those of the slab in the vicinity of the supported area (such
as the reinforcement ratio or the utilization ratio of the bending reinforcement). This approach has
been inspired by the experimental evidence, mostly based on isolated slab specimens supported on
columns and consequently only characterised by these data. This evidence has also shown that the
deformations in the vicinity of the supported area are governing for the punching shear strength,

with larger punching shear strengths associated to lower strains and crack widths.

Contrary to isolated test specimens, actual flat slabs are usually continuous systems where redis-
tributions of bending moments can occur between the regions subjected to hogging and sagging
bending moments. In addition, in plane (membrane) compressive forces may develop due to the
dilatancy in bending of concrete. The slab continuity thus influences the deformations and the in-
ner forces in the slab near the column connections, normally increasing its stiffness with respect to
isolated specimens. This has an influence on the punching shear strength, as it potentially increas-

es the actual resistance with respect to the estimates provided by design provisions.

The work developed by Mr. Einpaul is mostly aimed at this question. It investigates the role of slab
continuity on the deformations at the critical punching areas. These results are used in combina-
tion with the strain-based approach of the Critical Shear Crack Theory (CSCT) to obtain enhanced
predictions of the strength in actual (continuous) flat slabs. To that aim, Mr. Einpaul has per-
formed a very large experimental programme which has helped in understanding the role of some
parameters (as the column size and slenderness) on the strain state (rotations) of the slab and on
the punching shear strength. In addition, refined numerical analyses have been performed to as-
sess the role and significance of these effects. These investigations have been completed with de-
tailed experimental measurements performed within the slab specimens allowing tracking the de-
velopment of punching cracks inside the slab. These novel measurements confirm the basic as-
sumptions and pertinence of the CSCT and constitute a significant contribution to the state-of-the-
art. The work of Mr Einpaul is finally completed with some investigations on the strength that the

inclined strut carrying shear may have as well as on the size effect and influence of column size.

The research developed by Mr. Einpaul has significant practical consequences as it allows for re-
fined assessments of the strength of actual flat slabs. On the basis of this work, beneficial influ-
ences on the punching strength neglected by codes of practice can be assessed, and this may poten-

tially avoid unnecessary retrofitting of punching-critical existing structures.

Lausanne, February 2016

Prof. Dr. Aurelio Muttoni Dr. Miguel Fernandez Ruiz
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Abstract

Reinforced concrete slabs with uniform thickness are common in residential and commer-
cial buildings but can also be found in other types of structures. Such slabs are susceptible to
punching shear failures, where a supporting column penetrates through the slab and leads to an
immediate local failure that may trigger a progressive collapse of the building. Provisions for
punching shear in most codes of practice are still mainly empirical, calibrated on the basis of ex-
periments on test specimens that traditionally model only an isolated part of the slab within the
points of contraflexure around the column. However, the punching behavior of actual continuous
slabs may be influenced by effects that cannot occur in isolated specimens, such as moment redis-
tribution between hogging and sagging moments, which changes the location of the points of con-
traflexure, and compressive membrane action. These effects can lead to higher punching strengths

of actual continuous slabs compared to isolated specimens.

The first part of the thesis introduces an axisymmetric model to analyze the influence of these ef-
fects on the flexural deformations of continuous flat slabs. Combined with the failure criterion of
the Critical Shear Crack Theory, the model can be used to predict the punching capacities of such
slabs. Good agreement was found between the model predictions and the results of some uncon-
ventional punching tests from the literature. A simplified method, sufficiently straightforward to
be used in design or assessment and given in a format compatible with the punching provisions of

the Model Code 2010, is also proposed for calculating the load-rotation curves of continuous slabs.

The second part of the thesis contains the results of a test campaign comprising 13 isolated sym-
metric punching specimens. The study focuses on the influence of the size of the supported area
and the slenderness of the slab. Other investigated parameters are the flexural reinforcement ratio
and the presence of shear reinforcement. A novel experimental approach is used for tracking the
formation and development of internal cracks. Measurement points were installed inside small
holes drilled on the slab soffit on two sides of the column in the regions were punching cracks
were expected to appear. Displacements of these points at various stages of loading were followed
with a high-precision coordinate measuring arm. In most cases, the punching failure cracks were
seen to develop independently of the flexural cracks, either appearing at the moment of failure or,
in some cases, already at earlier stages of loading. Although the slabs were nominally axis-
symmetric, different crack development patterns could be observed on the two monitored sides of

the columns.

On the basis of the experimental evidence, a new punching model is proposed for slabs without
shear reinforcement. Punching failures are assumed to occur due to reaching a critical triaxial

stress state below the flexural cracks in the compression strut and a consequent formation and
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Abstract

propagation of a failure crack. The proposed model uses the theory of plasticity with a general
triaxial yield criterion together with an effectiveness factor based on fracture mechanics that is a
function of the depth of the compression zone and the size of the column. The influence of mem-
brane forces in continuous slabs on their punching strength is taken into account by adjusting the

depth of the compression zone.

Keywords

continuous slabs, compressive membrane action, Critical Shear Crack Theory, interior slab-column
connections, Model Code 2010, moment redistribution, punching shear model, punching tests,

reinforced concrete flat slabs
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Résumé

Les dalles de béton armé d’épaisseur constante sont fréquemment utilisées, entre autres, pour la
construction de batiments commerciaux et résidentiels. L'un des modes de rupture de ce type de
dalles est le poingonnement qui se produit a la connexion avec une colonne. La colonne pénetre
dans la dalle ce qui cause une rupture locale qui peut entrainer un effondrement progressif de tout
le batiment. Les recommandations des codes de construction pour le calcul de la résistance au
poingonnement des connexions dalle-colonne ont traditionnellement été calibrées a 1’aide de résul-
tats d’essais sur des spécimens isolés. Ces spécimens représentent la partie de la dalle continue qui
se trouve entre les points de contreflexion, autour de la colonne. Toutefois, la résistance au poin-
connement d'une dalles continue réelle peut étre influencée par des effets non présent dans un
spécimen isolé tel que la redistribution des moments positifs et négatifs, qui modifie la position
des points de contreflexion, et I'effet de membrane, due au confinement du reste de la dalle. Ces
deux effets peuvent mener a une résistance au poingonnement plus élevée et une capacité de dé-

formation réduite.

La premiere partie de cette these introduit un modele axisymétrique pour analyser l'influence de
ces effets sur les déformations de dalles plates continues en flexion. Combiné avec le critere de
rupture de la théorie de la fissure critique, le modele peut étre utilisé pour prédire la résistance au
poinconnement de dalles continues. Les prédictions du modele et les résultats d’essais non-
conventionnels trouvés dans la littérature montrent une bonne concordance. Une méthode simpli-
fiée est proposée pour calculer la courbe force-rotation de dalles continues dans un format compa-
tible avec les dispositions du Model Code 2010 pour le calcul de la résistance au poingonnement.
Cette méthode est suffisamment explicite pour étre utilisée lors de la conception ou I'évaluation de
dalles.

La seconde partie de la these contient les résultats d’une campagne d’essais sur treize dalles axi-
symétriques et isolées représentants une connexion dalle-colonne intérieure. L’étude se concentre
sur l'influence de la taille de la zone de support et I'élancement de la dalle. Les autres parametres
étudiés sont le taux de renforcement en flexion et la présence de renforcement a I’effort tranchant.
Une nouvelle méthode expérimentale est utilisée afin de suivre la formation et le développement
de fissures a l'intérieur de la dalle. Des points de mesure ont été installés a 'intérieur de petits
trous percés a l'intrados de la dalle, sur deux cotés de la colonne, dans les régions ot les fissures de
poingonnement sont attendues. Le déplacement de ces points a différentes étapes du chargement a
été suivi a I'aide d"un bras de mesure des coordonnées spatiales a haute précision. Dans la plupart
des cas, les fissures de rupture au poingonnement se sont développé indépendamment des fissures

de flexion. Elles apparaissent soit au moment de la rupture, soit, dans certains cas, déja a des ni-



Résumé

veaux de chargement plus faibles. Bien que les dalles testées fussent supposément axisymétrique,
différents patrons de développement des fissures ont été observés sur les deux cotés de la colonne

ou les mesures étaient réalisées.

Sur la base des évidences expérimentales, un nouveau modele pour le calcul de la résistance au
poinconnement est proposé pour les dalles sans renforcement a I'effort tranchant. Il est supposé
que la rupture au poingonnement se produit a la base de la bielle de compression, soumise a un
état de contraintes triaxial, par la formation d"une fissure de rupture. Le modele proposé utilise la
théorie de la plasticité avec un critere de plastification triaxial général et un facteur d’efficacité qui
est fonction de la hauteur de la zone comprimée et de la taille de la colonne. L’influence de I'effet
de membrane sur la résistance au poingonnement des dalles continues est prise en compte en ajus-

tant la hauteur de la zone comprimée.

Mots-clés

dalles continues, effet de membrane, théorie de la fissure critique, connexion dalle-colonne inté-
rieure, Model Code 2010, redistribution des moments, modele de résistance au poingonnement,

essais de poinconnement, planchers-dalles en béton armé



Zusammenfassung

Stahlbetonflachdecken mit konstanter Dicke sind haufig in Wohn- und Biirogebauden,
aber auch anderen Bauwerken, vorzufinden. Solche Decken sind anfallig fiir Durchstanzversagen,
bei dem eine Stiitze die Decke durchdringt und zu sofortigem lokalem Versagen fiihrt, welches
einen progressiven Einsturz des Gebaudes nach sich ziehen kann. Normative Regelungen zur
Berechnung des Durchstanzwiderstandes von Stiitzen-Decken Verbindungen wurden gewohnlich
an Versuchen kalibriert, die mit dem Bereich innerhalb der Momentennullpunkte nur einen
begrenzten Teil der Decke abbilden. Das Durchstanzverhalten echter, durchlaufender Decken
kann aber sowohl durch Umlagerung zwischen positiven und negativen Momenten, welche die
Lage der Momentennullpunkte &ndert, als auch durch Druckkrifte, welche durch die
Membranwirkung entstehen, beeinflusst werden. Diese Effekte konnen bei Versuchen an
Plattenausschnitten nicht auftreten, konnen aber zu einer Erhohung des Durchstanzwiderstandes

und einer Verminderung der Verformungskapazitat fiihren.

Im ersten Teil dieser Dissertation wird ein achsensymmetrisches Modell vorgestellt, mit welchem
der Einfluss der genannten Effekte auf die Biegeverformungen durchlaufender Flachdecken
analysiert werden kann. Kombiniert mit dem Versagenskriterium der Theorie des kritischen
Schubrisses kann das Modell dazu benutzt werden die Durchstanzkapazitdt solcher Decken zu
berechnen. Bei Vergleichen der mit dem Modell gemachten Vorhersagen mit den Ergebnissen
unkonventioneller Durchstanzversuchen aus der Literatur wurde eine gute Ubereinstimmung
(zwischen Berechnung und Versuchsbeobachtung) erzielt. Zur Berechnung der Last-Rotations-
kurve durchlaufender Decken wird eine vereinfachte Methode vorgeschlagen, die ausreichend
direkt ist, um bei Bemessung und Uberpriifung eingesetzt zu werden und in einem mit dem

Model Code 2010 kompatiblen Format préasentiert wird.

Der zweite Teil der Dissertation enthalt die Resultate eine Testreihe an 13 isolierten symmetrischen
Durchstanzkorpern, die innere Decken-Stiitzen Verbindungen darstellen. Diese Studie konzen-
triert sich auf den Einfluss der Auflagergrosse und der Schlankheit der Decke. Ausserdem
untersucht werden der Einfluss des Biegebewehrungsgehaltes und des Vorhandenseins von
Schubbewehrung. Eine neuartige Messtechnik wurde angewendet, um die Entstehung und
Ausbreitung der Risse im Inneren des Versuchskorpers zu verfolgen. Dazu wurden Messpunkte in
kleinen Lochern fixiert, die auf zwei Seiten der Stiitzen, dort, wo die Rissbildung erwartet wurde,
in die Unterseiten der Platten gebohrt wurden. Die Verschiebungen dieser Punkte in
verschiedenen Laststufen wurden mit einem hochprazisen Messarm aufgenommen. In den
meisten Fallen wurde beobachtet, dass die Risse, die zum Durchstanzversagen fiihrten, sich

unabhingig von den Biegerissen entweder im Augenblick des Versagens oder manchmal auch
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Zusammenfassung

schon in fritheren Laststufen bildeten. Obwohl die Versuchskoérper nominell achsensymmetrisch
waren, konnten auf den beiden Seiten der Stiitzen an denen gemessen wurde verschiedene Muster

der Rissbildung beobachtet werden.

Basierend auf den experimentellen Ergebnissen wird ein neues Durchstanzmodell fiir Flach-
decken ohne Schubbewehrung vorgeschlagen. Darin wird angenommen, dass Durchstanz-
versagen durch eine Lokalisierung des Schadens in einem Riss in der Druckzone, die sich in einem
dreiachsigen Spannungszustand befindet, ausgelost wird. Im vorgeschlagenen Modell wird die
Plastizitdtstheorie mit einem generellen dreiachsialen Fliesskriterium unter Beriicksichtigung eines
Effektivitatsfaktors verwendet, der von der Tiefe der Druckzone und der Grosse der Stiitze
abhangt. Der Einfluss der Membrankrifte auf den Durchstanzwiderstand kontinuierlicher Decken

wird durch eine Anpassung der Tiefe der Druckzone berticksichtigt.

Stichworte

durchlaufende Decken, Druck-Membranwirkung, Theorie des kritischen Schubrisses, innere
Decken-Stiitzen Verbindungen, Model Code 2010, Momentenumlagerung, Durchstanzmodell,

Durchstanzversuche, Stahlbetonflachdecken
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Kokkuvote

Uhtlase paksusega punkttoetusega raudbetoonplaadid on tavaparased konstruktsiooni-
elemendid nii elamute ja &rihoonete vahelagedes kui ka muudes hoonetes ja rajatistes.
Raudbetoonplaatide dimensioneerimisel on maaravaks faktoriks tihti plaadi ja posti ithendus-
solme labisurumiskandevdime. Et labisurumispurunemise, mis oma hapruse tottu voib kaasa tuua
kogu hoone varingu, mehaanikat pole siiani tdielikult moistetud, on ehitusnormides toodud
labisurumiskandevoime valemid enamjaolt tuletatud empiiriliselt, katsetulemuste pohjal. Labi-
surumiskatsekehad esindavad tavaparaselt ainult plaadi negatiivse paindemomendiga osa, kus
plaadi serv vastab momendi nulljoone asukohale modelleeritavas jitkuvplaadis. Jatkuvplaatides
voib paindemoment aga {imber jaotuda, mille kdigus momendi nulljoone asukoht muutub. Lisaks
voib jatkuvplaatide poikjoukandevoimet suurendada survemembraaniefekt. Neid nahtuseid
tavapéaraste katsekehade pohjal uurida ei saa ja seega normide empiirilised valemid nendega

harilikult ei arvesta.

Kéesoleva doktortod esimene osa kirjeldab telgsiimmeetrilist arvutusmudelit, mis vdimaldab
analiitisida paindemomentide timberjaotumise ja survemembraaniefekti moju paindedeformat-
sioonidele jatkuvplaatide poste timbritsevates piirkondades. Kriitilise nihkeprao teooria kohaselt
madrab plaadi podre momendi nulljoonel posti ja plaadi iihendussolme labisurumiskandevoime.
Esitletud telgsiimmeetriline model koos kriitilise nihkeprao teooriaga voimalab edukalt ennustada
teaduskirjandusest leitud ebaharilike katsekehade kaitumist. Lisaks pakub kdesolev doktorit6o
védlja lihtsa valemi ldbisurumiskontrollil plaadi jatkuvusega arvestamiseks, mis on moeldud

kasutamiseks koos Model Code 2010 arvutusvalemitega.

Doktoritod teine osa sisaldab kolmeteistkiimne tavapdrase, negatiivse paindemomendiga
plaadiosa modelleeriva labisurumiskatse modtmistulemusi ja nendel pohinevaid tahtsamaid
jareldusi. Peamised uurimisalused parameetrid olid toetuspinna (posti) labimoot (83 kuni 660 mm)
ja katseplaadi suurus (1.7 kuni 3.9 m). Lisaks uuriti paindearmatuuri koguse ja pdikarmatuuri
olemasolu moju. Plaadisisese pragunemise jalgimiseks arendati valja uudne monitoorimissiisteem.
Plaadi alapinda posti ldhedusse puuriti enne katse alustamist erineva siigavusega augud, mille
pohja liimiti mootmispunktid, mille koordinaate moddeti koormamise kdigus korduvalt korg-
tapse mootekdega. Moodtesiisteem voimaldas jalgida plaadisiseste pragude teket ja kasvamist ilma
plaadi telgsiimmeetrilist geomeetriat oluliselt hdirimata. Tanu uudsele monitooringusiisteemile
selgus, et kaldsed nihkepraod, mis pohjustavad plaadi labisurumispurunemise, arenesid enamasti
eraldiseisvalt plaadi pinnal jdlgitavatest paindepragudest. Nihkepraod ilmusid kas plaadi
poikjoupurunemise hetkel voi monel juhul juba enne seda. Kuigi katseplaadid olid nominaalselt

telgsiimmeetrilised, vdis pragunemise areng olla posti erinevatel kiilgedel kiillaltki erinev.
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Kokkuvote

T66 kolmas osa pakub poikarmatuurita plaatidele valja uue labisurumismudeli. Vaatlusandmete
pohjal oletatakse, et labisurumise pohjustab kriitiline ruumiline pingeolukord postidéarse kald-
survevarda paindepragude aluses osas, kust saab seetottu alguse kaldpragu, mis levib survetsooni
valist betooni lohestades plaadi tilapinnani. Kriitiline pingeolukord defineeritakse soltuvalt plaadi
geomeetiast, armeerimistegurist ja materjalide omadustest plastsusteooria alampiiri teoreemi ja
iildise kolmtelgse betooni voolavustingimuse abil. Betooni purunemise haprus voetakse arvesse,
kasutades efektiivsustegurit, mis arvestab purunemismehaanikast tuleneva betooni plastsete
omaduste soltuvusega plaadi paksusest ja posti suurusest. Jatkuvplaatide survemembraaniefekt
suurendab uue labisurumismudeli kohaselt kandevdimet paindepragude siigavuse vihendamise
kaudu.

Marksonad

jatkuvplaat, kriitilise poikjouprao teooria, ldbisurumise mudel, labisurumiskatse, Model Code
2010, paindemomendi {imberjagunemine, raudbetoonplaat, survemembraaniefekt, siimmeetriline

plaadi-posti ithendussolm
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Chapter1 Introduction

Reinforced concrete flat slabs, often supported on columns without capitals or drop pan-
els, are very common structural elements in both residential and commercial buildings. In addition
to offering great architectural flexibility, these elements have simple formworks and are thus easy
and fast to construct. Slabs with large permanent or temporary concentrated loads can also be
found in other types of structures, such as cut-and-cover tunnels or slab bridges supported on col-
umns. In many cases, such slabs are only equipped with flexural reinforcement and no transverse

rebars are provided.

(b) | |

Figure 1.1 Potential failure modes of flat slabs: (a) flexural failure; (b) punching shear failure

Capacity of flat slabs in the vicinity of columns is governed either by flexural or shear strength.
Flexural failures occur after large deformations (Fig. 1.1(a)). This can provide warning signs for the
users and may allow, in the case of unforeseen or accidental loadings or support settlements, the
internal forces to be redistributed between the different load-carrying actions in the slab. Several
analytical methods, from simple strip method to linear or non-linear finite element method or
yield line theory, exist to design and verify slabs against flexural failures. In contrast, deformations
of shear-critical elements are typically very limited before a failure occurs, especially when no
shear reinforcement is used (Fig. 1.1(b)). This makes punching shear a particularly dangerous fail-

ure mode.

Punching tests are typically conducted on slab elements with load applied at the edges and sup-
port reaction concentrated on a column in the center of the specimen (Fig. 1.2). More than 500 such
tests have been performed. The provisions for punching design and verification in several codes of

practice comprise empirical formulas developed on the basis of these experiments.
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Figure 1.2 Full-scale punching test on an isolated specimen, supported on a column in the
center an loaded at 8 points close to the perimeter [Einl6a]

The unitary shear strength of specimens subjected to two-way action (such as flat slabs supported
on columns) has been observed to be higher than the shear capacity of one-way elements (such as
slabs on linear supports). The very few experiments that have been conducted on continuous slabs
(such as the test by Ladner et al. [Lad77] shown in Fig. 1.3) have suggested that actual slab-column
connections may have even higher capacities than predicted on the basis of isolated specimens.
However, due to the lack of experimental data and because the mechanism of punching is still not
completely understood, this increase is typically not accounted for in engineering practice. A better
understanding of the punching phenomenon is therefore needed in order to develop more precise
and physically sound design methods for the evaluation of existing structures as well as for

developing new and innovative designs.

Figure 1.3 Reduced-scale punching test on a continuous slab by Ladner et al. [Lad77],
supported on 16 columns and loaded uniformly on the top surface (picture courtesy to
Mr. Heini Lippuner and Dr. Marc Ladner)



1.1 Objectives

1.1  Objectives

The objective of this research is to improve the knowledge about the phenomenon of punching of
reinforced concrete slabs. Several different theories exist that can in some cases provide conflicting
design outcomes. While in the case of one-way elements, the formation of cracks and the devel-
opment of strains can be directly observed on the specimen’s side surfaces, in punching tests, the
cracks appear inside the slab and therefore cannot be directly followed. For the present research, a
measurement system was developed that allowed measuring the propagation of internal cracking
during a punching test and validate the previously made assumptions regarding the punching

failure mechanism.

From previous experiments, it is known that continuous or edge-restrained specimens, which
model actual slab-column connections more precisely, show smaller flexural deformations and
higher punching capacities than conventional isolated specimens. The empirical models that have
been calibrated on the basis of test results on isolated specimens are therefore believed to give con-
servative predictions. While this can be considered suitable for the design of new structures, as-
sessment of existing structures may require more precise estimates of the actual capacities. The
present thesis therefore also studies the strength enhancement of actual slab-column connections

in continuous slabs in comparison to isolated specimens.

1.2  Scope

Only axisymmetric loading conditions and geometries are discussed in this thesis. Extensions to
non-axisymmetric cases, such as edge or corner columns, unequal reinforcement ratios and span
lengths or the cases where significant moment transfer occurs between the columns and the slab,
are not considered. However, the punching strength enhancement due to slab continuity is also
expected to occur in the case on non-axisymmetric punching of interior columns. These effects are
less significant in edge and corner column connections or in the presence of large openings in slabs

close to the supports.

The study on punching of continuous slabs is performed using the Critical Shear Crack Theory.
According to this theory, the punching capacity of a slab-column connection is a function of flex-
ural deformations of the slab around the connection. The enhanced punching strength of continu-
ous slabs can thus be estimated by studying the influence of slab continuity on its flexural defor-

mations.

Regarding the comparisons between experimental results and provisions of the design codes, as
well as development of calculation models, all the safety factors are taken equal to unity. The safe-
ty format against failures is not discussed in this thesis. Furthermore, loading is assumed to be

short-term, unless specifically noted otherwise.

This thesis considers reinforced concrete flat slabs made of normal or high strength concrete (ex-

cluding ultra-high-performance and fiber-reinforced concretes) and ordinary reinforcing steel with
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sufficient ductility. The detailing of reinforcement (bar spacing, development lengths and anchor-
age) is assumed to correspond to the requirements of the codes of practice. All the failure modes

associated to anchorage or bond failures or rebars are thus neglected.

1.3  Organization

The present thesis covers two main topics. Firstly, the punching behavior of slab-column connec-
tions in continuous flat slabs is investigated with respect to the possible differences compared to
typical punching test specimens, which only model an isolated part of the slab in the vicinity of the
connection. Secondly, the mechanisms of punching failures are studied on the basis on experi-
mental results obtained by measuring the coordinates of points inside the slab during tests. A new

punching model based on the experimental observations is thereafter proposed.

The thesis is organized into eight chapters. After the first introductory chapter, the contents are as

follows:

— Chapter 2 presents a brief overview of the state of the art. Various proposed physical ap-
proaches to punching design are described. The state of the art regarding punching of con-

tinuous and confined slabs is also presented.

— Chapter 3 introduces an axisymmetric numerical model that can simulate the flexural be-
havior of slabs on small supports, taking into account the influence of compressive mem-
brane action. Depending on applied edge conditions, the model can analyze continuous
slabs with various levels of confinement as well as edge-restrained test specimens. The
model is validated by comparing its predictions to the results obtained from unconvention-
al punching tests. This chapter is based on two papers, one published in Engineering Struc-

tures and one accepted for publication in ACI Structural Journal.

— Chapter 4 shows the derivation of a simple analytical relationship to predict the load-
rotation response of continuous slabs without external confining elements. Slabs with and
without membrane action (where the emergence of membrane forces is hindered) are con-
sidered. The results of this analysis are presented in a paper accepted for publication in ACI

Structural Journal.

— Chapter 5 gives the principal results of a test campaign performed within the current re-
search. The test results are compared to the main codes of practice. This chapter is based on

a paper published in ACI Structural Journal.

— Chapter 6 describes a novel internal measurement technique and the results obtained by
applying it to follow the development of flexural cracks and the localization of shear failure
cracks inside punching test specimens. This chapter is based on paper “Measurements of
internal cracking in punching test slabs without shear reinforcement” submitted for publi-
cation in Magazine of Concrete Research.



1.4 Personal contributions

— Chapter 7 proposes a new punching failure model based on the lower bound theorem of
the theory of plasticity that is applied to predict the failure load of the compression zone. A
general stress-based failure criterion is used together with an effectiveness factor account-
ing for the size effect. The predictions of the model are compared to test results from the

literature.

— Chapter 8 presents the conclusions drawn from the previous chapters and gives an outlook

for further research.

14 Personal contributions

The main personal contributions of the author were:

— Implementing and improving an axisymmetric numerical model that predicts the flexural
response of flat slabs, accounting for the influence of membrane forces in the slab, and val-
idating the model by comparing its predictions the results of tests on various edge-

restrained slabs from the literature;

— Performing a series of parametric studies with the numerical model to study the differences
between the flexural behaviors and predicted punching strengths of actual continuous

slabs and isolated test specimens;

— Deriving a simplified analytical relationship, in a format compatible with the punching
provisions of Model Code 2010, for calculating the load-rotation response of continuous
slabs, taking into account either only the redistribution between hogging and sagging mo-

ments or also accounting for the influence of compressive membrane action;

— Carrying out a series of full-scale symmetric punching tests on slabs with and without
shear reinforcement (slab depths 250 mm and sizes from 1.7 x 1.7 to 3.9 x 3.9 m) and com-

paring their results to various codes of practice and the CSCT;

— Developing a measurement system to track the coordinates of points inside a specimen

during a punching test and programming a number of tools to analyze the measured data;

— Performing the internal measurements (in total, on 20 specimens for various research pro-
jects) and treating the test results to obtain an overview of crack initiation and development

which then allowed identifying the mode of failure of the specimens;

— Proposing a new punching model where the capacity of the slab-column connection is as-
sumed to be governed by the strength of the compression zone, which can be calculated
based on the lower bound theorem of the theory of plasticity, and comparing the proposed

model to the experimental results from the literature.
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Punching of reinforced concrete flat slabs under concentrated loads has been in the focus
of research for several decades. This chapter gives a short overview of the state of the art in the
field and describes some of the previously suggested analytical models regarding punching shear
behavior of symmetric interior slab-column connections. The scope of this review is not to give a
complete overview of all the proposed models but to briefly describe only the models that have
inspired or influenced the approach of the present thesis. Empirical calculation formulas as well as
numerical approaches (such as finite element analyses with three-dimensional solid elements) are

also not presented in this chapter.

Figure 2.1 Typical cracking patterns on saw-cuts through the column region after punching
failures (Specimens PE9 (p = 0.75%) and PE8 (p = 1.50%) of Einpaul et al. [Ein16a])

In order to study the resistance of flat slabs without shear reinforcement, more than 500 large-scale
punching tests have been performed, mostly on symmetric specimens supported on a column stub
in the center and loaded along the perimeter of the slab. Such specimens normally fail either in
bending or in punching. Bending failures are accompanied by yielding of reinforcement and
crushing of concrete, showing large deformations and a long plateau of residual strength. In con-
trast, punching failures typically occur suddenly with formation of a diagonal crack that separates
a punching cone from the rest of the slab (Fig. 2.1). Slab deformations prior to failure are often
small and residual strength after punching low. Whereas flexural failures are well understood and
both the strength and deformations can be predicted with sufficient precision, predicting shear

failures as precisely is still a challenge.

2.1 Shear resistance models

The analytical models of shear resistance in reinforced concrete have to include several simplifica-
tions due to the complex actual behavior that combines the response of two materials, concrete and
reinforcement. In addition, the behavior of concrete depends strongly on three-dimensional state

of stresses and strains and is also different before and after cracking. Therefore, physically precise
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modeling of the response (for example, with non-linear finite element method) has not yet been

successful. Various simplified approaches are mostly used in practice and in research.

2.1.1 Upper bound and lower bound models of plasticity

Simplified models based on the theory of plasticity have been successfully applied to many differ-
ent problems related to the design and verification of reinforced concrete structures. The constitu-
tive material law is assumed as rigid-plastic with stresses equal to either zero or the compressive
or tensile strength of concrete or reinforcing steel (Fig. 2.2(a)). Because the actual material behavior
is not rigid-plastic, stresses on the failure surface have to be corrected with an effectiveness factor v

that accounts for the softening of the material, cracking and local stress concentrations [Hoa98].

Regarding punching shear, both upper bound and lower bound models have been suggested. Ac-
cording to upper bound models, the failure occurs when a kinematically admissible failure mech-
anism forms along yield surfaces. Figure 2.2(b) shows a possible mechanism for punching as sug-
gested by Nielsen [Nie84]. The load causing the mechanism of failure can be determined from the
requirement of energy equilibrium of the work performed by external loads and the work per-
formed by internal forces. According to the upper bound theorem of plasticity, an actual failure
load cannot be higher than the load calculated with any of the kinematically admissible mecha-
nisms. Therefore, to determine the load-bearing capacity of a structure, a mechanism has to be
found that gives the lowest failure load. It should be noted that, the effectiveness factor v has to be

recalibrated for each type of problem as it is dependent on both material and geometric parame-

ters.
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Figure 2.2 Upper bound and lower bound plasticity models: (a) admitted material laws for

concrete and reinforcing steel; (b) an admissible failure mechanism for punching [Nie84];
(c) strut-and-tie model for elements without transverse reinforcement

Alternatively, lower bound models of plasticity have been suggested (for example, by Alexander
and Simmonds [Ale87]). According to the lower bound theorem of the theory of plasticity, if a dis-
tribution of stresses can be found that satisfies static equilibrium and does not exceed material
strength at any point of the element, the element does not fail. This approach forms the theoretical

basis of the strut-and-tie and stress field models [Mut96]. In the case of shear in elements without
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transverse reinforcement, a statically admissible strut-and-tie model requires that some ties rely on
tensile stresses in concrete (Fig. 2.2(c)). As the actual tensile behavior of concrete differs considera-
bly from the rigid-plastic assumption, the choice of a suitable efficiency factor v is very important
in these models in order to obtain reasonable predictions. However, for slabs with shear rein-
forcement, where all tension ties are provided with reinforcement, strut-and-tie models may be
appropriate [And81]. Also, these models can be relatively easily modified to account for moment

transfer or non-axisymmetric geometries (such as edge and corner columns) [Sim87].

2.1.2 Kinematic models

Models based on the theory of plasticity make very rough simplifying assumptions regarding the
material behavior of concrete. In order to use physically more precise constitutive laws, strains in
the materials have to be known. Kinematic models attempt to predict the deformations by dividing
the structure into elements that are assumed to act as rigid bodies and establishing laws for the

relative displacements along the boundaries of the elements.
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Figure 2.3 Kinematic model of an isolated hogging moment area around a small support
[Kin60]: (a) division of the slab into sector elements; (b) load-rotation curve calculated from
the equilibrium equations of the element; (c) forces and moments acting on the element

A widely accepted kinematical model of the deformations of a reinforced concrete slab around
interior slab-column connections in regular span slabs was proposed by Kinnunen and Nylander
[Kin60]. Their model describes the deformations of a hogging moment area around the column
that is isolated form the rest of the slab by the line of moment contraflexure. The deformed shape
of this area resembles a truncated cone (Fig. 2.3(a)). Radial curvature x: in the conical part of the
slab is zero and tangential curvature x: is proportional to the slab rotation . A relationship be-
tween load V and slab rotation ¢ (Fig. 2.3(b)) can be calculated from the moment equilibrium equa-
tion of a sector element (Fig. 2.3(c)), where the tangential and radial moments #m: and m: are calcu-
lated from the curvatures x: and xr using non-linear moment-curvature laws. More details about

this model are given in Chapters 3 and 4 of the present thesis.
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According to Kinnunen and Nylander, shear force is carried to the column by a conical compres-
sion strut. This strut is predicted to fail and cause a punching failure when tangential strains on the
compressed concrete surface reach a critical value. These strains depend on the flexural defor-
mations of the slab, making the predicted punching strength effectively a function of the flexural

capacity of the isolated hogging moment area.

The model of Kinnunen and Nylander has been extended and improved by several researchers
[Kin63, She89, Bro90, Hal96, Mut08b]. The improvements have been focused on refining the crite-
rion at which the punching failure is predicted to occur. Among them, the Critical Shear Crack
Theory (CSCT) proposed by Muttoni [Mut08b] will be more thoroughly described in Section 2.2.

2.1.3 Size effect in punching shear

Tensile and shear failures of reinforced concrete elements, if governed by the failure of concrete as
opposed to reinforcing steel, are known to exhibit size effect: if geometrically similar specimens of
different sizes are tested, the obtained nominal stresses at failure are higher in smaller specimens
than in larger specimens. This effect has a high practical importance, as many laboratory experi-
ments are performed on smaller scale than the actual structures that they are modeling and may
thus potentially give overestimated capacities. It has been attempted to explain the size effect us-
ing the concepts of fracture mechanics, namely energy equilibrium at the process of crack propaga-
tion [Baz84].

An example of a brittle tensile failure is shown in Figure 2.4. An external applied force F causes a
tensile stress o in the element. When at some point of the element the tensile strength of the mate-
rial is reached (in section A-A Fig 2.4(a), 0 = fu), the element starts to crack and the applied force F
begins to decrease (Fig. 2.4(b)). In the uncracked portion of section A-A, the stress remains at ¢ = f.
In the rest of the element (for example, in section B-B), the stress decreases due to the reduction of
the applied force. Therefore, the elastic strains also decrease (es-5 in Fig. 2.4(c)) and the potential
energy stored in the material at loading is released (—d!I in Fig. 2.4(d)). The process of crack propa-
gation consumes energy because new material surfaces are created. This spent energy has to be in
equilibrium with the released potential energy. As the volume of the material where the stress re-
lease occurs depends on the element size, the energy that is available for propagating the crack is
also size-dependent. In linear-elastic fracture mechanics (assuming that the stress release is elastic
and linear and occurs in the whole length of the element), size effect turns out to be proportional to
h2, where h is the height of the cross-section of the specimen. In quasi-brittle materials such as
concrete, the release of stress is localized into a crack band, the width of which depends on the
properties of concrete (such as maximum aggregate size). This reduces the influence of size effect
for smaller element sizes, as in this case the width of the crack band constitutes a larger part of the
element [Baz84].

10
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Figure 2.4 Size effect in fracture mechanics: (a) tensile failure of a brittle element; (b) stress-
strain curve for the whole element; (c) stress-strain curves for sections A-A (with a crack)
and B-B (without a crack); (d) released potential energy in section B-B; (e) tensile stress
transfer in fictitious cracks according to Hillerborg [Hil83]; (f) stress-strain law in uncracked
concrete; (g) stress-crack opening law in the crack

Consumption of energy at crack propagation can also be expressed as a work of a fictitious tensile
force that resists the opening of the crack. This interpretation is often used in finite element model-
ing of cracking in concrete where transmission of tensile stresses is assumed between crack lips (as
suggested by the fictitious crack model of Hillerborg [Hil76, Hil83], Fig. 2.4(e)). It is important to
note that whereas stresses in uncracked concrete are related to strains (Fig. 2.4(f)), the residual ten-
sile stress transferred between the crack lips is a function of crack width wer (Fig. 2.4(g)). The resid-
ual stress multiplied with crack opening gives fracture energy Gr that may be considered a materi-

al parameter.

Plastic punching models account for a size effect through the efficiency factor v that varies as a
function of slab depth [Nie84, Niell]. Several empirical models, such as the model used in the
punching provisions of the current Eurocode 2 [CEN04], account for size effect as a function of the
effective depth of the slab. The punching failure criterion in the kinematical model of Kinnunen
and Nylander [Kin60] does not include a factor for size effect. Instead, the failure criterion ac-
counts for strain effect, as the failure is predicted to occur when concrete surface strain reaches a
critical value. This strain depends on, in addition to slab rotation, the height of the compression

zone, which is proportional to slab depth.

The models of Shehata [She89] and Broms [Bro90] modify the failure criterion and introduce a size
effect factor that increases the allowable concrete strains for smaller elements. In Hallgren’s model
[Hal96], also fracture energy of concrete is taken into account and the size effect factor is formulat-
ed on the basis of experiments on unreinforced concrete beams used to determine the fracture en-
ergy. The CSCT of Muttoni [Mut08b] described in the next section considers size and strain effects
together.

11
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2.2  Critical Shear Crack Theory

2.2.1 Assumed kinematics of shear failures

According to the Critical Shear Crack Theory (CSCT), the shear failure is assumed to occur along a
critical shear crack. For one-way beams without shear reinforcement, a comprehensive model de-
scribing the kinematics and the contributions of different shear transfer actions was proposed by
Fernandez Ruiz et al. [Fer15] with kinematics shown in Figure 2.5(a). The assumed center of rota-
tion of the relative displacement between the two rigid bodies is located at the tip of the crack. The
load is transferred between the bodies by dowel action of tensile reinforcement, aggregate inter-
lock and residual tensile strength along the crack as well as the inclined compression in the com-
pression zone above the crack tip. Stress-displacement laws allow quantifying the contribution of
each action and establishing their dependency on the opening width we of the crack. It is shown
that the load transfer capacity between the two bodies decreases with increasing crack opening.
The crack opening is then correlated to a reference axial strain &g ¢; that can be obtained from cross-

sectional analysis of the element (Fig. 2.5(b)).
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Figure 2.5 The CSCT for one-way elements: (a) assumed kinematics of the critical crack in
one-way elements by Fernandez Ruiz et al. [Fer15]; (b) reference strain ¢; (c) assumed kine-
matics of the critical crack in two-way elements by Guidotti [GuilOa]

Guidotti [GuilOa] proposed a simpler kinematic failure mechanism for two-way slabs without
shear reinforcement. The critical crack is assumed to be straight and inclined at 45 degrees. The
center of relative rotation between the rigid bodies is taken at the edge of the support (Fig. 2.5(c)).
With the assumed kinematics, the average crack width is proportional to the relative rotation be-
tween the rigid bodies (crack lips) yeack times the effective depth d. It is further assumed that the
rotation between crack lips is proportional to the slab rotation 1. The flexural deformation (slab
rotation) can be calculated with any physically based model that accounts for the non-linear be-
havior of reinforced concrete and thus models correctly the moment redistribution between radial

and tangential mechanisms. In axisymmetric cases, the model of Kinnunen and Nylander [Kin60]

12
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can be used. As the center of rotation is assumed to be located at the edge of the column, the con-
tribution of the compression zone is not accounted for. The capacity of dowel action of tensile rein-
forcing bars to transfer forces between the rigid bodies is greatly reduced by spalling cracks at the
level of tensile reinforcement. Therefore, this contribution is also neglected. Shear force is assumed
to be transferred through residual tensile stresses in the crack (in the part of the crack where its
opening is small) or through aggregate interlock action. The contribution of aggregate interlocking
depends on the kinematics (width and the direction of opening) of the crack, as well as the size of
aggregates and their packing density. With these parameters, the area of contact between the crack
lips can be calculated that gives an estimate of the magnitude of stresses transferred through the
crack. In the model of Guidotti, the punching failure crack is assumed to slide at an angle of 27
degrees relative to the crack surface (Fig. 2.5(c)) as was observed in the push-off experiments per-
formed by Walraven [Wal80]. With these assumptions, Guidotti established a law that relates the

capacity of the crack to carry shear forces to ¢-d, as the failure criterion of Muttoni [Mut08b].

2.2.2 Failure criterion

As described above, the shear strength of an element without shear reinforcement depends on its
state of flexural deformations — reference strain cos in the control section in the case of one-way
elements or slab rotation ¢ in the case of two-way elements. In order to verify the punching capaci-
ty of a slab-column connection, slab rotation due to the applied load has to be determined first.
Then, the shear strength for the determined rotation veir can be calculated. The shear capacity is
sufficient if the shear stress due to applied load is lower than the calculated shear capacity (vs < verit
in Fig. 2.6(a)). The exact shear capacity vr can be found where the load-rotation curve intersects the

failure criterion (Fig. 2.6(b)).
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Figure 2.6 (a) Verification of punching strength according to the CSCT; (b) determination of
punching capacity; (c) failure criterion of Eq. (2.1) [Mut08b] and experimental results of 128
tests from the literature ([Gua09], [Kin60], [Els56], [Moe61], [Tol88], [Hal96], [Ram96],
[GuilOb], [Tas11], [Einl6a], [Sis97], [Lip12], [Tom93])

Based on the results of 99 punching tests, Muttoni [Mut08b] proposed a failure criterion as a func-

tion of a parameter 1p-d. This parameter is related to the opening width of flexural cracks in the

shear-critical region. The failure criterion was given as:
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Ve _ 0.75 2.1)
&0 + dg

where d is the effective depth of the slab, bo is the length of the control perimeter located at a dis-
tance d/2 from the column face, f: is the concrete cylinder compressive strength, 1 is the rotation of
the conical slab portion (at the edge of an isolated specimen or, in a general case, at the line of
moment contraflexure), d; is the maximum aggregate size and dg = 16 mm is a reference aggregate
size. The maximum aggregate size in Equation (2.1) accounts for the roughness of the crack surfac-
es that influences the capacity of shear transfer by aggregate interlock [GuilOa]. The consistency of
the CSCT with the fracture mechanics approach is further described and discussed elsewhere
[Fer15].

The general approach of the CSCT can also be used to treat slabs with irregular column layout and
uneven loading [Sag11] as well as punching of rectangular columns [Sagl14]. However, in the cur-
rent research, only cases that can be approximated by an axisymmetric model (interior column

connections in regular span slabs under uniform loading) are considered.

2.2.3 Influence of in-plane forces

Clément et al. [Cle14] proposed that the influence of prestressing on punching behavior of flat slabs
can be accounted for by considering three potentially beneficial phenomena. Firstly, if the place-
ment of tendons is eccentric, the bending moments they introduce can reduce the rotation due to
the applied load. This reduction can be taken into account in the calculation of slab rotation. Sec-
ondly, if the tendons are inclined, part of the shear force can be carried by the vertical component
of the axial force in the tendons. Finally, the axial compression at the column perimeter can in-
crease the punching capacity by reducing the width of the critical shear crack. This effect was sug-

gested to be accounted for in the failure criterion [Cle14]:

Ve 0.75 (2.2)
bdf 15 ¥V
g0 + dg
where ¢’ is a modified rotation:
1//':;1/+45-%20 (2.3)

c

where o is an axial stress at the column perimeter (compression is negative) and E. is the modulus

of elasticity of concrete.

2.2.4 Punching of slabs with shear reinforcement

Fernandez Ruiz and Muttoni [Fer09] have extended the CSCT to also cover slabs with shear rein-

forcement. Different failure modes that have to be verified are summarized in Figures 2.7(a—c).
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2.2 Critical Shear Crack Theory

According to this approach, shear reinforcement that intersects the critical crack carries part of the
shear force. In this case, the punching capacity Vk can be found by summing the concrete and rein-
forcement contributions (Fig. 2.7(a)). The contribution of concrete can be calculated in the same
manner as for slabs without shear reinforcement (Eq. (2.1)). Thus, it decreases with increasing slab
rotation (due to increasing crack opening). The shear force carried by shear reinforcement depends
on the strains in them, which increase with increasing opening of the critical shear crack, which
these elements intersect (Fig. 2.7(a)). Thus, with increasing rotation, the concrete contribution de-
creases and the steel contribution increases. The maximum contribution of the transverse units is
limited by the yield strength of shear reinforcement or their anchorage conditions in the case of
some reinforcement systems. The described failure mode is referred to as failure within the shear

reinforced area and it is usually governing for low amounts of shear reinforcement.
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Figure 2.7 Punching failure modes of slabs with shear reinforcement: (a) failure within the
shear-reinforced area; (b) failure inside the shear-reinforced area (between the edge of the
column and the first shear unit perimeter; (c) failure outside of the shear-reinforced area

In the case of large amounts of shear reinforcement, shear failure may also occur by crushing of the
concrete strut between the edge of the supported area and the first perimeter of shear reinforce-
ment units. This failure typically occurs before transverse reinforcement reaches yielding and is
assumed to be independent of the shear reinforcement ratio (Fig. 2.7(b)). According to the CSCT,
the punching capacity in this failure mode is influenced by the same parameters as punching
without shear reinforcement since both are governed by the strength of concrete in shear. This is
considered in the CSCT by multiplying the concrete contribution failure criterion with a factor Kes.
Position and anchoring properties of shear reinforcement also have and influence on this failure
mode so that k«s depends on the performance of the shear reinforcement system. Its value should

be determined, specifically for each system, by testing.

Punching failure may also occur outside the shear-reinforced area (Fig. 2.7(c)). In this case, relative-
ly good estimates in comparison to the experimental results have been obtained by considering the
shear-reinforced zone as supported area with a control perimeter outside the last perimeter of
transverse reinforcement units. In this case, the compression strut is supported on the anchorage

zone of the last shear units. Therefore, the part of the cross-section that is below this anchorage
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zone has to be subtracted from the effective depth of the slab in Equation (2.1). If the radial spacing
of the transverse elements is too large, the failure can also occur between the perimeters of shear

reinforcement units.
2.3 Behavior of continuous slabs

2.3.1 Redistribution between hogging and sagging moments

Most punching tests are performed on specimens that model an isolated hogging moment area
according to the suggestion of Kinnunen and Nylander [Kin60]. Such specimens are round or
square, supported on a small column stub in the center and loaded close to the perimeter
(Fig. 2.8(a)). Size of the hogging moment area is usually determined by means of an elastic analy-
sis. In the case of small columns, this leads to the location of the line of moment contraflexure at
rs = 0.22 L (Fig. 2.8(a)). When cracking of concrete or yielding of reinforcement occurs in the vicinity
of the column, bending moments can be redistributed between radial and tangential directions
(Fig. 2.8(b)). In this regard, isolated specimens are suitable to model the region of the slab around a

slab-column connection.

However, in continuous slabs, moment redistribution can also occur between hogging moments
around the column and sagging moments in mid-span. This redistribution shifts the location of the
line of contraflexure (Fig. 2.8(c)). This phenomenon cannot occur in isolated specimens where the
line of moment contraflexure of a prototype slab is represented by the edge of the specimen. There-
fore, it can only be experimentally studied by testing real continuous slabs or larger specimens
with rotationally restrained edges. However, such experiments are significantly more time-

consuming and expensive to perform and are thus rarely done.

Kinnunen and Nylander [Kin60] justified the applicability of the isolated specimen’s results on
continuous slabs by requiring that sagging reinforcement should be designed so that it remains in
the elastic phase up to a punching failure. Thus, the curvatures and moments in the sagging mo-
ment area can be assumed to vary in a parabolic manner. This approach requires increasing the

amount of reinforcement in mid-span compared to the results of conventional design for bending.

According to the strip model of continuous slabs proposed by Alexander [Ale99], shear forces are
carried to the column through support strips. Shear stresses on the surfaces between the rest of the
slab and the support strips can be redistributed in a fully plastic manner. Capacity of the slab-
column connection is assumed to be limited by the flexural resistance of the support strips, which
are calculated as continuous beams. This way, the influence of the amount of sagging reinforce-

ment on the punching strength is accounted for.
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Figure 2.8 (a) Continuous slab and a corresponding isolated test specimen; (b) Redistribu-
tion of tangential moments in an isolated element after reinforcement yielding; (c) Redistri-
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ing

2.3.2 Compressive membrane action

Compressive membrane action is a phenomenon where the flexural strength (&) of a reinforced
concrete element is enhanced by compressive axial forces in the slab (—n) (Fig. 2.9(a)) that appear
due to rigid lateral supports that restrain the expansion of the element, which is caused by shifting
of its neutral axis at flexural cracking. An example of a structure where the influence of lateral
supports is important is a bridge deck slab that is confined between stiff beams linked with dia-
phragms shown in Figure 2.9(b). The in-plane forces significantly increase both the flexural
strength and also the flexural stiffness of such structures.

Lateral expansion (dilation) of isolated punching test specimens after cracking (Fig. 2.9(c)) has been
observed in the experiments (an example of slab PG19 of Guidotti [GuilOb] is shown in Fig. 2.9(d)).
In continuous slabs, this expansion is constrained by surrounding slab portion that is uncracked
and therefore does not dilate. To resist the dilation, tangential tensile stress (a tension ring) appears
around the cracked zone (Fig. 2.9(e)) and induces axial compressive stress within the hogging
moment area (Fig. 2.9(f)) that increases the flexural stiffness and strength of the slab. In this thesis,
this effect is called self-confinement, as it is provided by the continuous slab itself without any ex-

ternal confining elements.
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Figure 2.9 Compressive membrane action: (a) influence of normal force on the flexural
strength of a reinforced concrete element; (b) compression arch in confined slabs; (c) dilation
of an isolated slab; (d) measured dilation of specimen PG19 [GuilOb]; (e) formation of a ten-
sion ring in the slab portion around the hogging moment area; (f) compressive forces in the

hogging moment area due to restrained expansion

Although Wood [Woo061] argued that if the compressive in-plane forces in the hogging moment
area have to be equilibrated with tension around it, additional reinforcement is required, and con-
cluded that accounting for compressive membrane action in slabs without external confining ele-
ments therefore does not result in any reduction in the total quantity of required reinforcement,
later researchers have attempted to study the influence of self-confinement on the flexural capacity

and deformations of continuous slabs more precisely.

An ASCE-ACI report described the appearance of self-generated compressive in-plane stresses in
continuous flat slabs in a qualitative manner in 1974 [ASC74]. Significant effort has thereafter been
made by researchers to evaluate the influence of these in-plane stresses quantitatively. Traditional
yield line analysis (that neglects the influence of in-plane forces) results in plastic flexural strength
Viex that is independent on the deflection of the center point of the slab (Fig. 2.10(a)). Methods
based on rigid-plastic analysis [Par80, Bra80a] allow modeling the dome effect of the forces arising
from the changes of geometry. Assuming infinite in-plane stiffness, these methods lead to a maxi-
mum flexural strength value at zero deflection and a subsequent decrease of strength with increas-
ing deflection due the reduction of the height of the compression arch (Fig. 2.10(b)). When the
magnitude of the deflection is similar to the thickness of the slab, the flexural strength approaches
the yield line strength of an unconfined slab as the height of the compression arch reduces to zero.
If the slab is equipped with sufficient amount of longitudinal reinforcement that is properly an-
chored at the supports, tensile membrane action may arise (Fig. 2.10(c)). However, this resisting
mechanism can only be activated in the presence of very large deformations and can be used in the
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engineering practice only for extreme cases as post-failure behavior [Mel98]. This kind of mem-

brane action is not a subject of the present thesis.
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Figure 2.10 Rigid-plastic and elastic-plastic analysis of confined slabs: (a) flexural strength of
a slab in the vicinity of the support according to yield line analysis (Vfex is independent of
the deflection); (b) influence of compressive membrane action, rigid-plastic analysis; (c) ten-
sile membrane action; (d) compressive membrane action, elastic-plastic analysis.

The rigid-plastic analyses assumed that the influence of the in-plane deformations of the slab and
the lateral displacement of the supports are negligible compared to the second order effects due to
the slab deflection. Therefore, in the case of small deflections (which is the most relevant regime
for engineering applications and the main interest of this thesis), an elastic-plastic analysis [Bra80b]
has to be performed. If the surrounding structural elements are significantly stiffer than the slab,
an assumption can be made that the stiffness of the lateral supports is infinite. Therefore, only the
elastic deformations of the concrete slab itself have to be taken into account in order to determine
the ascending branch of the load-deflection curve [Kir84] (Fig. 2.10(d)). This approach has been
accepted by some codes of practice [UKHO2] as a basis of a design formula for designing bridge
deck slabs between laterally stiff beams (such as shown in Fig. 2.9(b)). However, these assump-
tions are not valid in the cases where the surrounding elements are not significantly stiffer than the

slab. In these occasions, the stiffness of the supports has to be taken into account. In a simplified
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manner, this can be done by attributing the lateral supports a stiffness value that describes both the
rigidities of the tension ring in the slab and the restraining elements (Fig. 2.10(d)). In that case, the
horizontal support reaction necessary to create the compression arch is only generated at non-zero
deflections. However, determining a suitable stiffness is in most cases still performed empirically
[Hew?75, Kua93, Eyr(7].

In the present thesis, both redistribution between hogging and sagging moments as well as self-
generated compressive membrane action are analyzed on the basis of an axisymmetric numerical
model. A load-rotation curve of a slab-column connection in a continuous slab is obtained from the

analysis. Punching strength of the connection is thereafter predicted using the failure criterion of
the CSCT.
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Chapter 3  Numerical model for continuous slabs

This chapter, based on a paper published in Engineering Structures [Einl5], describes a
numerical model that allows analyzing the flexural deformations and, by applying the failure cri-
terion of CSCT, punching strengths of slabs with various edge conditions, such as unconventional
configurations for symmetric punching tests but also interior slab-column connections in continu-
ous flat slabs. The model is validated by comparing its predictions to uncommon punching test

specimens found from the literature.
3.1 Description of the numerical model

3.1.1 Equilibrium equations and compatibility conditions

The numerical approach presented in this section assumes axisymmetric conditions (extension of
the model for non-axisymmetric geometries is discussed in Section 3.1.4). A region of the slab
around an interior column is divided into sector elements (Fig. 3.1(a)) [Gua05, GuilOa]. For each
element, equations for the equilibrium of moments (3.1) and forces (3.2) as well as for the geomet-
rical compatibility of deformations due to bending (3.3) and normal forces (3.4) are written (nota-
tion in Fig. 3.1(b) and (c)):

My Vo =M, Ty =M Ar+ v - Ar 1y, +q,4, (rqﬂi _ri):O (3.1)
My Ty =N, 1 —n,, - Ar, =0 (3.2)
TV X A2
Xii = r 4 Ar /2 (33)
u,+¢&,,-Ar,/2
g =t '
b 7"‘+AI"[/2 (34)

The relationship between forces and deformations can be provided by any suitable moment-
curvature and moment-dilation law for the considered level of axial load. Such law can be general-
ly obtained using a layered non-linear sectional analysis. To facilitate the calculation procedure, in
the current thesis, a simpler multi-linear law is used (Fig. 3.2), where different linear branches of

the law are related to uncracked, cracked and reinforcement yielding regimes:

(m, ") = fmumun(la ‘9) (3.5)
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Chapter 3 Numerical model for continuous slabs

For the details about the derivation of the multi-linear law, refer to Section 3.1.3. The sectional re-
sponse is calculated independently in tangential and radial directions (thus the value of the Pois-

son’s ratio is taken as 0).

(2) (d)
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Figure 3.1 (a) Sector of an axisymmetric slab; (b) internal forces acting on an element; (c) de-
formations and displacements of the element; (d) numerical solution procedure

A block diagram of the numerical solution procedure is shown in Figure 3.1(d)). For each element,
Equations (3.1)—(3.5) can be used to find the internal forces and deformations at the outer edge of
the element if the internal forces at the inner edge of the element are known. The increase of rota-
tion and vertical as well as horizontal displacements within an element can also be obtained. By
assuming a state of deformations (x, ¢) at the inner edge of the centermost element and repeating
the calculation for each subsequent element, taking into account the external loads g applied on the
slab, two boundary conditions are reached at the edge of the slab. The response of the slab can thus
be determined by finding for each loading case the state of deformations in the center that leads to

the appropriate boundary conditions. This is done by means of an iterative calculation procedure.

A simpler calculation can be performed by neglecting the influence of in-plane forces in the multi-
linear sectional law (Eq. (3.5)) so that only the equilibrium of moments (Eq. (3.1)) and compatibility
of flexural deformations (Eq. (3.3)) is required.
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3.1 Description of the numerical model

----------- non-linear analysis

multi-linear law

Figure 3.2 Moment-curvature (m-x) and dilation-curvature (e-x) relationships for different
levels of axial force (1): results of a non-linear sectional analysis and the simplified multi-
linear law (calculated with Response 2000 [Ben00])

3.1.2 Boundary conditions

The boundary conditions in at the edge of the slab are:

— for an isolated specimen, the radius of the axisymmetric calculation model corresponds to
the radius of the specimen. Radial moment at specimen’s edge has to be zero (/1. = 0) and
if the loading system is designed as to avoid in-plane forces and no prestressing is applied,

the radial normal force at the edge of the slab has to be zero as well (g = 0) (Fig. 3.3(b));

— for a continuous slab, the radius of the model s corresponds to the distance between the
column and the symmetry line in mid-span. The first boundary condition is therefore zero
rotation at the edge of the model (¢ = 0). The radius of the slab rua is selected so that in
the elastic uncracked phase, the axisymmetric model has to yield the same radius of mo-
ment contraflexure s of 0.22 L as it is in a regular continuous slab. This leads to the choice

of raw = 0.7 L (refer to Section 3.1.4 for discussion). The second boundary condition may be:

— for a flat slab on supports that carry only vertical reactions (a self-confined slab), the

second boundary condition is neige = 0 (Fig. 3.3(c));

— for a flat slab that is perfectly confined between external elements (like, for example,

very stiff shear walls), the second boundary condition is ueige = 0 (Fig. 3.3(d)).

Other cases can also be easily modeled, including tests on additionally confined isolated slabs,
slabs with partially rotation-restrained edges, or slabs with bending moments applied at some dis-

tance from the center.
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Figure 3.3 (a) Axisymmetric calculation model; (b) Boundary conditions for an isolated slab;
(c) Boundary conditions for a slab without external confining elements (self-confined);
(d) Boundary conditions for a slab with perfectly rigid external confining elements

3.1.3 Multi-linear sectional analysis

A simplified multi-linear relationship between the internal forces acting on a cross section and its
deformations is used in this numerical model. The internal forces considered are the bending mo-
ment m and the axial force 1, whereas the related deformations are curvature y and dilation of the
axis €. The law is based on an approach used by Muttoni [Mut08b] and Clément et al. [Cle14] but it
is modified to describe the dilation of the axis and to approximate the response of a section under
high tensile forces in a more suitable manner. The resulting curves and a comparison with a lay-

ered non-linear analysis are presented in Figure 3.2.

A number of simplifications are made to ensure the continuity of the curves and to facilitate the
use of the multi-linear law in the iterative calculations of the numerical model. The moment-
curvature and the curvature-dilation relationships are assumed to consist of linear phases, as

shown in Figure 3.4 for some different levels of axial load:

— In the uncracked phase, the slope of the moment-curvature relationship is equal to the
stiffness of a full concrete cross-section Elo. The influence of the tension and compression
reinforcement can be normally neglected (Fig. 3.5(a)). This phase describes the response be-
tween zero moment and cracking moment (m.). Cracking moment is defined, depending
on the level axial force, as a bending moment that induces a tensile force equal to f in the
outermost tension fiber of the cross-section [Cle14]. Compressive axial force increases the
cracking moment, whereas tensile axial force decreases it. In the presence of high tensile
forces, the tensile stress in concrete may exceed the tensile strength in the whole cross-
section (1 > ner). In this case, the cross-section is cracked in tension at zero bending moment

and the uncracked phase does not apply (Fig. 3.4(c)).
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Figure 3.4 Moment-curvature and moment-dilation relationships for different levels of axial

load: (a) no axial force; (b) axial compression; (c) axial tension
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Figure 3.5 Sectional analysis: (a) uncracked phase; (b) partially cracked phase; (c) fully

cracked phase

The dilation of the axis ¢ in the uncracked phase mainly depends on the deformation due to

the axial force ¢o (Fig. 3.5(a)).

If the applied moment exceeds the cracking moment, a cracked phase applies. In this phase,

the m-x relationship is assumed to be linear with a slope equal to the stiffness of a fully

cracked cross-section (BEI:) that is composed of the compression zone and the reinforcing

bars (Fig. 3.5(b)) multiplied by an efficiency factor . The efficiency factor takes into account

the orthogonal placement of the reinforcing bars, which is not equivalent with the polar

placement that is assumed in the axisymmetric model. A suitable value of § has been

shown to be 0.6 [Mut08b]. The contribution of concrete in tension is neglected when calcu-

lating EIi. However, the contribution of the tensile stresses in the concrete around steel re-
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bars due to bond between the reinforcing bars and concrete are taken into account with a
tension stiffening factor [Mut08b]:
Agyg =—Jem L (3.6)
p-P-E; 6:-h
Applying an axial force on the cross-section affects the height of the compression zone. As
a simplification, however, this change is neglected in the present multi-linear law. The in-
fluence of the axial forces is taken into account by modifying the curvature due to different
stiffness of the tension tie and the compression chord (Fig. 3.5(b)). The change of the curva-
ture due to the axial load is [Cle14]:

pg - (h/Z—xB _2-(d—h/2)J (3.7)

T @d—x/37 \pd-E-B  xE
The total contribution of the aforementioned effects is thus:
Ay =A0xr s +Axy (38)

The contribution of tension stiffening Axrs is always positive (decreasing the curvature).
The contribution of the normal force Ay~ can be positive (decreasing the curvature) in the
case of compression (Fig. 3.4(b)) or negative (increasing the curvature) in the case of tensile
axial forces (Fig. 3.4(c)). In the case of high compressive forces, Ay may be so large that the
curvature at cracking x. is less in the cracked phase than in the uncracked phase. In this
case, the value of Ay is limited to yield the same in the y« cracked phase as in the

uncracked phase [Cle14] (leading to no cracking plateau in Fig. 3.4(b)).

At the onset of cracking, the dilation of an element is known to increase abruptly while the
cracks are formed. After their initial formation, the cracks will start growing and the in-
crease of dilation will become more stable. In the current analysis, this phenomenon is ne-
glected and the dilation in the cracked phase is assumed to increase linearly from the dila-

tion in the uncracked phase ¢o (Fig. 3.5(b)):
g=&,+(x-Az)-(h/2-x) (3.9)

As seen in Equation (3.9), the dilation is calculated using the modified curvature (x — Ay).
In this manner, the effect of tension stiffening is taken into account.

In presence of high tensile axial forces (1 > n.r), the whole concrete cross-section may be
cracked in tension. In this case (Fig. 3.4(c)), the stiffness of the cross-section consists of the
stiffness of only rebars § Els (Fig. 3.5(c)). In the case of different compression and tensile re-
inforcement ratios, the influence of this asymmetry on the location of the neutral axis
should be taken into account. It should be noted that the slope can be negative if the

amount of compression reinforcement exceeds the amount of tensile reinforcement.



3.1 Description of the numerical model

— Between the uncracked and cracked phases, a crack development plateau is usually as-
sumed. In the current paper, the slope of the plateau is taken equal to EI; as in the previous-
ly described phase (Fig.3.4) to ensure continuity between different levels of axial load.
However, as a simplification, the curvature-dilation relationship is found with
Equation (3.9) similarly to the cracked phase.
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Figure 3.6 (a) Axial force-dilation relationship with no bending moment; (b) Strains and
forces at the cross-section in the case of high compressive axial forces; (c) adapted axial load-
moment capacity relationship

The multi-linear law used for determining the dilation at zero moment ¢o (Fig. 3.5(a)) is shown in
Figure 3.6(a). Similarly to the moment-curvature relationship, uncracked and cracked phases are
distinguished with the respective stiffnesses of BEAo and SEAs. As a simplification, tension stiffen-
ing is neglected in this law. The tensile capacity of the cross-section at zero moment 7z is reached

when the bars on the side with lower reinforcement ratio start to yield.

The flexural capacity of the cross-section (mr) is calculated assuming yielding of tensile reinforce-

ment and a rectangular compression block in concrete:
me=p-d-f,(d=h2)+p,-d-f,(d-h2)+f x,hj2-x,/2) (3.10)

where the depth of the rectangular compression block x,1 depending on the level of axial force can

be found as:
x, =((p=p,)-d-f,-n)/1, @3.11)

In the case of high compressive axial force, tensile reinforcement may not be yielding at the flexur-
al limit (& <fy/Es in Fig. 3.6(b)). In this case, the moment capacity is limited by the strength of the
compression zone. By assuming that the ultimate compressive strain of concrete is 3.5%o, stress in

tension reinforcement can be calculated (Fig. 3.6(b)):
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o =97% 00035 E, (3.12)

s
X

By further assuming that the depth of the rectangular compression block is 0.8x, the moment ca-

pacity can be found:
my=p-d-o, -(d-hj2)+p,-d-f,(d-h/2)+ f.-0.8x-(h/2—0.8x/2) (3.13)
The equilibrium of normal forces yields an equation:
n=-p-d-o,+p,-d-f, +f 08 (3.14)

The depth of the compression zone x and moment capacity mr can be determined by solving the
system of Equations (3.13) and (3.14). This leads to increasing moment capacity with increasing

axial compression but with a slower increase than in the previous phase (Fig. 3.6(c)).

If the depth of the compression zone reaches the height of the cross-section, increasing the axial
force will start to decrease the moment capacity. However, in the current research, high axial com-
pression is only found in the center of the slab and it appears simultaneously in radial and tangen-
tial direction. Therefore, the ultimate strain and stress of concrete can be significantly higher due to
the biaxial compression (confinement). Due to this, for the current analysis it is assumed that the

moment capacity does not decrease with increasing axial force (the confined case in Fig. 3.6(c)).

In Figure 3.2, the simplified multi-linear law was compared to the results of a non-linear layered
sectional analysis [Ben00]. The approaches yield similar results, except for a larger discrepancy
regarding the dilation of the cross-section in the case of compressive normal forces and large cur-
vatures. The difference is caused by neglecting concrete compression softening in the simplified
law (which reduces the total normal force in the non-linear analysis). However, in the present
analysis, large curvatures combined with high axial compressive forces occur in the center of the

slab, where the concrete is bi-axially confined and the softening effect is therefore reduced.

3.1.4 Conversion of a regular-span continuous slab to an axisymmetric model

Compared to the geometry of actual slabs and conventional placement of reinforcing bars, the ax-

isymmetric model is developed assuming several simplifications.

Firstly, in the axisymmetric case, the deflection of the slab at its outer edge is considered constant
along the whole edge. However, in the case of a continuous slab supported on a regular grid of
columns, the deflection is smaller on the axes and larger in the middle of the fields (Fig. 3.7(a)).
Therefore, the choice of the radius for the continuous model that would predict correctly the de-
formations of the slab in the vicinity of the column is not as straightforward as in the case of the

radius for an isolated element.
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Figure 3.7 Conversion of an actual slab to an axisymmetric model: (a) comparison of slab de-

flections (represented by shading); (b) simplification of the reinforcement layout; (c) com-
parison with a non-linear parametric study by Tassinari [Tas11]

In this research, the radius of the slab rux has been chosen so that in the elastic uncracked phase,
the axisymmetric continuous model has to yield the same radius of moment contraflexure rs of
0.22 L as an elastic analysis of a regular-span slab. This leads to rsw = 0.7 L. The radius is larger
than it would be based on purely geometrical considerations (the same contributive area, for in-
stance) because of the overestimate of the tangential curvature in the outer part of the axisymmet-
ric model, which leads to overestimating the contribution of tangential moments in comparison to
the sagging moment area of an actual slab. The overestimate of the radial stiffness can be compen-
sated for by increasing the extent of the slab in the axisymmetric model. The distributed load on

the slab is correspondingly decreased by a factor of 0.7%7t = 1.54 to yield an equal column reaction.

Secondly, in the axisymmetric model, the reinforcement is assumed to be laid in the radial and in
the tangential directions. In actual slabs, however, the reinforcement is placed orthogonally and
may therefore cross the radial and the tangential planes at oblique angles. In these cases, the stiff-
ness of the tension chord of the cross-section is reduced. This effect is taken into account in the
multilinear moment-curvature law with an efficiency factor § that reduces the stiffness of a cracked

cross-section (refer to Section 3.1.3). For uniformly reinforced isolated test specimens, an average
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value of f=0.6 gives good results in comparison to the test results [Mut08b] and the same value

has been used in the current research.

Thirdly, in the axisymmetric model, top and bottom reinforcement ratios are considered constant
over the whole slab. However, in actual slabs, top reinforcement is usually concentrated in strong
bands (support strips) between the supports (Fig. 3.7(b)) and significantly lower amounts of flex-
ural reinforcement are provided in the areas between these strips. This results in redistribution of
internal forces and concentration of bending moments on the support strips due to the higher flex-

ural stiffness of these strips after cracking.

When applying the present model for actual slabs, the influence of the distribution of hogging re-
inforcement can be taken into account analogously to the Model Code 2010 [FIB13], where the
width of the support strip bs for interior columns is defined as 75% of the width of the elastic hog-
ging moment area (1.5 - s). As a practical rule, it is suggested that the sagging reinforcement ratio
be also defined as an average ratio over the width of the column strip. This value may be higher
than the geometrically weighted average over the whole sagging moment area. However, consid-
ering firstly the concentration of bending moments on the stiffer support strips and secondly, the
higher f-factor of these strips compared to the span strips (as the reinforcement in the strong strips
is placed parallel to the direction of principal moments (Fig. 3.7(b)), this approach is believed to be
reasonable and realistic. A comparison with numerical non-linear solutions [Tas11] for square-
spanned slabs with the reinforcement concentrated in strips shows a reasonable (possibly slightly

prudent) agreement with the axisymmetric model (Fig. 3.7(c)).

3.2 Modeling results

3.2.1 One-way, isolated two-way and continuous elements

Figure 3.8 shows the unitary shear force-rotation curves for a one-way member (a beam), an isolat-
ed two-way slab specimen and a continuous slab (or a slab with flexural edge restraints), calculat-
ed using the axisymmetric numerical model described in Section 3.1, not accounting for the influ-
ence of in-plane forces. All the compared elements have the same thicknesses and flexural rein-
forcement ratios. The beam (Fig. 3.8(b)) and the isolated slab (Fig. 3.8(d)) have identical values of
shear slenderness (r4/d, where r4 is the distance from the load application point to the support). The
model of the continuous slab is subjected to uniformly distributed loading and extends to the mid-
span symmetry line where the slab rotation is required to be zero. The span of the continuous slab
L (Fig. 3.8(f)) is selected based on the consideration explained in the previous section. The shear
force associated to the flexural capacity of each element (V) can be found with yield line method
based on kinematic mechanisms shown in Figure 3.8(b, d, f). The isolated slab has higher flexural
capacity than the beam due to the radial plastic hinges that activate the reinforcement in the whole
slab (Fig. 3.8(e)). In turn, the continuous slab has higher flexural capacity than the isolated slab due
to a circular plastic hinge that also activates the sagging reinforcement (Fig. 3.8(g)). It is worth not-

ing that the stiffnesses of the different contributions are not equal and the rotation 1y at which Vjex
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is reached varies for the three cases (Fig. 3.8(a)). Due to the lower stiffness of the sagging mecha-
nism, the load-rotation curves for the isolated and continuous slabs are similar until the first yield-
ing of hogging reinforcement occurs. After that, however, stiffness of the hogging mechanism
starts to decrease and the difference between the isolated and the continuous slabs becomes more
significant. After full yielding of hogging reinforcement, the load on the continuous slab can still
increase, although with lower stiffness than in the previous phase, as the additional load is only

being resisted by sagging reinforcement.
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Figure 3.8 Comparison of a beam, an isolated slab and a continuous slab with equal shear
slenderness factors (r4/d): (a) normalized shear stress-rotation curves; (b) flexural failure
mechanism of a beam; (c) distribution of bending moments in a beam at the flexural limit;
(d) failure mechanism of an isolated slab; (e) bending moments in an isolated slab at the
flexural limit; (f) failure mechanism of a continuous slab; (g) bending moments in a continu-
ous slab at the flexural limit

31



Chapter 3 Numerical model for continuous slabs

3.2.2 Location of the line of moment contraflexure

Flexural reinforcement of flat slabs is nowadays conventionally designed using linear-elastic finite
element programs (with or without a redistribution of hogging moments) or simplified analytical
methods, as the “direct design method” [ACI14]. Both approaches normally result in placing rela-
tively large amounts of flexural reinforcement in the support regions. However, many existing flat
slabs have also been designed using the theory of plasticity (yield line method or strip method),
which allows the designer freely choose the amount of moment redistribution. This leads to poten-
tially large variation in the ratios between the amount of reinforcement at the support and in mid-
span. The method described in the present research allows taking into account the influence of the
actual reinforcement distribution and is thus a very useful tool to investigate existing flat slabs

with unusual hogging-to-sagging reinforcement distributions.

Due to the different stiffnesses of various mechanisms described in Section 3.2.1, redistribution of
bending moments takes place in slabs when concrete cracks or reinforcement yields. In isolated
specimens, the only possible redistribution of moments is that of between tangential and radial
directions. In continuous slabs, bending moments can also be redistributed between hogging and
sagging contributions. This redistribution is accompanied by changes in the location of the line of
moment contraflexure. A common approach for selecting a representative specimen size in punch-
ing tests is to determine this location by assuming linear-elastic material response with uncracked
concrete behavior. In this manner, for a continuous slab supported on regularly spaced small sup-
ports and assuming an elastic uncracked behavior, the line of moment contraflexure is located ap-

proximately at a radius of 0.22 L from the column axis (Fig. 3.9) [Kin60].

(a) (b) 0.3

0 0.05 0.1 0.15
c/L

Figure 3.9 (a) isolated hogging moment area; (b) radius of the hogging moment area de-
pending on the size of the column

As will be shown in Chapter 5, a correct choice of the slenderness ratio of a test specimen is im-
portant in order to model the behavior of an actual slab suitably. As the actual response of rein-
forced concrete is non-linear and redistribution of bending moments develops, the choice made
according to elastic calculation might not be correct for all load levels. Figure 3.10(a), shows the
distance rs between the column axis and the line of moment contraflexure depending on the load
level (shown as the support reaction), calculated using the axisymmetric numerical model with
distributed load. In-plane forces are neglected in this analysis in order to investigate only on the
influence of moment redistribution. It can be seen that after an initial elastic uncracked phase, the
line of moment contraflexure shifts closer to the column (shear slenderness decreases) due to the

loss of stiffness in the hogging moment area near the column. After cracking of concrete due to
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sagging moment in mid-span, shear slenderness starts to increase again. At the load levels where
the radial reinforcement in the hogging moment area has started to yield, the line of moment con-
traflexure approaches once again the elastic estimate. This occurs because in this range, the stiff-
nesses of the hogging and sagging moment areas (at column and mid-span, respectively) are simi-
lar. The shear slenderness starts to decrease again once that all the hogging reinforcement is yield-
ing (which would correspond to the flexural failure of an isolated specimen). Similar results re-
garding the changes of shear slenderness due to the non-linear behavior of reinforced concrete

were obtained using a non-linear finite difference analysis of continuous flat slabs [Tas11].

(a) (b)
Va Vv
2.5 2.5
yielding of
20k tangential 2.0
reinforcement
/ at the column
1.5 ; 15k N\ e O
yielding of radial i _ elastic isolated . ¢ /ﬁ
reinforcement assumption isolated specimen | &Wm
1.0 at the column 1.0 N
cracking of cracking of —c=4d My edge™ 0
concrete (f:;lue ™ :  concrete 05
051 "o sagging / at the column 0.5/ common range for slabs
moment . (hoggmg ’ without shear reinforcement
momen
0 1 1 1 | 1 0 1 1 1 1 1
0 0.05 0.10 0.15 0.200.22 0.25 7 /L 0 20 40 60 80 100 1 [mrad]

Figure 3.10 Radius of the line of moment contraflexure (influence of the in-plane forces ne-
glected): (a) radius of the line depending on the load; (b) load-rotation relationship for an
isolated specimen and a continuous slab (parameters: L =7 m, i =250 mm, d =210 mm,
¢ =260 mm, fc =35 MPa, f, = 550 MPa, dg =16 mm; pog = 1.0%; psag = 0.5%)

3.2.3 Influence of moment redistribution

Figure 3.10(b) presents a load-rotation curve that is calculated using the axisymmetric model rep-
resenting a continuous slab with twice the amount of hogging reinforcement compared to the sag-
ging reinforcement. As a comparison, the load-rotation curve of a corresponding isolated specimen
with rs=0.22 L is also shown. The continuous slab is loaded with distributed load, whereas the
isolated specimen is loaded with an identical distributed load and a linear load at the edge of the
specimen that corresponds to the shear force of the distributed load on the rest of the slab. It can be
seen that the rotation of the continuous slab for a given level of load (compared to the one of an
isolated specimen) depends on its actual shear slenderness rs/d at that load level (Fig. 3.10(a)). For
load levels where the shear slenderness of a continuous slab is smaller than the size of the isolated
specimen, the rotation is also lower. It is also evident that the ultimate flexural strength of a con-
tinuous slab is higher than that of an isolated specimen due to the contribution of sagging yield
lines in the failure mechanism (Fig. 3.8(d, f)). However, in a wide range of practical cases, punch-
ing occurs at loads below the flexural strength of an isolated specimen. The failure criteria of CSCT
[Mut08b] for punching of slabs without shear reinforcement around columns with diameters of

c=d and c=4-d are shown in Figure 3.10(b) as examples. It can be seen that in these cases, the
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Chapter 3 Numerical model for continuous slabs

strength and the deformation capacity of an isolated specimen are very similar to the behavior of a

continuous slab.
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Figure 3.11 Comparison of punching strengths of two slabs with equal plastic moment ca-
pacity but different support and span reinforcement distribution (parameters: refer to
Fig. 3.10)

On the other hand, in the case of slabs with very low amount of hogging reinforcement, neglecting
the influence of sagging reinforcement can lead to a significant underestimate of the punching
strength. Figure 3.11 shows an example of two slabs with equal yield line capacities. In the case of
slab 1, the flexural reinforcement is placed according to an elastic calculation (leading to relatively
high hogging moments), thus the amount of hogging reinforcement is chosen as twice the amount
of sagging reinforcement in mid-span. Slab 2 is designed assuming significant plastic moment re-
distribution, with twice less hogging reinforcement on the support than sagging reinforcement in
the span. It can be seen that the prediction of punching strength of the isolated element corre-
sponds reasonably well to the strength of the continuous slab in the first case. In the case of the
second slab, the flexural stiffness and therefore the punching strength are underestimated by the
analysis based on the isolated element. The difference is even more significant for slabs with shear
reinforcement (calculated with kss=2.8 [FIB13, Fer09]). The isolated specimen representing only
the hogging moment area may reach its flexural limit at a load level lower than the punching
strength of a continuous slab. This kind of failure has been observed in punching tests of slabs
with shear reinforcement even when using high flexural reinforcement ratios [Lip12]. Stein, Ghali
and Dilger [Ste07] argued that the flexural capacity of a specimen should be chosen at least 70%
higher than the predicted punching strength. However, this would lead to unrealistically high
flexural reinforcement ratios for slabs with large amounts of highly efficient shear reinforcement,
and lead to misleading conclusions about the necessary amount of flexural reinforcement in col-
umn regions. The current analysis demonstrates that the distinction between a punching shear and
flexural failure cannot be made only based on isolated specimens as suggested by Stein et al.
[Ste07].
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3.2 Modeling results

3.2.4 Influence of compressive membrane action

Compressive in-plane forces delay the cracking of reinforced concrete in bending and stiffen the
moment-curvature response of a cracked cross-section. The compression may result from pre-
stressing [Clel4] or from restrained lateral expansion due to external rigid elements (like shear
walls) or the rigidity of the surrounding slab portion. The numerical model allows analyzing all

these cases by varying the boundary conditions of the axisymmetric slab.
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Figure 3.12 Effect of various levels of confinement on the response of a slab: (a) radius of the
line of moment contraflexure; (b) load-rotation curves (parameters: refer to Fig. 3.10)

Figure 3.12(b) shows load-rotation curves for different boundary conditions. Curves 2 and 3 repre-
sent an isolated slab and a continuous slab with the influence of membrane effect neglected
(Fig. 3.10(b)). Points A and B represent the formation of the flexural mechanism for the slabs
(Fig. 3.8(d)). Curve 4 in Figure 3.12(b) shows the load-rotation response of a self-confined flat slab
(free to dilate, no in-plane force applied at the outer edge). In this case, the compressive membrane
force in the center part of the slab results from the tangential tensile forces in the outer portion of
the slab (the tension ring). The flexural limit of the slab is reached when a full yield line mecha-
nism (Fig. 3.8(f)) forms (point C). This occurs at both higher load and larger rotation than in the
case of curve 3 due to the increased flexural capacity and curvature at yielding of a reinforced con-
crete slab (Fig. 3.4(b)). The stiffness of the response is also significantly higher up to the point D,
which corresponds to the formation of a circular yield line due to yielding of radial sagging rein-
forcement. The yield line appears further from the column than in the case of curve 3 (point B)
(Fig. 3.12(b)) because of the radial compression in the region closer to the column. The formation of
this yield line does not produce a flexural mechanism because the radial hogging yield lines are
not yet formed inside the circular one. The significantly reduced rotation at point D on curve 4
compared to the point B on curve 3 is explained by the presence of a region in the slab which is
under radial compression that is high enough to prevent the cracking of concrete, therefore reduc-

ing the maximum rotation.
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Chapter 3 Numerical model for continuous slabs

Curve 5 in Figure 3.12(b) shows the load-rotation response of a perfectly confined slab. Dilation is
not allowed at the edges and therefore significant compressive forces are induced which increase
towards the center of the slab. Unlike in the case of prestressed slabs where the normal force in the
slab can be considered independent of the load, the compressive stress in the center of a perfectly
confined slab increases with a rising load level and rotation. If concrete softening for large com-
pressive strains was considered, the load would start decreasing because of the decreasing mo-
ment capacity under high axial compression. However, in the current analysis, this effect is ne-
glected because of the bi-axial state of compression in the center of the slab. Geometrical second
order effects are also not considered in this analysis. These effects would start decreasing the flex-

ural strength at very large deflections [Bra80a].

3.3 Validation of the numerical model

Most punching tests found in literature have been performed on specimens that model the isolated
hogging moment area of an actual continuous slab. Shear force can be applied by loading the col-
umn while the specimen is supported along its edges or by applying the load at the edges and
supporting the specimen on a column in the center. This type of slab specimens only allows for
redistribution between radial and tangential hogging moments (Fig. 3.8(e)). In order to also permit
redistribution between hogging and sagging moments (that changes the location of the line of
moment contraflexure as shown in Fig. 3.10(a)), multi-span slabs or members with in-plane and/or

rotational restraints along the slab edges have to be tested.

In this section, the numerical model is applied to predict the deformations of specimens in some
unconventional punching tests reported in the literature. Only the tests on slabs thicker than
100 mm are considered as the punching shear phenomenon is known to exhibit significant size
effect and the results of experiments on very thin elements are difficult to extrapolate to a realistic
scale (also, small variations in placing of reinforcement may lead to significant strength variations).
Tests on isolated slabs with confining elements (like [Bell5]) are also excluded from the analysis
because the stiffness of a steel confinement ring is typically much smaller than the stiffness of a
reinforced concrete tension ring in a continuous slab. Therefore, the arising axial forces are low
and do not influence the response of the slab in a significant manner. The contribution of such el-

ements can mainly be seen as related to an increase of the flexural strength.

The punching strengths are predicted using failure criterion of CSCT [Mut08b]. The failure criteri-
on may be modified to include the beneficial influence of the axial compressive forces acting on the
control perimeter [Clel4], which can also be obtained from the numerical analysis. The capacity
obtained in this manner is also presented for the applicable cases. For comparison purposes, the
slabs are also modeled as conventional isolated specimens, where the size of the specimen 7: is

chosen to correspond to the edge of the elastic hogging moment area.
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3.3 Validation of the numerical model

3.3.1 Test by Ospinaetal.

One such test was performed by Ospina et al. at the University of Alberta (Canada) as a part of an
experimental study on the behavior of concrete slabs strengthened or rehabilitated after punching
failure [Osp01]. The test slab ER1-VS was square with side length of 4.2 m, thickness /=152 mm
and had a measured average effective depth 4 =109 mm and 119 mm for top and bottom rein-
forcement, respectively. The slab had 400 mm square column stubs in the center protruding
300 mm above and 330 mm below the slab. Mean cylinder (152 x 304 mm) concrete strength at the

time of testing was 29.8 MPa and maximum aggregate size 19 mm.

51 152

|
4200
N ‘ 1
10 |
3
% \
N b
N ‘ o
%)
o
- =
> O
13
3 .
D~ |
r _1‘ i
| FE AR =
L _;_| 1 §
Top reinforcement Bottom reinforcement
15M
—— 10M

Figure 3.13 Reinforcement layout of the specimen (dimensions in mm)
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Chapter 3 Numerical model for continuous slabs

As the study was focused on rehabilitation of old structures, the flexural reinforcement of the slab
was designed to comply with the requirements of ACI 318-71 [ACI71] in terms of minimum slab
thickness and amount of reinforcement as well as distribution of design flexural moments (using
the direct design method) and per CSA A23.3-94 [CSA94] in terms of cut-off points, development
length and integrity steel. Top reinforcement (refer to Fig. 3.13) consisted of 15M (As =200 mm?)
and 10M (As = 100 mm?) bars (with yield strengths of 428 MPa and 441 MPa, respectively). The top
reinforcement was concentrated in the center of the slab, so that the reinforcement ratio varied
from 0.92% within column-wide strips to 0.25% close to the edges. The bottom reinforcement was
more uniformly distributed — the reinforcement ratio was 0.25%, except in the column strips where
two 15M (As =200 mm? each) integrity bars were placed. However, only half of the bottom bars
were continuous along the whole slab with the other half being cut in the middle. All bottom bars

were developed with 180 degree hooks, whereas the top bars had straight ends.
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Figure 3.15 Specimen ER1-VS [Osp01]: (a) load-deflection response; (b) cracking pattern af-
ter the punching failure
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3.3 Validation of the numerical model

Rotations of the edges of the test slab were restrained by a system consisting of four steel square
hollow columns bolted down to the slab along each side and connected at the top with steel tie
rods (Fig. 3.14). The load was applied by jacking up the central column stub and restraining the
displacement in 16 equally loaded points. Prior to the start of the test, the edge restraining system
was prestressed to provide moment distribution similar to that in a corresponding continuous slab
under self-weight (assuming that the sections where the steel columns were fixed represented span
center lines). The test slab was brought up to punching failure after imposing five load cycles. The

cyclic loading intended to simulate conditions in an actual slab due to service loads.

The first observed cracks were flexural cracks that formed on the slab top surface at a load of
96 kN, barely above the self-weight of the slab and the testing apparatus (89 kN). The cracks
formed along the two centermost bars of the topmost reinforcement layer. These cracks progressed
from the column towards outer slab regions followed by similar cracks along the other axis and
reached the edge of the slab at approximately 260 kN. This point can be seen as a change in the
slope of the load-deflection curve (Fig. 3.15(a)). The first yielding of top reinforcement according to
strain gauge measurements was observed around the column at 386 kN and the first yielding of
bottom bars occurred at 448 kN. A sudden punching failure took place at a load of 542 kN. The
crack pattern after the failure is shown in Figure 3.15(b).

Figure 3.16 Axisymmetric numerical model of ER1-VS [Osp01]

The behavior of the test specimen ER1-VS was compared to the response calculated with the nu-
merical model. The geometry of the slab, including the distribution of reinforcement, was assumed
to be axisymmetric (with the radius of the axisymmetric model rsw equal to half of the slab width)
and top and bottom reinforcement ratios constant over the whole slab (Fig. 3.16). The influences of
rotational edge restraint and compressive membrane action (CMA) were analyzed separately by
performing two numerical analyses. At first, a simpler model was considered that did not account
for in-plane forces and deformations. The only applied edge condition was edge rotation (that was
required to correspond to the measured value). Therefore, only the effect of redistribution between
sagging and hogging moments was modeled. In the second model, the influence of axial defor-
mations due to cracking of concrete and consequent membrane forces (with their influence on axial
deformations) was taken into account as well. The second edge condition applied was that the axi-
al force at the edge of the slab was required to be zero (actually, a negligibly small axial compres-

sion equal to the force in the tension ties was present in the tested slab).
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Figure 3.17 Comparison of measured and predicted response (slab ER1-VS [Osp01]) with the
failure criterion of CSCT (the failure criterion curves are different for the models with CMA
and without CMA due to the different deformed shapes of the slabs, where an equal rota-
tion at the line of moment contraflexure ¢ leads to different deflections w)

Figure 3.17 shows the resulting load-deflection curves from the two analyses together with the
observed response curve. Prior to first flexural cracking (predicted at 91 kN), dilation of the slab is
zero and no membrane force is generated. Therefore, in this range, both models predict the same
response. After cracking, the cracked portion of the slab starts to dilate but the dilation is re-
strained by the uncracked part of the slab around it. Thus, in the model with CMA, a tension ring
develops close to the edge of the slab. This induces compressive forces in the hogging moment
area which stiffens the response compared to the model without CMA. At 325 kN, stresses in the
tension ring reach the tensile strength of concrete over the whole slab thickness, leading to through
cracking of the tension ring. After this, the rate of increase of compressive stress in the hogging
moment area decreases significantly. The tangent stiffnesses of the curves are similar, but the sec-
ond model shows considerably smaller deformations at a given level of load. Yielding of top rein-
forcement at the face of the column is predicted at 350 kN in the first model and at 440 kN in the
second. Punching failure is predicted to occur at the intersection between the response curve and
the failure criterion of the CSCT [Mut08b] at 420 kN when CMA is neglected and at 475 kN when
CMA is accounted for (the failure criterion is defined as a function of slab rotation but plotted for
deflection of the prediction models in Figure 3.17). The actual punching failure occurred at 542 kN,
slightly higher than predicted, possibly due to the effect of compressive stresses in the punching

perimeter that were not accounted for in the failure criterion.

A comparison between the observed and predicted load-deflection curves in Figure 3.17 shows a
very good agreement between the experimental results and the calculation that includes the CMA

effect. Differences between the predicted and observed cracking and yielding loads can be ex-
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3.3 Validation of the numerical model

plained by the differences between the axisymmetric simplification of the numerical model and the
actual geometry, where column corners, orthogonal layout of reinforcement and load application
points can cause concentrations of stresses and deformations. Local stress concentrations may also
explain the observed yielding of bottom reinforcement, although the numerical model does not

predict it before the punching failure.

The numerical model predicts the formation of a thoroughly cracked tension ring along the perim-
eter of the specimen. This effect explains the observed propagation of top surface radial cracks to
the specimen’s edge, even though the measured edge rotation is small and thus the tangential
moment should not cause cracking. The cracks at the edge of the slab at rather low levels of load

therefore indicate that tensile axial force is present in the cross-section.

Table 3.1 Modeling parameters of tests of Ospina ef al. [Osp01], Choi and Kim [Cho12],
Clément et al. [Cle14], Chana and Desai [Cha92] and Ladner et al. [Lad77]

ﬁ, fy, Asw, Phog, Psag, h (d), Te, Vslab (1’5),

Ref. T iti
e est [MPa] [MPa] [mm?] (%] (%] (mm] [mm] (mm] Edge conditions
2100 lpudgf [rad] =
[Osp01] ER1-VS  29.8 428 - 0.92 0.14 152 (109) 200 (1500) 9.0-106-V [MN]
nr =0
MRA 37.0 1.06 0.31 2100 Wedge [rad] =
[Cho12] MRB 30.5 404 - 0.83 0.43 152 (121) 178 (1500) 6.67-10°V [MN]
MRC 34.6 0.58 0.57 nr =0
PC1 44.0 583 084 1.06 250 (192)
PC2 453 549 1.64 1.05 250 (192)
Clel4 - 130 1611
[Cleld] PC3 43.8 591 0.83 1.65 250 (194)
PC4 444 602 1.65 2.00 250 (190)
FPS1 214 -
FPS2 27.4 942 Mredge =0
0.85 0.85 4500
[Cha92] FPS3 27.2 500 402 027° 055 250 (210) 200 (1320) Tedge = 0
FPS4 30.7 1257 ’ ’ Wedge = 0
FPS5 25.8 1570
Cé6 50
c7 120 1680 Mr,edge =0
Lad77 444 - 1. 94 11
[Lad77] C10 250 8009 0@0) 449 (528) Hedge =0
C11 160

* —nominal value, **— outside of = 1925 mm

3.3.2 Tests by Choi and Kim

Choi and Kim [Cho12] performed three tests on 4.2 x 4.2 m slabs with rotationally restrained edges
using the same test setup as Ospina et al. [Osp01] (Fig. 3.14). The test campaign focused on study-
ing the effect of moment redistribution in continuous slabs. The amounts of reinforcement of the
slabs were designed to provide similar flexural capacities but the proportions between the sagging
and hogging reinforcement ratios varied significantly, from 3.5:1 to 1:1 (refer to Table 3.1 for de-
tails). The load was applied in three steps, on each step in a cyclic manner (AV =100 kN). The rota-
tion of the edges was partially restrained by steel columns connected by steel ties on top identical-
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ly to the experiments of Ospina et al. [Osp01] (Fig. 3.14). The edge rotation and the forces in the ties

were measured which allowed calculating edge moments.

Despite the variation in the distribution of reinforcement, the observed punching strengths for the
three specimens were similar (refer to the results given in Table 3.2). This observation contradicts
the predictions of empirical design models (such as the one used in Eurocode 2 punching provi-
sions [CEN04]) that have been established on the basis of isolated elements and thus consider only
the influence of hogging reinforcement, predicting lower capacities for slabs with lower amount of
reinforcement (such as MRC in comparison to MRA in Fig. 3.18). The influence of sagging rein-
forcement was, however, correctly predicted by the numerical model (that took into account the
influence of in-plane forces). For the slabs tested by Choi and Kim, the increase of the amount of
sagging reinforcement and compressive membrane action were sufficient to compensate for the
decrease of hogging moment capacity and provide similar punching shear strengths in spite of the
very different hogging reinforcement ratios. It should be noted that the experimental failure loads
were consistently lower than predicted (Table 3.2), likely due to the influence of the cyclic loading
sequence — all specimens failed during cycling the applied load between 80-100% of the maximum
load (even a low number of cycles at load levels close to the shear capacity is known to noticeably
reduce the shear strength [Nat15]).
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Figure 3.18 Comparison of the numerical model to the experimental results, specimens MRA
and MRC of Choi and Kim [Cho12]

3.3.3 Tests by Clémentetal.

Clément et al. [Cle14] performed four tests on square 3 x 3 m slabs with thickness of 250 mm (Ta-
ble 3.1). Sagging moment was applied at the edges of specimens by means of stiff L-shaped steel
elements and hydraulic jacks between them (refer to Fig. 3.19(a)). Shear force was applied close to
the edge of the slab with a separate set of jacks. The moment was increased proportionally to the
shear force up to a previously defined limit. The numerical model is able to predict the flexural
response of the slabs with a very satisfactory precision (Fig. 3.19(b)). It can also be noted that the
influence of in-plane forces is less significant in this test series due to the smaller extent of the sag-
ging moment area and therefore a narrower tension ring. A parametric analysis with variable edge

moment and a comparison to the test results on Figure 3.19(c) show that for this series, the edge

42



3.3 Validation of the numerical model

moment has a significant influence on the punching strength. The influence of accounting for the
in-plane forces becomes more significant with increasing edge moment. In addition, due to the
beneficial influence of edge moment (sagging moment in actual slabs) and in-plane compression,
punching strength of continuous slabs is less dependent on the hogging reinforcement ratio than
in the case of isolated specimens without edge restraints (refer to the decreasing gap between the
curves for p = 1.64% and 0.84%).
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Figure 3.19 Tests by Clément et al. [Cle14]: (a) moment application frame; (b) comparison be-
tween the flexural responses of the test specimens and the model predictions; (c) punching
strength of the specimens as a function of applied edge moment

3.3.4 Tests by Chana and Desai

Chana and Desai [Cha92] tested five 9 x 9 m full-size slabs; four of which were equipped with
shear reinforcement. The slabs were supported on a column in the center and on a linear support
at the perimeter (Fig. 3.20). The perimeter support allowed both rotation and horizontal displace-
ment. The load was applied in eight points placed at a radius of 1.2 m from the center. All the slabs
had similar concrete strengths, the other parameters were identical. Figure 3.20 shows the predict-
ed load-deflection response from the numerical model compared to the measured deflections. A
load-deflection curve for the corresponding isolated element is also shown. It can be seen that the
edge-restrained model predicts the deflections correctly, whereas the deflections of the isolated
specimens exceed the measured values several times. Due to this, all the punching loads are signif-
icantly underestimated by the isolated model (Table 3.2). The edge-restrained model slightly over-

estimates the strength of the slab without shear reinforcement. Regarding the slabs with shear rein-
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forcement, where the stresses in shear reinforcement units are predicted to remain low due to
small slab rotation (refer to the activation phase of shear reinforcement in Fig. 2.7(a)), the capaci-

tites of the specimens are underestimated by the CSCT.
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Figure 3.20 Load-deflection curves of specimens of Chana and Desai [Cha92]
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Figure 3.21 Column reaction-deflection curves of the experiment of Ladner et al. [Lad77]

3.3.5 Tests by Ladner et al.

Ladner et al. [Lad77] performed tests on a 7.2 x 7.2 m slab supported on 16 columns of different
sizes. The slab was loaded with uniform pressure to the failure of a slab-column connection. After
each failure, the slab was repaired and the loading was continued, until all the connections had
failed in punching. In addition to the reaction force at each column, the deflection of the slab was
measured at different points under the slab. Figure 3.21 compares the measured deflections
around the interior columns on the strong and on the weak axis to the curves predicted by the
numerical model. Also presented are the failure criterion of CSCT and the load-rotation curves of

corresponding isolated elements [MutO8b]. It can be seen that the numerical model predicts the
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deflections very well, whereas the calculations that are based on isolated elements always underes-

timate

the stiffness. The predictions of punching strength that are based on the deformations of

isolated hogging moment areas are more conservative because of the deflections that are overesti-
mated in this model (Table 3.2).

3.3.6

Summary of the comparisons

A comparison of the punching strengths predicted using differnet models is given in Table 3.2. The

calculations are performed using the following approaches:

V- according to the Model Code 2010 [FIB13];
V-1 of an isolated element according to the 4-linear model [Mut08b];

V- of the presented continuous model, taking into account the effect of moment redistri-

bution but neglecting the influence of in-plane forces;

V-1 of the presented continuous model, taking into account both the effect of moment re-

distribution and the membrane action;

V- of the presented continuous model, taking into account both the effect of moment re-
distribution and the membrane action, with a failure criterion with modified rotation 1’
[Cle14] (Eq. 2.2).

Table 3.2 Comparison between the test results and predictions based on isolated elements
and continuous slabs

Vit fbod \ I3 Vit Vi VR,test. /VR pred VR,tzs.‘. /VR pred VR,tcs[' [VR pred
Ref. Test [MPal (isolated) (continuous, (continuous, (continuous,
without CMA) with CMA) modified crit.)
[Osp01] ER1-VS 0.469 1.53 1.29 1.14 1.13
MRA 0.345 1.06 0.88 0.80" 0.76"
[Cho12] MRB 0.327" 1.07 0.87" 0.77 0.73"
MRC 0.335" 1.36" 1.00" 0.82 0.77"
PC1 0.574 - 1.17 1.10 1.04
PC2 0.658 - 1.24 1.20 1.11
[Clel4] PC3 0.632 - 1.07 0.98 0.83
PC4 0.690 - 1.12 1.05 0.85
FPS1 0.558 1.36 1.13 0.94 -
FPS2 0.608 1.29 1.23 0.99 -
[Cha92] FPS3 0.716 1.68 1.34 1.21 -
FPS4 0.771 1.61 141 1.25 -
FPS5 0.805 1.50 1.35 1.26 -
Cé6 0.574 1.18 1.09 1.03 0.94
c7 0.658 1.27 1.22 1.15 1.07
[Lad77] C10 0.632 1.28 122 114 1.08
Cl11 0.690 1.46 1.44 1.33 1.26
mean 1.42 1.24 1.13 1.03
COoVv 12 % 9 % 10 % 13 %

* — cyclic tests, not included in the calculation of mean and coefficient of variation
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Chapter 3 Numerical model for continuous slabs

3.4 Parametric analysis

In the previous sections, a model was introduced that allowed describing how slab continuity and
compressive membrane action influence the flexural deformations and punching capacity of actual
flat slabs. In the current section, results of a parametric study are presented, which analyzes the
influence of several factors on the prediction of the punching capacity of a self-confined (without
external confining elements) continuous slab. The punching strengths are calculated using the

same five approaches listed in Section 3.3.6.

(a) (b)
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Figure 3.22 Parametric study: (a) influence of slenderness; (b) influence of the hogging rein-
forcement ratio and the amount of sagging reinforcement, for slabs without shear rein-
forcement and for slabs with large amounts of double-headed stud shear reinforcement (pa-
rameters: L =7 m; i =250 mm; d =210 mm; ¢ = 350 mm; fc = 35 MPa; f, = 550 MPa; g = 0.6;
dg =16 mm)

Figure 3.22(a) shows the influence of slab slenderness L/d on the punching capacity. Although the
slenderness effect is not taken into account in many codes of practice [CEN04, ACI14], it is well
known [Sta01] and can be successfully accounted for by using the CSCT [Mut08b] or the Model
Code 2010 [FIB13]. All the studied methods show a similar influence of the slab slenderness on the

punching strength. The effect can be seen to be more important for slabs with shear reinforcement.

Figure 3.22(b) shows the influence of the hogging reinforcement ratio on the punching strength.
The presented curves are for slabs without and with shear reinforcement (maximum punching
shear resistance due to concrete crushing (ks =2.8)). Two possible design cases are investigated.
First, a case where the amount of sagging reinforcement equals to the amount of hogging rein-

forcement (plastic design) and a second case where the amount of sagging reinforcement is half of
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3.5 Influence of shrinkage and creep

the amount of hogging reinforcement (corresponding to a typical elastic design). The ratio of hog-
ging reinforcement is known to have an important influence on the stiffness and punching
strength of isolated test specimens and the influence is considered in many codes of practice
[CENO04, FIB13]. However, other design codes [ACI14] neglect its influence. The present analysis
shows that in the case of low hogging reinforcement ratios, the flexural and axial stiffness of the
surrounding portion of the slab might be able to stiffen the load-rotation response in a considera-
ble manner and therefore reduce the influence of hogging reinforcement ratio on the punching

capacity of continuous slabs.

The influence of the amount of sagging reinforcement on punching strength is currently not in-
cluded in design codes [CEN04, ACI14, FIB13]. However, comparing the curves corresponding to
plastic and elastic designs in Figure 3.22(b) indicates this factor may nevertheless have an im-
portance. In the presented example, doubling the amount of sagging reinforcement led to a punch-
ing strength increase of approximately 5% for slabs without shear reinforcement and up to 10% for
slabs with shear reinforcement. This increase may be useful, for example in the assessment of exist-

ing structures.

3.5 Influence of shrinkage and creep

The present model of self-confined slabs assumes that the axial force at the edge of the slab is zero
and the compressive membrane action arises only by the confinement provided by the slab itself.
In actual non-prestressed slabs, compressive in-plane stresses can also arise when the dilation of
the slab is restricted to some extent by adjoining structural elements such as walls, stiff columns or
edge beams that induce compressive axial force at the edge of the slab. Therefore, the actual behav-
ior of a slab should mainly fall between that of a perfectly confined and a self-confined slab
(Fig. 3.23(a)).

@ (b) (©

1% perfect confinement v v self-confinement
[MN] / range of possible | — shrinkage (= 0.5 %o) ( e
/ actual values L L i
/ — N<self-confinement Ve

- dilation
S~ no membrane forces /
7 \perfect confinement
/

0 L L L L L L l[/ u, L L 04
0 002 004 006 008 010 012 [rad] 0 5 10 [mm] 0 10 20 [MPa]

Figure 3.23 Influence of shrinkage: (a) load-rotation curves; (b) edge displacements due to
shrinkage and due to slab dilation caused by cracking; (c) compressive stresses in the center
of the slab in self-confined and fully confined cases (parameters: refer to Fig. 3.10)

However, it should be noted that shrinkage of concrete may reduce the compressive force in the
slab. In the case where lateral shrinkage (relative to that of adjoining elements) is larger than the

dilation caused by cracking, tensile restraining forces may appear at the edge of the slab instead of
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Chapter 3 Numerical model for continuous slabs

compressive forces. This reduces the efficiency of the compressive membrane action (the actual
response tends to the curve with no membrane action in Figure 3.23(a)). The influence of this phe-
nomenon is illustrated in Figure 3.23(b), where the dilation of a self-confined slab is compared to
the corresponding displacement at its edge due to a shrinkage strain of 0.5%o. For low levels of
load, the influence of shrinkage exceeds that of dilation, thus potentially reducing the compressive
membrane forces (which will be smaller than those shown in Fig. 3.23(c) for self-confined slabs). In
these cases, curve with no membrane forces provides a safe estimate of the actual behavior. For
higher levels of rotation, the shrinkage strains will be compensated by the dilation of cracked con-
crete and compressive membrane forces may again appear. However, in many cases, a self-
confined model with zero axial force at the edge of the slab can be regarded as a lower bound of

the confinement effect for actual flat slabs.
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0 1 1 1 1 1 1
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S = —— - ——————— -—-— quadrilinear
\E TTTTTEmmmmm e CommTrmmTTTORETIATETE — — moment redistribution
E only
2 I moment redistribution
= 05F E - E and membrane action
------- moment redistribution
and membrane action,
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Figure 3.24 Parametric study: (a) influence of reduced modulus of elasticity of concrete;
(b) influence of reduced tensile strength of concrete, for slabs without shear reinforcement
and for slabs with large amounts of double-headed stud shear reinforcement (ksys = 2.8, con-
crete crushing criterion governing) (parameters: refer to Fig. 3.22)

Long-term behavior of flat slabs is influenced by creep of concrete that will lead to an increase of
slab rotation and potential decrease of the punching strength (as follows from the failure criterion
of CSCT), at least in the case when the increase of strength of concrete in time is not taken into ac-
count. The presented approach can be used in a simplified manner to model the effect of creep by
using a reduced value of modulus of elasticity of concrete E/(1+¢) (where ¢ refers to the creep
coefficient and low variations of concrete stresses are assumed during the creep process) for calcu-
lating the deformations due to long-term loads. In Figure 3.24(a), the predicted punching re-

sistances calculated with E. are compared to predictions obtained with 50% E. (to account for a
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3.6 Summary and conclusions

reduced influence of creep effects in the cases where the ratio between permanent and maximum
loads is lower than one). The reduced stiffness is observed to reduce the punching strength simi-
larly for both isolated slabs (up to 4%) as well as for continuous slabs with no membrane effect (up
to 5%) and self-confined slabs (up to 7%). Therefore, it seems that tests on isolated specimens could

be suitable for further studies on the influence of creep on punching strength of flat slabs.

The axial stiffness of the tangential tension ring that confines the hogging moment area in a self-
confined slab is largely provided by the contribution of uncracked concrete in the tension ring.
This effect is referred to as tension stiffening [Mar98] and it can significantly increase the axial
stiffness of the slab. It follows that the value of the tensile strength of concrete f:: has a significant
influence on the punching strength predictions for continuous slabs. In order to illustrate this, Fig-
ure 3.24(b) shows the influence of reducing the value of f« two times. However, for design purpos-

es, average value of concrete tensile strength (fen) should be used.

3.6 Summary and conclusions

In this chapter, a numerical method was presented for determining the load-deformation response
of axisymmetric slabs. This model allows quantifying the influence of moment redistribution and
the development of compressive membrane action in a continuous flat slab around interior col-
umns. The model was validated by comparing its predictions to the results of punching tests with
unconventional edge conditions. In combination with the failure criterion of the CSCT, the pre-

sented method is able to predict the punching strength of interior columns in continuous flat slabs.
The main conclusions are:

— Flexural behavior may be different in actual flat slabs than in isolated test specimens.
Therefore, punching tests on such specimens may not always correctly represent the
strength of actual slabs, especially in the case of large columns and the presence of shear re-

inforcement.

— The flexural capacity of a continuous slab is higher than of an isolated element for the same
amount of hogging reinforcement. The stiffness of the load-deformation response also
normally increases due to a reduction of the shear slenderness and the influence of com-
pressive membrane action. Nevertheless, these effects do not seem to be accounted for in

the punching provisions of current design codes.

— Compressive membrane action may arise from the restraint against the expansion of the
slab provided by stiff surrounding structural elements but also due to the restraint against
the expansion of the hogging moment area provided by the in-plane stiffness of the sagging
moment area. This effect does not require any external confinement, is not sensitive to im-
posed deformations such as shrinkage and can therefore be considered as a lower bound of

the behavior for actual continuous flat slabs.
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Chapter 3 Numerical model for continuous slabs

— Due to the effects described above, the deflections of a continuous flat slab are smaller than
the ones of a corresponding isolated specimen. This leads to lower crack widths and poten-

tially larger punching strength.

— These aspects lead to potentially higher safety margins on the design for punching strength
around interior columns of actual flat slabs than presumed in the current codes of practice
as the provisions of those have been calibrated using tests on isolated specimens. Such in-
crease in strength should be considered, particularly for the assessment of existing struc-

tures in order to avoid unnecessary strengthening.

— The Model Code 2010 punching previsions that are based on the CSCT can be adapted to
take these effects into account. A numerical approach is presented in the current chapter.

Comparisons to test results confirm the pertinence of these aspects.
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Chapter4 Simplified analytical model

The numerical model introduced in the previous chapter is able to succesfully predict the
flexural response of edge-restrained specimens. This chapter presents background information for
a simplified analytical approach derived on the basis of the numerical model that can predict the
load-rotation response of continuous self-confined slabs. The model was also presented in a paper
accepted for publication in ACI Structural Journal [Einl6c]. It is derived using idealized distribution
of internal forces and deformations in flat slabs around inner slab-column connections. The predic-

tions of the simplified analytical model are also compared to the results of numerical modeling.
4.1 Isolated specimens

4.1.1 Load-rotation curve

According to the Critical Shear Crack Theory (CSCT), punching failure of a slab-column connec-
tion occurs when the slab rotation, caused by loading, reaches a critical value [Mut08b]. For con-
tinuous or confined slabs, the load-rotation relationship can be calculated using the numerical
model presented in the previous chapter. In the case of isolated test specimens, the flexural re-

sponse can also be calculated from the moment equilibrium equation of an axisymmetric slab sec-

tor [Kin60, Mut08b]:
V= 27 {mr(l//j Ty + j;mt(l//)drl (4.1)
Ty~ T To " r

0

However, for using the CSCT in engineering practice, a simpler model was needed. Muttoni has
thus proposed a simplified relationship for approximating the load-rotation curve of isolated slab
elements [Mut08b, Mut13]. This formula is also used for predicting the slab rotation is the punch-
ing provisions of Model Code 2010 [FIB13]:

S, [V ”
V/Lsol = 15 R (42)

Equation (4.2) includes physical parameters rs (radius of the hogging moment area) and Ve (flex-
ural strength the isolated hogging moment area). These parameters can be adapted for continuous
or confined slabs. The radius of the isolated element 7; can be substituted with the distance to the
line of moment contraflexure in continuous slabs which, as shown in the previous chapter, actually
varies as a function of slab deformations. The flexural capacity Ve can be calculated accounting for
the influence compressive in-plane forces due to compressive membrane action (CMA) on the

flexural capacity. The level of in-plane compression also varies depending on slab deformations.
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Chapter 4 Simplified analytical model

For continuous or confined slabs, Equation (4.2) thus becomes:

3/2
v, =1 Srs(l//)& mS,hog (43)
! . d Es mR,hng (W)

where (1)) and mgrhg(1p) are non-linear functions of slab rotation ¢. In Equation (4.3), the ratio
(V/Viex) is expressed as the ratio of average acting hogging moment in the support strip (calculated
with a linear-elastic model) to the hogging moment resistance of the slab (1150g/11R hog), s Viex,isol is
proportional to mrmg when linear-elastic slab response is assumed.
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Figure 4.1 Parametric analysis on continuous self-confined slabs in comparison to isolated
specimens: (a—c) influence of prog [%], pssg [%], and fet [MPa] on the position of the line of
moment contraflexure; (d—f) influence of prog [%], psag [%] and fe: [MPa] on the development
of compressive stresses in the perimeter of the column; (g—i) influence of piog [%], psag [%]
and fe [MPa] on the load-rotation curves (parameters, if not shown otherwise: L =7 m,
h=250 mm, d =210 mm, c =350 mm, fc =35 MPa, f« =3.2 MPa, f, = 420 MPa, d; = 16 mm;
prog = 1.0%; psag = 0.5%)
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4.1 Isolated specimens

Figure 4.1 shows the influence of the amount of reinforcement and its distribution, as well as the
tensile strength of concrete, on the response of self-confined continuous slabs. The first row shows,
as a function of slab rotation, the distance between the center of the column and the line of mo-
ment contraflexure (rs) due to non-linear response of the slab. As was also shown in the previous
chapter, this distance is close to the elastic approximation of 0.22 L in the elastic phase before
cracking and also in the phase where both hogging and sagging moment areas are cracked and the
stiffnesses are therefore similar. In the phases where the stiffness of the hogging moment area is
smaller compared to that of the sagging moment area (due to concrete cracking or reinforcement

yielding), its size also decreases.

The second row shows the generated in-plane average compressive stresses (that could potentially
increase the hogging moment resistance) in a slab around the slab-column connection. This com-
pression only appears after cracking of the slab and increases with increasing slab rotation as it is
generated by the dilation of the slab due to cracking (unlike prestressing that delays the cracking
and is not significantly influenced by the deformations of the slab). The compressive stress is
strongly influenced by the tensile strength of concrete because the tensile strength affects the crack-

ing and stiffness of the tension ring around the hogging moment area.

In the third row in Figure 4.1, load-rotation curves are shown together with the failure criterion of
the CSCT. As a comparison, with dotted lines, the load-rotation curves for corresponding isolated
slabs are also shown. It can be seen that the difference between continuous and isolated slabs is

especially significant for the case of low amounts of hogging reinforcement (Fig. 4.1(g)).

It can be seen in Figure 4.1 that the parameters rs(y) and mrng())) are complex functions of 1 that
additionally depend on several other parameters. In order to model the flexural response of a con-
tinuous or confined slab suitably, both parameters have to be determined with a sufficient accura-
cy. In addition, as the rotation ¢ is not known, applying Equation (4.3) would require iterations
that are not desirable in design formulas. Therefore, a different approach is considered in the pre-

sent research.

4.1.2 Internal forces and deformations at the flexural limit

In order to simplify Equation (4.3), the internal forces and deformations of an axisymmetric isolat-
ed slab at the flexural limit are compared to those of edge-restrained elements. The load-rotation
curve for a slab submitted to a load at the edge and supported in the center is shown in Fig-
ure 4.2(a). A flexural mechanism of such slab is reached when the top reinforcement (correspond-
ing to hogging reinforcement in an actual continuous slab) in the whole slab yields. The last part of
the slab to reach its flexural resistance is the outermost tangential strip of the specimen [Kin60,
Mut08b] (Fig. 4.2(c)). At that moment, the tangential curvature at the edge of the slab (which can
be calculated as x: = 1)/rs because the deformed shape of the slab part outside the immediate vicini-

ty of the support is conical) equals the curvature at the onset of yielding due to hogging moments
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Chapter 4 Simplified analytical model

Xunog (Fig. 4.2(e)). From these two equations, the slab rotation at the onset of the flexural plateau can
be calculated as (Fig. 4.2(f)):

WV isot = Xyhog s (4.4)

where )y hog = mriog/Ell — AX1s. Alternatively, in a simpler manner, the curvature of a reinforced con-
crete cross-section at a flexural limit (yy) can be assumed to be proportional to the yielding strain in
the reinforcement (f,/Es) divided by the effective depth d (when the depth of the compression zone
is neglected). Replacing this into Equation (4.4) yields an equation for the slab rotation at the flex-
ural limit (V' =Vpx) that is consistent with the simplified relationship proposed by Muttoni
[Mut08b] (Eq. (4.2)):
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Figure 4.2 Internal forces and deformations in an axisymmetric isolated slab at the onset of
a flexural plateau, calculated with the numerical model: (a) quadrilinear load-rotation curve;
(b) slab deformations; (c) bending moments (radial — continuous lines, tangential — dashed
lines); (d) in-plane forces; (e) curvatures (radial — continuous lines, tangential — dashed
lines); (f) slab rotation
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4.2 Continuous slabs with the influence of CMA neglected

4.2 Continuous slabs with the influence of CMA neglected

4.2.1 Internal forces and deformations at the flexural limit

In order for the flexural limit in an axisymmetric edge-restrained slab element to be reached, both
hogging and sagging yield lines need to develop (Fig. 4.3(b)). The load leading to a flexural failure
Viiex.cont, according to yield line analysis, is proportional to the sum of hogging and sagging flexural
strengths (Viexcont  mRrhog + mrsag). The rotation at the flexural limit cannot be calculated with Equa-
tions (4.4) or (4.5) similarly to isolated elements, because yielding of tangential hogging reinforce-
ment at s does not yet imply reaching a flexural limit of the slab (Fig. 4.3(c)), as the sagging yield
line might not be fully developed at this stage.
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© : me Mg 1og
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l’b llby,czml= Xy,sng' (rsmb—rs)

Figure 4.3 Internal forces and deformations in an axisymmetric continuous slab element at
the onset of a flexural plateau, calculated with the numerical model neglecting the influence
of in-plane forces and deformations: (a) load-rotation curve; (b) slab deformations; (c) bend-

ing moments (radial — continuous lines, tangential — dashed lines); (d) in-plane forces (ne-
glected); (e) curvatures (radial — continuous lines, tangential — dashed lines); (f) slab rotation

It is known that the rotation at the outer edge of the element is zero (representing a mid-span

symmetry line of a continuous slab). Thus, the rotation at the line of moment contraflexure can be,
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Chapter 4 Simplified analytical model

in a general manner, determined by integrating radial sagging curvatures between the edge of the
element (rsw) and the line of moment contraflexure (rs). As seen in Figure 4.3(c), at the flexural limit
(just before the formation of a a circular sagging yield line), the radial moment in most of the sag-
ging moment area is close to the flexural resistance mrsqg. If the radial sagging moment is assumed
to be constant at mrs, the corresponding curvature may also be taken constant at yysag (Fig. 4.3(e)).

Under these assumptions, the slab rotation at rs can be calculated:
l//y,cont = Zy,sag ' (r:vlah - rs) (46)

It may be interesting to compare the hypothesis of a constant (plastified) radial sagging moment
with the assumption of Kinnunen and Nylander [Kin60] that the radial sagging moments remains
in the elastic range until the punching failure (as described in Chapter 2). However, it should be
noted that the present hypothesis is made for the limit state at the onset of flexural yielding (for-
mation of a circular sagging yield line) and does not attempt to describe the slab behavior in the

earlier stages of loading.

(@)

hogging moment area
—~

Figure 4.4 (a) Equilibrium of a slab sector inside the line of moment contraflexure (rs);
(b) Failure mechanism of an axisymmetric slab element

The size of the hogging moment area at the flexural limit (radius rs) can be determined by solving
the equilibrium equation (Eq.3.1) of a slab sector inside the line of moment contraflexure
(Fig. 4.4(a)):

Mg 1o = Mg (=1 )+ q - 70 (1 =1, (1 = 7)1+ A (r, = 1) =0 (4.7)

Flexural capacity of the element can be determined with yield line method. The governing yield
line strength Viexcont is the lowest one obtained by varying the distance from the center of the slab to
the yield line ry (Fig. 4.4(b)):

2” ) (mR,hog + mR,Sag)' ryl

(4.8)
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4.2 Continuous slabs with the influence of CMA neglected

4.2.2 Load-rotation curve

As shown in Chapter 3, in continuous slabs with CMA neglected, the stiffnesses of hogging and
sagging mechanisms are different. The hogging mechanism develops fully at a rotation s
(Eq. (4.4)), whereas the sagging mechanism reaches its capacity at a rotation {y.cont (Eq. (4.6)). The
full load-rotation response can be calculated by adding the contributions of sagging and hogging
mechanisms (Fig. 4.5(a,b)):

VeV )= ViV )+, (V) (4.9)

where the function ¢isi(V) can be calculated with (Eq. (4.1)) and the function 1s;s(V) describing the
response of the sagging mechanim is assumed to be linear with Viexss (determined as Viex.cont —
Viex,isol) reached at rotation iy.cont (Fig. 4.5(a)).

A comparison presented in Figure 4.5(c—d) between the load-rotation curves obtained with the
numerical analysis (with in-plane forces neglected) and the simplified analytical formula (Eq. (4.9))
with hogging contribution calculated with the quadrilinear model (Eq. (4.1)) shows very good

agreement.

A simpler load-rotation relationship can be established when the simplified parabolic curve given
by Equation (4.2) [Mut08b] is used for calculating the contribution of hogging mechanism (i) in
Equation (4.9). In addition, when calculating the rotation at the flexural limit (both hogging and
sagging reinforcement yielding) with Equation (4.6), it is assumed that 7 — 0 (refer to Fig. 4.1(a—
¢)). In this case, the ratio yso/Py.cont = 1s/Fsiab = Xyhog/ Xysag. When xyhog and xussg are taken equal and
rs/rsiap = 0.22/0.7 = 0.3 (refer to Chapter 3), the load-rotation relationship can be written as:

3/2
15rva( g J
V. = max d E |\ my . +03-my (4.10)
4.8.i.£. i hog [mS_lJ
d E, Mg sag \ R hog

Simplified curves calculated with Equation (4.10) compare reasonably well to the numerical ones
in Figure 4.5(e—f). A curve based on isolated specimens (Eq. 4.2) is also shown. It can be seen that
the contribution of sagging reinforcement, albeit limited, decreases the slab rotation for a given
level of load. However, at loads exceeding the flexural strength of an isolated specimen (cases
where significant moment redistributions between hogging and sagging mechanisms are account-

ed for), the slab rotation calculated with Equation (4.2) may not be conservative.
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Figure 4.5 Load-rotation curves for continuous slabs with CMA neglected, comparison of
the simplified analytical approach (Eq. (4.10)) and the numerical model: (a) contributions of
hogging and sagging mechanisms; (b) total load-rotation response; (c-d) comparisons of the
analytical and numerical curves, piog =1.50% and piog = 0.75%); (e~f) comparisons of the sim-

plified analytical and numerical curves, piog =1.50% and prog = 0.75% (parameters, if not
shown otherwise: L =7 m, h =250 mm, d =210 mm, c = 350 mm, fc =35 MPa, f« = 3.2 MPa,



4.3 Continuous slabs with CMA

4.3 Continuous slabs with CMA

4.3.1 Internal forces and deformations at the flexural limit

In continuous slabs with no external confining elements (self-confined slabs), the edge conditions
at raw (representing a mid-span symmetry line) are zero rotation and zero in-plane force. There-
fore, the in-plane compression that appears in around the slab-column connection is only generat-

ed by the restraint provided by the tension ring in the external part of the slab element.
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Figure 4.6 Internal forces and deformations in an axisymmetric continuous slab element at
the onset of a flexural plateau, calculated with the numerical model that accounts for the in-
fluence of in-plane forces and deformations: (a) load-rotation curve; (b) slab deformations;
(c) bending moments (radial — continuous lines, tangential — dashed lines); (d) in-plane forc-
es (neglected); (e) curvatures (radial — continuous lines, tangential — dashed lines); (f) slab
rotation

Figure 4.6 shows the internal forces and deformations of an axisymmetric portion of a self-
confined slab. The tangential compression in the middle of the slab has to be equilibrated with
tangential tension at the outer edge (Fig. 4.6(d)). Due to CMA, the tangential moment is increased

in the parts of the slab under tangential compression and decreased in the parts under tangential
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Chapter 4 Simplified analytical model

tension (Fig. 4.6(c)). These two effects partly compensate for each other and thus the total influence

of self-confinement on the flexural capacity of a slab is not very significant.

However, another effect has an important influence on the slab rotation at the flexural limit. As
shown in Figure 4.6(e), radial curvatures in a central part of the slab are significantly decreased
compared to a model where the in-plane forces are neglected (Fig. 4.3). This reduction is caused by
compressive stresses in the slab that arise from the tensile stresses in the tension ring (Fig. 4.6(d)).
The reduction of radial curvatures is especially significant in sections where the radial compres-
sion is sufficiently high in order to avoid flexural cracking (refer to the moment-curvature law pre-
sented in Fig. 3.4). In a simplified manner, the radial curvature can be assumed to be zero in the
part of the slab that is not cracked due to radial sagging moments (Fig. 4.6(b)). Outside of this part,
the radial curvature is estimated to be constant at the yielding curvature yxyss as in the case of the
analysis where the in-plane forces are neglected (Fig. 4.6(c) and Fig. 4.3(c)). If the limiting radius
between the cracked and the uncracked parts is re, the rotation at flexural limit at the line of mo-

ment contraflexure, calculated by integrating the curvatures between s> and s, is:

l//y,sfc = Zy,mg : (rslab - rcr) (411)
Comparing Equations (4.6) and (4.11), it can be seen that the rotation at the flexural limit decreases
considerably if in-plane forces are accounted for, as rer > 15 (Fig. 4.6(b)).
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Figure 4.7 (a) Stresses in an elastic cross-section (b) Equilibrium of in-plane forces in a slab
sector between rer and s

The value of r« is estimated by making the following assumptions. In an uncracked reinforced con-
crete cross-section (with the influence of reinforcing bars neglected), stress in the outermost ten-

sion fiber o« can be calculated as (Fig. 4.7(a)):

o :6-m+0 (4.12)

where m is a bending moment per unit width and ¢ = n/h is an in-plane stress (compression is neg-
ative). Cracking occurs when this stress reaches the tensile strength of concrete fi. Necessary in-
plane compressive stress omcr that prevents cracking due to a bending moment m can thus be de-

termined from Equation (4.12):

60



4.3 Continuous slabs with CMA

o —f -5 (4.13)

mer 7
The equilibrium equation of axial forces for a slab sector limited by rer and raw is (Fig. 4.7(b)):
O-cdge ' h ' AQ) r;'[nb - O-IVI('V ' h ! A¢) ’;‘r - o-f : h ' A¢7' (rslab - rcr) (4'14)

The force in the tension ring n: (Fig. 4.8(a)) is dependent on both on the dilation of the cracked cen-
tral part of the slab (larger dilation generates higher stresses) as well as the axial stiffness of the
ring (higher stiffness causes higher stresses). The tensile stiffness of the ring decreases considerably
after cracking of concrete (Fig. 4.8(b)). After that, much larger dilation of the central slab portion is
needed to reach the same compressive stresses in the ring. However, the stiffness of the ring after
cracking does not drop abruptly but a crack formation phase occurs where the force stays at a con-
stant level due to tension stiffening effect [Mar98]. The force starts increasing again only when the
dilation is sufficiently large to cause higher stresses with fully cracked stiffness of the ring.

@ ® -

1 -
éO

Figure 4.8 Tensile stresses in the tension ring: (a) tangential and radial in-plane forces; (b)
stress-strain relationship for the tensile ring

Therefore, it is conservative to assume that the tangential tensile stress o: is equal to fo: and the lim-
iting radius 7o where the concrete is cracked due to radial sagging moment can be calculated from
Equation (4.14):

6 : m sa
- [fct - hfg\J : rcr - fct : (r;'lab - }er')_ O_edg : ’;Iab =0 (415)
From Equation (4.15):
i) ¥ (4.16)
cr 6 . mR By slab

By noting that (fu.h?)/6 is equal to the cracking moment m.r of the slab without an axial force and
effective tensile strength of concrete feof = for — 0etze, Where o is the radial stress at the edge of the
element (corresponding to a mid-span symmetry line of an actual continuous slab), Equation (4.16)
becomes:

oo M, 4.17)

cr slab
m R,sag
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Chapter 4 Simplified analytical model

It can be seen that the reduction of slab deformations due to the influence of in-plane forces is es-
pecially significant for slabs with low amounts of sagging reinforcement (when rgrsig — mcr). Also,
a compressive stress (0w < 0) at the edge of the element increases the size of the uncracked slab
portion 7« whereas a tensile stress (ceige > 0) reduces it. Slab rotation at the flexural limit can be thus
calculated from Equations (4.11) and (4.17):

‘//y,sfc = Z}usag : r\lab : {1 - ’ncr] (418)

mR,:ag

4.3.2 Load-rotation relationship

As explained in the previous section, in-plane forces influence the load-rotation response of con-
tinuous slabs in two ways. Firstly, in-plane compression increases the flexural strength in the parts
of the slab where compressive stresses are induced. However, in the case of self-confinement, parts
of the slab (the tension ring) are under axial tension, where the flexural strength is reduced. There-
fore, these effects partly counteract each other. Secondly, it was shown that the slab rotation at the
flexural limit of a self-confined slab is reduced compared to a case where the in-plane forces and
deformations are neglected. In addition, the two phases of first activating the hogging reinforce-
ment and then the sagging reinforcement cannot be distinguished in confined slabs (compare Fig-
ures 4.3(a) and 4.6(a)). This is caused by the fact that the sagging portion of a self-confined slab also
contributes to the load-bearing mechanism by generating compressive stresses in the hogging
moment area and it is therefore activated at lower load levels. This phenomenon allows describing

the load-rotation relationship of self-confined slabs with a single-phase law.

Therefore, the load-rotation curve of continuous self-confined slabs can be approximated with a

parabolical curve, analoguosly to isolated elements (Eq. (4.2)):

32
Ve = l//y,.s—c { d J (419)

14

Slex,s—c

where rotation at the flexural limit 1)y is given by Equation (4.18). If xy.s is approximated similar-
ly to isolated slabs (Eq.(4.5)) and the fact that the flexural strength Vjesc is proportional to
MRhog + MRsag 1S taken into account (the possible influence of membrane action on the flexural

strength is neglected), Equation (4.19) becomes:

3/2
vk {1 _m]mf[mj (4.20)

mR,sag d Es mR,hog + mR,sag

Denoting the ratio between sagging and hogging moment capacities as mgsig/mrmog= 1, Equa-

tion (4.20) can be rewritten as:

32
l//rc :kl//’ I_L QL & :kl//. 1_ me "//[sol (421)
77 : mR,hog d Es mR,hag 77 : mR,hog
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4.3 Continuous slabs with CMA

where

ke T (14 )2 (4.22)

For practical purposes, Equation (4.21) can be further simplified by using a constant value of 7,
chosen for a case where the reinforcement is designed according to the direct design method of
ACI 318 [ACI14] (n=0.5, which indicates that the amount of hogging reinforcement is twice the
amount of sagging reinforcement) and by assuming that in this case, the factor ky is equal to one.
The influence of redistribution between hogging and sagging moments and CMA can then be ac-
counted for by modifying the expression suggested by Muttoni [Mut08b] and utilized in Model
Code 2010 punching provisions (Eq. (4.2)) with a factor (1 — 2+er/mR hog):

32
Iy [ms} (4.23)
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Figure 4.9 Load-rotation curves for continuous slabs with accounting for the influence of in-
plane forces, comparison of the simplified analytical approach (Eq. (4.23)) and the numerical
model: (a—c) variable hogging reinforcement ratio pug = 1.50%; (d) variable sagging rein-
forcement ratio (parameters: L =7 m, h =250 mm, d =210 mm, c =260 mm, fc = 35 MPa,
fe=3.2 MPa, f, = 550 MPa)

Figure 4.9(a—) shows a comparion between the load-rotation curves calculated with the isolated
approach (Eq. (4.2)), Equation (4.23) and the numerical analysis. It can be seen that the stiffness
increase of the load-rotation response of continuous slabs compared to that of isolated specimens

is more significant for lower hogging reinforcement ratios. This is due to the larger dilation and
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Chapter 4 Simplified analytical model

higher induced compressive stresses in the hogging moment area in the case of larger flexural de-
formations of that area. Also, the difference between the numerical and the simplified approaches
increases with more overestimated rotations (thus being more conservative for punching calcula-
tions) for decreasing png. This is due to the previously made assumption when deriving Equa-

tion (4.23) that tensile stress in the tension ring does not exceed f-.

It should be noted that Equation (4.23) does not account for the influence of sagging reinforcement
ratio. Whereas it is true that the flexural strength of continuous slabs is significantly influenced by
this parameter, the present analysis has shown that the influence is much less important on the
stiffness of the response at lower levels of load (Fig. 4.9(d)). This is explained by the fact that the in-
plane force in the tension ring (that induces in-plane forces in the hogging moment area) is nor-
mally governed by tensile stresses of concrete and not by the amount of reinforcement in the ten-
sion ring. Therefore, the stiffness enhancement of the slab on lower levels of load is not significant-
ly influenced by the sagging reinforcement ratio. Therefore, for simplicity, this parameter is omit-
ted in Equation (4.23). However, it can be taken into account in the future improvements of the
model by modifying the parameter ky.

It can also be remarked that Equation (4.23) does not allow for distinction between the effects of
moment redistribution and compressive membrane action. In fact, the possible redistribution be-
tween hogging and sagging moments is already considered in the Model Code 2010 formula
(Eq. (4.2)) by not limiting its application range to the cases where ms/mrog < 1.

When applying Equation (4.23) in practice, the cracking moment e« should be calculated using a
value of concrete tensile strength that can be activated by tension stiffening in the crack develop-
ment phase (normally the average value fun can be used). As given by Equation (4.16), possible
radial tensile forces at the edges (for example, caused by restrained shrinkage of the slab) have to
be substracted from the tensile strength. When these forces exceed the tensile cracking capacity of

the slab, the isolated approach (Eq. (4.2)) provides a lower bound for the load-rotation curve.

A minimum value for the factor (1 — 2me/mriog) has to be provided in order to avoid underestimat-
ed rotations in the case of very low hogging reinforcement ratios (where grng — mer). In the fol-

lowing parametric study, a value of 0.4 is used as this limit.

4.4 Parametric study

Figure 4.10 compares the punching strengths calculated with Equation (4.23) to the strengths of
self-confined slabs determined using load-rotation relationships from the numerical model. Predic-
tions for corresponding isolated specimens (radius of specimens 0.22 L, load-rotation curve deter-
mined with Eq. (4.2)) are also shown. All the strengths are calculated in combination with a failure
criterion of the CSCT [Mut08b].

Figures 4.10(a) and (b) show the influence of hogging reinforcement ratio on the punching capacity

of slab-column connections. Experiments on isolated specimens have shown that increasing the

64



4.4 Parametric study

amount of hogging reinforcement increases the punching strength. Following this observation,
flexural reinforcement ratio in the vicinity of the column is taken into account in the punching

provisions of several codes of practice [FIB13, CEN04], although also neglected by some [ACI14].

The present analysis indicates, consistently with the experimental observations of Choi and Kim
[Chol2], that in the case of continuous slabs, the amount of hogging reinforcement has a lower
influence on punching capacity than in isolated specimens. This can be explained by the fact that
the influence of compressive membrane action and the contribution of sagging reinforcement are
both more significant in the case of low amounts of hogging reinforcement and considerably in-
crease the flexural stiffness of such slabs (as seen by comparing the continuous and dotted load-
rotation curves in Fig. 4.1(g)). The proposed formula for continuous self-confined slabs (Eq. (4.23))
increases the Model Code 2010 punching strength predictions in the case of low reinforcement
ratios and can be of particular interest for assessment of existing slabs. The constant punching
shear strength used in ACI 318 is seen to be conservative for all the reinforcement ratios in the ana-

lyzed range.
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Figure 4.10 Comparison of the punching strengths calculated with load-rotation relation-
ships from Model Code 2010 (dashed line), the proposed expression (continuous line) and
the numerical model (dotted line): (a, b) influence of the hogging reinforcement ratio; (c) in-
fluence of the sagging reinforcement ratio; (d) influence of the slab slenderness with con-
stant h (slenderness effect); (e) influence of the effective depth with constant slenderness
(size effect); (f) influence of the column size (parameters, if not shown otherwise: L =7 m,
h =250 mm, d =210 mm, ¢ =350 mm, fc =35 MPa, fi = 3.2 MPa, f, =420 MPa, d; = 16 mm;
phog = 1.0%; psag = 0.5%)
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Chapter 4 Simplified analytical model

As explained in the previous section, the amount of sagging reinforcement does not have a signifi-
cant influence on the stiffness of the flexural response (Fig.4.9(d)). Thus, as shown in Fig-
ure 4.10(c), the influence of this parameter on punching strength is also limited and neglecting it in
the simplified formula (Eq. (4.23)) is justified.

Figures 4.10(d—f) show the influence of different geometrical parameters on the punching shear
strength of self-confined slabs. The slenderness effect [Mut08b] that exists in isolated specimens is
shown to be also present in continuous slabs in Figure 4.10(d). According to this, when slab depth
and column size are kept constant, punching shear strength of the slab-column connection de-
creases with increasing slab span. The influence of size effect in the analyzed models (with respect
to slab depth) is shown in Figure 4.10(e). The depth of the slab as well as slab span are varied (with
a constant slab slenderness L/h = 28) while the column size is kept constant. Accounting for the size
effect is especially important for the cases where predictions for actual structures are made on the
basis of experiments performed on reduced-scale models. The proposed approach considers the
size effect similarly to Model Code 2010 because it is taken into account in the failure criterion of
CSCT. ACI 318 does not account for the size effect and provides conservative predictions for thin-

ner slabs.

Figure 4.10(f) shows the influence of column size on the punching shear strength. Whereas the
total punching capacity of a slab-column connection increases with column size, the unitary
strength on the control perimeter decreases according to the CSCT because a higher total load
leads to larger rotations and wider cracks around the column (note that the column size does not
influence slab rotation in either of the simplified Equations (4.2) and (4.23). The difference between
the numerical and the simplified models is caused by the assumption made in the simplified ap-
proaches that the size of the hogging moment area is independent of column size (rs=0.22 L). In
the numerical model, s increases with increasing column size, leading to larger rotations and low-
er unitary punching strengths. In the punching provisions of ACI 318, influence of column size on
the unitary shear strength is only accounted for very large columns (providing a transition from
two-way to one-way shear strength), which is outside of the range of the present parametric study.

For small columns, the predictions of ACI 318 are conservative.

4,5 Summary and conclusions

The present chapter describes the derivation of simplified analytical formulas for predicting the
load-rotation response of continuous and self-confined slabs. The main conclusions of this chapter

are:

— An approach based on the slab rotation at the flexural limit gives consistent results with the
parabolic load-rotation curve proposed by Muttoni [Mut08b] that is used in the punching
provisions of Model Code 2010 [FIB13]. Therefore, it can be extended to account for the ef-
fects of moment redistribution between hogging and sagging mechanisms and compressive

membrane action that are present in actual continuous slabs;
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4.5 Summary and conclusions

Slab rotation that is needed to activate the sagging mechanism is larger than the rotation to
activate the hogging mechanism. In the cases where the compressive membrane action
cannot be relied on, this has to be taken into account by considering separate phases of the

load-rotation response before and after full yielding of hogging reinforcement;

Compressive membrane action that occurs due to the tangential tensile stresses generated
in the sagging moment area allows activating the sagging portion of the slab at lower levels

of load. Therefore, a simpler single-phase load-rotation curve can be used in this case;

The proposed formula to predict the load-rotation relationship of continuous self-confined
slabs compares very well to the curves obtained from the numerical analysis described in
Chapter 3.
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Chapter5 Experimental study

This chapter is based on a paper published in ACI Structural Journal [Einl6a]. It presents
the results of a systematic experimental campaign consisting of thirteen symmetric punching tests
on interior slab-column connections. The study focuses on the influence of varying the size of the
supported area and the slenderness of the slab. Other investigated parameters are the flexural rein-
forcement ratio and the presence of shear reinforcement. The results of the present campaign and

of previous tests are compared to the predictions of different codes of practice and to the CSCT.

5.1 Introduction

The punching provisions in several codes of practice [CEN04, ACI14] are based on empirical for-
mulas developed on the basis of experimental data. Nevertheless, in some cases they can lead to
very different strength predictions. In fib Model Code 2010 [FIB13], the punching provisions are
based on the Critical Shear Crack Theory (CSCT) developed by Muttoni [Mut08b, Mut13], which
has shown wide consistency and generality. Similarly to the first mechanical model of Kinnunen
and Nylander [Kin60] it assumes that the punching shear strength of a slab is a function of its flex-
ural deformations (referring to a strain effect on punching shear). Larger flexural deformations
(slab rotation 1), such as in the case of lower amount of flexural reinforcement or more slender
slabs (Fig. 5.1(a)), lead to wider cracks in the vicinity of the column and thus decrease the strength
of a shear-carrying concrete strut, thereby lowering the punching capacity (Vk). Some empirical
formulas, as those of Eurocode 2 [CEN04] punching provisions, account for the influence of the
flexural reinforcement ratio. Yet, the effect of slab slenderness is neglected in Eurocode 2 as in most
codes of practice [CEN04, ACI14].

The mechanical model of the CSCT also provides a physical explanation for the effect observed by
Vanderbilt [Van72] that increasing column size decreases the nominal punching shear strength per
unit length of a control perimeter close to the column face. This is explained by the fact that when
the length of the shear-critical perimeter increases, punching failures occur at higher loads. How-
ever, increasing the column size has only a limited influence on the load-rotation response of a slab
(Fig. 5.1(b)). Therefore, higher loads lead to increased rotations and larger crack widths in the criti-
cal zone of the slab around the column that decrease the capacity of concrete to transfer shear
stresses between the slab and the column. This is, again, related to a strain effect. As a conse-
quence, the CSCT predicts that the unitary punching shear strength on a control perimeter of a
slab-column connection decreases with increasing column size in agreement to the observations of
Vanderbilt.
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Figure 5.1 Load-rotation response and punching strength of slab specimens: (a) influence of
specimen slenderness; (b) influence of column size

Another effect that may reduce the punching capacity of large square or rectangular columns is
related to possible stress concentrations in the column corners [Sagl4]. Figure 5.2 shows the shear
fields [Vaz08] and distribution of shear stresses (calculated assuming linear-elastic slab behavior)
in a slab at a distance d/2 from the column edge for different column sizes and shapes. Whereas the
distribution for small square columns (Fig. 5.2(a)) as well as for circular columns (Fig. 5.2(c)) can be
assumed as uniform, higher stresses in column corners can be noted in the case of large square
columns (Fig. 5.2(b)). To account for this effect, the CSCT recommends assuming that only the
parts of the control perimeter that are close to the column corners (at distances smaller than 1.5d)

are active in carrying shear stresses.
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Figure 5.2 Linear-elastic shear fields in the vicinity of columns and distribution of shear
stresses on a control perimeter at d/2 from the column edge: (a) small square column; (b)
large square column; (c) large round column

70



5.2 Punching provisions in codes of practice

The predictions of CSCT for punching of slab-column connections with variable column sizes, re-
lated to the described phenomena, have been confirmed by previous test results [Lip12] (refer to
Fig. 5.3(a)). It should yet be noted that all these tests were performed using square columns. In
order to avoid stress concentrations in the column corners, a new test series that is presented in
this chapter is performed using round columns. Very wide range of column diameters is used
(83 mm to 660 mm). Four of the slabs have a flexural reinforcement ratio of 0.75% and four slabs

1.50%. All other parameters are kept constant.
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Figure 5.3 Predicted punching strengths according to the CSCT [Mut08b] and the results of
previous tests [Lip12, Fer10b]: (a) influence of column size; (b) influence of specimen size

As previously explained (Fig. 5.1(a)), slenderness of a specimen also has an influence on the
punching strength. This is shown in Figure 5.3(b) where available tests results are compared to the
CSCT. Unfortunately, tests on specimens with constant thicknesses but varying slendernesses (de-
fined as B/2d) are scarce in the scientific literature [Sis97] (Fig. 5.3(b)). In order to provide extended
test data on this topic, a second test series is presented in this chapter where the size of the column
and slab thickness are kept constant but the specimen slenderness ratio B/2d is varied between 4.0
and 9.6. Three of the second series slabs are also equipped with shear reinforcement. In this cases,
the predicted influence of slenderness is especially strong (refer to the corresponding curve in
Fig. 5.3(b)).
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5.2  Punching provisions in codes of practice

In all major codes of practice, punching strength of flat plates is verified by comparing the nominal
shear strength of an element to a nominal shear stress on a unit length of a control perimeter

around a column or a loaded area (Fig. 5.4):

V= r <V, (6.1)

The control perimeter bo should be defined in a manner that allows using nominal shear strengths
that are independent of the column shape and size. It should be noted that, for this reason, the con-
trol perimeter and the actual failure surface are not directly related. Therefore, the definition of a
control perimeter may be governed by very different rules depending on the code. Its location may
vary between the edge of the loaded area and a distance 24 from it, its corners may be rounded or
sharp and the length may be reduced in the vicinity of openings, slab edges or in the case of long
straight edges of the loaded area (Fig. 5.4).
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Figure 5.4 Control perimeters for punching verification in codes of practice

5.2.1 Influence of column size

The different location of control perimeters in various codes affects the influence of the loaded area
size on their punching shear strength predictions. In addition, the codes account for different pa-
rameters in their punching strength formulas. Figure 5.5 shows the resistance of a continuous slab
to a concentrated load (as nominal shear strength on the ACI 318 control perimeter) as a function
of the size of the loaded area with respect to the slab depth according to different codes of practice
and for two different reinforcement ratios. The capacity of the slabs may be governed by punching
shear or flexural failure. The flexural strengths are calculated using the yield line method with a
fan-shaped mechanism (Fig. 5.6), where the location of the positive yield line is ry that had to be
optimized in order to obtain the minimal flexural strength. To that purpose, the amount of positive
flexural reinforcement in the slab investigated in Figure 5.5 is assumed to be half the amount of
negative reinforcement. It should be noted that, depending on the geometry of the slab, folding
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mechanisms may also be governing. Punching failure can be avoided in the case of using suffi-
ciently large columns (relative to slab depth) and low reinforcement ratios, or when using shear
reinforcement. In these cases, bending may limit the load-bearing capacity of the slab (with en-
hanced deformation capacity). However, in many cases, a brittle shear failure is predicted before

the full development of yield lines.
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Figure 5.5 Comparison of the punching predictions of Eurocode 2, ACI 318 and Model
Code 2010, without shear reinforcement and with large amounts of shear reinforcement
(double-headed studs), depending on the column size to slab depth ratio (for square col-

umns): (a) slabs with p = 0.75% and no shear reinforcement; (b) slabs with p =1.5% and no
shear reinforcement; (c) slabs with p = 0.75% and double-headed shear studs; (d) slabs with

p =1.5% and double-headed shear studs (parameters: L =7 m; d =210 mm; fc = 35 MPa;

fy=420 MPa; p = 0.75% or p = 1.5%; dg= 16 mm)

Since 1963, the punching or two-way shear provisions of ACI 318 [ACI14] are largely based on the
work of Moe published in 1961 [Moe61]. For cases in-between one-way and two-way slab action,
such as rectangular or very large loaded areas, modifications were made in 1977 where the predic-
tions tend towards one-way shear strengths for elongated columns (ci/c2 > 2) or large column size
to slab depth ratios (c/d > 4) [ASC74]. In comparison to the other codes, it can be seen that ACI 318
predicts significantly higher shear capacities for slabs with lower reinforcement ratios and medium
c/d ratios (between 2 and 4) (Fig. 5.5(a)). In these cases (corresponding to typical floor slabs with
low slenderness that do not require large quantities of flexural reinforcement), the column size
does not lead to the reduction of nominal shear strength. Such reduction is based on the tests of
Vanderbilt [Van72] that were performed on very thin slabs (h =51 mm). As the phenomenon of

punching is known to exhibit significant size effect (a decrease in nominal shear strength for in-
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creasing slab thickness), these tests may have overestimated the punching strength of slabs on

large supports (such as drop panels).
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Figure 5.6 Yield line pattern for a flexural failure of a continuous slab

The punching provisions of Eurocode 2 [CEN(4] are based on Model Code 1990 [CEB93] and due
to the location of the control perimeter further than in ACI 318, exhibit less significant influence on
column size to slab depth ratio. In 1986, Regan [Reg86] reported that the British standard of that
time [BSI85], which used a control perimeter at 1.54 from the column edge, provided unsafe pre-
dictions in the case of very small ¢/d ratios (less than 0.75) and recommended that additional verifi-
cation on a smaller control perimeter be introduced. Similar verification was also added in Euro-
code 2 that checks the shear stress at a control perimeter located at a column face (refer to bo.cc2a in
Fig. 5.4) with a higher nominal strength (vrm). This verification is governing in the case of very
small values of ¢/d can be seen in Figure 5.5 as different regime in the Eurocode 2 predictions. This
formula only considers the concrete strength and the slab depth as parameters and does not ac-
count for other influences, including the flexural reinforcement ratio. Therefore, the provisions of
Eurocode 2 lead to more conservative results for slabs with large amounts of flexural reinforce-

ment supported on small columns.

The punching provisions of Model Code 2010 [FIB13] are based on the CSCT [Mut08]. A consistent
approach for all column sizes is used. The CSCT directly accounts for the flexural deformations of
the slab and allows accounting for the size and strain effects on its punching strength model
[Fer15]. The control perimeter is located at 4/2 similarly to ACI 318, but the nominal shear strength
is dependent on slab rotation i, decreasing for increasing column size. Therefore, the influence of
column size is more similar to the predictions of Eurocode 2 than to ACI 318. By accounting for the
influence of the flexural deformations, it allows a gradual reduction of the punching strength

when flexural limit is approached, describing the transition between shear and flexural failures.

Differences between the codes of practice are even more important in the case of slabs with shear
reinforcement (Fig. 5.5(c,d)). Such slabs fail at higher load levels and at larger deformations than
slabs without shear reinforcement [Fer09]. For low or moderate amounts of transverse reinforce-
ment, increasing the shear reinforcement ratio also increases the punching capacity. However, tests
[Lip12] have indicated that for very large amounts of shear reinforcement, concrete close to the
edge of the loaded area governs the behavior and may crush before the shear reinforcement yields.

For such cases, the punching capacity no longer increases with larger amounts of transverse rein-
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5.2 Punching provisions in codes of practice

forcement [Fer09]. In this failure mode, punching strength depends on the type of shear reinforce-
ment and detailing rules (anchorage type, rebar spacing). Therefore, design codes define a limit on
the maximum punching strength of shear-reinforced slabs. In ACI 318 and Model Code 2010, the
limit depends on the shear reinforcement system with highest resistances for double-headed studs.
In Eurocode 2, the maximum punching resistance of shear-reinforced slabs is limited by the same
verification of vrmx at the edge of the column as for slabs without shear reinforcement. This leads
to lower predictions compared to the other codes for small column size to slab depth ratios (up to
approximately 1), as according to this approach, using shear reinforcement does not increase the
punching resistance. Predictions for larger column sizes, however, lead to higher strengths. Until
recently, Eurocode 2 punching provisions did not include any other limitation on the punching
strength of slabs with shear reinforcement. In 2014, an amendment [CEN14] to Eurocode 2 punch-
ing provisions was published (to be implemented by the end of 2015) so that the punching re-
sistances of shear-reinforced slabs were limited to 1.5 times the resistances of similar slabs without
shear reinforcement. That leads to similar predictions to those of Model Code 2010. However, the
limitation of vrm«x remained unchanged and thus the punching strength predictions of Eurocode 2
for the connections of slabs to columns having small sizes with respect to slab depth (that are
common in European practice) are more conservative than the provisions of ACI 318 and Model
Code 2010 (Fig. 5.5(c,d)).

5.2.2 Influence of slab slenderness

Punching tests are normally performed on isolated test specimens that represent a negative mo-
ment area of a continuous slab, separated from the rest of the slab by the line of moment contra-
flexure. In slender slabs with regular spans L, according to a linear-elastic calculation, the distance
from the center of the column to this line is approximately 0.22L [Kin60] (in the non-linear analysis
presented in Chapter 3, this was also observed to be a reasonable approximation for cracked con-
tinuous slabs). Therefore, the slenderness of a specimen (B/2d) corresponds to 0.22 times the slen-
derness of an actual flat plate (L/d). Experimental results have shown that increasing specimen
slenderness reduces both its flexural stiffness and shear capacity [Sta01]. This suggests that punch-
ing shear strength of an actual slab decreases with increasing span if the depth of the member re-
mains constant. It is thus instrumental to select the size of a specimen considering the slenderness
of the actual slab that is modelled in the experiment. Despite this fact, in many experimental cam-

paigns, the size of specimens is chosen only based on existing laboratory conditions.

The mechanical model of Kinnunen and Nylander [Kin60] as well as a design method based on
their model from Swedish concrete handbook of 1990 [Nyl90] account for the slenderness effect.
Also the CSCT [Mut08b] (Fig. 5.7(a,b)) and the codes that base their punching provisions on this
theory (Model Code 2010 [FIB13] and since 2003 the Swiss code for concrete construction [SIA03])
take this effect into account. However, slenderness is not accounted for as a parameter in the de-
sign equations of ACI 318 [ACI14] and Eurocode 2 [CEN04] (Fig. 5.7(c,d)). It only affects the flex-

ural strength of a slab, which may become the governing failure mode for more slender slabs with
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fairly low amounts of flexural reinforcement or for slabs with shear reinforcement. According to
those codes, the shift from shear to flexural failure is considered without a transition phase. Ac-
cording to Model Code 2010, a pure flexural failure is predicted for much more slender slabs with
a transition phase where the governing failure mode is still punching but with large flexural de-
formations due to yielding of flexural reinforcement in the column area. Increasing the slab slen-
derness has a similar influence as reducing the flexural reinforcement ratio, as the punching
strength is based on the state of flexural deformations. This allows calculating the reduction of

strength and deformation capacity close to the flexural limit in a more refined manner.
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Figure 5.7 Influence of slab slenderness on punching shear strength: (a) load-rotation curves
of specimens with different slenderness ratios and the failure criterion of the CSCT; (b)
punching shear strength predictions of the CSCT; (c) comparison of the punching strength
predictions of Eurocode 2, ACI 318 and Model Code 2010, slabs with p = 0.9% without shear
reinforcement; (d) comparison in the case of slabs with large amounts of shear reinforce-
ment (double-headed studs) (parameters: refer to Fig. 5.5; ¢ = 350 mm)

5.3 Experimental campaign

The punching tests were performed in the Structural Concrete Laboratory at Ecole Polytechnique
Fédérale de Lausanne (EPFL). In total, 13 slabs were tested. The test series is complemented by two
previous punching tests performed in the laboratory with similar parameters (PL7 [Lip12], PV1
[Fer10b]). The tested specimens (refer to Table 5.1) are grouped in two series, the first one investi-
gating the influence of column size, while keeping the size of the slab constant, as the second one
varies the size of the slab, while keeping the column size constant (Fig. 5.8(a)). In the first series,

the columns were round in order to avoid the influence of possible stress concentrations in the
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corners of large columns [Sagl4]. The shapes of the first series” slabs were octagonal to be more
comparable to an axisymmetric geometry. In the second series, the columns and the slabs were

square.

For applying the load, eight round openings formed by steel tubes were left in the slabs at casting.
The centers of these openings were located 120 mm from the slab edge. Thus, the distance r4 from
the loading points to the center of the column also varied together with the specimen size. The slab

thickness, in all cases, was 250 mm, representing a typical flat plate in buildings.

All the slabs were cast with normal strength concrete (f. =30.8 —44.1 MPa) with mainly limestone
alluvial gravel aggregate with maximum size of 16 mm. Compressive strength of concrete f. was
determined experimentally for each specimen by compression testing concrete cylinders
(150 x 300 mm) cast at the same time and from the same batch of concrete as the test specimens.
Concrete tests were performed at 7, 14 and 28 days after casting as well as on the day of the slab

test (Table 5.1) in order to follow the development of concrete strength.

Tensile (top surface) reinforcement consisted in all the cases of conventional hot-rolled reinforcing
steel rebars that had a clearly defined yielding plateau (ductility class C of Eurocode 2 [CEN04]).
Yield strength of reinforcement f, (Table 5.1) was determined by tension testing four samples of
each diameter bars. The flexural reinforcement was uniformly distributed over the whole slab. The
rebars were placed in four orthogonal layers, two on the bottom and two on the top surface. The
top-most and the bottom-most reinforcement layers were oriented in the same direction. This is
referred to as the strong axis, whereas the other direction is referred to as the weak axis. Close to
the edge of the slab, the top reinforcement was anchored with 180° bends. The diameter of top sur-
face rebars was 16 mm (for 4 slabs in the first series) or 20 mm (for 4 slabs in the first series and for
all the second series slabs) and the spacing correspondingly 125 mm or 100 mm, which gives a
nominal flexural reinforcement ratio of 0.75% or 1.5%. The bottom reinforcement consisted of cold-

formed 10 mm rebars with spacing equal to that of the top reinforcement.

In the first series, the shape of the specimens was octagonal (with overall width of 3000 mm)
whereas the columns were round (with diameters ranging from dc=83 mm to d. =660 mm)
(Fig. 5.8(a)). The reinforcement layout was orthogonal. In the second series, both the slabs and the
columns were square. The columns had a side length of ¢ =260 mm while the side length of the
slabs varied from B =1700 mm to B =3900 mm. Two of the slabs of the second series and a refer-
ence slab PV1 [Fer10b] did not have shear reinforcement, whereas three slabs were equipped with
double-headed studs as shear reinforcement (made of ordinary 16 mm ribbed reinforcing steel
with yield strength of f, =560 MPa and hot-formed heads with diameters equal to 3 times the di-
ameter of the shaft), fixed on rails in the bottom end to facilitate their installation. The stud rails
were placed radially in a star-like pattern (according to the European practice) with 12 studs in
each perimeter (Fig. 5.8(b)). The distance from the edge of the column to the first stud was so= 80
mm (0.38 d) and the radial distances between subsequent studs s =150 mm (0.71 d). The number of
stud perimeters was 4, 6 and 8 for slabs PP4, PP5 and PP6, respectively. The amount of shear rein-
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forcement was selected to achieve the highest possible performance of the system that would lead
to concrete crushing failure between the column and the first perimeter of studs [FIB13, Lip12,
Fer09].
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Figure 5.8 Test specimens: (a) geometric parameters; (b) placement of double-headed shear
studs in specimens PP4, PP5 and PP6

Table 5.1 Main parameters of test specimens

Slab B, g, c, de, d, 0 fur fer
m m mm mm mm % MPa MPa
PE10 3.0 1.505 - 83 210 0.77 538 40.4
PE11 3.0 1.505 - 166 215 0.75 538 375
PE9 3.0 1.505 - 330 218 0.74 538 44.1
PE12 3.0 1.505 - 660 212 0.76 538 37.6
PE6 3.0 1.505 - 83 215 1.46 542 38.4
PE7 3.0 1.505 - 166 213 147 542 425
PE8 3.0 1.505 - 330 214 1.47 542 42.0
PE5 3.0 1.505 - 660 210 1.50 542 36.7
PE4 1.7 0.765 260 - 197 1.59 517 35.1
PV1 [Ferl0b] 3.0 1.505 260 - 210 1.50 709 31.1
PE3 3.9 1.926 260 - 204 1.54 517 34.2
PP4 1.7 0.765 260 - 211 1.49 510 30.9
PP5 2.3 1.120 260 - 205 1.53 510 31.5
PL7 [Lip12] 3.0 1.505 260 - 197 1.59 583 35.9
PP6 3.9 1.926 260 - 203 1.55 510 32.7

A view of the test setup is shown in Figure 5.9. For all specimens (except for PV1, for which the
details can be found elsewhere [Fer10b]), the load was applied by means of 4 hydraulic jacks con-
nected to a common oil circuit under a strong 800 mm laboratory floor. The load was spread to
eight loading points close to the perimeter of the slab at a distance rq from the slab center. The slab

was supported on a central steel column, on which a steel plate representing the column was
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placed. A thin layer of plaster was placed on the steel plate before placing the specimen to avoid
stress concentrations due to possible surface irregularities. The load was applied by manual pump-

ing at a rate of approximately 25 kN/min.

Steel support plate
Plaster layer

Tension bars
Steel spreader elements
Load cells

Hydraulic jacks
Load cells

Figure 5.9 Test setup

The applied load was measured with two independent sets of load cells on the hydraulic jacks as
well as on the load distribution elements (Fig. 5.9) and by strain gauges on the steel column. The
differences between the results obtained with the three measurement systems were negligible. The
slab rotation was measured with 4 digital inclinometers located on the main axes at a distance of
1380 mm from the center of the slab. Vertical displacements of the slab surface were measured

with linear variable displacement transducers (LVDTs).

54 Test results

The main results of the tests are shown in Table 5.2 and the load-rotation curves in Figure 5.10.
Slabs without shear reinforcement failed with a sudden drop of load. The rotations at failure var-
ied between 5 and 35 mrad, indicating a transition from brittle to a more ductile failure type (it can
be noted that slab PV1 had reinforcement with higher yield strength, but no yielding occurred and
thus the load-rotation curve is not affected by this issue). At failure, the steel plate simulating the
column suddenly penetrated into the slab with a loud noise. Exceptions were the slabs supported
on the smallest columns (PE6 and PE10), where the failure was more gradual and accompanied by
quieter cracking sound during few seconds. A diagonal failure crack was revealed after saw-
cutting the specimens (Fig. 5.11). The failure cracks were irregular, with an average angle between
the slab surface and the failure crack of approximately 45° or lower in most cases (refer to the pho-

to of a typical crack in Fig. 5.12(a)). In some specimens, the failure cracks had different shapes and
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angles on different sides of the column. In addition to the failure crack, several flexural cracks were

seen on the saw-cuts that were inclined towards the column.
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Figure 5.10 Load-rotation curves of the specimens: (a) slabs with round columns,
pnom = 0.75% and no shear reinforcement, variable column diameter; (b) slabs with round
columns, prom =1.5% and no shear reinforcement, variable column diameter; (c) slabs with
prom =1.5% and no shear reinforcement, variable specimen size (slenderness); (d) slabs with
pnom =1.5% and double-headed shear studs, variable specimen size (slenderness)

The slabs with shear reinforcement failed at much larger flexural deformations. In slabs PP5 and
PL7, the load-rotation curve reached a short plateau before failing with a sudden decrease of the
load, whereas in the case of PP6 (the most slender slab), the testing system did not allow reaching
sufficiently large deformations in order to achieve a punching failure. The cracking patterns on the
saw-cuts of all slabs with shear reinforcement showed that the failure zone was severely damaged
by flexural and shear cracks as well as by cracks in the anchorage zones of shear studs
(Fig. 5.12(b)). The column plates penetrated also deeper in these slabs. Failure cracks (the cracks
with the widest opening after the failure) were located either between the first perimeter of studs
and the edge of the column plate or between the first two stud perimeters. The cracks crossing the
shear reinforcement had much smaller widths. This suggests that shear reinforcement did not
yield prior to failure which was also indicated by strain gauge measurements close to the top and
bottom heads on the studs. Similarly to the slabs without shear reinforcement, the cracking pat-

terns were not symmetric around the columns.
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Figure 5.11 Saw-cuts of the slabs along the weak axis

Figure 5.13 shows the obtained punching shear strengths for series I (normalized with respect to
concrete strength, control perimeter of ACI 3181 and effective depth) as a function of the column
diameter (Fig. 5.13(a)) and for series II, as a function of the slab slenderness (Fig. 5.13(b)). The shear
strengths predicted by ACI 318 and CSCT are also plotted (in dashed and in continuous lines, re-
spectively). In the case of round columns, the predicted nominal strength according to ACI 318 is
constant up to column diameters of 5.4d (for square columns, the limit is at ¢ =4d). In the experi-
mental results, a decrease of the nominal punching shear strength with increasing column size can
already be seen for smaller d/d ratios. Although the ACI 318 predictions were conservative for all
the slabs in the present test campaign, the margin of safety decreased with increasing column sizes

and decreasing reinforcement ratios.
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Table 5.2 Experimental results and predicted punching strengths of test specimens, present

study and the experiments of Lips ef al. [Lip10], Regan [Reg86] and Sistonen et al. [Sis97]

. d YR test VR test Vriest/  VRrpest!  VRtest!  VRiest/  VRtest/
Series Slab mm c/d deld B/2d mrad kN Viiex VR ac Vrec2  VrRescr VrRmc
PE10 210 - 0.40 7.14 6.5 530 0.53 1.29 1.19" 0.92 1.12
PE11 215 - 0.77 6.98 10.1 712 0.67 1.36 0.96 1.05 1.29
PE9 218 - 1.51 6.88 13.8 935 0.79 1.12 1.01 1.04 1.29
PE12 212 - 3.11 7.08 29.4 1206 0.84 1.02 1.11 1.09 1.41
PE6 215 - 0.39 6.98 45 656 0.33 1.58 1.50" 0.99 1.10
PE7 213 - 0.78 7.04 6.7 871 0.42 1.58 0.93" 1.07 1.21
PES8 214 - 1.54 7.01 8.7 1091 0.48 1.38 0.98 1.05 1.20
present PE5 210 - 3.14 7.14 12.7 1476 0.53 1.27 1.10 1.12 1.32
study PE4 197 1.32 - 4.31 5.3 985 0.38 1.38 1.03 0.98 1.14
PVl 210 1.24 - 7.14 7.6 978 0.35 1.33 0.99 1.07 1.22
PE3 204 1.27 - 9.56 10.0 961 047 1.30 0.97 1.11 1.31
PP4 211 1.23 - 4.03 16.8 2076 0.75 1.41 1.46™ 0.97 1.24
PP5 205 1.27 - 5.61 21.5 1812 0.85 1.27 1.29" 1.02 1.22
PP6 203 1.28 - 9.61 32.0 1569 0.78 1.09 1.09" 1.06 1.25
mean 1.31 1.12 1.04 1.24
COV  12.0% 15.8% 5.5% 6.8%
PL1 193 0.67 - 7.77 5.2 682 0.36 1.36 0.91" 1.03 1.16
PL3 197 2.64 - 7.61 11.7 1324 0.54 1.16 1.06 1.08 1.29
PL6 198 0.66 - 7.58 16.6 1363 0.71 1.30 1.77 1.02 1.20
[Lip10] PL7 197 1.32 - 7.61 27.6 1773 0.86 1.23 1.23 1.09 1.29
PL8 200 2.60 - 7.50 - 2256 0.91 0.98 1.18 1.05 1.26
mean 1.21 1.23 1.05 1.24
COV  122%  26.5% 2.9% 4.7%
V/1 118 0.46 - 6.78 - 170 0.33 1.35 1177 0.81 0.98
V/2 118 1.44 - 6.78 - 280 0.50 1.37 1.10 0.94 1.18
V/3 118 0.93 - 6.78 - 265 0.49 1.63 1.14 1.05 1.29
[Reg86] V/4 118 0.86 - 6.78 - 285 0.53 1.35 1.15 1.02 1.26
V/5 118 1.27 - 6.78 - 285 0.51 1.48 1.15 1.12 1.38
mean 1.44 1.14 0.99*  1.22™
COV  85% 2.2% 121%  12.5%
L1 172 - 1.17 5.15 - 503 0.72 1.44 1.26 1.08 1.46
L2 176 - 1.15 5.03 - 537 0.75 1.49 1.30 1.12 1.52
L3 173 - 1.16 5.12 - 530 0.77 1.51 1.32 1.13 1.53
L4 170 - 2.36 5.79 - 686 0.65 1.30 1.26 1.05 1.42
L5 172 - 2.32 5.73 - 696 0.65 1.31 1.26 1.05 1.42
[5is97] L6 175 - 2.32 5.63 - 799 0.73 1.45 1.41 1.18 1.59
L7 177 - 1.14 5.56 - 478 0.53 1.53 1.13 1.05 1.34
L8 174 - 5.17 7.10 - 1111 0.55 1.28 1.25 1.11 1.51
L9 172 - 5.22 7.18 - 1107 0.56 1.29 1.26 1.12 1.53
L10 173 - 5.21 7.14 - 1079 0.54 1.25 1.22 1.08 1.48
mean 1.39 1.27 1.10 1.48
COV  7.9% 5.7% 3.7% 4.9%
all tests, mean 1.34 1.18 1.05 1.30
all tests, COV ~ 11.3%  15.2% 6.7% 11.2%

* — reference test, Fernandez Ruiz et al. [Fer10b]

** — Urmax is governing in the Eurocode 2 prediction
*** _ dg is not reported for these experiments, dg =16 mm [0.63 in.] is assumed (assuming dg = 10 mm [0.39 in.] would give
a mean of 1.04 and 1.28 for CSCT and Model Code 2010, respectively; assuming dg = 20 mm [0.79 in.] would give 0.96 and

1.18)
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Figure 5.13(b) confirms the CSCT [Mut08b] prediction that increasing specimen slenderness de-
creases its punching capacity. Consistently with the predictions of Model Code 2010 [FIB13]
(Fig. 5.7), the effect is more pronounced for slabs with shear reinforcement.

(@)

(b)

Figure 5.12 Photos of typical punching cracks on a saw-cut: (a) slab without shear rein-
forcement (PE7); (b) slab with shear reinforcement (PP4)

All the slabs analyzed in the present research failed below their respective flexural strengths (refer
to the calculated Vi est/Vyex ratios in Table 5.2, where the values of Viex are calculated using the yield
line formulas given in Appendix B of the thesis. The V& s/Viex ratios increased with increasing col-
umn sizes and slenderness ratios. However, the load-rotation curves in Figure 5.10(d) suggest that
a limit may have been reached for the specimens with shear reinforcement. These failures may be
interpreted as failures due to combined effects of bending and shear. Such combined failures are
also possible in continuous slabs in actual structures. However, the flexural strength of an actual
slab may be higher than the flexural strength of an isolated test specimen. In Chapter 3, an exten-
sion of the CSCT was presented that allows predicting the punching capacities of continuous slabs
and can also consider the influence of compressive membrane action in such slabs. Of the com-
pared models, only the CSCT and the Model Code 2010 provide a physical method for assessing
and comparing the behavior of both continuous and isolated slabs.

5.5 Comparison of test results to code predictions

Figure 5.14 compares the results of the present test campaign to the predictions of ACI 318
[ACI14], Eurocode 2 [CEN04], CSCT [Mut08b] and Model Code 2010 [FIB13] (Level of Approxima-
tion II). The details about the formulas used in the calculations can be found in Appendix A of the
thesis. Previous results of similar campaigns by Lips ef al. [Lip12] with variable column sizes, Re-

gan [Reg86] with very small columns as well as Sistonen et al. [Sis97] with variable slab slender-
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ness and column size to slab depth ratios are also included. The comparisons are shown as a func-

tion of ¢/d or d/d and specimen slenderness ratio (B/2d). The values are also given in Table 5.2.

The design formula of ACI 318 yields conservative predictions (the average measured-to-predicted
strength of all the experiments is 1.34). However, the predictions are less conservative for larger
column sizes in combination with lower reinforcement ratios and round columns (the lowest ratio
of experimental load to prediction in current campaign is 1.02 for slab PE12). The slenderness ef-
fect is also neglected and thus a reduction in the margin of safety can be seen for higher slender-

ness ratios. The coefficient of variation (COV) for all the tests is 11.3%.
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Figure 5.13 Normalized nominal shear stresses at failure on the ACI 318 control perimeter
and comparison to the CSCT (continuous lines) and ACI 318 (dashed lines) predictions: (a)
depending on column diameter (series I); (b) depending on specimen slenderness (series II)

The predictions of Eurocode 2 for the tests of the present test campaign fit the test results well if
the governing verification is the one performed at the basic control perimeter located at 2d from
the column edge. However, when the governing failure mode is exceeding vrm« at the column
edge, the results show larger scatter. This limit also governs for the three slabs with shear rein-
forcement tested in the current campaign, as it assumes the same strength for both slabs with and
without shear reinforcement. This lack of agreement has also been presented in previous studies
[Lip12], showing a clear increase of punching capacity as a result of using shear reinforcement
even in the case of small columns (with respect to slab depth). Thus, these predictions of Euro-
code 2 are fairly conservative for these cases. On the contrary, Eurocode 2 gives excellent predic-
tions for the five tests of Regan [Reg86] with c/d ratios between 0.46 and 1.44 where vrmx governs
in only one case. These inconsistencies show that the Eurocode 2 verification of punching of small
columns may not capture the actual influencing parameters correctly. For all the results, the aver-
age measured-to-predicted strength is 1.18 with a COV of 15.2%.

Regarding the predictions of both ACI 318 and Eurocode 2 for slabs with shear reinforcement
(plotted with square markers with white fill in Fig. 5.14), a trend can be observed that leads to less
conservative predictions for increasingly slender slabs. This is caused by the fact that although
Eurocode 2 punching provisions account for the flexural reinforcement ratio, neither of the codes

take the influence of slab slenderness into account.
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The CSCT provides consistent results for all column size and specimen slenderness ratios. The

mean ratio of experimental to predicted strength is 1.05 and the coefficient of variation 6.7%. For
the smallest columns (PE6 and PE10 with dc=83 mm and V/1 of Regan [Reg86] with dc= 54 mm),

an overestimate of the punching strength can be seen. In these cases, the compressive stresses at

failure under the column were close to 3-f: (in other specimens, the average stress under the col-

umn plate always remained below f:) and a different failure mode than typical to punching may

have been attained in these tests. This hypothesis is also supported by the observations during the

tests of the present experimental campaign and saw-cut patterns that showed a more gradual fail-

ure with crushing-like noise and steeper failure cracks.

The punching provisions of Model Code 2010 are based on the CSCT and the predictions are there-

fore similar. The differences can be explained by the different level of safety (the failure criterion

curve of Model Code 2010 has been calibrated so that 5% of the experimental results are below the

predicted strength, whereas the CSCT failure criterion corresponds to a mean of test results) and

the fact that the non-linear load-rotation curve is replaced with a simplified parabolic relationship
in Model Code 2010. The mean of the predictions is 1.30 and COV 11.2%. The influence of the two

investigated parameters (column size with respect to slab depth and slab slenderness) is yet suita-

bly reproduced.
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5.6

Summary and conclusions

In this chapter, the results of an experimental campaign investigating the influence of specimen

slenderness, column size and flexural reinforcement ratio on the shear strength of interior slab-

column connections are presented. The results are compared to the predictions of ACI 318, Euro-
code 2, the CSCT and Model Code 2010.

The main conclusions are:

86

Experiments show that slenderness of a specimen influences the stiffness of its load-
rotation response. Through influencing the crack widths, it also affects the punching
strength. This effect is significant in the slabs with shear reinforcement and has to be con-

sidered when selecting the specimen size in the design of punching tests.

Contrary to the experimental evidence, this parameter is not considered in the Eurocode 2

and ACI 318 punching provisions.

Punching tests on slabs with varying support sizes indicate that the unitary nominal shear
strength on a control perimeter at d/2 from the column face decreases with increasing col-
umn size. This effect can also be explained by the influence of cracking developing in the

vicinity of the supported area.

The decrease of the unitary nominal shear strength in ACI 318 for large columns may lead
to an overestimate of the punching strength in the case of lower reinforcement ratios and
thicker slabs. However, if the perimeter is located at 24 as in Eurocode 2, the punching
strength of very small columns is overestimated. The deformation-dependent nominal
shear stress of CSCT describes the punching phenomenon in a physical manner and pro-

vides good estimates for all different column sizes studied.

The verification in Eurocode 2 that limits the shear stress at a control perimeter located at
the column face neglects the influence of several important parameters and therefore may

lead to very conservative results in the case of slabs with shear reinforcement.

The CSCT and the punching provisions of Model Code 2010 consistently account for the in-
fluences of column size and slab slenderness. They provide the best mean and coefficient of
variation for the ratio of experimental to predicted punching load amongst the compared

models.



Chapter 6 Internal measurements

In the test campaign described in the previous chapter, development of cracking inside
some selected specimens was tracked by means of a novel measurement system based on a coor-
dinate measuring arm. This chapter analyzes these observations in detail and compares them to
the measurements of the conventional instrumentation on slab surfaces. The main differences be-
tween the shear behavior of two-way specimens and that of previously studied one-way elements
are discussed. This chapter is based on paper “Measurements of internal cracking in punching test

slabs without shear reinforcement” submitted for publication in Magazine of Concrete Research.

6.1 Previous work

In shear tests of one-way elements (beams or slab strips), formation and propagation of flexural
and shear cracks has been observed and measured by mechanical [Cam13, Vol14] or optical means
[Cav15]. Through the rigorous experimental work, good overview of shear transfer actions in
beams has been obtained, both in the case of elements with shear reinforcement [Cam13] as well as
without it [Fer15].

In punching tests, the development of shear cracks is even more challenging to follow, as the
cracking occurs inside the element. Several methods have been used to study the mechanism of
punching failures. Moe [Moe61] tested slabs with large openings close to the slab-column connec-
tion and studied the growth of cracks on the sides of the openings. According to his observations,
diagonal flexural cracks developed towards and eventually through the compression zone similar-
ly to the behavior of one-way elements. Kinnunen and Nylander [Kin60] attempted to estimate the
aggregate interlock stresses between the lips of the diagonal cracks. They eliminated this action in
some of their test slabs by placing an impregnated cardboard cone in the place of the expected di-
agonal crack. The results showed a reduction in the failure load, in some cases very limited (10%),
in another cases more significant (up to 54%). The disadvantage of this method was the pre-
defined shape and length of the diagonal crack that may have influenced the results. In the tests of
Regan [Reg83] and Ramos [Ram03], precast concrete blocks with strain gauges glued on the sur-
faces were placed in the punching specimens during their fabrication with the aim of measuring
the magnitude and direction of radial strains inside the slab. These measurements showed the de-
velopment of an inclined compression strut close to the column. However, this method could not
detect concrete cracking, as cracks may have formed between the strain gauges. Crack openings
have also been measured in the tests performed at EPFL, starting from Guandalini et al. [Gua09].
This has been done with LVDTs that have been fixed on the top and bottom surfaces of the slab
measuring the thickness variation through a small hole drilled through the slab. Yet, these meas-
urements only represent the vertical component of the opening of the internal cracks.
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Chapter 6 Internal measurements

Although all the aforementioned experiments gave valuable information about the punching fail-
ure mechanism, information obtained with these methods was either incomplete or required sig-
nificantly modifying the geometry or composition of the slab in a way that may have influenced its
punching behavior. To avoid these shortcomings, Clément et al. [Cle12] performed three punching
tests where the formation of cracks at various loading steps was followed using a robotic arm to
measure the coordinates of a number of measurement points inside the slab. The same measure-
ment system is used in the campaign described in the present chapter.
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Figure 6.1 Comparison between the cracking patterns: (a) one-way (beam) specimen SC12b
of Campana et al. [Cam13] (p = 1.5%); (b) saw-cut surface of two-way (slab) specimen PF22
of Clément et al. [Cle12] (p = 1.5%); (c) saw-cut surface of specimen PG3 of Guandalini ef al.
[Gua09] with low flexural reinforcement ratio (p = 0.33%); (d) punching cone of specimen
PT23 of Sagaseta et al. [Sagl1] with unequal reinforcement ratios in two directions

In Figure 6.1, cracking of some of the previously tested specimens is compared. In a sufficiently
slender beam (such as SC12b [Cam13] shown in Fig. 6.1(a)), tension chord is normally cracked over
the whole length of the element. The flexural cracks reach down to the neutral axis and may prop-
agate into the compression chord. According to Fernandez Ruiz et al. [Ferl5], shear resistance of
the element is controlled by one of these cracks, called the critical shear crack, which may either
progress to become the failure crack (as in specimen SC12b shown in Fig. 6.1(a)) or trigger a sud-

den development of a new crack that leads to the failure [Cav15].

The cracking patterns observed on the saw-cut surfaces after a punching test is often different from
the cracking on the sides of one-way elements [Mut10]. The internal measurements of Clement et
al. [Cle12] indicated that the development of cracks differs as well. Figure 6.1(b) shows a two-way
slab specimen (PF22 [Cle12]) with similar geometry (slab depth 400 mm, distance between the load

88



6.2 Measurement devices

and the support 1380 mm) and reinforcement ratio (p = 1.5%) as the previously described beam
SC12b. Flexural cracks on the saw-cut are concentrated in a zone located directly above the sup-
port. The furthermost flexural crack from the column edge (called the critical shear crack) is in-
clined at approximately 45°. This crack was detected by the internal measurement system after the
appearance of flexural cracks on the surface of the slab and seen propagating to the vicinity of the
compression chord, influencing its stress state. In contrast, the failure crack was not detected by
the internal system even at the last measurement step at 95% of the failure load, which suggests its
sudden appearance and propagation. Furthermore, this crack does not touch the critical shear
crack. On the saw-cut, it can be seen as having much flatter inclination and straighter shape than

the typical failure cracks in beam specimens (such as in SC12b in Fig. 6.1(a)).

However, it should be noted that in some other punching tests, different observations have been
made. For instance, on the saw-cuts of specimen PG3 of Guandalini et al. [Gua09], which had low
amount of flexural reinforcement (p =0.33%), the failure cracks were seen having steeper angles
(Fig. 6.1(c)) and turning quasi-vertical close to the tension chord. This suggests that these cracks
had a flexural origin and that the flexural parts of the cracks were coincident with the critical shear
crack. Moreover, in slabs with non-symmetric flexural reinforcement (as PT23 of Sagaseta et al.
[Sagl1] in Fig. 6.1(d)), the two types of failure cracks have been observed to occur in the same spec-
imen. In the direction with lower amount of flexural reinforcement, a steeper failure crack can be
seen, whereas the failure crack in the direction with higher reinforcement ratio has a lower angle
similarly to that of PF22 (Fig. 6.1(b)).

This chapter describes in detail the measurements, both internal and external, performed during
punching tests of six symmetric specimens (PE11, PE9, PE12, PE7, PE8 and PES5) from the test cam-
paign presented in the previous chapter. Three different diameters of the support plate (166, 330
and 660 mm) and two flexural reinforcement ratios (nominal values 0.75% and 1.50%) were used.

For further information about the specimens, refer to Chapter 5.

6.2 Measurement devices

6.2.1 External measurements

The slabs were instrumented with various measurement devices (Fig. 6.2(a)):

— the applied load was measured using four load cells on the load distribution elements and
four load cells between the strong floor and the hydraulic jacks (Fig. 5.9);

— the slab rotation was tracked with four inclinometers on the main axes on the top surface

close to the edges of the slab;

— vertical displacement profiles on the top and bottom slab surfaces were measured with lin-

ear variable differential transformers (LVDTs) on the E-W axis (west from the column)
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(Fig. 6.2(b)). Additional four LVDTs measured the vertical displacement close to the four
edges of the slab;

— column settlement and rotation were measured with three vertical LVDTs (in the analysis,

it was assumed that the column plate did not deform);

— tangential concrete surface strains were measured with 3 strain gauges (base length 50 mm)
glued on the concrete surface on the bottom face of the slab south from the column and

perpendicular to the N-5 axis;

— radial concrete surface strains were measured with 3 strain gauges oriented along the E-W

axis west from the column.

All the measurement readings were set to zero before starting the test, assuming that the slab de-
formations under self-weight of the slab and the testing equipment were negligible (approximately
65 kN, added later to the measured load).
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Figure 6.2 Instrumentation of the specimens: (a) plan view of the soffit of the specimen;
(b) section view of the specimen (only LVDTs, inclinometers and internal points shown);

(c) coordinate measurement points close to the column on the slab soffit; (d) section cut of
the specimen through the internal coordinate measurement points

6.2.2 Internal measurements

The internal measurements were performed with a commercial coordinate measuring arm
(FaroArm® Quantum) that could determine the location of its probe in the space by measuring the
rotations of its 7 axes. In order to follow the internal cracking of the slab, 48 to 64 holes were
drilled on the bottom surface (soffit) of each specimen with a 10 mm drill bit. The holes were

cleaned of concrete dust and small steel cylinders with conical sockets as measurement points
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were glued in the ends of the holes. To access the measurement points with the probe, the arm was
extended with a stainless steel bar (length 200 mm, diameter 7 mm). Because the deformations of
the extension bar, in comparison to the expected precision of the system, were not negligible, they
were followed by means of strain gauges glued close to the fixed end of the extension bar. The ob-
tained coordinates of the internal points were corrected using these strain measurements. The
manufacturer-declared precision (radius of the point cloud) of the measuring arm was 0.020 mm.
Calibration of the strain gauges on the extension bar, which was performed before each test, re-

sulted in a standard deviation of the additional error below 0.010 mm.

Figure 6.3 Performing the internal measurements with the robotic arm

The internal measurement points were located along the two main axes of the specimens in the
north (strong axis) and east (weak axis) directions from the column in three or four lines (depend-
ing on the size of the column) with 8 points in each line (Fig. 6.2(c)). The distance between the

points along each line, as well as between the lines was approximately 50 mm. The depth of the
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holes for the internal points varied between 40 and 180 mm so that the points formed a regular
mesh in a vertical plane (Fig. 6.2(d)). Reference points were glued on the slab surface between the
holes, as well as on the column plate. The actual layout of the points varied slightly due to the pre-
cision of drilling and the need to avoid rebars.

The specimen was loaded by pumping oil into the hydraulic jacks. The load was applied in steps
with larger load increments in the beginning of the test and smaller ones closer to the failure. After
applying each load increment, the pumping was stopped which caused the load to decrease slight-
ly. After approximately 10 minutes, when the rate of decrease of load had diminished, the coordi-
nates of each point were measured sequentially (Fig. 6.3). One measurement step typically lasted

for 10 to 15 minutes.

In addition to the accuracy of the measurement arm and the strain gauges on the extension bar,
potential sources of erroneous measurements included accidental contacts of the extension bar
with the walls of the drilled holes, dust or concrete debris on the measurement points, as well as
loose points due to failure of the glue or cracks in concrete where the points were glued. As the
points were located in narrow holes, these aspects were difficult to check visually. Also, slab
movements or crack propagation during a measurement sequence may have influenced the calcu-
lated relative displacements between the points. In order to filter out inaccurate measurements, all
the coordinates were carefully compared against the measurements at other load steps and the

points that were judged clearly erroneous were removed from the analysis.

6.3 Test results

As explained in the previous chapter, all the analyzed specimens failed in punching with a sudden
drop of the level of applied load. It is interesting to note that in several specimens, the failure oc-
curred while the loading was stopped to perform measurements and the load had decreased be-
low the maximum that had been reached. In these cases, the punching capacity Vk refers to the

maximum load.

After the test, in order to observe the internal cracking patterns, all specimens were cut along the
east-west (weak, Fig. 6.2(a)) axis, whereas the northern halves were additionally cut along the
north-south (strong, Fig. 6.2(a)) axis. One wide crack, referred to as a “failure crack”, was clearly
distinguishable on all the saw-cut surfaces (Fig. 6.4). This crack extended from the edge of the col-
umn plate on the slab soffit to the tensile reinforcement layer (except on the east side of PE12,
where the crack started at some distance from the column edge). The shapes and angles of this
crack varied significantly between the specimens and even between the different sides of one spec-
imen. On most saw-cut faces, some narrower flexural cracks were also visible above the column
that extended from the top surface either to the bottom half of the slab or to the failure crack. The
presence of the holes for internal measurements did not seem to have a significant influence on the

cracking patterns and on punching performance compared to similar previously tested specimens.
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Figure 6.4 Saw-cuts of the specimens, along the weak axis (zone with holes for internal
measurements is to the left (west) side of the column) and the strong axis (northern half)

Flexural response of specimens

According to the mechanical model of Kinnunen and Nylander [Kin60], the deformed shape of an

axis-symmetric specimen can be approximated as conical between a radius ro (located at some dis-

tance from the column edge) and the edge of the specimen and as spherical within ro (Fig. 6.5(a)).

The radius ro is determined by the location of the critical shear crack. It has been suggested to be

selected as ro = rc + d, which corresponds to an inclination of the critical shear crack of 45° [Mut08b].

Regarding the flexural response of a specimen, as shown in Figure 6.5(b), three phases can be ob-

served, characterized by different stiffnesses of the load-rotation curve:

Elastic uncracked phase before the first flexural cracks appear in the center of the slab. In
this phase, slab deformations can be suitably predicted by means of linear-elastic slab theo-

ry;

Cracked phase, where circular flexural cracks develop around the column. These cracks are
inclined towards the center of the column due to the influence of shear stresses in the slab.
The furthermost circular flexural crack (the critical shear crack) extends to the vicinity of
the column edge. In addition, radial cracking starts spreading towards the edge of the slab.
Starting from this phase, flexural behavior is suitably approximated by the conical model of

Kinnunen and Nylander [Kin60].

After yielding of radial reinforcement within the radius o, only tangential moments in the
conical part can carry the additional load. The stiffness of the load-rotation response there-
fore decreases. Flexural strength of the specimen is reached when tangential reinforcement

in the whole specimen reaches yielding.
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Figure 6.5 (a) Assumed deformed shape of a specimen [Kin60]; (b) Load-rotation curve

6.3.2 Deformations of the slab soffit

The behavior of punching test specimens cannot be characterized only by the flexural model. Fig-
ure 6.6(a) shows the deviations of the actual soffit deflections of specimen PES8 from the theoretical
conical shape, measured with a series of LVDTs on the west side of the column. In the elastic
uncracked phase, the slab has a curvature both in the tangential as well as in the radial direction,
as predicted by the linear-elastic slab theory. Due to the radial curvature, compressive radial
strains appear on the slab soffit (refer to the insert in Fig. 6.6(a)). After cracking of concrete due to
the radial moments, this curvature starts to concentrate in the column region (the spherical slab
portion in Fig. 6.5(a)) and thus the rate of increase of the radial compressive strains on the soffit
decreases (at some distance from the column edge). After the circular cracks are fully developed,

the radial strains on the soffit are nearly constant.

In addition, at already early stages of loading, penetration of the column plate into the slab is ob-
served (this can be also in part explained by crushing of the thin layer of plaster placed between
the column plate and the slab). However, the column penetration is only a local phenomenon as it
does not have any effect on the radial soffit strains further from the column edge (Fig. 6.6(a)).
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Figure 6.6 Deformations of the slab soffit: (a) deviations of the slab soffit from the assumed
conical shape of specimen PES; (b) deviations of the slab soffit of the specimen PE5

At load levels close to the punching strength, the development of strains on the slab soffit enters a

new phase where the radial compression on the soffit begins to decrease. At failure, even tensile
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strains have been measured in some of the previous experiments [Gua09]. Sometimes, this phase
starts immediately before the failure (or even when the load is, in fact, decreasing, as in the speci-
men PES8 (Fig. 6.6(a)) or already at 80% of punching strength, as witnessed, for instance, in the
specimen PE5 (Fig. 6.6(b)). The decrease of compressive strains is also measured by radial strain
gauges further from the column edge (200 or 300 mm), although the reduction is less substantial
there. Such slab behavior can be attributed to shear deformations of the slab soffit in the vicinity of
the column (Fig. 6.6(b)). It can also be noted that the maximum soffit deviation from the conical

shape (Awmax) starts to increase faster in this phase than in the earlier stages of loading.

6.3.3 Internal cracking

Internal cracking of the specimens was monitored with the coordinate measuring arm on the east-
ern (weak axis) and the northern sides of the column (strong axis). Widths and opening directions
of the cracks at different levels of load were calculated from the coordinates by dividing the mesh
of measurement points into triangles. Strains on all sides of each triangle (&ij = Ali/lij) (Fig. 6.7(a))
were then converted into principal strains (e1123 and en123 in Fig. 6.7(b)). The directions and mag-
nitudes of the principal compressive strains in the triangles show the compressive stress field in
the slab. However, the mesh of internal points was too coarse and the precision of the system too
low to obtain reliable information about the compressive strains in concrete. In contrast, the preci-
sion was sufficient to follow the formation and kinematics of cracks. Crack widths we and their
opening directions at different load steps were calculated by multiplying the maximum principal
tensile strain in each triangle with the length of the triangle in the direction of the strain
(Fig. 6.7(c)). This represents an assumption that the tensile strain in a triangle was concentrated
into a single crack that was perpendicular to the direction of the principal tension. The resulting
crack widths and their opening directions are plotted in Figures 6.9(g)-6.14(g) for internal cracking
on the weak axis and Figures 6.9(j)-6.14(j) for cracking on the strong axis, together with the cracks
on the saw-cut surfaces. These plots confirm the assumption that the principal tensile strain direc-
tions are mostly perpendicular to the observed cracks.
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Figure 6.7 Conversion of the measured displacements to crack opening we: (a) strains at the
edges of the triangles; (b) principal strains; (c) crack opening in the direction of principal
tensile strain

The cracks detected with the internal measurement system were always also found on the saw-
cuts. On the other hand, in some places where no strains were measured before the failure in any

of the measurement steps, wide failure cracks were present on saw-cut surfaces. Such cracks are
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shown with dashed lines in Figures 6.9(f, g, i, j)-14(f, g, i, j) (for example on the strong axis of PE8
in Fig. 6.10(j, j)) in the locations where the absence of a crack was confirmed by reliable coordinate
measurements. For all the measured cracks, the direction of crack opening did not change signifi-
cantly between load steps and was approximately perpendicular to the crack lips (it should be not-
ed that the plotted crack widths are projections on a vertical plane and some variability may thus
be related to actual variations in crack angles between the measurement points). The exact centers
of rotation of the slab sectors could not be detected due to the insufficient precision of the coordi-
nate measurements. However, as the points on the slab soffit moved towards the column and the
points deeper inside the slab moved further from the column, the vertical position of the center of

rotation has to be located within the specimen.
6.4 Discussion of the test results

6.4.1 Development of the critical shear cracks

The critical shear crack (the furthermost circular crack of flexural origin) was followed in all the
cases, except in the east direction (weak axis) of specimen PES8 (Fig. 6.10(g)). These cracks (1, 3, 5-
11, 13-15 in Fig. 6.9-6.14) were first observed already at approximately 50% of the failure load.
Widths of the critical shear cracks in different specimens, measured at the level of higher-most
internal measurement points (approximately 170 mm from the bottom face of the slab), are shown
as a function of slab rotation in Figure 6.8. The slabs with p =1.5% are shown on the top and the
ones with p =0.75% on the bottom row. It can be seen that the cracks widths at a punching failure
were larger in slabs with lower reinforcement ratios. The maximum measured crack width did not

depend significantly on the column size.
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Figure 6.8 Widths of the flexural cracks as a function of slab rotation (average of the two di-
rections in a corresponding axis)
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(a) PE5 (d=660mm; p=1.5%)
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Figure 6.9 Specimen PE5: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal
cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and
opening directions of internal cracks (N)

However, it can be noted that in the case of larger columns, the cracks outside the perimeter of the

column plate started opening at larger rotations. This can be explained by other flexural cracks

the center of the column developing first (outside of the monitored range). This is con-

firmed by the measurements performed on slab PE12, where two flexural cracks were located
within the region of the internal measurement points (Fig. 6.12(j)). It can be seen that the crack that
was closer to the center (crack 9) started opening at a lower rotation. However, another crack
(crack 10) began opening further from the column and became the critical shear crack later. In the

case of smaller columns, fewer circular cracks were located between the monitored region and the
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(a) PE8 (d =330mm; p=1.5%)
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Figure 6.10 Specimen PES8: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal
cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and
opening directions of internal cracks (N)

center of the column and the development of the measured crack thus started at an earlier loading

stage. It can be concluded that for an equal slab rotation, crack widths are lower if the column size

is larger, as the flexural deformation is distributed between a larger number of cracks.

6.4.2 Development of the failure cracks

With the internal measurement system, two types of failure cracks could be distinguished. In some

cases, the punching failures progressed along cracks that had been first observed as critical shear

cracks. However, in the other cases, the failure cracks developed independently of the critical shear
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(a) PE7 (d =166mm; p=1.5%)
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Figure 6.11 Specimen PE7: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the

column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal
cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and
opening directions of internal cracks (N)

cracks (refer to Fig. 6.1(c) and (b), respectively).

—91% —95%V,

Development of the punching failure along the critical shear crack was observed in the specimens

with the largest column sizes (dc = 660 mm): on the north side of the column (strong axis) in speci-

men PE5 (crack 3 in Fig. 6.9(j)) and on the east side of the column (weak axis) in specimen PE12

(crack 8 in Fig. 6.12(g)). In both cases, the eventual failure cracks were first detected at load levels

clearly below the punching capacity: at 76% of Vr in specimen PE5 and at 85% of V& in specimen

PE12. Yet, in both of these specimens, the failure cracks in the other monitored regions were of the

second type and appeared in the slab portion below the critical shear crack. In specimen PE5, at the
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(a) PE12 (d =660 mm; p=0.75%)
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Figure 6.12 Specimen PE12: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on sof-

fit; (d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to

the column edge on the weak axis (E); (f) displacements of the internal points relative to

the edge of the column (E); (g) widths and opening directions of internal cracks (E); (h)

cracks close to the column edge on the strong axis (N); (i) displacements of the internal
points (N); (j) widths and opening directions of internal cracks (N)

last measurement step at 90% of the maximum load, the failure crack on the east side of the col-
umn (inclined at 18° from horizontal) had a width of approximately 0.3 mm (crack 2 in Fig. 6.9(g)).
However, in specimen PE12, where the failure crack on the east side of the column had even lower

inclination, it was not detected even at the last measurement step, although the measurements

were performed at 98% of V.

Regarding the deformations on the slab soffit, which were measured on the west side of the col-
umn, the development of shear deformations started already at approximately 75% of Vr in both

specimens with the largest columns. This was indicated by the beginning of the reduction of radial
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(a) PE9 (4 =330 mm; p=0.75%)

" T i .
 I— :_l
(b) 1600 : : : (© : : : (d) : :
T s st
L T s West L
T s, West
4 1100% ~*
AN 1 I 180% =
1 160%
r 1 140%
- AW, e {20%
L L L L L 0
40 0 -02 -04 -0.6 -08 0 -0.5 -1 -1.5
& [mm/m] Aw [mm]
) ' (8)
o (@) o o (@) o

|| :
Ll T /l
) ()
[©) O\ [©) o
(S \
\ \ Lo
. f \ _ ’\v ,/
RSN O N N
S I
m77 7 i mr
. 46% 67% 78% —84% —89% —94% —100%V,
scale for displacements:
. 1mm
scale for crack opening:
Imm

Figure 6.13 Specimen PE9: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on soffit;
(d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to the
column edge on the weak axis (E); (f) displacements (magnified) of the internal points
relative to the edge of the column (E); (g) widths and opening directions of internal
cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displacements
(magnified) of the internal points relative to the edge of the column (N); (j) widths and

opening directions of internal cracks (N)

compressive strains on the soffit (Fig. 6.9(c) and 6.12(c)) and concurrent increase of maximum de-

viation from the conical shape (Fig. 6.9(d) and 6.12(d)).

In the specimens with intermediate size columns (dc=330 mm: PE8 in Fig.6.10 and PE9 in
Fig. 6.13), the failure cracks developed independently of the critical shear cracks in every region
with internal points. Both of the specimens failed during or after performing the internal meas-
urements while the load had decreased below V. In the strong (north) direction, no strains were
measured at the location of the eventual failure crack in either of the slabs. In contrast, on the east
side of the column of specimen PES8, a failure crack (with an inclination of 30°) was observed to
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(a) PE11 (d=166mm; p=0.75%)

w V\\\\I_,//V_a E %/ N

(b) 1600 . . . (0 . . . (d)
T Eass et
1200 - T s, west
Z T Eag et <
=4 800} L L 100% =
> p ll/ 1 /“,rf_ T (]
pred ] B i
4001 — P ] ) : 160%
— Pus ] — AW, 20%
0 . . . . . . - - 0
0 10 20 30 40 0 -02 -04 -06 -0.8 0 -0.5 -1 -15
Y [mrad] ¢ [mm/m] Aw [mm]

® ' (®)

My
/”

oy

W77
scale for displacements: ... . .., 48% 69% —81% —86% —91% —96%V,
. Imm
scale for crack opening:
Imm

Figure 6.14 Specimen PE11: (a) cracks on saw-cuts; (b) rotations; (c) radial strains on sof-
fit; (d) maximum negative deviation of the soffit from a conical shape; (e) cracks close to
the column edge on the weak axis (E); (f) displacements (magnified) of the internal
points relative to the edge of the column (E); (g) widths and opening directions of inter-
nal cracks (E); (h) cracks close to the column edge on the strong axis (N); (i) displace-
ments (magnified) of the internal points relative to the edge of the column (N); (j) widths
and opening directions of internal cracks (N)

start opening at 86% of Vr (Fig. 6.10(g)). The width of the crack, uniform over the whole measured

length, increased to 0.7 mm before the failure.

However, on the west side of the column of PES8, shear deformations (Fig. 6.10(c) and (d)) started
to increase only while performing the final measurements. The failure of the specimen occurred
approximately 20 minutes after the loading was stopped, during which period the applied load
had dropped from the maximum of 985 kN to 835 kN. In specimen PE9, the failure occurred while
the measurements were being taken. During the final measurements, on the east side of the col-

umn, a failure crack with an opening of 0.3 mm (crack 12 in Fig. 6.13(g)) was detected. Yet, increas-

102



6.4 Discussion of the test results

ing shear deformations were measured in this specimen on the west side of the column already at

earlier loading stages (Fig. 6.13(d)).

In the specimens supported on the smallest columns (d. = 166 mm), the failure cracks were not de-
tected prior to punching in any of the cases. In specimen PE11, the radial compressive strains at the
soffit, that had been decreasing before, started to grow again immediately before the failure. Simi-
lar behavior has also been observed in other specimens with even smaller column sizes (refer to
Chapter 5) and in compact footings (by Simdes et al. [Sim16]). This suggests that a different failure

mode may govern in the case of very high compressive stresses in the punching region.

6.4.3 Tangential crack propagation

It is interesting to note that the development of failure cracks in two sectors of the same slab could
be remarkably different, in spite of the specimens being nominally axisymmetric. In some slab sec-
tors, the eventual failure cracks appeared at lower load levels than in the other sectors, sometimes
already at 75-80% of Vr. This can be compared to the observations of Campana et al. [Cam13] as
well as Cavagnis ef al. [Cav15] regarding the shear behavior of beams, which showed that different
cracking patterns, with consequent differences in mechanical shear transfer actions through the
cracks, can emerge in beam specimens of similar geometries and mechanical properties. These dif-
ferences can also explain the significant scatter between the shear strengths measured in various

beam specimens.

In slab specimens, however, the detected initiation of a failure crack did not yet prompt a sudden
punching failure. In several cases, the load could still be increased and the development of the
failure crack could continue in a stable manner without significantly influencing the overall re-
sponse of the specimen. This suggests that the reduction of the shear-carrying capacity of the sec-
tor elements with growing failure cracks was compensated by redistributing the shear force to ad-
jacent sectors, where the failure cracks had not yet appeared. Similar redistribution of shear forces
along the support has also been observed in non-symmetric punching test specimens by Sagaseta
et al. [Sagll] and in shear tests of slabs with concentrated loads near linear supports by Natario
et al. [Natl14].

Redistribution of shear forces in slabs also changes the associated moment fields. In axisymmetric
punching test specimens, tangential shear redistribution due to the development of a failure crack
should lead to locally reduced tangential moments in the slab sector with the failure crack
(Fig. 6.15(a)). In most cases, this local reduction could not be directly observed, as the tangential
soffit strains were measured in the experimental campaign only on one side of the column. How-

ever, the local reduction of bending moments was indirectly indicated by:

— in specimen PE7, decreasing tangential compression on the slab soffit was measured on the

strong axis when the loading was stopped at 95%-V« (Fig. 6.15(b));
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— in the other specimens, the tangential soffit compression on the strong axis, which should
have a linear dependence on slab rotation in axisymmetric slabs, started increasing faster at
loads close to the failure, especially in the specimens with the largest column sizes, PE5 and

PE12 (Fig. 6.15(c)). This may indicate the development of failure cracks and consequent de-

crease of tangential moments on the other sides of the column (on the weak axis);

— an increase of the average slab rotations in comparison to the predicted curves (shown with
dashed lines in Figures 6.9(b)-14(b)) at load levels close to the punching failures. Again,
this effect was observed to be stronger in specimens with larger column sizes (especially

PE12, refer to Fig. 6.12(b)), where failure cracks were wider and detected at lower levels of

load.
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It should also be noted that the ultimate tangential strains on the slab soffits (at 100 mm from the
column edge) ranged from —1.5%o to —2.6%o (Fig. 6.15(c)). These strains are lower than the strains
corresponding to the compressive strength of normal strength concrete in biaxial compression, as

reported by Kupfer [Kup73]. Therefore, on the basis of these measurements, no strain-softening of

Figure 6.15 Redistribution of shear forces in axisymmetric specimens: (a) bending moments

and shear forces associated to tangential shear redistribution; (b) measured tangential bot-

tom surface strains in specimen PE7; (c) average slab rotation-tangential soffit strain curves
for the axisymmetric specimens

concrete in compression was observed to have occurred.
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6.5 Summary and conclusions

Formation and growth of cracks inside 6 full-scale punching test specimens was successfully moni-
tored with a newly developed system for internal measurements. The results were also compared
to conventional measurements performed on slab surfaces. Both flexural as well as the eventual

failure cracks were tracked. The main conclusions made on the basis of the observations are:

— The main results (punching strengths and critical deformations) of the slabs with holes for

internal measurements were consistent with the results of previously tested full slabs;

— Based on their mode of development, two types of cracks could be distinguished in the
punching regions, namely the critical shear cracks and the punching failure cracks;

— The critical shear cracks were of flexural origin and developed as predicted by the sector
model of Muttoni [Mut08b]. The directions of crack opening were approximately perpen-
dicular to the crack lips. The widths of the furthermost flexural cracks depended on the to-
tal number of cracks within the supported area. Therefore, for equal rotations, the cracks

were narrower in specimens with larger column sizes;

— The observed development of punching failure cracks was different between the specimens

and even between the different sides of the column in the same specimen;

— Except for some sides of the largest columns, punching failures did not occur along the pre-

existing critical shear cracks but by formation of new (lower-angled) failure cracks;

— The initiation of a failure crack did not always cause an immediate punching failure of the

specimen. Instead, in several cases, the load could still be increased by up to 20%;

— The capacity of the specimens to resist increased loads after the formation of a failure crack
can be explained by tangential redistribution of shear along the perimeter of the support.
The associated changes of the moment field were also indicated by strain measurements on
slab soffit.
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Chapter7 Punching failure model

This chapter proposes a new punching model for slabs without shear reinforcement. The
model is based on the experimental evidence obtained in the test campaign presented in the previ-
ous chapter. The failure is assumed to be governed by a triaxial state of stresses in the compression
strut around the edge of the support. Possible contribution of dowel action of tensile reinforcement
is also considered. Size effect and the influence of crack propagation around the column are taken
into account with semi-empirical factors. Comparison to 100 punching tests on slender specimens
from the literature suggests a good agreement between the model predictions and the experi-

mental results.
7.1 Mechanisms of shear transfer in reinforced concrete elements

7.1.1 Shear transfer mechanisms in beams and two-way slabs

Shear force in an element is associated with variations in acting bending moments. Bending mo-
ment in a beam can vary along the span either through changing the lever arm between the com-
pression and tension chords with forces in them remaining constant, or by changing the forces in
the chords. In the former case, the shear force in a beam is carried by the vertical component of the
force in the compression chord. This mechanism is referred to as arching action. In the latter case,
forces need to be transferred between the tension and compression chords. In cracked reinforced
concrete elements without transverse reinforcement, the possible mechanisms of shear transfer
include so-called beam shear transfer actions that were described by Kani [Kan64]. These mecha-
nisms utilize tensile stresses in concrete, dowel action of tensile reinforcement and stress transfer
through the cracks, which include aggregate interlocking stresses between crack lips and residual
tensile strength of cracked concrete. The contributions of these actions in slender beams were re-
cently studied by Fernandez Ruiz et al. [Ferl5], who used idealized crack shapes and kinematics
and concluded that all the actions are eventually dependent on the widths of the cracks. However,
a recent detailed experimental investigation by Cavagnis et al. [Cav15] has shown that force trans-
fer through aggregate interlock stresses is strongly dependent on the shape of the cracks, which
can be highly variable between similar specimens.

Experimental evidence and theoretical considerations have shown that shear behavior of a beam is
strongly influenced by its shear slenderness ratio (defined as a/d for beams with concentrated loads
or as M/Vd in a general case (Fig. 7.1(a)) and the relative contributions of the different mechanisms
of shear transfer depend on this parameter [Kan64, Kan66]. In the case of compact beams, the
compression chord can be inclined, allowing for the development of a direct strut, or arching ac-

tion. Shear failures occur with a loss of capacity of the strut, which may be decreased due to trans-
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verse tensile strains. In contrast, in slender beams, cracks developing through the direct strut limit
its capacity and the strength of an element is governed by beam shear transfer actions and their

capacities (aggregate interlock, dowel action or the tensile strength of concrete).
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Figure 7.1 Distribution on bending moments and shear forces in (a) one-way beams and
(b) two-way slabs

Shear behavior of two-way slabs in the vicinity of columns or concentrated loads differs from the
behavior of beams in three important aspects. Firstly, with increasing distance from the column,
the width of the slab sectors increases (Fig.7.1(b)) and, consequently, shear force per unit width
decreases. Therefore, the shear strength of a slab at some distance from the column, where the
beam shear transfer actions would govern in beams, is normally sufficient and punching failure
occurs instead in the immediate vicinity of the column edge. Secondly, as explained in Chapter 3
as well as shown in Figure 7.1(b), bending moments in two-way slabs can be distributed in two
directions. Therefore, in comparison to beams with similar loads and distances between the load-
ing points and the support, bending moments in a single direction are lower in two-way slabs. As
a result, the effective shear slenderness ratio (M/Vd or acs/d (Fig. 7.1(b))) is reduced, meaning that,
close to the column, shear force can be carried by the inclination of the compression strut [Mut10].
However, thirdly, unlike in beams where yielding of tensile reinforcement close to the support

results in a flexural failure of the element, redistribution of bending moments into tangential direc-
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tion means that the load can still increase in two-way slabs. Therefore, strains in the tensile rein-
forcement, as well as in the compression zone, can be significantly higher before a punching failure
occurs in two-way slabs than at shear failure in compact beams. This leads to crack localization in

slabs, whereas uniform softening of the strut governs the behavior of compact beams.

7.1.2 Contribution of aggregate interlock action

According to the CSCT of Muttoni [Mut08b], punching failures are caused by the failure of a radial
compression strut that is intersected by an inclined flexural crack (referred to as the critical shear
crack), which propagates through the strut into the radial compression zone (Fig.7.2(a)). Shear
stress is transferred via friction between the crack lips due to their macro-roughness (aggregate
interlock) [GuilOa]. Capacity of the crack to carry shear stresses is assumed to be a function of its
opening width, which is estimated to be proportional to i-d, and of the roughness of the crack lips,
which is assumed to depend on the maximum aggregate size ds (Fig. 7.2(b)). The failure is expected
to occur when the aggregate interlock capacity is exceeded (that can happen either at a large

punching load V or due to large crack opening w.r).

(@) (b)

critical shear crack 1

(© (d)

center of rotation crack sliding

Figure 7.2 Critical Shear Crack Theory: (a) theoretical strut through the critical shear crack
[Mut08b]; (b) aggregate interlock between sliding crack lips; (c) opening of the critical shear
crack in the case of non-negligible depth of the compression zone; (d) opening of the critical

shear crack after failure of the compression strut in the compression zone

Aggregate interlock stresses can be activated when crack lips slide relative to each other. However,
as observed in the slabs described in Chapter 6, the measured crack opening displacements were
in all cases larger than sliding displacements along the crack lips. It is suggested that this can be
explained by the rigidity of the compression zone (Fig. 7.2(c)), due to which the sliding of crack
lips could only occur after a compression zone failure (Fig. 7.2(d)). In the experiments, the failure
of the compression strut in the compression zone, however, always led to an immediate collapse of

the slab. In addition, in several cases, the failure did not develop along the existing critical shear
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crack but by opening of a new, so-called failure crack. This crack appeared either prior to or at the

moment of failure and often had a very low inclination.
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Figure 7.3 Contribution of the compression strut: (a) model of Kinnunen and Nylander
[Kin60]; (b) model of Moe [Moe61]; (c) model of Broms [Bro90]; (d) model of Shehata and
Regan [She89]

7.1.3 Previously proposed models based on the compression strut

Several previously proposed models account for the contribution of stresses in the compression
strut below the flexural cracks to the punching capacity of a flat slab. The first mechanical model
by Kinnunen and Nylander [Kin60] described the deformed shape of the slab by dividing it into a
spherical part above the column and a conical part around it. The two parts were separated by an
inclined flexural crack, which is referred to as the critical shear crack by Muttoni [Mut08b]. Shear
force was assumed to be transferred from the conical part to the column through a cone-shaped
shell at the tip of that crack, subjected to uniform compression e (Fig. 7.3(a)). The geometry of
the compression shell, including the inclination of the resultant force ar, were calculated from the
equilibrium equations of internal forces acting in the conical slab portion (including tangential
moments not shown in Figure 7.3(a)). The failure criterion was defined as a function of strains and
not stresses in the compression shell, as concrete strength was considered to be reduced by the
large strains. A critical strain state was assumed to be attained with reaching a critical value of the

tangential compressive strain on the slab soffit resulting from flexural deformations.

On the basis of experimental investigation, Moe [Moe61] assumed that most of the shear force is
carried by the compression zone that is subjected to a complex non-uniform triaxial stress state.
Moe did not attempt to model the realistic distribution of stresses nor the actual triaxial failure
criterion, but showed that in most cases the largest principal stress in the compression zone was
tensile (Fig. 7.3(b)). Therefore, splitting of concrete was considered to govern the punching re-

sistance, making it a function of the tensile strength of concrete (assumed to be proportional to
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square root of f). A simplification of this model, where the depth of the compression zone is as-

sumed to be constant, is still used as a basis of the punching provisions of ACI 318 [ACI14].

The model of Kinnunen and Nylander was simplified and developed further by Broms [Bro90],
who added an additional failure criterion for radial stresses in the conical shell (gcone < 1.1 - ). This
criterion governs the strength of stiffer slabs, where the tangential soffit strains had been observed
to remain below the failure criterion of Kinnunen and Nylander (Fig. 7.3(c)). In addition, a factor
accounting for the size effect was added and the model was simplified by assuming a constant
apr=15°.

Shehata and Regan [She89] proposed a model where the stress in the compression zone (after the
formation of inclined flexural cracks) was assumed to remain constant but the inclination of the
resultant force ar varied (Fig.7.3(d)). Splitting of the compression zone was predicted to occur
when ar reached 20°, causing the maximum principal stress in the compression zone to become
tensile. In the model of Broms, as well as of Shehata and Regan, the inclination of the critical shear
crack (variable in the model of Kinnunen and Nylander) was fixed to 30° and 20°, respectively.
This was justified by the low angle of failure cracks typically observed on saw-cut surfaces of

punching test specimens.

7.2  Stress-based failure model for the compression strut

The new punching model proposed in this chapter assumes, as originally suggested by Kinnunen
and Nylander [Kin60], that the punching strength of a slab-column connection is governed by the
failure of a cone-shaped shell below the flexural cracks in the direct compression strut. In accord-
ance with the lower bound theorem of the theory of plasticity, stresses in the conical shell are as-
sumed to be uniformly distributed. The strength of the conical shell is predicted using a stress-
based yield criterion proposed by Ottosen [Ott77] (also adapted in Model Code 2010 [FIB13] as a
general failure criterion for concrete under multi-axial loading). This approach was inspired by a
global criterion of failure of the compression zone that was proposed by Gustafsson and Hillerborg
[Gus88] to complement a linear-elastic finite element analysis of beams subjected to bending mo-
ment and shear force. Section 7.3 proposes a method to estimate the forces that are transferred
through the critical shear crack by dowel action of the tensile reinforcing bars, accounting for the
stresses in the reinforcement as well as the slip of the bars. Finally, in Section 7.4, a suitable effec-
tiveness factor, which has to be applied when plastic behavior of concrete is assumed, is calibrated

on the basis of experiments.

7.2.1 Critical surface in the conical shell

In the proposed model, the failure is expected to occur when a critical triaxial stress state is
reached in the conical shell. Similarly to the previously proposed models and in agreement with
the lower bound theorem of the theory of plasticity, an assumption is made that the distribution of

stresses in the conical shell is uniform.
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A triaxial stress state in the conical shell can be described by the maximal and the minimal princi-
pal stresses o1 (tension) and o3 (compression) on a radial vertical plane, inclined at an angle ay from
the horizontal (Fig. 7.4(a)), as well as a lateral stress due to the tangential bending moment, which
acts horizontally and constitutes the intermediate principal stress ot=o02. In order to determine
these stresses, a critical surface is regarded that cuts diagonally through the conical shell at an an-
gle a. Stresses 0/ along that surface and stresses 0« perpendicular to it, as well as shear stresses 7«
act on that surface (Fig. 7.4(b)). For determining these stresses, a triangular element is considered
that is limited by the critical surface, the slab soffit and a vertical plane at the intersection of the
critical surface with the neutral axis of the slab (Fig. 7.4(b)). The forces Neuy and Ve, acting normal
and parallel to the critical surface in a sector of that element with an angular width A¢ are calcu-
lated from the equilibrium equations (it should be the noted that normal stress along the critical

surface (o) does not influence the equilibrium of forces acting on the triangular element):

N,,=N,,sina+V, cosa—N, Ap-sina (7.1)

Vg =—Ny,cosa+V, sina+N,-Ap-cosa (7.2)

where Noy and Vo, are normal and shear forces, over an angular width Ag, on a vertical section at
the intersection of the critical surface with the neutral axis of the slab, located at a distance r. from
the center of the column, and N is the tangential force over the length of the triangular element,
ta — e (Fig. 7.4(b)). The distance r« can be calculated as:

r, =1 +Xx-cota (7.3)
where . is the radius of the column.

The inclination of the critical surface «, which determines the geometry of the conical shell, is se-
lected using the lower bound theorem of the theory of plasticity. This theorem states that any
stress state is admissible if it is statically in equilibrium and remains below or equal to a yield crite-
rion. Therefore, the governing inclination of the conical shell is the one that gives the highest load
(Vr) for which the corresponding stress state is at the yield criterion. It should be noted that the
geometry of the conical shell is independent of the location of the tip of the furthermost flexural
crack (the critical shear crack). This assumption is supported by the observations of internal crack-
ing described in Chapter 6 where, in several cases, the lower-angled failure cracks, which are typi-
cally seen on saw-cut surfaces, did not develop from the existing cracks of flexural origin but
propagated as splitting cracks independently of them. Therefore, when the governing angle « is
such that the conical shell reaches the neutral axis closer to the column than the tip of the critical
shear crack, the failure of the conical shell is followed by opening of the previously existing critical
shear crack, as occurred, for example, on the north side of the column in specimen PE5 (Fig. 7.4(c)).
In the cases where the tip of the critical shear crack is closer to the column edge, which was a more
common case in the tests described in Chapter 6, a new failure crack develops (as for example on
the east side of the column in specimen PE5 in Fig. 7.4(d)).
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7.2 Stress-based failure model for the compression strut

Propagation of the failure crack in the region above the neutral axis is associated to very low con-
crete resistance and high brittleness (concrete subjected to triaxial tension). Therefore, the present
model does not account for the potential contribution of this zone. Also, possible shear force trans-
fer by dowel action of flexural reinforcement at the opening of the failure crack is not expected to
contribute to the maximum punching capacity of the connection. It should be noted that dowel
action of flexural reinforcement through the critical shear crack can reduce the force acting in the

compression strut. This contribution will be discussed in Section 7.3.
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Figure 7.4 (a) Conical shell in the compression strut; (b) Critical surface in the conical shell,
equilibrium of forces on a triangular sector element (positive directions shown); (c) Failure
of the conical shell followed by opening of a flexural crack, north side of the column in spec-
imen PE5; (d) Propagation of a new shear crack at failure, east side of the column in PE5

The geometry of the conical shell is influenced by the shape of the furthermost flexural crack (the
critical shear crack). This crack is assumed to extend until the neutral axis of the slab, which de-
fines the depth of the compression zone. The depth of the compression zone x of an element in
bending can be calculated, assuming a fully cracked cross-section with linear-elastic behavior of
concrete and steel and neglecting the influence of compression reinforcement, by solving an equa-
tion for x [Clel4]:

celpa| o 2E o 2E (dox)h (7.4)
E p-E o E  (pd)

c

where o/ is the average radial stress in the cross-section due to in-plane forces (compression is neg-
ative). In-plane forces may occur due to pre-stressing, but also due to edge restraints or slab conti-
nuity, as shown in Chapter 3. In isolated specimens, the in-plane forces are small and can be ne-

glected. In this case, the depth of the flexural compression zone can be found directly [Mut08b]:
x:Eupwf(h+2fi_q 7.5
E, p-E,
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Chapter 7 Punching failure model

However, shear stresses may influence the development of flexural cracks. Due to these stresses,
the critical shear crack, observed in the tests described in Chapter 6 to start developing at a dis-
tance approximately equal to d from the column edge, propagates towards the column in an in-
clined manner. In experiments, the inclination of the critical crack has been observed to be about
45° [Kin60, Mut08b]. As explained earlier, the magnitude of the stresses transferred through that
crack is assumed to be limited in the proposed model. Therefore, the force in the tension chord at a
perimeter ro=rc + d, where the critical shear crack intersects the level of tensile reinforcement, has
to be in equilibrium with compression in a narrower compression chord at r« (Fig. 7.5(a, b)). Con-
sidering that the ratio between the lengths of the perimeters (and thus the widths of the com-
pressed zone) is ro/7e, the depth of the compression zone at 7., accounting for the influence of the

inclined compression strut, can be calculated as:
x,=r/r,x (7.6)

(a) (b)
critical shear crack

/Toyw=p‘d~q~A(p~ro

Figure 7.5 (a) Increase of the depth of the compressed zone due to the influence of inclined
flexural cracks; (b) Radial forces in the tension and compression chords of a slab sector

7.2.2 Mean stresses on a vertical surface in the compression strut

In order to determine the radial horizontal force No in the compression chord, the radial force To in
the tension chord has to be calculated. This can be done with the help of the kinematic model of
Kinnunen and Nylander [Kin60] that allows calculating the load-rotation relationship of axisym-
metric isolated slabs (Eq. 4.1) (refer to the specimen PE11 that is shown as an example in Fig-
ure 7.6(a)). Due to the assumption that the deformed shape of the slab within 7o is spherical, radial
curvatures are constant in this part of the slab ( y, = -y /r, ). Using the assumption of plane sections,

the strain & at the level of tensile reinforcement can then be calculated as ¢ =y, -(d-x)
(Fig. 7.6(b)) and the stress os in the reinforcing bars as:

Y(a-x)- pE, 7.7)

o, =miny 7,
1

The value of factor g in Equation (7.7), which accounts for the reduced stiffness of the tension cord
due to the orthogonal layout of reinforcing bars, has to be consistent with the one used in calculat-
ing 1 (=0.6 as suggested by Muttoni [Mut08b] is used in the present analysis). When constant
depth of the compression zone is assumed (suitable for a cracked cross-section), stress in the radial
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7.2 Stress-based failure model for the compression strut

reinforcing bars at 7o depends linearly on slab rotation up to yielding of reinforcement. An example

of the load-reinforcement stress curve (for specimen PE11) is shown in Figure 7.6(c).
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Figure 7.6 Radial force in the tension chord: (a) load-rotation curve of specimen PE11;
(b) strains in the tension chord; (c) load-reinforcement stress curve for specimen PE11

The mean horizontal stress &, in the compression strut below the neutral axis at a cylindrical sur-

face at 7« from the center of the column can be calculated using the equilibrium equations of radial
forces and bending moments (Fig. 7.5(a)):

5 - tvpdo o-h d-h2 (7.8)
oy, x, d-x,/3

If no in-plane stress is present in the slab, Equation (7.8) can be simplified:

5, --tpdo __pdo (7.9)
r, X, X

The mean vertical stress on the same surface at 7« depends on the applied load V:

Wy V3V (7.10)

T, =
X,-2rw-r, Xx,-27-7,

where XV is the shear force carried by the dowel action of flexural reinforcing bars that will be

discussed in Section 7.3.

The average tangential compression over the critical surface (that extends up to x«) can be calculat-
ed by noting that within ro, the deformed shape of the slab is spherical and radial and tangential

stresses in the tension chord are therefore equal:

_pdo (7.11)

x!l

o, =

7.2.3 Maean stresses on the critical surface

The mean stresses on the critical surface can be calculated using the equilibrium equations of hori-
zontal and vertical forces acting on a sector of an element limited by the conical critical surface, a
cylindrical surface at r« and the slab soffit (Fig. 7.7). In addition to the forces on the cylindrical and

inclined surfaces, tangential compressive forces have to be accounted for.
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Figure 7.7 Forces acting on a sector of an element in the compression strut (positive direc-
tions are shown)

The mean normal and shear stresses on the critical surface are:

_ 2r, (_ . . o
c,=—2*2 (aosmza+rosmacosa)—a,sm2a (7.12)
o,
_ 2r, _ . . o
7, =« (-5,sinacosa +7, sza)+ o, sinacosa (7.13)
rtr
c a

Figure 7.8(a) shows the mean normal & and shear 7 stresses on the critical surface of specimen

PE11 (p =0.75%; dc =166 mm) as a function of the applied punching load V and the angle a. If the
critical surface is vertical (o = 90°), the mean shear stress 7, (on the vertical axis) increases propor-

tionally with the level of load. The mean normal stress &, = 5, (on the horizontal axis) is propor-

tional to the stresses in radial reinforcing bars os (Eq. (7.9)) and thus reaches a plateau when the
flexural reinforcement yields. For lower values of o (corresponding to flatter critical surfaces), the
normal force N. decreases and the shear force V. increases. However, because a flatter surface also
obtains a larger area, both mean stresses begin to decrease. If & — 0°, the mean value of both nor-

mal and shear stresses approaches zero (Fig. 7.8(a)).

However, it should be noted that the mean normal and shear stresses (z,,7,) and the tangential

a’”a

compression 5 do not completely describe the stress state on the critical surface. In addition, a

stress parallel to the critical surface o/is present. This stress cannot be derived from the force equi-
librium equations (Eq. (7.12) and (7.13)), because the area where this stress acts is infinitely small
and the force therefore tends to zero. Instead, it is determined using the lower bound theorem of
the theory of plasticity.

The complete state of mean stresses on a radial vertical plane on the critical surface can be repre-
sented by a Mohr’s stress circle. Mohr’s circle is a graphical representation of the stress state that
shows the relationship between the principal stresses and stresses on surfaces that are at an angle
0y from the principal stress directions (Fig. 7.8(b)).
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() 7

radial vertical plane
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Figure 7.8 (a) The mean normal and shear stresses on the critical surface depending on the
applied load V (in kN) and angle of the surface « in specimen PE11 (p = 0.75%; dc = 166 mm);
(b) two examples of the possible mean stresses on the critical surface for the same shear
force V and inclination of the critical surface (stresses in MPa)

Using the Mohr circle, the maximal and minimal principal stresses can be calculated:

5 =5, 7,521 (7.14)
sin2¢9p

E} _ 70[ . COS.ZHP +1 (715)
sin 29‘,7

where 0, is the angle between the critical surface and the direction of principal stresses acting on it

(Fig. 7.8(b)).

Examples of two of the possible stress circles are shown in Figure 7.8(b), corresponding to different

values of o but to the same stresses (5,,7,) from Figure 7.8(a). In order for the stresses to be ad-
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missible (according to the lower bound theorem of the theory of plasticity), the whole stress circle
has to be located within a yield criterion. The limit state is thus attained when the circle touches

the yield criterion at a single point.

7.2.4 Yield criteria for concrete

Several different multi-axial yield criteria have been proposed for concrete [Che82]. One of the
simplest criteria that have given realistic results in various applications of theory of plasticity is the
Mohr-Coulomb yield criterion that, as a function of principal stresses, can be expressed as:

:L_ﬁ_1<0
1-sing B

c

f(01>63) (7.16)

c

1+sing

The angle of internal friction is normally selected as ¢ = 37°. This leaves only fc as a required mate-
rial parameter. The Mohr-Coulomb yield criterion is often augmented with Rankine’s tension cut-
off criterion, which assumes that the failure occurs when the maximum principal stress reaches the

tensile strength of concrete f... Rankine’s yield surface is thus:
o, Sf;’ 70, = ct ’ O3 b ct (717)

According to the Mohr-Coulomb criterion with Rankine’s cut-off, yielding of concrete can occur
either as a sliding failure if the Mohr-Coulomb criterion governs or as a separation failure if the
Rankine’s criterion is attained first. The criteria for different concrete strengths are shown on a o-t
plane in Figure 7.9(a). The tensile strength of concrete f« is calculated with the formulas given in
Model Code 2010 [FIB2013]:

f, =03 1% for f <50MPa (7.18)
£, =212-n(1+0.1-(f, +Af)) for £ >50MPa

where Af. =8 MPa.
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Figure 7.9 Multi-axial yield criteria for concrete on o-7 plane: (a) Mohr-Coulomb criterion
with Rankine’s tension cut-off; (b) Ottosen criterion, without lateral stress; (c) Ottosen crite-
rion, with lateral stress (stresses in MPa)
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7.2 Stress-based failure model for the compression strut

The Mohr-Coulomb criterion with a tension cut-off is a three-parameter yield criterion — three ma-
terial parameters (compressive strength f, angle of internal friction ¢ and tensile strength f«) have
to be known to predict a failure in a general multi-axial stress state. It should be noted that the cri-
terion does not take into account the intermediate principal stress 02 and therefore cannot model

the influence of lateral compression.

In order to model the triaxial behavior of concrete, Ottosen [Ott77] proposed a four-parameter

yield criterion:

f(ll,Jz,cossa):aig+ﬂ,‘/72+bi—1:0 (7.19)
Jo o So o

where 1 and | are stress invariants, 2 and b are coefficients and A(cos30) is a function given as:
A=k cosEcos’l(k2 cos36)} (7.20)

where 0 is the angle of similarity k1 and k2 are additional coefficients.

Equation (7.19) constitutes a smooth and convex surface (Fig.7.9(b)) and, unlike the Mohr-
Coulomb criterion, also accounts for the influence of the intermediate principal stress (Fig. 7.9(c)).
Experiments with four different stress states are needed to calibrate the yield criterion (typical cal-
ibration uses tests with uniaxial compressive strength, uniaxial tensile strength, compressive
strength under equal biaxial stresses and triaxial compressive strength in the case where one of the
compressive stresses is smaller than the other two). However, in this thesis, all the parameters are
calculated from uniaxial compressive strength f. following an approach given in Model Code 2010
[FIB13] (refer to Appendix C). The Ottosen criterion predicts slightly lower strengths than the
Mohr-Coulomb criterion with Rankine’s cut-off in the range where the maximal principal stress is
tensile and the other principal stresses are compressive (that will be shown to be the governing

case for punching).

7.2.5 Resistance of the compression strut

According to the lower bound theorem of the theory of plasticity, the conical shell can transfer a
punching load V from the slab to the column until the stress state on a governing critical surface
(inclined at ar) is such that no Mohr’s stress circle can be found that fits within a yield criterion for
any values of 0,. Graphically, that corresponds to a case where the stresses on the critical surface

(@, 4,7, ), corresponding to (V&, ar) as shown in an example in Figure 7.8(a), are on the yield crite-

rion that is tangent to the governing stress circle. Therefore, the normal of the yield criterion at the

point (, ,,7, ,) defines the angle 26, and the magnitudes of the principal stresses.

Figure 7.10 shows the governing stress circles at failure loads for different yield criteria. Specimen

PE11 is used as an example (for that specimen, the mean stresses on the potential critical surfaces
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with varying inclinations at different load levels were shown in Fig. 7.8(a)). The Mohr-Coulomb
yield criterion (Fig. 7.10(a)) has a constant slope on o-t plane (equal to the angle of internal friction
that is usually assumed ¢ = 37° for concrete). Therefore, its normal is inclined at 53° from the hori-
zontal at every point. Due to this, the principal stresses can be directly calculated from Equa-
tions (7.14) and (7.15) and placed into the failure criterion that was given by Equation (7.16).
Graphically, the punching resistance Vz is reached for a load V for which the corresponding curve
in Figure 7.8(a) touches the Mohr-Coulomb yield criterion. If all the curves remain below the yield

criterion, flexural failure governs the strength of the specimen.
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Figure 7.10 Mohr’s stress circles (left), critical surfaces and principal stresses at maximum
loads (right) according to various yield criteria for specimen PE11: (a, b) Mohr-Coulomb;
(¢, d) Mohr-Coulomb with Rankine’s tension cut-off; (e, f) Ottosen criterion (stresses in MPa)

In the case of specimen PE11, the predicted punching failure load according to Mohr-Coulomb
yield criterion is Vz =825 kN and governing inclination of the critical surface ar where the curves
touch is 45°. Figure 7.10(b) shows the critical surface and directions of principal stresses at the edge

of the column. However, it can be noted in Figure 7.10(a) that the maximum tensile stress o1 is ap-

120



7.2 Stress-based failure model for the compression strut

proximately 5 MPa, which exceeds the uniaxial tensile strength of concrete. Therefore, if the Mohr-
Coulomb failure criterion is applied together with Rankine’s cut-off, the predicted punching

strength decreases to Vr=732kN, because the separation criterion &, < f, governs (Fig. 7.10(c)).

The inclination of the governing critical surface ar decreases but as the angle 0, between the criti-
cal surface and principal stresses is lower as well, the direction of the principal compression in the
conical shell stays similar (Fig. 7.10(d)). The mean principal compressive stress in the conical shell
is higher and the tensile stress is lower than in the case where the Mohr-Coulomb criterion is ap-
plied.

The Ottosen yield criterion provides a smooth transition between the sliding and the separation
criteria. The highest tensile stress can be reached at the hydrostatic axis (where 01=02=03) and
deviations from it (as compressive stresses perpendicular to the principal tensile direction) reduce
the capacity of concrete to withstand tensile stresses. Therefore, the maximum principal stress o1
on the critical surface at failure is lower than f:: (2.8 MPa in the case of specimen PE11) and the
predicted failure load decreases to Vr = 632 kN (Fig. 7.10(e, f)).

Table 7.1 Punching failure predictions of the proposed model with Ottosen yield criterion
(without the effectiveness factors and contribution of dowel action)

Te P B Tq Xa,R Os Oa Ta o1 Ot 03 VR, pred VRtest VR test

mm % mm mm % mm MPa MPa MPa "  Jf /i KN KN Ve

PE10 42 0.77 3000 1505 33° 82 397 085 768 147° 081 -019 -0.70 485 530 1.09
PE11 83 0.75 3000 1505 32° 79 470 111 6.86 143° 085 -025 -0.69 632 712 1.13
PE9 165 0.74 3000 1505 34° 76 538 1.64 6.72 135° 0.87 -026 -0.60 968 935 0.97
PE12 330 0.76 3000 1505 38° 71 538 176 557 12.7° 090 -032 -0.61 1320 1206 0.91
PE6 42 146 3000 1505 32° 96 285 092 733 145° 082 -024 -0.71 631 656 1.04
PE7 83 1.47 3000 1505 32° 92 355 117 740 14.0° 083 -028 -0.67 845 871 1.03
PE8 165 1.47 3000 1505 32° 89 420 156 6,55 132° 086 -035 -0.63 1201 1091 0.91
PE5 330 1.50 3000 1505 35° 87 446 1.68 546 123° 0.87 -044 -0.64 1681 1476 0.88
PE4 166 159 1700 765 38° 91 218 185 510 132° 095 -021 -0.57 952 985 1.03
PVl 166 150 3000 1505 32° 90 372 130 550 13.2° 087 -042 -0.71 1023 978 0.96
PE3 166 154 3900 1926 30° 85 471 115 611 13.0° 081 -0.51 -0.74 1039 961 0.92

7.2.6 Punching strength predictions

Similar analysis, using the Ottosen yield criterion, was performed for all the specimens presented
in Chapter 5. The main results are shown in Table 7.1. It should be noted that this calculation does
not account for the contribution of dowel action (Section 7.3) and the effectiveness factor, which
has to be included due to the assumption of plastic behavior of concrete (Section 7.4). The govern-
ing angle of the critical surface was between 30° and 38° in all the specimens, whereas the direction
of principal stresses was approximately 13° from it. The failure occurred in all the cases with prin-
cipal tension in the conical shell being between 80-90% of the uniaxial tensile strength of concrete

and principal compression about 60-70% of the uniaxial compressive strength. Comparison be-
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tween the experimental results and model predictions shows a reasonable agreement, especially
considering that only standard multi-axial strength parameters are used without any parameters
specific to punching. It can also be seen that the punching capacity of specimens with larger col-
umn sizes is slightly overestimated. Due to similar slab depths (# =250 mm; d = 210 mm), no con-

clusions can yet be made regarding the size effect.

7.3 Dowel action

In Chapter 6 of the thesis, an experimental observation was made that the direction of opening of
the critical shear crack, which separates the spherical and conical slab portions, is approximately
perpendicular to its lips. Because the opening direction of the inclined crack does not coincide with
the direction of flexural reinforcement crossing it, the increase of crack width is accompanied by
flexural deformations of rebars (Fig. 7.11(a)). Due to the bending moments appearing in the rein-
forcement, shear force Vi is transferred between the lips of the critical shear crack by the bars. In
this section, a simple method is presented to account for the contribution of dowel action of rebars
crossing through the critical shear crack, considering the influences of tensile stresses in the rein-
forcement as well as the limited magnitude of dowel displacement before a punching failure. The
dowel action of rebars through the failure crack is not considered, because it only appears when

the other shear transfer mechanisms have already lost their capacities [Fer13].

7.3.1 Dowel action of tensile reinforcement in the critical shear crack

The flexural reinforcement in slab regions above the column is subjected to tensile stresses and can
even reach yielding before a punching failure occurs. A formula for calculating the stress os in rein-
forcing bars within a radius ro from the center of the column was given by Equation (7.7). The plas-
tic flexural strength of a bar, reduced due to the stress os, may be calculated in a simplified manner

as:

M, = %3.(]; o) (7.21)
where @ is the diameter of the reinforcing bar. However, the plastic bending moment in the rein-
forcing bars may not be reached, as breakout of rebars may potentially occur due to the proximity
of the surface of the slab on the right side of the crack in Figure 7.11(a). Pressure oc4w between con-
crete and the dowel can therefore be limited by the tensile strength of the concrete around the bar.
Fernandez Ruiz et al. [Ferl0a] proposed that tensile failure of concrete will occur when the pres-

sure reaches one of the criteria:

O-c,dow — min S’UP _1, 6’ 4Cti (7'22)
S 2,

top top

where swp is the spacing of tensile reinforcing bars and ctwp is the concrete cover.
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7.3 Dowel action

Using the equilibrium equations of a free body shown in Figure 7.11(b) (a part of a dowel between
the cross-sections with maximum moment and with maximum shear force), where the flexural
strength of a rebar is calculated with Equation (7.21) and stress oc.w, assumed to be uniformly dis-
tributed, with Equation (7.22), the maximum shear force that can potentially be transferred

through dowel action of one bar can be calculated as:

¢2
Vi =5 NEA S (7.23)

which is similar to the formula suggested by Rasmussen [Ras62] as y, =k @’ [f -/ , which
assumes that the dowelling force is limited by flexural strength of the bars and the contact pressure
Ocdow X fe. The factor k in Rasmussen’s formula was calibrated on the basis of experiments, k= 1.5
has been found suitable [Ran13].
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Figure 7.11 (a) Geometry of the critical shear crack and dowel action of top reinforcement;
(b) Free body diagram of a tensile rebar between the cross-sections with zero moment and
zero shear force used to determine the dowelling force; (c) Activation of dowel action ac-
cording to the experiments of Randl [Ran07]; (d) Photo of cracks on saw-cuts associated to
activation of dowel action (specimen PE11)
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It should be noted that the Viowmx does not depend on the length of the bar section I where ocaow
acts. Therefore, a delamination crack may start developing from to the critical shear crack without
reducing the capacity of dowel action. In fact, cracking along the tensile reinforcement layer close
to the critical shear crack could be observed on the saw-cuts, indicating the dowelling of the rebars
(Figure 7.11(d)).

7.3.2 Activation of dowel action

Stress transfer through the crack by dowel action has to be accompanied by a displacement per-
pendicular to the axis of the dowel (shear slip s in Fig. 7.11(a)). The shear force calculated with
Equation (7.23) assumes that the slip is sufficient for the plastic hinges in the dowel to develop.
However, if the slip is limited, the shear force transferred by dowel action may be lower. Randl
[Ran13] has shown that the activation of dowel action can be approximated by a parabolic formula
that fits the experimental curves shown in Figure 7.11(c):
Vo = Vi | —— (7.24)
Smax

where smx is the slip corresponding to the formation of a plastic hinge in the dowel (recommended
to be taken approximately 0.10 — 0.20® according to Model Code 2010 [FIB13]).

When the inclination of the critical shear crack is assumed to be 45°, the crack slip is equal to the

horizontal crack opening wer (Fig. 7.11(a)). wer can be estimated from the reinforcement strains:

W= = (7.25)

where se is the average crack spacing, which, in a simplified manner, is taken equal to 100 mm.

Dowel action of all the rebars at a perimeter ro = + d is:

ZVdow = [)d 2z (rc +d)k : \ O-zr,de : (-f; _O-s)‘ 0 IW; (7'26)

<L top

The value of factor k in Equation (7.26) should be reduced in comparison to the corresponding fac-
tor in Rasmussen’s formula to account for the lower post-peak stresses in the case when tensile

behavior of concrete governs. In this thesis, a value of 0.6 has been found suitable.

According to Equation (7.26), no force is transferred by dowel action in the cases where flexural
reinforcement reaches yielding before a punching failure occurs. However, in more rigid slabs
with only small flexural deformations, the contribution of dowel action is reduced by the limited
slip of the reinforcing bars that cross the flexural cracks. In the intermediate cases, the shear force
carried by dowel action reduces the stresses in the compression strut. Its contribution to punching
strength, shown in the parametric analysis in Section 7.5, does not normally exceed 10% of the total
capacity (refer to Appendix E).
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7.4 Effectiveness factor and size effect

A method to predict the failure of the conical shell in the compression strut was developed in Sec-
tion 7.2 on the basis of the theory of plasticity. In that plastic approach, the material response was
assumed to be perfectly rigid-plastic with an infinitely long yielding plateau [Niell]. The actual
response of concrete in compression exhibits a softening behavior after the peak load, which gets
more brittle in the case of higher concrete strengths (Fig. 7.12(a)). In order to use the rigid-plastic
material model, the plastic concrete strength has to be reduced with respect to the measured com-

pressive strength values. In this thesis, a brittleness factor 1« [SIA13] is applied (Fig. 7.12(b)):

1/3
Jop =M Jo = [3;)] -f. (7.27)

The actual stress-strain response of concrete in tension differs even more from the assumption of
plastic material behavior. The failure occurs at a very small tensile strain and shows only limited
post-peak resistance. Therefore, the range of applicability of the theory of plasticity on concrete
structures is often limited to the cases where tensile stresses can be carried by reinforcement. How-
ever, as shown (among others) by Nielsen and Hoang [Niell], plasticity approaches can give good
estimates of actual behavior even when brittle failure of concrete governs, provided that the effec-
tiveness factor is suitably adjusted using relevant experimental results for calibration. Therefore, in
order to determine an effectiveness factor applicable in the case of punching without shear rein-

forcement, the predictions of the proposed model are subsequently compared to test results.
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Figure 7.12 Compressive response of concrete: (a) stress-strain curves for concretes of differ-
ent strength classes [ECP08]; (b) actual behavior and the assumed response in the model

7.4.1 Database of punching tests

In total, results of more than 500 punching tests have been made available [Osp11, Sib14]. Howev-
er, the majority of the experiments have been performed on very thin slabs (<100 mm) that are not
representative of real structures. For the analysis presented in this chapter, 119 test specimens have
been selected, including slabs from the test campaign presented in this thesis as well as previous

results reported in the literature.
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The set of 87 specimens used by Muttoni [Mut08b] was selected for the present study. However,
the specimens that failed at loads corresponding to the calculated flexural limit or within 5% from
that were excluded (refer to Appendix B of the thesis for the formulas for calculating the flexural
strengths of specimens). In addition, 31 recent full-scale punching tests performed at EPFL by pre-
vious researchers ([GuilOb], [Tas11], [Cle12], [Lip12]) or by the author ([Einl6a]), as well as 10
punching tests from elsewhere [Sis97] were included in the analysis. The list of the included test
campaigns is shown in Table 7.2. Figure 7.13 illustrates the range of principal parameters (effective
depth d, concrete strength f. and flexural reinforcement ratio p). All the data necessary for calcula-

tions is given in Table E.1 of Appendix E of the thesis.

Table 7.2 Database of punching tests

No. Slender no. d [mm)] p [%] fe [MPa]
Elstner and Hognestad (1956) 18 18 114-118 1.15-3.70 12.8-50.6
Kinnunen and Nylander (1960) 12 12 117-128 0.78-1.55 23.8-30.5
Moe (1961) 6 6 114 1.06-1.53 20.8-26.5
Tolf (1988) 8 8 98-200 0.34-0.81 22.6-28.2
Tomaszewicz (1993) 13 9 88-275 1.50-2.60 64.3-119
Hallgren (1996) 5 5 240-245 0.80-1.19 85.7-94.9
Ramdane (1996) 12 12 98-100 0.58-1.28 23.9-90.5
Sistonen ef al. (1997) 10 - 170-176 0.45-1.17 19.0-25.8
Guandalini et al. (2009) 4 4 130-520 0.33-1.50 27.6-34.7
Guidotti (2010) 11 11 194-208 0.75-1.62 31.5-51.7
Tassinari (2011) 2 2 210-214 0.84-1.48 66.3-67.0
Clément et al. (2012) 3 346-350 0.75-1.52 31.6-33.9
Lips et al. (2012) 4 3 193-353 1.50-1.63 30.5-36.5
Einpaul ef al. (2016) 11 10 197-218 0.74-1.59 31.1-44.1
X119 X 100
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Figure 7.13 Database of 119 punching tests used for comparisons between the model predic-

tions and experimental results (the empty markers indicate tests with distances between the

loading points and the edge of the support (rq - rc) < 4.5-d)

Applying the previously described method to the 119 tests in Table 7.2 gives an average ratio of

measured to predicted punching strengths of 1.04 with a coefficient of variation of 14.4%. It was
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noted that for the specimens with relatively small distances between the loading points and the
edge of the column, the predicted strengths were systematically lower than the experimental re-
sults (this will be further discussed and explained in Section 7.5.1). The 19 tests with (rq - rc) <4.5-d
(shown with empty markers in Fig. 7.13) were excluded from the dataset used for calibrating the
effectiveness factor. For the remaining tests, the average ratio was 1.03 and the coefficient of varia-
tion 13.7%.

7.4.2 Size effect

Brittle materials, where the failures occur by cracking, are known to exhibit size effect, according to
which a proportional decrease of all the dimensions of an element (D) leads to an increase in its
nominal resistance (on). According to the principles of fracture mechanics this can be explained by
the consideration of energy balance at crack propagation. Forming a new crack surface during the
process of failure requires energy that is provided by a release of potential energy in the uncracked
part of the element when the stress (and thus the elastic deformation) in it decreases. Consequent-
ly, the amount of released energy depends on the volume of the part of the element that is unload-
ed. Failure can only occur if that amount exceeds the energy required for crack formation. Thus,
for proportionally larger size elements, the critical energy balance is reached at lower levels of
nominal stress. Assuming linear-elastic material behavior, it can be shown that the nominal

strength o~ is inversely proportional to square root of element’s characteristic size D2 [Wan96].

In spite of a nearly linear tensile stress-strain relationship of concrete, linear-elastic fracture me-
chanics (LEFM) has failed to provide good predictions for brittle failures of concrete. Hillerborg
[Hil83] as well as Bazant [Baz84] have reasoned this with differences in the fracture process in con-
crete compared to more homogenous materials, such as steel or glass. In concrete, growth of a
crack is preceded by a fracture process zone ahead of the propagating crack tip with a length that
depends on the material parameters (according to Hillerborg’s model) or accompanied by soften-
ing of a crack band, the width of which is a material property (according to Bazant’s approach).
Both models conclude that size effect has to be less strong for smaller element sizes where the rela-
tive length of the fracture process zone, or the width of the crack band, is larger compared to the
element’s size. The strength should only approach the LEFM predictions in the case of sufficiently
large elements. On the basis of energy release analysis [Baz84], Bazant proposed a general format
for the size effect factor in the case of quasi-brittle failures:
_ oy B (7.28)

k. = =
Oy

1+—

where oo represents the plastic material strength, D is a characteristic element size, B is a constant
and Do is a reference element size that represents a transitional size between the ranges where plas-
tic behavior and LEFM govern. The reference size was assumed by BaZzant to be proportional to

maximum aggregate size but in the present thesis it is taken independent of this parameter on the
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grounds of aggregate fracturing that was observed in the experiments. Bazant [Baz84] has suggest-
ed that the constants B and Do should be determined from regression analysis of test data, as their
theoretical derivation is complex and requires many parameters whose values cannot be known
precisely. Bazant and Cao performed such analysis for punching failures [Baz87] and found values
of B =0.155 and Do =181 mm suitable. However, it should be noted that in their analysis, the nom-
inal stress was calculated using the whole depth of a cross-section so that the influence of the
amount of flexural reinforcement was neglected, as opposed to verifying the stresses in a conical

shell in the compression strut as in the present model.
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Figure 7.14 Ratios of measured to predicted punching strengths (100 specimens, without the
size effect factor k) as a function of the depth of the critical surface and a suitable fit for the
size effect factor k:: (a) linear plot (b) double-logarithmic plot

Figure 7.14(a) shows the predictions of the proposed model for 100 punching tests of slender spec-
imens (Table 7.2). The column size effect factor ke (Section 7.4.3) is taken into account in this calcu-
lation. The mean value of the ratios between the experimental punching capacities and the predic-
tions is 1.06 and the coefficient of variation 11.3%. The selected size parameter, shown in the hori-
zontal axis, is the length of the governing critical surface on a radial vertical plane (x«r /sinar),

which represents the size of the conical compression shell in which plastic behavior is assumed.

To investigate the quasi-brittle size effect factors in the format of Equation (7.28), it is convenient to
use double-logarithmic plots of nominal strength versus element size. In such plots, the LEFM size
effect factor is a straight line with a slope of —1/2, the plastic limit is a horizontal line (no influence
of size) and Equation (7.26) defines a curve that asymptotically approaches the plastic limit for
D/Do— 0 and the LEFM factor in the case of D/Do — <. Figure 7.14(b) shows the comparison be-
tween test results and model predictions in such format. The size effect function kx, selected on the

basis of the experimental results and shown with a dashed line, is:

_ 300 (7.29)
150+ x, /sinc

x

that corresponds to B =1.41 and Do =150 mm (x« is in millimeters).
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7.4 Effectiveness factor and size effect

7.4.3 Influence of column size

As suggested by the experimental results described in Chapter 6, the development of punching
failure cracks does not start concurrently on the whole column perimeter. Due to local inhomoge-
neities in concrete, stresses at some points of the column perimeter reach the local material
strength at lower levels of load than in the other points. However, the punching capacity of a slab-
column connection is not necessarily determined by the weakest point on the column perimeter.
As Sagaseta et al. [Sagl1] and Natario ef al. [Nat14] have demonstrated (for the cases of punching
of slabs with unequal reinforcement ratios in two directions and for slabs with point loads close to
linear supports, respectively), tangential redistribution of shear force may take place. This allows
redistributing the load from the failed slab sectors, where the radial shear force transfer mecha-
nism has lost all or part of its capacity, to adjacent sectors, where the capacity has not yet been
reached. Chapter 6 presented some additional experimental evidence of the appearance of such

redistribution even in nominally axisymmetric slabs.

At the moment when a slab-column connection fails in punching, some parts of the perimeter have
already exceeded their peak shear capacities. Failure cracks, that had started opening in these parts
of the perimeter, propagate tangentially to the slab sectors that have higher shear strength. This
propagation is associated to a size effect similarly to the radial crack propagation discussed in Sec-
tion 7.4.2.
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Figure 7.15 Ratios of measured to predicted punching strengths (100 specimens, without the
column size effect factor kwi) as a function of column perimeter b and a suitable fit for the
column size effect factor keor: (a) linear plot (b) double-logarithmic plot

Figure 7.15(a) shows the predictions of the proposed model as a function of the length of the col-
umn perimeter b (the factor kx for the size effect regarding the depth of the compression zone
(Eq. (7.29) is accounted for in this calculation). A decreasing trend of the predictions for increasing
column size can be clearly observed. A double-logarithmic plot in Figure 7.15(b) shows that this
trend can be approximated in the format of Bazant’s size effect law (Eq. (7.28)), but it is weaker

(less dependent on size and thus closer to the range where the plastic approach is valid):
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kcol = 36 (730)
3+D

where be is the column perimeter in meters.

Regarding the range of validity of the column size effect factor given by Equation (7.28), it should
be noted that one of the assumptions made in the development of the size effect formulation of
Bazant (Eq. (7.28)) was that the work of external forces (displacement of the load application
points) at the moment of failure is zero [Baz84]. That is the case in experiments with fixed grip

conditions where the rigidity of the testing frame significantly exceeds the rigidity of the specimen.

In order for Bazant's size effect format to be applicable for the column size effect in punching, the
tangential redistribution mechanism should be sufficiently stiff. In the vicinity of columns in two-
way slabs, bending moments are negative (hogging) in both directions. Redistribution of shear in
the tangential direction is accompanied by reduction of the tangential hogging moment. However,
the sign of both moments typically remains the same (refer to the left side in Fig. 7.16). In contrast,
close to a linear supports in one-way slabs, bending moments only act in the direction parallel to
the support. Redistribution of shear forces along a linear support after the initiation of a failure
crack will thus generate positive moments parallel to the support (refer to the right side of
Fig. 7.16). When bending moments with different signs in two perpendicular directions act in a
slab, the flexural compression zones are softened by transverse tensile strains acting in the tension
chord of the other direction, considerably decreasing the stiffness of the slab response to both mo-
ments. In addition, shear failure cracks in slender elements develop at a greater distance from the
edge of the support than punching failure cracks. Therefore, the flexural deformations associated
to shear redistribution are significantly larger in the case of one-way shear than in punching. This
increases the work of external forces which implies that more energy is available to propagate the
failure crack along the support. Lateral crack propagation in one-way elements is therefore brittle

and not significantly influenced by the element’s width.

negative tangential moment positive parallel moment
negative radial moment \\\ ? negative perpendicular moment
A !Illyl'

e AL A oo

punching failure crack shear failure crack

Figure 7.16 Redistribution of moments after the initiation of a punching failure crack in the
case of two-way action (left side) and a shear failure crack in one-way slabs (right side)

It is important to note that the column size effect shown in Figure 7.15 does not provide a transi-
tion between shear strengths of one- and two-way slabs, because the mechanism of shear redistri-
bution is markedly different in these two cases. The existence of stable crack propagation phase
along the support and the associated column size effect is instead related to the distance between

the failure crack and the support as well as the magnitude of hogging moments in the direction
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parallel to the support. In the database used for calibrating Equation (7.30), all the specimens had
columns that were sufficiently small so that the tangential redistribution mechanisms could be

considered rigid.

7.5 Parametric analysis and comparison to the CSCT and test results

In this section, the influence of various parameters on punching capacity is analyzed according to
the proposed model, the CSCT [Mut08b] and on the basis of experimental results (Table 7.2). For
all the 119 specimens, the mean value of the ratios between experimental and predicted strengths
is 1.03 and the coefficient of variation 12.4%. If 100 slender specimens are considered ((rq—
re) > 4.5-d), the mean becomes 0.99 and the coefficient of variation is 8.8%. For the remaining 19
more compact slabs, the mean is 1.23 with a coefficient of variation of 10.3%. If the tests of Elstner
and Hognestad [Els56] on thin slabs with very high reinforcement ratios are also excluded from
the comparison (discussed in Section 7.5.5), the mean predicted to measured strength ratio of the

82 tests is 1.02 and the coefficient of variation 7.6%.

7.5.1 Slab slenderness

Shear slenderness of beam specimens is known to influence their shear capacity [Kan64]. Muttoni
and Fernandez Ruiz [Mut08a], similarly to Vecchio and Collins [Vec86], have explained the de-
creased shear strength of more slender beams by larger longitudinal tensile strains the element,
which increase the opening of the critical shear crack [Mut08a], or decrease concrete strength in the
compression field [Vec86]. According to the CSCT [Mut08b], punching strength of a slab is a func-
tion of its rotation and is thus also influenced by the specimen’s slenderness, which affects the
stiffness of its flexural response. Figure 7.17(a) shows the load-rotation curves for the case of three
different slenderness ratios. The CSCT predicts the lowest punching strength for the most slender

slab, justified by the widest critical shear cracks through the theoretical compression strut.

In the proposed model, punching strength is assumed to depend on the state of stresses in the
compression strut in the vicinity of the column. The depth of the compression zone, after the for-
mation of circular cracks, is assumed to be constant and the stresses to depend on the forces in ra-
dial tensile reinforcement. After the reinforcement has yielded, the punching strength is therefore
independent of slab rotation (refer to the horizontal part of the failure criterion of the proposed
model in Fig. 7.17(a)). Before yielding, forces in the reinforcement increase with increasing slab
rotation (Eq. (7.6)), which leads to predicting that, in that range, the punching strength is higher for
slabs that have larger slenderness ratios. However, the shear force carried by dowel action (shaded
area in Fig. 7.17(a)), that contributes to the punching capacity only before yielding of reinforce-
ment, can partially compensate for the reduced strength of the compression strut due to lower hor-

izontal stresses.

Strains are not considered to influence the punching behavior due to the following reasons:
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132

— Major part of the shear force is considered to be transferred through a conical shell in the
compression strut. Tensile strains and cracking outside of the compression zone do not in-

fluence this capacity;

— Tangential and radial compressive strains measured on the soffits of slabs without shear re-
inforcement remained consistently below the strains that are associated to maximum
stresses in biaxially compressed concrete and correspond to the beginning of the reduction

of capacity due to large compressive strains (concrete crushing);

— Shifting of the rigid slab portions towards the center of the column and subsequent in-
crease of compressive strains in the compression shell, suggested by Kinnunen and
Nylander [Kin60], was not observed in test. Reduction of radial strains, measured on the

soffits of tested slabs, can instead be attributed to the development of failure cracks.
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Figure 7.17 Influence of concrete strength: (a) load-rotation curves for slabs with different
slenderness ratios and the failure criteria of the CSCT and the proposed model (shading —
contribution of dowel action); (b) tests of the present thesis (continuous lines — predictions of
the present model; dashed lines — predictions of the CSCT); (c) VRitest/Vrprea ratios for 119 tests
from the database for the proposed model; (d) an example of the failure cracks in slender
specimens (PE8) and in compact specimens (PE4)



7.5 Parametric analysis and comparison to the CSCT and test results

Figure 7.17(b) shows the punching strengths of specimens PE4, PV1 and PE3. The properties of the
specimens were similar, apart from differences in the side lengths of slabs (between 1.7 x 1.7 m and
3.9 x 3.9 m) and loading spans. The predictions of the proposed model and CSCT are also shown.
Consistently with the proposed model, the punching strengths of the slabs were very close, where-
as the predictions of the CSCT for the smallest and the largest slab differ by approximately 15%.

Comparison between the experimental results and the predictions of the proposed model in Fig-
ure 7.17(c) shows that whereas the punching strengths of more slender specimens are well predict-
ed, the model consistently underestimates the strength of more compact specimens (for slabs with
(rq— 1<) <4.5-d, the mean value of the measured to predicted strength ratios is 1.23). This can be
explained by the fact that, in compact specimens, part of the shear force can still be transferred by a
direct strut between the loading points and column even after the formation of a failure crack (re-

fer to the example of specimen PE4 in Fig. 7.17(d)).

7.5.2 Concrete strength

Experimental observations [Moe61] have shown that the punching strength of a slab-column con-
nection is not directly proportional to the compressive strength f. of the concrete in the slab. Based
on these results, empirical formulas in the codes of practice assume proportionality to the square
root [ACI14] or the cubic root of fc [CEN04]. The CSCT and the punching provisions of Model Code
2010 [FIB13], which are based on the former, define the punching strength as a function of square
root of fc but do not assume direct proportionality (refer to the dashed lines in Fig. 7.18(a)).
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Figure 7.18 Influence of concrete strength: (a) tests of Ramdane [Ram96] (continuous lines —

predictions of the present model; shaded area — contribution of dowel action; dashed lines —

predictions of the CSCT); (b) VRtest/ Vi pred ratios for 100 slender tests from the database for the
proposed model

Figure 7.18(a) shows the influence of fc on punching strength (shown as a nominal shear stress on a
control perimeter at d/2 from the edge of the column, normalized with square root of f;) and com-

pares the predictions to the test results of Ramdane [Ram96]. The earlier models where the plastic

133



Chapter 7 Punching failure model

strength of the compression strut can govern the punching capacity, such as the ones of Broms
[Bro90] as well as Shehata and Regan [She89], assume that, in this failure mode, the punching
strength is proportional to f.. According to the model proposed herein, punching failures occur due
to a triaxial stress state that is a combination of two compressive and one tensile stress, which
makes the punching capacity dependent on the combination of compressive and tensile strengths.
The influence of fc on punching strength is weaker than proportional because the increase of tensile
strength of concrete is slower than the increase of f. (refer to Eq. (7.18)). In addition, a brittleness
factor (Eq. (7.27)) is applied on the compressive strength of concrete to account for the decreased
ductility of high strength concretes that further reduces the influence of fc on punching strength. A
comparison between the predictions and the test results from the database is shown in Fig-
ure 7.18(b). It should be noted that although the brittleness factor is not limited to 1 in this analysis,
punching strengths of slabs with f. <30 MPa are not overestimated. This can be explained by the

stronger beneficial effect of biaxial compression in lower strength, more ductile concretes.

7.5.3 Effective depth

Due to the size effect (Section 7.4.2), the increase of the punching strength of a slab is not propor-
tional to the increase of the effective depth of its cross-section. Full-scale punching tests, where the
specimen’s depth is the main varied parameter and all the dimensions are kept proportional to it,
are scarce in the literature. Figure 7.19(a) shows the results of such test campaign by Tolf [Tol88].
In these tests, two slab depths, 120 and 240 mm were used. All the other geometric parameters,
including the diameters of flexural reinforcing bars (8 or 16 mm), concrete cover (12 or 24 mm) and
maximum aggregate size (16 or 32 mm) as well as the slab and column sizes were kept proportion-
al to the slab depth. The dashed lines in Figure 7.19(a), representing the CSCT predictions, show
limited influence of slab depth, as the decrease of strength due to size effect is compensated by the
increase of strength due to the larger aggregate size. The proposed model, that does not assume
dependency of punching strength on aggregate size, predicts a more significant size effect for these

specimens and fits the experimental results very well.

Figure 7.19(b) shows the predictions for three tests [Lip12, Einl6a] that have varying slab depths
(h=250 to 400 mm) and column sizes (¢ =260 to 440 mm) but constant slab sizes (B =3 m). With
increasing slab depth, the slenderness ratios of those specimens thus decrease. According to the
predictions of the CSCT, the nominal strength of these specimens is not expected to change signifi-
cantly, as decreasing slenderness compensates for the size effect. The proposed model, in contrast,
predicts the size effect to dominate. However, for d >280 mm, the slenderness ratio of the speci-
mens decreases below 4.5 in which case, as shown in Figure 7.17(c), the predictions of the pro-

posed model underestimate the actual strength.

The comparison of the model predictions to the test results, which is shown in Figure 7.19(c), high-
lights the scarcity of test data on thick but slender slabs. In total, only two punching tests on slen-

der slabs where the depth of the compression zone exceeds 200 mm are known to the author. More
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7.5 Parametric analysis and comparison to the CSCT and test results

experimental data is needed to evaluate whether the size effect factor (Eq. (7.29)) of the proposed

model is too strong and thus provides too conservative predictions for thicker specimens.

(@

V/(bydy/f.) [/MPa]

o

~

V/(bdyf) [/MPa]

—
QO
=

V/(b,d+/f.) [/MPa]

0-8 T T T T
=0.80%
0.6} A ;
04} NN ]
| p=0.35% i
021 £ _25MPa
0 1 1 1 1
0 100 200 300 400 500
d [mm]
0.8 T T T T
0.6
04F
= S~
r—r d<4.5—/ T
0.2} 1)/ .

0.8

parameters: r, = 1540 mm; r = 1505 mm;
d =210 mm; k=250 mm; f, =40 MPa;
fy =550 MPa; (Dmp =20 mm; dx =16 mm

0 1 1 1 1
0 100 200 300 400 500

d [mm]

(©

2 T T T T
15F 1
s 1y . . ;
5; 1 15 i
N
05} 1 ‘
. .

0 100 200 300 400 500
d [mm)]

parameters [Tol88]: r, = 6.354; r= 6.26d; r.=0.63d;
h= 1.2d;fy =700 MPa; (Dmp =0.084; dx =0.16d

parameters [Lip12]: r= 1500 mm; = 1505 mm;
r.=0.80d; h = d+45 mm; p = 1.50%; f, = 31 MPa;
fv =550 MPa; (Dmp =26 mm; dg =16 mm

Figure 7.19 Influence of effective depth: (a) tests of Tolf [Tol88]; (b) tests PV1 [Fer10b], PL4
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Chapter 7 Punching failure model

7.5.4 Column size

The influence of column size is accounted for in the proposed model by modifying the effective-
ness factor with a term that is a function of column size (Eq. (7.30)). This term is calibrated on the
basis of available experiments. Therefore, a comparison between the test results and the predic-
tions expectedly shows good correlation (Fig. 7.20(a, b)). In the CSCT, the influence of column size
is similar to the proposed model, although the reduction of nominal punching strength with in-
creasing column size was justified by an increase of the width of the critical shear crack (as was

further explained in Chapter 3).

7.5.5 Reinforcement ratio

The amount of flexural reinforcement (Fig. 7.21(a)) affects the punching strength mainly by chang-
ing the depth of the compression zone. This was calculated (Eq. (7.5)) by assuming linear-elastic
concrete response. In the case of high reinforcement ratios, especially in combination with relative-
ly low concrete strengths, non-linear deformations may start to occur in concrete, which can lead
to overestimated depth of the compression zone and thus overestimate the punching strength.
That may explain the apparent unconservative predictions in the case of very high values of p that
can be seen in Figure 7.21(b). However, it should be noted that all such specimens are from the test
campaign of Elstner and Hognestad [Els56] on relatively thin slabs (nominal effective depths
d =114 to 118 mm, actual values not reported) with large diameter rebars as tensile reinforcement
(19 or 25 mm) and small concrete cover (15 or 13 mm), whereas the maximum aggregate size was
25 to 38 mm. As such, these slabs did not conform to the current codes of practice [CEN04, FIB13],
which require that concrete cover of rebars be at least equal to the bar diameter in order to achieve
adequate bond. In addition, in real slabs, reinforcement ratios over 2% are uncommon. Therefore,
these specimens were kept in the database but the statistical parameters were also calculated for a
dataset where these slabs were excluded.
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7.5 Parametric analysis and comparison to the CSCT and test results

7.5.6 In-plane forces

If in-plane forces, caused for example by pre-stressing, are present in the slab, the effective depth
should be calculated by solving Equation (7.4). The increased force in the compression chord due
to on should also be accounted for in Equation (7.8). The magnitude of the in-plane forces at the
column perimeter and the slab rotation can be predicted with the axisymmetric model that was

introduced in Chapter 3.

An experimental investigation on punching of pre-stressed slabs was performed by Clément et al.
[Cle14]. Parametric analysis and a comparison to the results of this campaign are shown in Fig-
ure 7.22. Specimens of the first series of the campaign (series N) had centric in-plane compression
applied by means of an external loading frame. Three different levels of pre-stress (1.25, 2.5 and
5 MPa) were applied on slabs with two different flexural reinforcement ratios (0.79% and 1.55%).
Figure 7.22(a) shows the predictions of the proposed model (continuous lines) and the CSCT
(dashed lines) with the modifications to account for the influence of in-plane forces on the load-
rotation response, as well as on the failure criterion [Cle13, Clel4]. Both the proposed model and
the CSCT predict that the punching strength increases with increasing pre-stress levels and accord-
ing to both models, that increase is limited. In the CSCT, this limit arises from the formulation of
the failure criterion, where the maximum normalized nominal stress, corresponding to slab rota-
tion 1 =0, is 0.75. According to the proposed model, the reduction of the efficiency of high levels of
prestressing is related to a shift from a separation-governed failure mode to a sliding-type failure,
between which the applied yield criterion predicts a smooth transition. The trend of reducing effi-

ciency of prestressing is well predicted by the proposed model. However, the estimates are slightly

conservative.
(a) (b) (0)
0.8 T T T T T T T T T T T T
B p=1.64% _ =
£ 06 :
gu 0.4 " 0=0.84%
aS
=
= 02f . - . - 1
f.=44 MPa p=0.79%
0 1 1 1 1 1 1 1 1 1 1 1 1
0 2 -4 -6 -8 -10 0 1 2 3 4 5 0 2 -4 -6 -8 -10
0,5, IMPa] g m, 0,1, IMPa]

Figure 7.22 Influence of pre-stressing, specimens of Clément et al. [Cle14]: (a) slabs with dif-
ferent levels of applied edge compression without eccentricity (reference specimens PG11
[GuilOa] and PV1 [Fer10b]); (b) specimens with applied edge moments; (c) specimens with
p = 0.8%, with centric prestressing cables and with prestressing eccentricity of 55 mm (con-

tinuous lines — proposed model; dashed lines — CSCT (Clément et al. [Cle14]); parameters, if

not shown otherwise: rs = 1540 mm; r; = 1505 mm; 7. = 165 mm; d = 210 mm; & = 250 mm;
fe=35MPa; f, = 584 MPa; Pip =16 mm; dg = 16 mm)
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Chapter 7 Punching failure model

Four specimens in the campaign of Clément et al. [Cle14] (series M) investigated the influence of
positive bending moments in the slab. These moments normally arise due to the eccentricity of
prestressing cables. In series M, however, the positive (sagging) moment was applied at the edges
of the specimens with a special loading frame. The non-linear analysis presented in Chapter 3
showed that the total bending moment remains negative (hogging) in the center of the slab, but in-
plane compressive forces arise due to the restraint provided by the applied edge moments. Ac-
counting for this compression increases the depth of the compression zone and thus, according to
the proposed model, enhances the punching strength. Figure 7.22(b) shows the influence of the
applied positive moments at specimen’s edge, predicted with the proposed model and with the
CSCT [Cle14]. The predictions of both models are similar and fit the observed trends.

The three specimens of series P [Cle14] were reinforced with prestressing cables with an eccentrici-
ty of 55 mm. The effects of in-plane compression and positive bending moments were thus com-
bined. Figure 7.22(c) shows the influence of the prestressing stress according to the investigated
models. Similarly to series N (Fig. 7.22(a)), the predictions of the CSCT are limited by the maxi-
mum punching strength. The proposed model could be applied until the level of prestressing was
such that the positive moments due to eccentricity completely cancelled the negative moments due

to shear loading in the punching region.

7.5.7 Edge restraints

Ospina et al. [Osp01], and later Choi and Kim [Cho12] tested specimens with passive flexural edge
restraints that modelled actual continuous slabs, allowing for redistributions between hogging and
sagging moments. The main investigated parameters were the provided amounts of hogging and
sagging reinforcement. Although the ratios of hogging reinforcement were notably different, the
flexural response of the edge-restrained specimens did not vary as much. This can be explained by
the emergence of in-plane forces due to the confinement in the hogging moment portion of the
specimen provided by a tension ring in the sagging moment portion, as predicted by the analysis

presented in Chapter 3.

Table 7.3 Comparison between the test results of edge-restrained slabs and the predictions
of the CSCT (accounting for the compressive membrane action, failure criterion of Eq. (2.1))
as well as of the proposed model (" — cyclic tests)

CSCT Proposed
Ref. Test ‘DSOg' P :g’ VR/:T‘ /bo d\/fc Vi pred/bo d\ Ife VR,WL’SIJU a Ife
%] %] [\MPa] [NMPa] [VMPa]
[Osp01] ER1-VS 0.92 0.14 0.469 0.411 0.504
MRA" 1.06 0.31 0.345 0.433 0.531
[Chol2] MRB" 0.83 0.43 0.327 0.427 0.519
MRC” 0.58 0.57 0.335 0.409 0.537

According to the proposed model, the increase of punching strength arising from the confinement

can be predicted by accounting for the compressive in-plane stresses in the column perimeter. The
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7.6 Simplifications of the model

results of the analysis are shown in Table 7.3. The predicted strengths for all the specimens are
very similar in spite of the differences in the distribution of reinforcement. The predictions for the
tests of Choi and Kim [Cho12] are consistently higher than the measured strengths due to a cyclic
loading at 80-100% of the failure load.

7.6  Simplifications of the model

7.6.1 Constant inclination of the critical surface

According to the punching strength model proposed in this thesis, the inclination of the critical
surface a in the compression strut and the angle of principal stresses 0, relative to that surface are
defined by the state of normal and shear stresses on the critical surface where the o«-7a curve
touches a yield criterion, as was shown in Figure 7.10. In Figure 7.23(a), it can be seen that the Ot-
tosen yield criterion and the curves, that describe the mean normal (0.) and shear stresses (7.) as a
function of punching load V and a, are nearly parallel in a relatively long range. Therefore, the
angle a does not have a strong influence on the punching capacity Vk. In addition, the angle of the
principal stresses 0y, which is related to the slope of the yield criterion, does not change significant-
ly either. Thus, constant values can be selected for a and 6, without a noticeable loss of precision of
the predictions. Based on the governing values for the 119 tests in the database, a = 30° and 6 = 12°
were selected (refer to Fig. 7.23(b) and (c) for a and 0y, respectively).
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Figure 7.23 Inclination of the critical surface @ and direction of principal compression O
(a) determination of angles & and 6y; (b) governing angles ar for the 119 tests in the data-
base; (c) governing angles Oy for the 119 tests in the database
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Chapter 7 Punching failure model

7.6.2 Stress in flexural reinforcement

In the proposed model, punching strength of a slab-column connection is assumed to be a function
of the force in the tension chord of the slab. This force depends on the flexural deformations of the
slab around to the connection and increases with increasing level of load. However, after the load
reaches a level that causes yielding of radial flexural reinforcement, forces in the tension chord and

thus the punching capacity are constant.

In addition, the shear force that is transferred to the column by dowel action of tensile reinforce-
ment depends on the stresses in the rebars. An example of the evolution of punching strength as a
function of slab rotation was shown in Figure 7.17(a). As a simplification in order to avoid the need
to use iterations to determine the punching strength, stress in tensile reinforcement os can be as-
sumed to be constant at a level equal to the yield strength of reinforcing steel f, (refer to the calcu-

lation example given in Appendix D of the thesis).

Table 7.4 shows the ratios of the experimental to the predicted capacities for the 100 slender speci-
mens from the literature, using firstly the proposed model with the governing angles o and 6, cal-
culated through iterations. In the second calculation, constant angles of @ = 30° and 6 = 12° are as-
sumed. Negligible differences between the simplified and the iterated results can be seen. Finally,
the punching strengths are calculated using constant stresses in the flexural reinforcement of os = fy,
which results in slightly increased scatter of the predictions. Table E.2 in Appendix E of the thesis

lists the calculated Vrest/ Vrprea ratios for all the specimens.

Table 7.4 VR test/Vr pred ratios for the slender slabs according to the proposed model

No variable angles a=30°0=12° constant os
) mean  COV mean COV mean COV
Elstner and Hognestad [Els56] 18 0.90 7.2% 0.90 7.0% 097  12.4%
Kinnunen and Nylander [Kin60] 12 1.08 8.4% 1.08 8.4% 1.08 7.8%
Moe [Moe61] 6 1.04 9.3% 1.04 9.3% 1.05 8.8%
Tolf [Tol88] 8 1.04 5.6% 1.05 5.2% 1.11 4.4%
Tomaszewicz [Tom93] 9 1.05 6.7% 1.05 6.8% 1.06 6.5%
Hallgren [Hal96] 5 0.95 5.8% 0.95 5.9% 0.96 5.1%
Ramdane [Ram96] 12 1.03 9.1% 1.02 9.4% 1.03 9.8%
Guandalini ef al. [Gua09] 4 1.02 13.0% 1.01 13.1% 1.06 14.1%
Guidotti [GuilOb] 11 1.02 10.3% 1.02 10.2% 1.04 6.2%
Tassinari [Tas11] 2 0.97 - 0.97 - 0.99 -
Lips et al. [Lip12] 3 0.97 10.2% 0.97 10.1% 1.10 10.0%
Einpaul ef al. [Einl6a] 10 0.98 4.2% 0.99 4.4% 1.07 5.4%
¥ 100 1.00 9.0% 1.00 9.1% 1.04 9.4%
without Elstner and Hognestad 82 1.02 7.8% 1.02 7.9% 1.05 8.0%

As explained in Section 7.5.5, the proposed model overestimates the strength of the thin specimens
with very high amounts of flexural reinforcement tested by Elstner and Hognestad [Els56], possi-
bly due to the detailing of the reinforcement in these specimens, which does not conform to the

modern requirements. The mean and the coefficient of variation for the experimental to the pre-
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dicted strength ratios are thus also given for all the other specimens from the database, excluding

this campaign.

Table 7.5 Vi test/ Vi pred ratios for the slender slabs according to the CSCT [Mut08b], Model
Code 2010 [FIB13] (Level of Approximation II) and Eurocode 2 [CEN04]

No CSCT MC2010 (LoA II) Eurocode 2

) mean [€e)Y mean COV mean COV
Elstner and Hognestad [Els56] 18 0.98 7.7% 1.14 7.6% 1.17 9.5%
Kinnunen and Nylander [Kin60] 12 1.06 8.3% 1.23 8.2% 1.21 9.8%
Moe [Moeb1] 6 1.04  9.0% 124  8.8% 125  9.8%
Tolf [Tol88] 8 0.99 10.0% 1.18 9.6% 1.11 13.8%
Tomaszewicz [Tom93] 9 1.10 6.1% 1.31 5.9% 1.10 9.1%
Hallgren [Hal96] 5 0.96 3.8% 1.18 5.1% 0.97 4.2%
Ramdane [Ram96] 12 1.10 10.5% 1.44 7.5% 1.27 12.5%
Guandalini et al. [Gua09] 4 1.08 8.9% 1.29 8.9% 1.08  13.4%
Guidotti [GuilOb] 11 1.09 9.8% 1.29 9.6% 1.05 5.1%

Tassinari [Tas11] 2 1.07 - 1.27 - 1.02 -
Lips et al. [Lip12] 3 1.08 3.8% 1.21 5.1% 1.01 8.2%
Einpaul ef al. [Einl6a] 10 1.05 5.8% 1.23 7.5% 1.07 15.9%
2. 100 1.05 9.2% 1.25 10.3% 1.14 12.9%
without Elstner and Hognestad 82 1.06 9.0% 127 9.8% 113 13.5%

Table 7.5 shows experimental-to-predicted strength ratios for other punching models: the CSCT
[Mut08b], Model Code 2010 (level of approximation II) [FIB13] and Eurocode 2 [CENO04]. The
CSCT shows a low scatter (mean ratio is 1.06 and COV 9.0%). The results of Model Code 2010
punching provisions are conservative but also with a low scatter (mean 1.27 and COV 9.8%). For
the considered tests, the predictions of Eurocode 2 have clearly the largest scatter (mean 1.13 and
COV 13.5%). All the results can be found in Table E.2 in Appendix E of the thesis.

7.7 Summary

In this chapter, a new calculation model was proposed that allowed predicting the punching
strength of slab-column connections. The model assumed that the shear force is transferred from
the slab to the column by an inclined compression strut and, in a smaller part, by dowel action of
tensile reinforcement. The strength of a conical shell, located below the flexural cracks in the com-
pression strut, is predicted using the lower bound theorem of the theory of plasticity and the gen-

eral triaxial stress-based yield criterion of Ottosen [Ott77].

The proposed model assumed that punching failures occur due to crack localization in the com-
pression strut. Therefore, applying the theory of plasticity requires that relevant effectiveness fac-
tors be used on the yield stress of concrete. It is explained that in the case of punching, the effec-
tiveness factor should depend on the slab depth to account for the size effect, but it should also be
a function of column size in order to consider the propagation of the failure crack along a support
perimeter. A semi-empirical effectiveness factor is calibrated on the basis of a selection of experi-

mental results.
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Chapter 7 Punching failure model

A comparison to test results suggests that the proposed model can successfully predict the punch-
ing strength of slender specimens, where the formation of a direct strut between the load and the
support is avoided. The contribution of dowel action is shown to be up to approximately 10% of
the capacity. A simplified form of the model is also given that allows calculating the punching

strength without iterations.

The proposed model can be also used to predict the punching strength of pre-stressed slabs by
considering the influence of in-plane forces on the location of the neutral axis. Enhanced punching
strength of continuous or confined slabs can also be predicted when the magnitude of the in-plane
compression, which arises due to confinement, is calculated with the axisymmetric numerical

model described in Chapter 3.
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Chapter8 Summary and conclusions

The present thesis consisted of an analytical study on the behavior of continuous rein-
forced concrete flat slabs, an experimental campaign of punching tests on isolated specimens with
a focus on investigating the failure mechanism by means of internal measurements, and a devel-
opment of a new model for axisymmetric punching that is based on the assumption that the shear
force is mostly transferred to the column through a direct compression strut. This chapter contains
a brief summary of the achieved results, the main conclusions of the work and an outlook for fur-

ther research.

8.1 Summary

The earlier mechanical models for punching have analyzed the behavior of actual slabs by consid-
ering axisymmetric isolated slab elements limited by the points of moment contraflexure around
the slab-column connection. In the present thesis, the behavior of continuous slabs was studied on
the basis of slab portions that extend to the mid-span symmetry line of the slab. Due to the non-
linear flexural response of reinforced concrete members, caused by cracking of concrete and yield-
ing of reinforcement, redistribution between hogging and sagging moments occurs in continuous
slabs. The adopted approach allowed accounting for this effect as well as the consequent shifting
of the line of moment contraflexure. In addition, compressive membrane action may arise after
flexural cracking of continuous slabs due to restrained slab dilation, which can be provided either
by the lateral rigidity of the adjoining structural elements or by the radially uncracked sagging
moment portion of the slab itself. Comparisons of the model predictions to the results of punching
test on various edge-restrained specimens confirmed the accuracy of the model. The model, as well
as the test results, shows that due to the effect of self-confinement, even only flexural edge re-
straints can generate compressive membrane forces around the column. On the basis of the numer-
ical model, a simplified formula for calculating the load-rotation response of continuous slabs was

proposed, adapted for use together with the punching provisions of Model Code 2010.

In the experimental part of the thesis, thirteen 250 mm deep isolated punching test specimens were
tested to failure. Ten specimens had no shear reinforcement, whereas three specimens were
equipped with double-headed shear studs. The main investigated parameters were column size
and specimen slenderness ratio. The obtained punching strengths were compared to the predic-
tions calculated using the punching provisions of the major codes of practice (ACI 318, Eurocode 2
and Model Code 2010) as well as the Critical Shear Crack Theory (CSCT). In some specimens, de-
tailed investigation of the failure mechanism was conducted. Using a novel technique based on a

coordinate measuring arm, displacements of measurement points arranged in a grid pattern inside
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the specimen were tracked. This allowed following the initiation and development of internal

cracking in the vicinity of the column.

Finally, a new method was proposed to calculate the punching resistance of interior slab-column
connections. Experimental observations on the kinematics of internal cracks in two-way slabs sug-
gested that the transfer of shear stresses through the cracks of flexural origin was not significant.
According to the proposed model, punching failures are considered to occur due to localization of
a failure crack in the direct compression strut below the flexural cracks. The failure crack may then
propagate to join pre-existing flexural cracks or develop further independently of them. The criti-
cal state of in-plane and shear stresses that causes the crack localization is predicted using the low-
er bound theorem of the theory of plasticity in combination with a general triaxial yield criterion.
Because the actual behavior of concrete in the case of punching failures is brittle and not plastic,
effective values of concrete strength parameters have to be used. These values should also account
for the structural size effect that is known to affect the behavior of brittle elements. In this thesis,
the effectiveness factor was shown to depend on the slab depth and column size. The new model
can also be used to predict the punching strength of slabs with in-plane forces, such as prestressed

slabs or slabs where membrane forces are generated due to slab continuity.
8.2  Conclusions

8.2.1 Punching of continuous slabs

The size of the isolated test specimens, which corresponds to the location of moment contraflexure
points in actual slabs, is normally selected assuming linear-elastic slab behavior. A non-linear
analysis presented in this thesis shows that this location actually varies with the level of load in
continuous slabs. Together with the compressive membrane action, it may lead to a stiffer re-
sponse of the continuous slabs than has been assumed on the basis of isolated elements. According
to the CSCT, where the punching strength of slab-column connections is a function of slab rotation,

it results in increased punching capacity of actual slabs.

Especially significant differences between isolated specimens and continuous slabs appear in slabs
with low amounts of hogging reinforcement or in shear-reinforced slabs, where tensile reinforce-
ment in the vicinity of the slab-column connection reaches yielding before a punching failure oc-
curs. In continuous slabs, this leads to redistribution of bending from hogging to sagging moments
and a subsequent shift of the moment contraflexure line towards the column, which increases the
stiffness of the load-rotation response and thus the punching strength. These phenomena cannot
occur in isolated specimens and may thus lead to conservative estimates of the punching strengths

of corresponding actual slabs.

Due to the described effects, edge-restrained specimens are better suited for modeling the punch-
ing behavior of actual flat slabs than conventional isolated elements. Whereas the development of
design formulas for punching shear on the basis on tests on isolated slabs is believed to be con-

servative, the provisions for more precise calculations (such as for assessment of existing struc-
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tures) should take into account the experimental and analytical evidence obtained from tests on

slabs with flexural edge restraints.

8.2.2 Experimental investigation

The campaign of punching tests on isolated specimens with variable column sizes confirmed the
well-known observation that the nominal shear strength on a control perimeter close to the column
edge decreases with increasing column size. Despite the experimental evidence, the punching pro-
visions of ACI 318 assume constant shear strength on a control perimeter at d/2 from the column
edge for column side lengths up to 4d. In the Eurocode 2 provisions, the influence of column size is
accounted for by verifying the nominal shear stress on a control perimeter located further away (at
2d) from the column edge. However, in order to avoid decreasing the factor of safety in the case of
small column sizes, an empirical limit for the maximum nominal shear stress at the column perim-
eter has been added. Yet, comparisons between the code predictions and the test results show a
considerable scatter, in part because the punching verification of small columns in Eurocode 2 does
not account for the beneficial influence of shear reinforcement, which has been experimentally ob-

served.

The CSCT explains the reduced nominal punching strengths of larger columns by greater slab rota-
tions at load levels close to the failure and consequently increased crack widths that decrease the
capacity of concrete to carry shear stresses from the slab to the column. In the experimental cam-
paign, however, the flexural crack widths reached before punching failures occurred were not ob-
served to be significantly affected by column size, because in the case of larger columns, the slab
deformation was distributed between a larger number of cracks. Nonetheless, the CSCT provides
the best punching strength estimates of the compared models. The predictions of the Model Code
2010 punching provisions (in the level of approximation II) are based on the CSCT and thus show

similar tendencies, while being more conservative.

The influence of slab slenderness is not accounted for in the punching provisions of ACI 318 and
Eurocode 2. In the tests on isolated specimens, the slab slenderness ratio had a significant influence
on the punching capacity of slabs with shear reinforcement. However, as all these specimens failed
after yielding of flexural reinforcement, these results do not directly predict the behavior of actual
continuous slabs. Regarding the slabs without shear reinforcement tested in the present research,

the influence of slab slenderness on the punching strength was not observed to be significant.

By means of the measurements of internal cracking during punching tests, two types of cracks
could be distinguished. Propagation of flexural cracks, inclined towards the column due to the
influence of shear, could be observed around the column. However, in most cases, the eventual
punching failures did not take place along these cracks. Instead, new lower-angled failure cracks
developed. On some sides of the column in some specimens, these cracks were first detected al-
ready below 80% of the maximum load. However, on the other side of the column or in other spec-

imens, they appeared suddenly only at the moment of failure.
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Chapter 8 Summary and conclusions

8.2.3 Proposed punching model

The model for axisymmetric punching proposed in this thesis uses the theory of plasticity and as-
sumes uniform distribution of stresses in a conical shell in the compression strut around the sup-
port. In this model, the actual non-uniform stress distribution is taken into account by using the
effective values of concrete strength. The effectiveness factor is shown to be a function of the slab
depth as well as the column size. The column size effect, caused by the shear redistribution that
occurs along the support, can explain the reduction of the nominal shear strength of larger slab-
column connections that was observed in the test campaign described in the present thesis. A
comparison between the model predictions and 82 tests from the literature shows a very good

agreement (average tested-to-predicted strength ratio is 1.02 with a coefficient of variation if 7.8%).

In the proposed model, the punching strength does not directly depend on the slab rotation.
Therefore, in the case of sufficiently slender elements, where the development of a direct strut be-
tween the loading points and the support is avoided, the punching strength is not significantly
influenced by the slenderness ratio of the slab. However, more slender slabs show higher defor-

mation capacities compared to the more compact ones.

The beneficial influence of in-plane compressive stresses in the slab around the connection can be
accounted for by modifying the inclination of the compression strut. The enhanced punching
strength of continuous slabs can therefore be explained by the compressive membrane action,
which was shown to generate compressive forces in the slab even in the case of specimens with

only flexural edge restraints.

8.3 Outlook

Regarding the punching behavior of continuous slabs, it should be noted that axisymmetric geom-
etries, which were assumed in the models presented in this thesis, exist in practice only in very
rare cases. Actual slabs may have openings in the vicinity of the columns or in the confinement-
providing mid-span tension ring that, depending on their size, can restrain or completely eliminate
the influence of compressive membrane action. Furthermore, compressive membrane action due to
self-confinement appears only partly in the case of edge columns. In continuous slabs, moment
redistribution may also influence the distribution of shear forces between the columns. It might be
useful to study these effects on the basis of non-linear finite element analyses, which can be

adapted to more complex geometries.

Punching resistance under sustained or cyclic loading has not received sufficient research atten-
tion. In self-confined continuous slabs, the influence of sustained loading may be even more im-
portant due to the tensile creep of concrete in the tension ring that may reduce its stiffness and
thus increase the slab rotation around the columns. The influence of pre-existing cracks in concrete

due to previously applied loading cycles should also be further investigated.

146



8.3 Outlook

In the study of continuous slabs, the differences found between the load-rotation responses of con-
tinuous slabs and isolated specimens were especially significant in the case of using highly effi-
cient shear reinforcement. This highlighted that tests on isolated specimens might not always be
suitable for modeling the behavior of actual shear-reinforced slabs. However, tests on continuous
or edge-restrained slabs with modern shear reinforcement are extremely scarce in the literature.
More such experimental data are needed to assess the level of safety of the presently used design

approaches.

The size effect factor used in the proposed punching model was calibrated on the basis of test re-
sults from the literature. However, the majority of the experiments have been performed on slabs
that are thinner than the ones typically used in practice. Due to laboratory constraints, many of the
thicker punching test specimens have also had lower slenderness ratios. In order to validate the
applicability of proposed punching models on actual thick slabs, more punching tests should be

performed on thick but sufficiently slender specimens.

Further investigation is also needed on the redistribution of shear forces along the support in ax-
isymmetric slabs. A numerical study should be performed on the influence of tangential shear re-
distribution on the moment field and the deformations of the slab. The obtained results should be
compared to detailed experimental measurements of soffit deformations and strains at several lo-
cations along the column perimeter, possibly also to the distribution of reaction forces along the
edge of the support plate. These analyses can lead to proper assessment of slab deformations asso-
ciated to shear redistribution and allow for deriving a column size effect factor on the basis on en-
ergy balance considerations. Such approach can also be suitable for modelling the behavior of slabs
in the vicinity of wall corners, where high concentrations of shear stresses may occur, potentially

leading to an initiation of the failure cracks at relatively low levels of load.

The proposed punching model can also be extended for slabs with shear reinforcement by account-
ing for the forces in the reinforcement units that cross the critical surface. In such cases, depending
on the location and the size of the first units, the governing critical surface would be steeper and
the failure mode would shift closer to a sliding than a separation failure, which matches with the

experimental observations.

The punching model proposed in the present thesis predicts the failure of a conical shell in the
compression strut using the theory of plasticity together with a general yield criterion and a semi-
empirical effectiveness factor calibrated on the basis of experimental results. The actual mecha-
nisms of failure inside the conical shell were not studied. A more detailed numerical analysis,
which considers the micro-mechanical behavior and fracture propagation in concrete under tri-
axial stress and strain state, and more refined experimental investigation could give more infor-

mation about the actual low-level behavior of that region.
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Appendix A Punching provisions in codes

This appendix presents the formulas used for calculating the code predictions in Chap-
ter 3 of the thesis. In the present analysis, mean values are used for material strength and all the
safety factors are taken equal to one.

In all of the considered codes, punching verification is performed by comparing the nominal shear
strength of the slab vr to a nominal shear stess on a control perimeter around a column or a loaded

area v:

v="" (A1)
byd

where V'is concentrated load, bo is length of the control perimeter and d effective depth of the slab.

A.1 ACI318-14

In ACI 318-14 [ACI14], the perimeter where punching resistance is verified is located at a distance
0.5d from the column edge. In the case of square or rectangular columns, the corners of the control
perimeter do not have to be rounded. For square interior columns with ¢ <4d and normal strength

concrete, the nominal shear strength is calculated as:
Vieac =033 fel/z (A.2)

The contribution of shear reinforcement is added to a reduced value of concrete vr.. The reduction
factor is 0.5 and only shear reinforcement within a distance d from the column edge is taken into
account. For slabs with double-headed studs as shear reinforcement, the maximum punching re-

sistance is limited to twice the value obtained with Equation (A.2).

For large interior columns, the shear strength is reduced with a factor 10-4/p, ., -

A.2 Eurocode 2

According to the punching provisions of Eurocode 2 [CEN04], the nominal shear strength at a con-

trol perimeter located at a distance 2d from the edge of the loaded area is:
Viescron =018 k(100 p)" - £ 20035 k72 1, (A.3)

where p is the flexural reinforcement ratio (geometric mean of two perpendicular directions in a
strip extending to 34 on both sides of the column, taken at most 2.0%, f. is concrete cylinder com-
pressive strength [MPa] and factor £ = (1 + /200/d)g 2 (d in mm) takes into account the size effect.
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Appendix A Punching provisions in codes

An additional verification has to be performed at the edge of the loaded area, where shear stress

has to be lower than (according to an amendment of Eurocode 2 published in 2010 [CEN10]):

e
Vg, EC20d) = 0.24- (1 - 250] . f(, (A.4)

In slabs with shear reinforcement, the contribution of shear reinforcing units that are located closer
than 154 to the edge of the column is considered with an effective stress of

Foner =1.15-(250 +0.25-d) [MPa, mm] that is added to 0.75 times the resistance calculated with

Equation (A.2). According to an amendment published in 2014 [CEN14], the maximum punching
resistance of slabs with shear reinforcement is defined as kmax times the punching strength calculat-
ed with Equation (A.3) (recommended value of k. is 1.5 but higher values may be used, depend-
ing on the type and efficiency of the shear reinforcement system, if they are experimentally vali-
dated). The limitation of nominal shear stress at the edge of the column (Eq. A.4) is also applicable

for slabs with shear reinforcement.

A.3 Model Code 2010

The punching formulation of Model Code 2010 [FIB13] is based on the CSCT [Mut08]. The nominal
punching strength depends on the rotation ¢ of the slab:

1 L (A.5)
1.5+0.9-y-d k,

VR.c.cscr =

where ky, = 2/(1 +d, /dgo)z 0.75, dgo =16 mm and in the Level of Approximation II (recommended for

a typical design of new structures), slab rotation can be estimated with a simplified parabolic rela-

tionship depending on the acting moment in the column strip:

’ 3
veols. L (’”s] (A.6)
d E, \m,

K}

where 75 is the radius of an isolated slab or 0.22L in case of a continuous slab with regular span
lengths, f, and Es are the yield strength and modulus of elasticity of flexural reinforcement, respec-
tively, mr is the moment capacity of the slab and ms is the average acting moment in the column
strip for interior columns (in slabs with sufficiently regular geometry, ms can be approximated as
ms=V/8)

The contribution of shear reinforcing units located between 0.35d and d is taken into account.
Stresses in the transverse reinforcement are found by considering the strains due to flexural de-
formations. For large amounts of transverse reinforcement, the punching strength is limited to ks
times Equation (A.5). In the case of double-headed studs, kss=2.8. However, it should be noted
that the increase of punching load is smaller than ks«s because with increased load, the slab rotation

Y increases as well, thus decreasing the nominal punching strength.
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Appendix B Flexural capacities of test specimens

This appendix presents governing yield line mechanisms and formulas for calculating the

flexural capacities for some of the most common types of punching test specimens.

For round specimens supported on round columns with equal displacements applied along the
specimen edge ([Kin60], [Hal96], [Tol88], [Ram96]), flexural strength can be calculated as:

(B.1)

R,average

D
Viw =27 ——-m
’ 2b

Figure B.1 Yield line pattern for a circular specimen

For square or octagonal specimens with equal loads applied at points close to the slab edge (stati-
cally determined elements, such as [Gua09] (slabs with & =250 mm), [GuilOb], [Tas11], [Clel2],
[Lip12], [Einl6a]), the governing mechanism is attained by formation of yield lines parallel to the

level of upper-most reinforment layer:

V, =8 — " —m (B.2)
flex Z(qu + qu) R,weak
L] L]
equal force—/'. *
L] L
i:* b
b, # L
B 1

Figure B.2 Yield line pattern for a statically determined square specimen
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Appendix B Flexural capacities of test specimens

For square specimens with equal displacements applied at points close to the slab edge (statically
undetermined elements, such as specimens PG-3, PG-6 and PG-7 of Guandalini et al. [Gua(09]), the

governing mechanism has yield lines in both directions. The flexural capacity is approximately:

B

Ver 8 —————m average (B3)
T 2y by
x=c/2
H
LJ L]
] L]
equal displacement—{
L] L]
d o

P
a
&
)

J

Figure B.3 Yield line pattern for a statically undetermined square specimen

For square specimens that are supported close to the edges with corners free to lift up from the

supports, where the load is applied through a square column stub or plate in the center of the slab
(tests by [Moe61], [Tom93], [Els56]):

.c+(ﬁ_1).3}.m,mge (B.4)

1'i=‘|’bq-sin(7'z/8)

equal displacement—7!

N
o

S
N

Figure B.4 Yield line pattern for a square specimen simply supported at the edges, square
column
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Flexural capacities of test specimens

For square specimens that are supported close to the edges with corners free to lift up from the
supports, where the load is applied through a round column stub or plate (tests by [Sis97]):

8 M.chr(ﬁ_l). Blmg,. (B.5)

fe T p 4

q

x= bq~sin(n/8)

uplift of corners —

equal displacement —

JE—
(SH

o
S
J I

Figure B.5 Yield line pattern for a square specimen simply supported at the edges, round
column

In the presented formulas, the average flexural capacity of the slab is calculated as:

2 .

. P average f y
mR,average = paverage : .fy ' daverage (1 - “J (B6)

2-f,

where the effective concrete strength is calculated as 7, =7, - 1., wherey  =(30/,)" <1 takes into

account the increased brittleness of high strength concrete.

Flexural capacity in the weak direction is:

Pueat " fy
mR,wmk = pwenk : -fﬁy : di‘cak : (1 - 2 } : ] (B‘7)
cp

The reinforcement ratios are calculated as an average of the whole slab, o =%4 /B-d,,,. Or

Dok = Z A, / B-d,, ,r where z A, the total area of flexural reinforcement in the considered direction.
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Appendix C Triaxial yield criterion for concrete

This appendix presents the formulas used in Chapter 7 to predict the failure of the com-
pression zone close to the column. The four-parameter triaxial yield criterion was first developed
by Ottosen [Ott77] by fitting a smooth and convex failure surface to available test results using

membrane analogy.

The yield criterion, given in Haigh-Westergaard coordinates (hydrostatic stress &, deviatoric stress

p and angle of similarity 6 [Che82]), is formulated as:

J
f(ll,Jz,cosw):aigmﬁwi—l:o (C1)
o o o

where 1, =+/3.¢ and J, = 3/4. p? are stress invariants, 2 and b are coefficients and A(cos306) is a func-

tion given as:
A=k cos[;cosl(k2 c0s39)} (C2)

where ki and k2 are additional coefficients. f is the plastic strength of concrete that accounts for the

steeper descending branch of the stress-strain curve of concretes with f. > 30 MPa:

13
30
- _ f (C3)
Jo ( 7 J e

As the calibration tests were performed on concrete cubes, cube strength should be used as the
concrete strength fe = fean/ 0.8.

From the principal stresses 01, 02 and o3, the stress invariants can be calculated as:

I, =0, +0,+0, (C4)
s = o0 40 +(o,- o] (€5)
Jy =(oy-1,/3)o, - 1,/3)os - 1,/3) (C.6)
and the angle of similarity 0 can is:
cos30 = % (C.7)
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Appendix C Triaxial yield criterion for concrete

where the deviatoric octahedral stress o is:
N2 (C8)

Coefficients a, b, k1 and k2 in the failure criterion (Equation (C.1)) can be calibrated using results of
tests on concrete specimens with different combinations of uniaxial and multi-axial stresses. Ot-

tosen used the following types of tests:

uniaxial compressive test (01 =0; 02=0; 03 = —f; 0 = 60°);
— uniaxial tensile test (01 =fo; 02=0; 03=0; 6 =0°);
— biaxial compressive test (01 =0; 62 = —fac - fo; 03 = —f2c * fop);

— atriaxial test with stresses on the compressive meridian (o1 = 02 > 03, 0 = 60° (compression is

negative)).

The coefficient values can be determined by solving a system of Equations (C.1) and (C.2) in the
case of the afforementioned stress states with the coefficients a, 8, k1 and k2 as unknowns. Table C.1
shows their values depending on the ratio of fe/fo (fac = 1.16; (&/fep, p/fer) = (=5, 4)).

Table C.1 Coefficient values as a function of the ratio fe/fe

Setlfep a b ki k2

0.06 2.6944 5.5973 19.0831 0.9982
0.07 2.1875 4.7393 16.4548 0.9954
0.08 1.8076 4.0962 14.4863 0.9914
0.10 1.2759 3.1962 11.7365 0.9801
0.12 0.9218 2.5969 9.9110 0.9647

Model Code 2010 [FIB13] provides closed form solutions for the coefficients a, b, k1 and k2. The bi-

axial concrete strength fe. is taken as:

Joe = (1.2 - 1{;‘6’0] o (C.9)

Triaxial failure is assumed to occur at ocom = —240 MPa and and octahedral shear stress Tcom:

2 3
z,, =185-180- So +260~[f"”] —84(f"”J (C.10)
100 100 100
A parameter & is defined as:
pe V2T [ Loy T[Sy (C.11)
T[S 1
o3

166



Triaxial yield criterion for concrete

Coefficients can then be calculated as:

3.7,/ 1,
N con/ Jep
Jore] Loy L] S,

b: _ 9'Tmm/f;'p
Jore/ foo = ful 12
_hb=+2
Tcam/.f;p
(0 60°) V2
_/1(0_60)_[ T Tm,,,/ﬂp] NER b+£+ NI
=l =07)= 25 L Jofoh ), N3 N2 fadf,
3 Tmm/.f;‘p -szt/f;p \/5 Tcom/f;‘p
k=1 for 4. /2, <1/2
k, =cos{3 arctaan AR — /IJ} for 2./ >1/2
k =(2-cos@—1)- 4, +4-(1-cosé)- 4, for 4 /2, <1/2
A for 2. /4 >1/2

- cos(7/3 —1/3-arccosk, )

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)
(C.17)
(C.18)

(C.19)

In the absence of other data, tensile strength of concrete f« is calculated according to the Model

Code 2010 [FIB13]:
f, =031 if fe <50 MPa

f,=2.12-In(1+0.17) if f: > 50 MPa

(C.20)

(C.21)
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Appendix D Calculation example

This appendix gives a calculation example of the punching strength model presented in

Chapter 7 of the thesis. Specimen PE8S is selected for the example.

Input data:

column radius re =165 mm

(for square columns, radius of a round column with the same perimeter should be used)
effective depth of the slab d =214 mm

(arithmetric average of two directions)

concrete strength f. = 42.0 MPa

(cylinder compressive strength)

yield strength of reinforcing steel f, = 542 MPa

reinforcement ratio p = 1.47%

Capacity of the slab-column connection is verified for an applied punching load V' =1096 kN.

Calculation of mean stresses on the critical surface:

relative column size:

r./d =0.771

modulus of elasticity of concrete [FIB13]:

E. =10000- £ =10000- 42" = 34760MPa

modulus of elasticity of reinforcing steel is assumed to be £, = 205000MPa

relative depth of the compression zone (without accounting for the influence of the inclined

shera strut):

E 2-E .
X_E ] e Ee | 2205000 4 6147 [ 234760 11330 (7.5)
d E, p-E, 34760 0.0147-205000

the critical surface is assumed to be inclined with an angle a =30° from the horizontal.

&>

Depth of the compression zone due to influence of the inclined strut x. and the radius
where the critical surface intersects with the neutral axis r« should be calculated by solving
the system of two equations:
r,=r +x,-cot30° (7.3)
x,=rn/r,-x (7.6)
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Appendix D Calculation example

The solution of the equation system gives a parameter ka:

d+l .
g, o=Li1 Lsay3. 2Ll =1+1\/1+4£-0.339~0771+1:1.915 (D.1)
2 2 d (r/dy 2 2 0.7712

which can be used to calculate 7. and x.:

r, =k, -r, =1.915-165=316mm (D.2)
k, -1 915—
X, =—“—-.r IO 65— 87.2mm (D.3)
NE] NE]

stress in tensile reinforcement can be calculated from slab rotation (Eq. (7.7)). Alternatively,

tensile reinforcement can be assumed to be yielding:

o, = f, =542MPa (7.7)

the effectiveness factors kx and ke are:

k, = 300 :\/ 30 o962 (7.29)
* \150+x, /sina V150+87.2/sin30°
b = [ = \/ 2000 =0.944 (7.30)
3+b,, V3000+2-7-165

radial normal stress in the compression zone at 7.

d- _ ,
_Q/ K, =- 0.0147-542  _ 5 esmpa (7.9)
X 0.339-0.962-0.944

0=

shear stress in the compression zone at 7« (Viow = 0 because os = fy):

V=3V
7, = V=2V = 1096000 = 6.97MPa (7.10)

k
x,2mer, | 872:2-7-316-0.962-0.944

tangential normal stress in the compression zone within ro:

-d- . 214.
z, __pao k k., :_w:,ﬂjy\/ﬂ)a (7.11)
X ' 87.2-0.962-0.944

a

normal and shear stresses on the critical surface:

o, = 2, (Eo sin® a + 7, sin & cos a)—& sin* a =
Lt (7.12)
_ 2316 [ oses L6973 o153l o gsmpa
165+316 4 4 4
2
T, = L (—EO sin @ cos @ + 7, sin’ a)+ G, sinacosa =
r,+r, (7.13)
2316 [osee V3 607,10 0153.93 _ 7 somipa
165+316 4 4 4
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Calculation example

— principal stresses on the critical surface (angle 0, = 12° is assumed):

cos20, -1 o_
o, =0,-7, 7‘,} = 085_769% =2 .48MPa
sin 20, sin 24°

o, =0, =-21.53MPa

cos26 +1 o
5 =, -7, T 085-7.69-C0 2 35 33vpa
s1n249p sin 24°

Calculation of the stress invariants:

I, =0, +0, +0, =2.48-21.53-35.33 = —54.38MPa

1

J, :g[(o-l _0'2)2 +(O'2 _0'3)2

+(o-0, )]

= é [(2.48+ 21.53)" +(~21.53+35.33)* +(~35.33-2.48)’ ]: 366MPa’

Js :(‘71 _11/3)'(‘72 _11/3)'(0'3 _11/3):
=(2.48+54.38/3)-(~21.53+ 54.38/3)- (- 35.33 + 54.38/3) = 1206MPa*

e =2, = /3-366:15.62Mpa
N3 3

2-J .
0s30 = \/Z 2= V2 12?6 =0.448
T 15.62

oct

Calculation of the strength parameters for the triaxial yield criterion:

— concrete cube strength:
Focure = [y /0.8=42/0.8=52.5MPa

— plastic concrete cube strength:

30 1/3 30 1/3
fo=l= -f. :[—) -52.5=46.9MPa
P 1. 42

— concrete tensile strength:
£, =03-£%=03-42% =3.62MPa

— biaxial concrete compressive strength:

/, ( 46.9)
o=12-22 | f =[12-—"1.46.9 = 54.08MPa
Sore ( S 1000

1000

— concrete strength in a triaxial stress state:

o ,n = —240MPa

2 3
T com :185—180-f‘” +260- So -84 S =

2 3
:185—180~%+260~(@j —84[@) =149.1MPa

100 100

(7.14)

(7.15)

(C.4)

(C.5)

(C.6)

(C.8)

(C.7)

(C.3)

(C.20)

(C.9)

(C.9)

(C.10)
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Appendix D Calculation example

Calculation of coefficients [FIB13]:
N2-G o[ for ¥ Tem [ Loy N2-—240/46.9+149.1/46.9

h=- == =2.119
T[Sy 1 149.1/469 1
V203 V2003
oo Ftelle o 3149.1/469
- Jod fo Tul fo 54.08/46.9-3.62/42 4 oo
B 9tunlly  5qp9._ 9140469 T
S fo—fulfe T 5408/469-3.62/42
_hb-N2_21193823-V2 o
L 149.1/46.9 '
A, =[1 J V3 b+f+ 2
3 Tmm/f;‘p Tcom/f;p
L -\5-3.823+ﬁ+L:
3-149.1/46.9 \/3-149.1/46.9

ﬂ[:{z.\/g_ fc2r/frp'h Jb+ \/7 \/7 fc2r/fpp_

Bl ) St Bt/

( 5.5 5408/469- 2119] 383 V3 V/2:54.08/469

+ =13.345
\/3-149.1/46.9 54.08/46.9 ' 3 -149.1/46.9

A, /4, =7.139/13.345 = 0.535

k, :cos{3 arctaan A A — /IJ}*COS{?) arctan[Z 0.535—- I/IJ} 0.9927

A, 7.139
= = =13.357
cos(7/3—1/3-arccosk,) cos(z/3—1/3-arccos 0.9927)

A=k, cosE cos ' (k, cos 39)} =13.357 'cosE cos ' (0.9927 .0.448)} =12.453

The yield criterion is:

J V
f(]l,Jz,cosw):aimﬁmiq_ 366 366 >4.38

fo fo Sy

The load V' =1096 kN is therefore very close to the yield criterion.
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(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.17)

(C.19)

(C.2)

+12.453. ——-3.823.——-1=-0.003~ 0
46.9 46.9



Appendix E Database of punching tests

This appendix presents the main properties of the specimens in the database that was
used to validate the punching model described in Chapter 7. The main properties of the speci-
mens are shown in Table E.1, a comparison between the experimental results and the model

predictions are shown in Table E.2.

Table E.1 Main parameters of the specimens in the punching test database (specimen
type and dimensions bg and bq2 — refer to the figures in Appendix B)

Series Specimen h d c de sr’:;;" B bg1 bq2 fe dg fy o @ Vrtest \//\/;;esr
ex
mm mm mm mm ype mm mm mm Mpa mm Mpa % mm kN
[Els56]  A-1a 152 118 254 - (B.4) 1829 763 - 141 25 332 115 19 303  0.81
A-1b 152 118 254 (B4) 1829 763 - 253 25 332 115 19 365 0.91
A-1c 152 118 254 - (B4) 1829 763 - 291 25 332 115 19 356 0.88
A-1d 152 118 254 (B4) 1829 763 - 369 25 332 115 19 351 086
A-le 152 118 254 (B.4) 1829 763 - 203 25 332 115 19 35 090
A-2a 152 114 254 (B4) 1829 763 - 137 25 321 247 25 334 056
A-2b 152 114 254 (B4) 1829 763 - 195 25 321 247 25 400 0.60
A-2c 152 114 254 - (B4) 1829 763 - 375 25 321 247 25 467 063
A-7b 152 114 254 (B.4) 1829 763 - 219 25 321 247 25 512 071
A-3a 152 114 254 (B4) 1829 763 - 128 25 321 370 25 356 0.53
A-3b 152 114 254 (B4) 1829 763 - 226 25 321 370 25 445 048
A-3c 152 114 254 - (B4) 1829 763 - 266 25 321 370 25 534 055
A-3d 152 114 254 (B4) 1829 763 - 346 25 321 370 25 547 053
A-5 152 114 356 (B4) 1829 763 - 278 25 321 247 25 534 073
A-6 152 114 35 - (B4) 1829 763 - 251 25 321 370 25 498  0.51
B-9 152 114 254 - (B4) 1829 763 - 439 38 341 200 22 505 0.76
B-11 152 114 254 (B.4) 1829 763 - 135 38 409 300 25 329 046
B-14 152 114 254 (B4) 1829 763 - 506 38 325 300 25 578 0.63
[Kin60]  IA15a-5 149 117 - 150 (B.1) 1840 818 - 255 32 441 079 12 255  0.81
|1A15a-6 151 118 - 150 (B.1) 1840 818 - 249 32 454 078 12 2715 085
|1A15b-9 150 117 - 150 (B.1) 1840 818 - 247 32 446 121 12 2715 059
|1A15b-10 1% 117 - 150 (B.1) 1840 818 - 247 32 448 121 12 215 059
|1A15¢-11 153 121 - 150 (B.1) 1840 818 - 305 32 436 102 12 333 078
|1A15¢-12 154 122 - 150 (B.1) 1840 818 - 294 32 439 101 12 332 077
|1A30a-24 158 128 - 300 (B.1) 1840 780 - 251 32 455 096 12 430 0.89
1A30a-25 154 124 - 300 (B.1) 1840 780 - 238 32 451 099 12 408 088
|1A30b-28 151 119 - 300 (B.1) 1840 780 - 246 32 437 155 12 368 0.60
|1A30b-29 151 119 - 300 (B.1) 1840 780 - 246 32 445 155 12 M7 067
1A30c-30 151 120 - 300 (B.1) 1840 780 - 286 32 436 148 12 490 0.80
1A30c-31 151 119 - 300 (B.1) 1840 780 - 286 32 448 150 12 539 087
[Moe61]  S2-60 152 114 25 (B4) 1829 763 - 221 38 399 153 16 356 0.64



Appendix E Database of punching tests

$1-70 152 114 254 (B4) 1829 763 - 245 38 483 106 16 392 0.81
S5-60 152 114 203 (B4) 1829 789 - 222 38 399 106 16 343 088
S5-70 152 114 203 (B4) 1829 789 - 230 38 483 106 16 378 0.81
R2 152 114 152 (B4) 1829 814 - 265 10 328 138 16 311 076
M1A 152 114 305 - (B4) 1829 738 - 208 38 481 150 19 433 0.66
[Tol88]  S2.1 240 200 - 250 (B.1) 2540 1128 - 239 32 657 080 16 603 046
S22 240 199 - 250 (B.1) 2540 1128 - 226 32 670 080 16 600 045
S2.3 240 200 - 250 (B.1) 2540 1128 - 250 32 668 034 16 489  0.80
S2.4 240 197 - 250 (B.1) 2540 1128 - 238 32 664 035 16 444 073
S1.1 120 100 - 126 (B.1) 1270 564 - 282 16 706 080 8 216 0.60
$1.2 120 99 - 125 (B1) 1270 564 - 226 16 701 081 8 194  0.56
$1.3 120 98 - 125 (B1) 1270 564 - 263 16 720 035 8 145  0.89
S14 120 99 - 125 (BA) 1270 564 - 248 16 72 034 8 148 0.93
[Tom93]  NDG5-1-1 320 275 200 (B.4) 3000 1150 - 643 16 500 1.50 25 2050 045
ND65-2-1 240 200 150 - (B4) 2600 1025 - 702 16 500 1.70 20 1200 045
ND95-1-1 320 275 200 - (B4) 3000 1150 - 837 16 500 150 25 2250 048
ND95-1-3 320 275 200 @ - (B4) 3000 1150 - 899 16 500 250 25 2400 0.32
ND95-2-1 240 200 150 - (B4) 2600 1025 - 882 16 500 1.70 20 1100 0.41
ND95-2-1D 240 200 150 - (B4) 2600 1025 - 86.7 16 500 1.70 20 1300 048
ND95-2-3 240 200 150 - (B4) 2600 1025 - 895 16 500 260 20 1450 0.37
ND95-2-3D 240 200 150 - (B4) 2600 1025 - 803 16 500 260 20 1250 0.32
ND95-2-3D+ 240 200 150 - (B4) 2600 1025 - 980 16 500 260 20 1450 0.36
ND95-3-1 120 88 100 - (B4) 1500 500 - 8561 16 500 1.80 12 330 0.51
ND115-1-1 320 275 200 - (B.4) 3000 1150 - 112 16 500 150 25 2450 0.52
ND115-2-1 240 200 150 - (B4) 2600 1025 - 119 16 500 170 20 1400 0.51
ND115-2-3 240 200 150 - (B4) 2600 1025 - 1081 16 500 260 20 1550 0.39
[Hal96]  HSCO 240 200 - 250 (B.1) 2540 1138 - 891 18 643 080 16 965 0.70
HSC 1 245 200 - 250 (B.1) 2540 1138 - 913 18 627 080 16 1021 0.76
HSC 2 240 194 - 250 (B.1) 2540 1138 - 857 18 620 082 16 889  0.69
HSC 4 240 200 - 250 (B.1) 2540 1138 - 916 18 596 119 20 1041 0.5
N/HSC 8 242 198 - 250 (B.1) 2540 1138 - 949 18 631 080 16 944 0.7
[Ram96] 1 1256 98 - 150 (B.1) 1700 611 - 784 10 550 058 12 224 0.6
2 1256 98 - 150 (B.1) 1700 611 - 499 10 550 058 12 212 0.82
3 125 98 - 150 (B.1) 1700 611 - 239 10 550 058 12 169  0.68
4 125 98 - 150 (B.1) 1700 611 - 522 10 550 058 12 233  0.90
6 126 98 - 150 (B.1) 1700 611 - 9.5 10 550 058 12 233  0.89
12 126 98 - 150 (B.1) 1700 611 - 536 10 550 128 12 319  0.59
13 125 98 - 150 (B.1) 1700 611 - 387 10 550 128 12 297 0.56
14 125 98 - 150 (B.1) 1700 611 - 540 10 550 128 12 341 063
16 1256 98 - 150 (B.1) 1700 611 - 874 10 550 128 12 362 0.65
21 125 98 - 150 (B.1) 1700 611 - 372 20 650 128 12 286 047
22 125 98 - 150 (B.1) 1700 611 - 748 20 650 128 12 405 063
23 125 100 - 150 (B.1) 1700 611 - 501 20 650 087 10 341 074
[Sis97] L1 197 172 - 202 (B5) 1770 684 - 2568 16 621 046 10 503 0.73
L2 201 176 - 202 (B5) 1770 684 - 258 16 621 045 10 537 0.76
L3 198 173 - 201 (B5) 1770 685 - 258 16 621 045 10 530 0.77
L4 197 170 - 402 (B5) 1970 684 - 258 16 612 067 12 686  0.65
L5 199 172 - 399 (B5) 1970 686 - 258 16 612 066 12 696 0.65
L6 202 175 - 406 (B5) 1970 682 - 258 16 612 065 12 799 0.73
L7 204 177 - 201 (B5) 1970 785 - 190 16 586 064 12 478 054
L8 205 174 - 899 (B5) 2470 686 - 190 16 576 116 16 1111 054
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L9 203 172 - 897 (B5) 2470 687 - 190 16 576 117 16 1107 055
L10 204 173 - 901 (B5) 2470 685 - 190 16 576 116 16 1079 0.53
[Gua09] PG-1 250 210 260 - (B2) 3000 470 1250 276 16 573 150 20 1023 0.49
PG-3 500 456 520 @ - (8.3) 6000 960 2320 324 16 520 033 16 2183 0.5
PG-6 1256 96 130 - (B3) 1500 235 625 347 16 526 150 14 238 053
PG-7 125 100 130 - (B3) 1500 235 625 347 16 550 075 10 241 0.89
[Gui10b] PG11 250 208 260 @ - (B2) 3000 470 1250 315 16 570 075 16 763  0.66
PG19 250 206 260 @ - (B2) 3000 470 1250 462 16 510 078 16 860  0.80
PG20 250 201 260 (B2) 3000 470 1250 517 16 551 156 20 1094 0.53
PG23 250 199 260 (B2) 3000 470 1250 410 32 510 081 16 839 081
PG24 250 194 260 (B.2) 3000 470 1250 398 32 551 162 20 1102 057
PG25 250 203 260 (B2) 3000 470 1250 45.0 8 510 079 16 935 0.89
PG26 250 204 260 (B.2) 3000 470 1250 41.0 8 551 154 20 1175 057
PG27 250 200 260 (B2) 3000 470 1250 449 16 510 080 16 900  0.87
PG28 250 202 260 (B.2) 3000 470 1250 433 16 551 156 20 1098 0.54
PG29 250 203 260 (B2) 3000 470 1250 397 32 510 079 16 854 081
PG30 250 201 260 (B2) 3000 470 1250 366 32 551 156 20 1049  0.52
[Tas11]  PT22 250 214 260 (B2) 3000 470 1250 670 16 552 084 16 989  0.73
PT31 250 210 260 (B.2) 3000 470 1250 663 16 540 148 20 1433 0.66
[Cle12]  PF21 409 350 220 - (B2) 3000 470 1250 316 16 541 075 20 1838 0.58
PF22 405 346 220 (B2) 3000 470 1250 339 16 520 152 26 2007 0.36
PF23 405 350 440 (B2) 3000 470 1250 323 16 541 075 20 2685 0.85
[Lip12] PL1 250 193 130 (B2) 3000 535 1315 362 16 583 163 20 682  0.37
PL3 250 197 520 (B2) 3000 340 1120 365 16 583 159 20 1324 055
PL4 320 267 340 (B2) 3000 430 1210 305 16 531 158 26 1625 045
PL5 400 353 440 (B2) 3000 380 1160 319 16 580 150 26 2491 035
[Ein16a] PE10 250 210 - 83 (B2) 3000 559 1339 404 16 538 077 16 530 051
PE11 250 215 - 166 (B2) 3000 517 1297 375 16 538 075 16 712 064
PE9 250 218 - 330 (B2) 3000 435 1215 441 16 538 074 16 935 074
PE12 250 212 - 660 (B2) 3000 270 1050 376 16 538 076 16 1206 0.80
PE6 250 215 - 83 (B2) 3000 559 1339 384 16 542 146 20 656 0.33
PE7 250 213 - 166 (B2) 3000 517 1297 425 16 542 147 20 871 042
PE8 250 214 - 330 (B2) 3000 435 1215 420 16 542 147 20 1091 048
PES 250 210 - 660 (B2) 3000 270 1050 367 16 542 150 20 1476 0.54
PE4 250 197 260 (B2) 1700 100 600 351 16 517 159 20 985 0.38
PV1 250 210 260 (B2) 3000 470 1250 311 16 709 150 20 978 0.38
PE3 250 204 260 (B2) 3900 470 1700 342 16 517 154 20 961 048
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Table E.2 Main parameters of the specimens, predicted contribution of dowel action to
the punching strenght and comparison of the experimenal capacities to the predictions
of the proposed model, CSCT, Model Code 2010 (LoA II) and Eurocode 2

f d VR test /VR pred
Series  Specimen (I’q/;rc) ’ reld P /VZZ‘:} proposed  constant  constant o MC2010 .,
' model aand 6, s (LoA 1)
Mpa mm %
[Els56] A-1a 6.0 141 118 137 115 0% 0.98 0.97 0.97 0.99 1.19 1.13
A-1b 6.0 253 118 137 115 0% 0.92 0.91 0.91 0.99 1.16 1.12
A-1c 6.0 291 118 137 115 0% 0.88 0.88 0.88 0.93 1.08 1.04
A-1d 6.0 369 118 137 1.15 0% 0.86 0.86 0.86 0.86 0.99 0.95
A-1e 6.0 203 118 137 115 0% 0.99 0.97 0.97 1.04 1.22 117
A-2a 6.2 137 114 142 247 4% 0.92 0.92 1.04 0.99 1.16 1.10
A-2b 6.2 195 114 142 247 3% 0.94 0.94 1.00 1.02 1.19 117
A-2c 6.2 375 114 142 247 0% 0.82 0.82 0.82 0.91 1.07 1.10
A-7b 6.2 279 114 142 247 1% 1.03 1.03 1.05 1.12 1.31 1.33
A-3a 6.2 128 114 142 370 6% 0.92 0.91 1.25 1.04 1.23 1.20
A-3b 6.2 226 114 142 370 5% 0.88 0.87 0.99 1.01 1.15 1.24
A-3c 6.2 266 114 142 370 5% 0.97 0.97 1.07 113 1.28 1.41
A-3d 6.2 346 114 142 370 4% 0.87 0.88 0.93 1.04 117 1.33
A-5 6.1 278 114 199 247 0% 0.91 0.91 0.91 0.98 1.15 1.19
A-6 6.1 251 114 199 370 5% 0.78 0.79 0.89 0.89 1.01 1.15
B-9 6.2 439 114 142 200 0% 0.87 0.86 0.86 0.93 1.09 1.13
B-11 6.2 135 114 142 3.00 7% 0.85 0.85 1.20 0.92 1.09 1.09
B-14 6.3 506 114 142 3.00 0% 0.83 0.83 0.83 0.91 1.06 1.23
[Kin60] |1A15a-5 7.0 255 117 064 0.79 0% 1.07 1.07 1.07 1.03 1.20 1.15
|1A15a-6 6.9 249 118 064 0.78 0% 1.16 1.16 1.16 1.10 1.29 1.23
1A15b-9 7.0 247 17 064 1.21 0% 1.03 1.03 1.03 0.99 1.15 1.08
1A15b-10 7.0 247 117 064 1.21 0% 1.03 1.03 1.03 0.99 1.15 1.08
1A15¢-11 6.8 305 121 062 1.02 0% 1.14 1.14 1.14 1.10 1.28 1.22
1A15¢-12 6.7 294 122 061 1.01 0% 1.14 1.15 1.15 1.10 1.28 1.22
1A30a-24 6.1 251 128 117 0.96 0% 1.08 1.07 1.07 1.07 1.24 1.27
1A30a-25 6.3 238 124 121 099 0% 1.08 1.07 1.07 1.08 1.25 1.27
1A30b-28 6.6 246 119 126 155 2% 0.88 0.88 0.90 0.89 1.04 1.05
1A30b-29 6.6 246 119 126 155 3% 0.99 0.99 1.02 1.01 1.18 1.19
1A30c-30 6.5 286 120 125 148 0% 1.10 1.10 1.10 1.12 1.31 1.33
1A30c-31 6.6 286 119 126 150 0% 1.22 1.22 1.22 1.24 1.45 1.47
[Moe61]  S2-60 6.2 221 114 142 153 1% 0.91 0.91 0.92 0.89 1.06 1.10
S1-70 6.2 245 114 142 1.06 0% 1.06 1.06 1.06 1.02 1.23 1.32
S5-60 6.4 222 114 113 1.06 0% 1.09 1.09 1.09 1.07 1.26 1.30
S5-70 6.4 230 114 113 1.06 0% 1.19 1.19 1.19 113 1.35 1.42
R2 6.7 265 114 085 1.38 0% 0.99 0.98 0.98 1.13 1.35 1.12
M1A 59 208 114 170 150 5% 0.99 0.99 1.08 0.99 1.20 1.26
[Tol88] S2.1 5.6 239 200 063 0.80 9% 0.96 0.97 1.08 0.88 1.04 0.95
S22 57 226 199 063 0.80 9% 0.98 0.99 1.12 0.91 1.06 0.97
S2.3 5.6 250 200 063 034 0% 1.09 1.09 1.09 0.94 1.14 1.01
S24 57 238 197 063 035 0% 1.02 1.02 1.02 0.88 1.07 0.95
S1.1 5.6 282 100 0.63 0.80 8% 1.05 1.06 1.16 1.1 1.30 1.29
S1.2 57 226 99 063 081 9% 1.04 1.05 117 1.10 1.29 1.26
S1.3 58 263 98 064 035 0% 1.09 1.08 1.08 1.03 1.24 1.21
S14 5.7 248 99 063 034 0% 1.13 1.13 1.13 1.07 1.29 1.25
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[Tom93]  NDG5-1-1 4.0 643 275 046 150 7% 1.29 1.28 1.29 1.15 1.39 1.15
ND65-2-1 49 702 200 048 170 8% 1.12 1.12 1.16 1.14 1.37 1.09
ND95-1-1 4.0 837 275 046 150 7% 1.28 1.29 1.25 1.14 1.40 1.15
ND95-1-3 4.0 899 275 046 250 7% 1.14 1.15 1.09 1.08 1.23 1.09
ND95-2-1 49 882 200 048 170 7% 0.94 0.95 0.96 0.96 1.16 0.92
ND95-2-1D 49 86.7 200 048 170 7% 1.12 1.12 1.14 1.14 1.38 1.10
ND95-2-3 5.0 895 200 048 260 8% 1.08 1.09 1.08 117 1.33 1.15
ND95-2-3D 5.0 803 200 048 260 8% 0.97 0.97 0.98 1.05 1.20 1.03
ND95-2-3D+ 5.0 980 200 048 260 8% 1.05 1.06 1.04 1.12 1.29 1.1
ND95-3-1 54 861 88 072 180 5% 0.97 0.97 1.01 1.07 1.36 1.29
ND115-1-1 40 1120 275 046 150 7% 1.28 1.32 1.22 1.10 1.39 1.14
ND115-2-1 49 1190 200 048 170 7% 1.10 1.12 1.1 1.08 1.34 1.06
ND115-2-3 50 1081 200 048 260 8% 1.09 1.10 1.07 1.15 1.33 1.15
[Hal96]  HSC O 58 89.1 200 063 080 0% 0.97 0.97 0.97 0.97 1.20 0.98
HSC 1 5.8 913 200 063 080 0% 1.03 1.03 1.03 1.02 1.26 1.03
HSC 2 5.9 857 194 064 082 0% 0.94 0.94 0.94 0.95 1.17 0.96
HSC 4 5.8 916 200 063 119 3% 0.87 0.87 0.90 0.92 1.10 0.92
N/HSC 8 5.8 949 198 063 0.80 0% 0.95 0.95 0.95 0.95 1.17 0.96
[Ram96] 1 6.3 784 98 077 058 0% 0.90 0.89 0.89 0.92 1.28 1.04
2 6.3 499 98 077 058 0% 0.96 0.93 0.93 1.00 1.37 1.15
3 6.2 239 98 077 058 0% 1.01 1.00 1.00 1.02 1.36 117
4 6.3 522 98 077 058 0% 1.04 1.02 1.02 1.09 1.49 1.24
6 6.3 9.5 98 077 058 0% 0.90 0.90 0.90 0.91 1.28 1.04
12 6.3 536 98 077 128 0% 1.02 1.02 1.02 1.16 1.47 1.30
13 6.3 387 98 077 128 5% 1.05 1.05 1.10 1.22 1.53 1.35
14 6.3 540 98 077 128 0% 1.09 1.09 1.09 1.23 1.56 1.38
16 6.3 874 98 077 128 0% 0.99 1.00 1.00 1.08 1.42 1.25
21 6.3 372 98 077 128 8% 0.99 0.99 1.08 112 1.37 1.31
22 6.4 748 98 077 128 3% 1.1 1.1 1.14 1.19 1.51 147
23 6.2 501 100 075 087 0% 1.24 1.24 1.24 1.23 1.61 1.56
[Sis97] L1 3.7 258 172 059 046 7% 1.26 1.25 1.34 1.08 1.45 1.27
L2 3.6 258 176 057 045 7% 1.32 1.31 1.40 112 1.50 1.32
L3 37 258 173 058 045 7% 1.34 1.32 1.4 1.14 1.53 1.34
L4 37 258 170 118 067 7% 1.10 1.09 1.17 1.05 1.40 1.28
L5 3.7 258 172 116 066 7% 1.12 1.10 1.18 1.06 1.41 1.28
L6 3.6 258 175 116 065 7% 1.25 1.23 1.33 1.18 1.57 1.43
L7 42 190 177 057 064 7% 1.17 117 1.29 1.06 1.33 1.14
L8 3.6 190 174 258 116 9% 1.1 1.08 1.39 1.10 1.50 1.26
L9 3.6 190 172 261 117 9% 1.1 1.09 1.40 1.12 1.52 1.28
L10 3.6 190 173 260 116 9% 1.08 1.05 1.36 1.08 1.47 1.23
[Gua09] PG-1 6.4 2716 210 079 150 9% 1.07 1.07 1.22 1.18 1.33 1.08
PG-3 5.7 324 456 073 033 0% 1.10 1.10 1.10 1.02 1.38 0.92
PG-6 7.1 347 9% 086 150 0% 0.86 0.87 0.87 0.98 112 1.07
PG-7 6.8 347 100 083 075 0% 1.04 1.04 1.04 1.13 1.33 1.27
[Gui10b] PG11 6.4 315 208 080 075 2% 0.98 0.98 1.00 1.01 1.23 0.98
PG19 6.5 46.2 206 080 078 0% 0.95 0.95 0.95 1.03 1.25 0.97
PG20 6.7 517 201 082 15 6% 0.89 0.89 0.94 1.06 1.20 0.98
PG23 6.7 410 199 083 081 0% 1.00 1.00 1.00 0.98 117 1.03
PG24 6.9 398 194 085 162 7% 1.05 1.04 1.13 1.1 1.26 1.13
PG25 6.6 450 203 082 079 0% 1.06 1.06 1.06 1.23 1.53 1.09
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PG26 6.6 410 204 081 154 7% 1.05 1.05 1.13 1.32 1.48 1.12
PG27 6.7 449 200 083 080 0% 1.03 1.03 1.03 1.13 1.38 1.07
PG28 6.6 433 202 082 15 7% 0.96 0.96 1.03 1.13 1.27 1.04
PG29 6.6 397 203 082 079 0% 1.02 1.02 1.02 0.99 1.18 1.04
PG30 6.7 366 201 082 156 7% 1.00 1.00 1.09 1.04 1.18 1.06
[Tas11]  PT22 6.3 67.0 214 077 084 0% 0.89 0.89 0.89 0.94 1.16 0.91
PT31 6.4 663 210 079 148 5% 1.04 1.04 1.08 1.19 1.38 1.13
[Cle12]  PF21 3.9 316 350 040 075 7% 1.31 1.31 1.43 1.13 1.30 1.10
PF22 3.9 339 346 040 152 8% 1.15 1.15 1.33 1.05 1.12 0.94
PF23 35 323 350 080 075 7% 1.45 1.44 1.54 1.29 1.53 1.36
[Lip12] PL1 74 362 193 043 163 9% 0.90 0.91 1.04 1.04 1.14 0.91
PL3 6.0 365 197 168 159 8% 0.92 0.92 1.04 1.09 1.26 1.06
PL4 48 305 267 081 158 8% 1.08 1.08 1.23 1.12 1.23 1.06
PL5 35 319 353 079 150 8% 1.10 1.10 1.28 1.00 1.08 0.99
[Ein16a] PE10 7.0 404 210 020 077 6% 0.98 1.00 1.07 0.92 1.1 1.19
PE11 6.6 375 215 039 075 4% 1.08 1.09 1.13 1.05 1.28 0.96
PE9 6.1 41 218 076 074 0% 1.00 1.00 1.00 1.04 1.28 1.01
PE12 55 376 212 15 076 0% 1.02 1.02 1.02 1.10 1.39 1.1
PE6 6.8 384 215 019 146 8% 0.96 0.97 1.15 0.99 1.10 1.50
PE7 6.7 425 213 039 147 7% 0.98 0.99 1.09 1.07 1.20 0.93
PE8 6.3 420 214 077 147 6% 0.93 0.93 1.00 1.05 1.19 0.98
PES 5.6 36.7 210 157 150 8% 0.98 0.98 1.08 1.12 1.31 1.10
PE4 3.0 351 197 084 159 8% 1.00 0.98 1.07 0.98 112 1.08
PV1 6.4 311 210 079 150 1% 0.94 0.94 1.13 1.08 1.20 0.99
PE3 8.6 342 204 081 154 6% 0.97 0.96 1.02 1.12 1.29 0.97
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