
Real-Time High-Accuracy 2D Localization with Structured Patterns

Lukas Hostettler1, Ayberk Özgür1, Séverin Lemaignan1,2, Pierre Dillenbourg1 and Francesco Mondada2

Abstract— Building over algorithms previously developed for
digital pens, this article introduces a novel 2D localization
technique for mobile robots, based on simple printed patterns.
This method combines high absolute accuracy (below 0.3mm),
unlimited scalability, low computational requirements (the pre-
sented open-source implementation runs at above 45Hz on a
low-cost microcontroller) and low cost (below ¤30 per device
at prototype stage). The article first presents the underlying
algorithms and localization pipeline. It then describes our
reference hardware and software implementations, and finally
evaluates the performance of this technique for mobile robots.

I. INTRODUCTION

Localization, namely to know the pose of a mobile robot

with respect to the environment, is a fundamental problem

in robotics. Indoor localization in particular has to deal

with specific constraints: besides the absence of a ubiqui-

tous technology such as GPS, indoor localization typically

requires relatively high precision (often at a centimeter-scale

or below) and needs to deal with the presence of numerous

occlusion sources (including dynamic ones such as humans).

Other common concerns when deciding for a localization

technique include the severity of deployment requirements

in the environment (e.g. beacons, ceiling cameras), compu-

tational efficiency (e.g. real-time operation), power usage,

cost, end-user friendliness for long-term deployment and

scalability with respect to the number of robots.

Following these lines, we frame our work to the context

of an indoor environment where one or many mobile robots

move on their own on flat surfaces. External agents (e.g.

humans) are expected to closely interact with the robots,

including moving them around (thus defeating localization

techniques relying only on dead-reckoning). This applica-

tion context covers several typical scenarios encountered in

indoors robotic research, from swarm robotics to human-

robot interaction, while excluding situations involving non-

grounded robots such as drones.

Mautz gives a comprehensive survey of absolute indoor

localization methods in [5]; Table I summarizes the char-

acteristics of the main ones, in regard to the application

context introduced above. It appears that none of these

techniques achieve affordable yet accurate localization of

many devices on a surface, especially where occlusions due

to robot handling are significant. [2] comes close to meeting

these criteria, but the nature of this method makes real-time

localization and device miniaturization difficult due to the

capacitive sensor array requirement. [3, 4] describe structured

1Computer-Human Interaction in Learning and Instruction Laboratory,
EPFL, 1015 Lausanne, Switzerland

2Robotic Systems Laboratory, EPFL, 1015 Lausanne, Switzerland
Email: firstname.lastname@epfl.ch

optical patterns designed for 3D localization in open spaces;

however, miniaturizing these patterns for our application

would either significantly limit the size of the localization

space or increase the minimum image resolution requirement

and processing power need.

A promising approach to this problem involves the struc-

tured pattern described in the Anoto positioning technology

([6] and other related patents). It has been originally re-

searched for localizing “intelligent pens” on paper. This arti-

cle proposes to investigate the applicability of this method to

robotics: it describes the underlying algorithms and presents

our reference hardware and software (open-source) imple-

mentations. We also provide a detailed quantitative perfor-

mance analysis (we reach an absolute positioning accuracy

below 0.3mm for a hardware design below ¤30).

While this technique has intrinsic limitations (discussed

at the end of the article), we believe that structured pattern

localization offers a unique combination of low cost,

computational efficiency and high accuracy, holding a

strong potential for indoor mobile robotics.

II. THEORY & LOCALIZATION PIPELINE

A. Encoding Principle

Structured patterns such as the Anoto pattern (found in [6])

are visual micro-dot patterns organized in a grid (Figure 10b).

When decoded, they uniquely identify absolute positions

while leaving only a small visual imprint on the printed

surface. They are made of four symbols (up, down, left and

right) corresponding to the relative position of each of the

dots to the closest grid intersection. Each of the four symbols

encodes two bits, one for x and one for y.

At the core of the encoding lie quasi De Bruijn sequences.

Given an alphabet (in our case, {−1, 1}), such a sequence of

order n contains every possible string of length n from this

alphabet at most once. Every column of the pattern contains

the same quasi De Bruijn sequence of order 6, called the

main number sequence. This sequence has length 63 (the

string 111111 is unused) and repeats itself in a cyclic manner,

with different offsets for each column. Given two adjacent

strings of length 6 from consecutive columns, the offset

differences of these columns can be uniquely determined

regardless of the row index.

The sequence of these offset differences, called the pri-

mary difference sequence, can be composed of numbers

d ∈ {0, . . . , 62}. However, only d ∈ {5, . . . , 58} are used in

order to be able to decompose each d into its unique “digits”

ai under the “basis” equation d = 5+ a1 +3 · a2 +32 · a3 +
2 · 32 · a4, where a1 ∈ {0, 1, 2}, a2 ∈ {0, 1, 2}, a3 ∈ {0, 1}
and a4 ∈ {0, 1, 2}.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148020655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Method Cost Accuracy Deployment? Occlusion Scalability CPU load

(per device) Robustness (# of devices) (on device)

Infrared light beacon Low Sub-mm Beacons None Low Very low

Laser scanner High Few µm None Moderate Low High
RF (Wi-Fi, Bluetooth, RFID, ...) Low Sub-m Beacons Moderate Moderate Very low

Ultra-wideband (UWB) Potentially low Few cm Beacons/scanners High Moderate Very low

Structured light (e.g Kinect) Mid Few cm None Moderate Very low High
Fiducial tag on device/motion capture Very low Sub-mm [1] Camera(s) Moderate High None

Deployed fiducial tags Low Sub-mm Optical tags Moderate High High
Deployed capacitive patterns [2] Low Few mm Capacitive sheet Full High None

Deployed optical patterns [3, 4] Low Few cm Optical patterns High High Low/High

This study Low Sub-mm Paper sheet Full High Low

TABLE I: Prominent absolute indoor localization methods found in the literature ([5] unless cited otherwise), compared to

our method. Where used, device describes the object whose pose is recovered.

These ai, sequenced in consecutive columns, also build

quasi De Bruijn sequences – the secondary number se-

quences – from their respective alphabets, of order 5 and

of lengths 236, 233, 31 and 241 respectively. Their lengths

are chosen to be relatively prime so that the start of these

cyclic sequences only line up after 236 · 233 · 31 · 241 =
410 815 348 positions. Conversely, given any number in

{0, . . . , 410 815 347}, there is a unique 4-tuple of positions in

the secondary number sequences, corresponding to 4 unique

ai strings of length 5 thanks to the De Bruijn property. Every

such number encodes an actual x position which we can

read by observing 6 elements of 6 consecutive columns of

the pattern (in practice, we use an 8 × 8 matrix that aids

in finding the correct orientation and correcting errors, as

described in the following sections).

The encoding for y occurs independently and in parallel

over the rows instead of columns, using the second bit

encoded by the positions of the dots.

Finally, all columns can be offset by {0, . . . , 62} without

affecting the differences d (therefore not affecting the x
position); this offset can only be detected by decoding the y
position separately and by using this information to deduce

how much the columns are shifted down. This number, called

the sector of x, defines 63 different ways of laying out the

columns. Identically, laying out rows defines 63 independent

y sectors. The only limitation is that if a sector is juxtaposed

to another one, the readings containing the boundary will not

be decoded correctly due to the sector offset being interpreted

as a difference d.

In total, (410 815 348 · 63)2 ≃ 6.7 · 1020 unique 2D

positions can be therefore encoded. With the dot density

used in this study (0.508mm on average between two dots),

this allows absolute, sub-millimetric localization over an area

approximately equivalent to 1/3 of the surface area of the

Earth. The interested reader can refer to [7] for a further

account of the mathematics behind this encoding.

B. Localization Pipeline

Before performing the actual position decoding based on

the principle explained above, captured video frames need to

be processed to turn them from images to sequences of bits.

This involves a number of steps organized into a pipeline

Im
ag

e
p
ro

ce
ss

in
g

G
ri

d
es

ti
m

at
io

n

P
ro

b
ab

il
is

ti
c

tr
ea

tm
en

t
D

ec
o
d
in

g

Acquire image

Detect blobs

Undistort dots

Guess grid

Refine grid

estimation

Assign

likelihoods

Find best area

Correct

orientation

Decode area

Subgrid

resolution

Image

Centers

of dots

Undistorted dots

U
n
d
is

to
rt

ed
d
o
ts

Vector base
R

efi
n
ed

v
ec

to
r

b
as

e
Refined

vector base

Dots with

symbol prob.

8× 8 symbol matrix

Rotated

symbol matrix

Absolute grid

coordinates

(x, y, θ)

Fig. 1: The pipeline for decoding an image

(a) Dots on a captured frame

1
2

34

5
6

7

(b) Thresholding & blob detection

Fig. 2: Dot detection

illustrated in Figure 1. We hereafter present each of these

steps, along with the main algorithms they are built on.

1) Image Processing: The positions of the dots are ob-

tained through a global thresholding and a standard binary

blob-detection algorithm (Figure 2) where the centers of

mass of detected blobs correspond to dot positions. Only

blobs with sufficient pixels are retained in order to overcome

salt and pepper noise.

Fig. 3: Edges detected by the 4-nearest neighbor search. Blue

lines represent symmetric connections (both dots agree to be

neighbors) and are used in estimating the grid. Red circle

marks the intact neighborhood center used as the grid origin.

We assume that in practice, an optical system in close-up

focus is likely to utilize a wide-angle lens in order to decrease

the optical system height while imaging a sufficiently large

area. These lenses typically suffer from barrel distortion,

which can lead to significant positioning errors on the dots

away from the center. To prevent this, we use the Brown-

Conrady model (only radial distortion, 2nd degree):

~rd = ~pd − ~m (1)

~pu = ~m+ ~rd/(1 + k‖~rd‖2) (2)

where ~m is the image center, ~pd is a given dot’s position

in the original image and ~pu is the same dot’s undistorted

position. The radial distortion parameter k is calculated

offline from calibration images and is static during runtime.

2) Initial Grid Estimation: The grid is modeled as a

vector space spanned by ~u and ~v at an origin ~o. The vectors

are aligned to the grid directions and their lengths are defined

to be the average grid spacing. In order to find an initial

estimate, the neighborhood connections of the dots are used:

for each dot, the four nearest neighbors are first determined

(Figure 3). ~u and ~v are then estimated by clustering the set

of symmetric edges (where both dots agree to be neighbors)

through a constrained k-means algorithm (Figure 5) on a

data set similar to the one in Figure 4.

The origin of the new coordinate system is found by

searching for an intact neighborhood of 3 × 3 dots close

to the center of the image (example in Figure 3) in order

to minimize cumulative errors due to the estimated length

of the base vectors ~u and ~v. There are two conditions to

be an intact neighborhood: 1) all of the four neighbors of

a starting dot (side dots) must be symmetrically connected

to the starting dot and 2) there must be exactly four other

dots (corner dots) in the 3 × 3 dot grid that are connected

to two distinct side dots. If such a neighborhood is found,

~x

~y

~u

~v

Fig. 4: Symmetric edges from Figure 3, plotted at the same

origin in image coordinates {~x, ~y}. Due to blob detection’s

ordering, all edges point downwards. The constrained k-

means algorithm assumes 4 clusters which are grouped into

two pairs. After each step, each pair is forced to be symmetric

around the origin. Final pairs are represented with one dotted

and one solid vector each. These provide an acceptable initial

estimate for ~u and ~v.

a weighted average of the starting dot’s and the side dots’

positions is used as the origin. If not, the search continues

with the next closest candidate.

We denote the dot positions in the new coordinate system

with ~c (in units of ‖~u‖, ‖~v‖). By rounding them to the nearest

integer, we obtain the coordinates ~g, hereafter called grid

coordinates. Using these, the dots’ offsets with respect to

the grid coordinates (called ~δ) are calculated:

~c =

[

~u · (~p− ~o)/‖~u‖2
~v · (~p− ~o)/‖~v‖2

]

(3)

~g = ⌊~c⌉ (4)

~δ = ~c− ~g (5)

The grid coordinates, if estimated correctly, reveal the true

neighborhood of dots: A pair of dots are now considered

neighbors only if their grid coordinates are adjacent in either

the ~u or the ~v axis.

3) Grid Refinement: The grid origin estimate ~o is refined

using the median value of the offsets (calculated separately

in each of the two axes):

~o← ~o−median(~δ) (6)

The length of vectors ~u and ~v are refined as well by

setting them to the median distances between all neighbor

dots (in their respective axes), according to the new true

neighborhood. The offsets to the grid positions ~δ are finally

recomputed based on the better grid estimation.

4) Likelihood Assignment: This step consists in assigning

likelihoods for each dot to be one of the four symbols

(up, down, left, right). As Figure 6 shows, the probabilities

for each of the two directions (x and y) can be calculated

independently by projecting the offsets ~δ onto the diagonals.

For a given dot, we assume that the projected offset r
follows a Gaussian distribution, centered around a nominal

offset r0 (i.e. the offset of a perfectly detected dot). Since

Input: List of symmetric edges E
Output: Main grid directions {~u,~v}

1: procedure CONSTRAINED k-MEANS

2: Initialize cluster means ~m1−4

3: repeat

4: Number of dots belonging to cluster k: nk ← 0
5: Accumulators: ~a1−4 ← ~0
6: for all edges ~e from E do

7: k ← index of smallest distance ~mk − ~e
8: ~ak ← ~ak + ~e
9: nk ← nk + 1

10: end for

11: ~m1 ← ~a1−~a3

n1+n3

12: ~m2 ← ~a2−~a4

n2+n4

13: ~m3 ← ~a3−~a1

n1+n3

14: ~m4 ← ~a4−~a2

n2+n4

15: until ~mk did not change or iterations > 10

16: Dots belonging to cluster k: pk ← ∅

17: for all edges ~e from E do

18: k ← index of smallest distance ~mk − ~e
19: if k = 1 or k = 2 then

20: pk ← pk ∪ {e}
21: else

22: pk−2 ← pk−2 ∪ {−e}
23: end if

24: end for

25: ~u← median(p1)
26: ~v ← median(p2)
27: end procedure

Fig. 5: Constrained k-means algorithm to find grid directions.

Medians are calculated separately in each of the two axes.

the calculation of exponentials is costly, we use a custom

function to build a quasi-probability distribution (Figure 7):

rx = δv + δu (7)

ry = δv − δu (8)

f(r) =

{

3r
2r0
− r3

2r3
0

if r2 < 3r20
0 otherwise

(9)

This distribution is used to create two quasi-probability

matrices P
(x) and P

(y) that cover all detected dots, con-

structed according to the algorithm in Figure 8. A positive

entry in P
(x) denotes that the associated dot’s x bit is likely a

1 while how much likely is given by the entry’s magnitude,

between 0 and 1. A negative entry denotes the same for

−1. P(y) works similarly for the y bit. For a given dot, the

magnitude of the product of its entries in these matrices, i.e.

Pi,j = |P(x)
i,j ·P

(y)
i,j |, represents the likelihood of that dot to

represent any symbol accurately.

5) Best 8×8 Decoding Region Selection: In a typical im-

plementation, more dots are visible on a given frame than re-

quired for the decoding. For improved robustness, we choose

the best 8×8 area by finding: maxi,j
∑i+8,j+8

i,j |P(x)
i,j ·P

(y)
i,j |.

Maximization is achieved through convolution of the product

~u

~v
x

y

−1

1

?

−1 1 ?

Fig. 6: Each dot encodes two bits (x, y). In order to find

out whether the x bit is 1 or −1, it is sufficient to know on

which side of the diagonal (red dashes on the figure) the dot

lies. Thus, in order to assign probabilities for x, we project

the dot onto the diagonal by adding the components of the

offset from the grid intersection: δv + δu (and same for y
with the other diagonal, i.e. by δv − δu).

r0
0

δu

−r0r0

δv

0
−r0

1

0.5

0

-0.5

-1

f
(r

x
)

Fig. 7: The quasi-probability distribution for a dot’s x bit,

f(rx) = f(δv + δu) approximates a Gaussian mixture

distribution with the nominal offset positions r0 as means.

The four possible dot positions are shown in blue. f(ry) is

similar but is symmetric with respect to the other diagonal.

matrix P with an 8×8 window (example result in Figure 9).

6) Finding the Correct Orientation: Decoding depends on

the orientation of the grid, which is not yet accounted for at

this stage. The grid directions found in earlier steps ensure

the right orientation of decoding only if the device has not

rotated by more than 45◦ with respect to the dot pattern. If

this is not the case, dots will be read as if rotated by 90◦,

180◦ or 270◦, causing at least one axis to be read upside-

down. Both x and y bit sequences in such an axis will have

all their bits flipped and their order reversed. At this point,

we rely on another property of the main number sequence:

none of its 8-long substrings are found in the sequence when

bit flipped and reversed (hence a reason for using an 8 × 8
matrix instead of 6×6). Therefore, the correct orientation is

determined by attempting to find the 8-long rows/columns

both normally and after bit flipping and reversing in the

main number sequence and voting on the correct direction

for each axis. Knowing the correct directions, the axes can

be labeled as x and y since the coordinate system is right-

handed. Finally, symbols, probability matrices and {~u,~v} are

Input: Grid coordinates ~gi, offsets ~δi, distribution f(r)
Output: Quasi-probability matrices P

(x),P(y)

1: procedure CONSTRUCT P
(x),P(y)

2: s← (maxi(g
u
i)−mini(g

u
i),maxi(g

v
i)−mini(g

v
i))

3: Create P
(x),P(y) with size s

4: Initialize P
(x),P(y) with zeros

5: for all detected dots i do

6: px ← f (δvi + δui)

7: py ← f (δvi − δui)

8: if |px · py| > |P(x)
gu

i
,gv

i

·P(y)
gu

i
,gv

i

| then

9: P
(x)
gu

i
,gv

i

← px

10: P
(y)
gu

i
,gv

i

← py
11: end if

12: end for

13: end procedure

Fig. 8: Algorithm to construct quasi-probability matrices

(one for x bits and one for y bits) that cover all detected

dots. Dots associated with incorrect grid coordinates (due to

incorrect detection in image processing) are overwritten by

the correct dots (with higher associated likelihoods).

rotated by 90◦, 180◦ or 270◦ accordingly, if required.

The information at this point is enough to determine the

device orientation θ, which is simply the orientation of the

image in {~u,~v} coordinates.

7) Decoding: Decoding works as described in Section

II-A with the addition of one final property of the main

number sequence: any 8-long substring of the main sequence

is no longer found in the sequence if any one of its bits is

flipped. Therefore, instead of attempting to directly find 8-

long strings in the main number sequence, we first convolve

the strings with the main number sequence in order to find

the index with the highest correlation. If it is unknown

which bit is flipped, this index will be correct 36% of the

time on average (considering all possible bit flips of all 8-

bit substrings of the main sequence). This accuracy can be

improved by weighting the correlation by the corresponding

rows or columns of P (since it provides information on bit

detection quality).

8) Sub-Grid Accuracy: Rewriting the middle of the image

~m (assuming it is on the middle of the device) in absolute

grid coordinates enables us to determine the absolute position

with a higher resolution than the grid spacing. We know the

decoded position ~xdecoded as well as the position ~p of the

top left corner of the decoded 8 × 8 section in the image

(Figure 9). We first express the transformation of the middle

of the image in {~u,~v} coordinates centered on ~p:

~t =~m− ~p (10)

~tproj =

[

~u · ~t/‖~u‖2
~v · ~t/‖~v‖2

]

(11)

Then, knowing that the base is in grid units, the accurate

position becomes:

~x = ~xdecoded + ~tproj (12)

~t
~u

~v

+
~m

~p

Fig. 9: Grid positions, marked with the colored dots (green:

good quality; red: bad quality). The most likely symbol

is marked on top of the dots (R, L, D, U). Blue square

corresponds to the best area. Blue circle (~p) represents the

top left corner which is the position to decode. Device center

(~m) is displaced from the decoded position as much as ~t.

Component (off-the-shelf) Cost (¤)

Lens (5.5mm focal length, S-mount) 1.90

Lens mount 0.17

Microcontroller (PIC32MZ1024ECG064) 8.51

Image sensor (MT9V034C12STM) 12.86

NIR LEDs (VSMY3850-GS08) 3× 0.46

MOSFET for LED switching (BSS138BK) 0.06

0.1% precision resistors for LED voltage drop 3× 0.29

Total 25.75

TABLE II: List of localization components and their costs.

Bypass capacitors and various non-precision resistors are not

included due to negligible cost.

III. IMPLEMENTATION

A. Reference Hardware & Software

Our reference localization device is implemented on a

single double-sided Printed Circuit Board (PCB) housing

all of the relevant electronics and optics in order to reduce

production cost (Figure 10a). All of the physical components

are off-the-shelf, low-cost components; they can be seen in

Table II along with their typical cost.

The optical pipeline consists of the following:

1. Generation of the dot pattern, and placement of the

device directly on top of it;

2. Exposure of the scene with Near-Infrared (NIR) LEDs;

3. Focusing of light using a board lens; framing of the

image;

4. Capturing of the image onto the image sensor; trans-

mission of the image to the microcontroller;

5. Image processing and pattern decoding on the micro-

controller; broadcasting of the pose.

Exposure LEDs

Image

Sensor Lens

(a) Device’s optical hardware.
Three near-infrared LEDs expose
the scene that is focused by a
lens onto the image sensor. The
field of view geometry (in blue)
is exaggerated.

(b) Example pattern on the ground
below the device (scaled up about
10 times). Dashed red lines are for
reference only, they do not physically
exist. The dot size and spacing versus
the area viewed by the camera (in
blue) is exaggerated.

Fig. 10: Optical hardware setup

0.508 mm

Fig. 11: Choice of symbol glyphs. When the grid spacing is

chosen as 0.508mm, the dots align with the printer dots under

300dpi density. Red cross indicates the origin of symbols.

1) Dot Pattern: The dot pattern is generated from a

text file containing the adequate sequences of symbols as

letters (u, d, l, r). It is rendered using a custom font made

of four glyphs representing the four possible positioned

dots (Figure 11). We choose a grid spacing of 0.508mm:

considering the dots offsets (0.508/6 = 0.084667mm from

the grid intersections), it allows the dots to be aligned with

the physical dots printed by the printer at 300dpi. Ren-

dered sequences of dots are easily overlaid onto pre-existing

Portable Document Format (PDF) documents, allowing for

easy distribution, viewing, compression and printing.

2) Exposure: The scene, i.e. the printed dot pattern on

the surface directly under the device, is exposed using three

identical NIR LEDs (850nm wavelength) evenly placed at

equal distance from the optical center. Their voltage drops are

constrained to be as similar as possible by precision resistors.

These ensure that the scene is illuminated as uniformly as

possible. To have controlled exposure, the scene is isolated

from external light sources, such as ambient daylight, by the

device housing itself (3D printed, 1.2mm thick).

With our specific clock speed, the exposure time can be

chosen to be as low as approximately 1/50000s thanks to

the image sensor’s global shutter. From this, we gradually

increased the exposure time to 1/7684s at which point the

image was sufficiently exposed so that the thresholding was

satisfactory. Given the physical size of one pixel on the

ground (0.046mm) and the physical image size (furthest pixel

is at 4.29mm orthogonal distance away from center), it would

take approximately 353mm/s linear speed in the x or y axes

s1 = 9.70

s2 = 12.70

d = 24.0

ldiag = 10.19

Image SensorImaging Plane

Rear Nodal Point

Front Nodal Point
Lens

Assembly

Ground (in focus)

Fig. 12: Cross-section of the optical system, side view, all

units in mm.

or 785rpm angular speed to cause motion blur of one pixel

magnitude.

3) Focusing & Framing of the Image: In order to focus

the exposed image onto the image sensor, an off-the-shelf S-

mount CCTV lens is used. As a compromise between Field

of View (FOV) and typically increased distortion, a lens with

5.5mm nominal focal length (f) and 54◦ nominal diagonal

FOV was chosen. It is mounted on a manual focus housing,

as seen in Figure 12.

The suitable distance between the image plane and the

point of focus on the ground (d) was found by successively

increasing the device housing height (starting with the the-

oretical limit, 4f = 22mm) and attempting to manually

focus the lens. With this, after distortion correction, the

physical shape of the image becomes a 5.48 × 8.59mm

rectangle with a diagonal length of 10.19mm. In this shape,

an 8 × 8 dot matrix with 0.508mm dot spacing must fit.

The largest (diagonal) length of this matrix is calculated to

be
√
2 × 0.508 × (7 + 1/6 + 1/6 + 1/6) = 5.39mm in the

worst case (the physical diameter of one dot and the possible

offsets of the furthermost two dots are each included as 1/6

of the grid spacing), which ensures that at least 8 × 8 dots

fit inside the image in any given orientation.

4) Image Capture: Digital capturing of the image is done

by the image sensor (global shutter, grayscale), which runs

in master mode and generates all necessary timing and data

signals. Our microcontroller then uses these timing signals to

capture the image data (188×120 pixels, 8-bits per pixel) via

Direct Memory Access (DMA). This ensures that the least

amount of processing cycles possible are spent for this task.

5) Image Processing & Pattern Decoding: All of the

image processing and decoding pipeline (as described in

Section II-B) runs locally on the microcontroller (Microchip

PIC32MZ, 200MHz core clock, 512Kb SRAM). In order to

allow real-time operation, a number of measures are taken.

Where possible, the lack of Floating Point Unit (FPU) is

compensated by manually introducing a rational number

representation with fixed divisor, while taking care that no

overflow occurs. Memory allocation is made statically where

possible to avoid dynamic memory allocations. Lookup ta-

bles are used where feasible. Finally, a polynomial (Equa-

tion 9) is used instead of Gaussian distribution functions

(requires exponentials) to increase performance.

Fig. 13: Accuracy of x coordinate measurements when device

is stationary, 20 samples each. Position marked with the

cross was consistently misdecoded. Best, mean and worst

accuracies are calculated with absolute values.

Coordinate Accuracy Precision (± one σ)

x 0.155 mm ±0.010 mm
y 0.273 mm ±0.014 mm
θ 1.581◦ ±0.407◦

TABLE III: Performance when device is stationary; worst

absolute values.

B. Open-Source Software Release

Our reference software implementation is available under

an open-source license from chili.epfl.ch/libdots.

It can be built as a standalone library and has been suc-

cessfully cross-compiled for low-end targets such as the

PIC32MZ microcontroller. The repository also provides a

sample test application that works with a standard desktop

webcam (as long as it permits to focus on close objects, so

that printed dots are visible). Tools to generate dot patterns

and overlay them on any PDF file are provided as well.

IV. VALIDATION

A. Methodology

Performance of individual localization coordinates (x, y,

θ) were each measured separately. For x and y, the device

was mounted (without modifications) on the toolhead of

a Computerized Numerical Control (CNC) platform with

17μm nominal step size. For θ measurements, the device was

mounted (without modifications) on a servomotor with 0.29◦

nominal accuracy. Commands given to this platform and

servomotor were recorded as ground truth values, referred

to as nominal values from here on.

Measurements were done on an A3 sheet carrying only the

pattern and no other graphics, printed in black and white by

a Xerox Workcentre 7665 laser printer. y was chosen as the

paper rolling axis while x was chosen as the laser scanning

axis (corresponds to head motion axis in inkjet printers). In

this setup, the sources of significant systematic noise include:

Fig. 14: Accuracy of y coordinate measurements when

device is stationary, 20 samples each. Best, mean and worst

accuracies are calculated with absolute values.

Fig. 15: Accuracy of orientation measurements when device

is stationary, 20 samples each. Positive and negative biases

are coded with red and blue respectively. Best, mean and

worst accuracies are calculated over absolute values.

• Pattern printing process inaccuracies

• Plastic device housing deformation and manufacturing

tolerances

• Image sensor and lens assembly mounting inaccuracy

• Paper placement inaccuracy below the device

To measure performance of x and y coordinates, the device

was moved to 11× 11 distinct positions on a 200× 200mm

grid in spiral from the center towards the periphery. 20 real-

time samples were collected for each position; these can be

viewed in Figures 13 and 14 for x and y respectively. 99.17%

of x and 100% of y coordinates were correctly decoded. 1

out of 121 x positions was consistently measured to be in

an unrelated location due to misreading of dot offsets.

To measure performance of angular position, the device

was rotated to 36 distinct angles over 360◦. 20 real-time

samples were collected for each position; these can be

viewed in Figure 15. 100% of these angular positions were

correctly decoded. Finally, an overview of accuracy and

http://chili.epfl.ch/libdots

precision can be seen in Table III.

The average framerate of localization was measured to

be 46.6Hz. The system was measured to consume 352mW

when stationary (sleeps, wakes up every second to process

one frame to decide whether moved, exits stationary mode if

moved) and 873mW when moving (continuously processes

frames, enters stationary mode if not moved for 5 seconds).

B. Results

Figures 13 and 14 evidence that distinct regions on the

paper induce biases on x and y coordinate measurements; we

attribute this systematic error mainly to the pattern printing

process. The y axis is seen to be significantly less accurate

than the x axis (all 121×20 samples used, unpaired t-test,

p < 0.0001). This observation leads us to consider that

the uncertainties in the paper rolling process were more

significant than the laser neutralizing process in our case.

This may be generally true for similar axes in different

printing techniques, such as the paper rolling axis vs. inkjet

head motion axis in inkjet printers. To generalize however,

tests should be done with other laser and inkjet printers.

In any case, certain x and y biases should be expected

by the user of this localization method. Moreover, there

is no guarantee that these accuracies are bounded across

the whole localization space (unlike θ whose space and

therefore accuracy is bounded). In reality, given a paper size

and a specific printer, bounds for x and y accuracy can be

measured; but the biases are likely to be worse across larger

distances due to cumulative systematic printing errors (e.g.

slipping and deformation of paper).

Considering the power consumption, a typical single cell

600mAh Lithium-Polymer battery, such as the one we used

for our experiments, lasts for more than 2.5 hours in the worst

case. In reality, it lasts longer since the device is not always

moving, and will allow hours-long experiment sessions.

V. CONCLUSIONS

In this article, we introduced to the robotics community a

real-time, pattern-based 2D localization method well suited

for mobile robots. Furthermore, our contribution includes

an open-source, high-performance software implementation,

alongside a reference hardware setup whose accuracy has

been validated. The main benefits of our method include:

• Absolute localization;

• Runs entirely on device, no need for a central server,

thus no need for external communications;

• Works in real-time using off-the-shelf components with

near-constant processing time per frame;

• Unlimited scalability, each device localizes itself;

• Fully robust against occlusions and lighting conditions

as long as the device rests on the surface;

• Designed to work while in motion, can be used e.g. for

real-time trajectory tracking on mobile devices;

• No calibration required;

• Simple deployment and disposal, as it only requires

regular printable support (e.g. paper) that is to be placed

on a surface and can later be removed and stored away;

• Working area is only limited by printing capacity,

printed patterns can be stitched together to cover larger

areas if the stitching can be calibrated;

• Patterns are unobtrusive and can be overlaid on top of

existing documents, augmenting them with localization;

• Affordable, below ¤30 per device; printable support

with dot pattern can be reproduced at very low cost

if damaged or if replication is needed.

We also identify certain limitations to this method:

• Provides localization in 2D space only (not in 3D);

• Contrary to SLAM techniques, the environment needs

to be altered by deploying the dotted pattern;

• Close proximity with the pattern surface is typically

required, which makes it less suitable for certain robots

(such as legged robots and drones);

• Printing the pattern may prove non-trivial (exactly 1:1
scale, at least 300dpi resolution) for large surfaces;

• Accuracy and precision is dependent on the quality of

the printer being used.

However, within the frame of this work (2D localization

requiring the deployment of passive markers in the envi-

ronment), we believe that this method may prove to be

particularly relevant and valuable to a range of sub-domains,

including swarm robotics (where high-accuracy, scalability

and low cost are especially desirable), educative playful

mobile robots and tangible interfaces (where low processing

load, low cost and real-time operation are often sought after).

ACKNOWLEDGEMENTS

This research was supported by the Swiss National Science

Foundation through the National Centre of Competence in

Research Robotics. The authors would also like to thank

Roger Fong for his work on the software release.

REFERENCES

[1] M. Windolf et al. “Systematic accuracy and precision

analysis of video motion capturing systems - exemplified

on the Vicon-460 system”. J. of Biomechanics, 41(12):

2776–2780, 2008.

[2] K. Nakatsuma and H. Shinoda. “High Accuracy Position

and Orientation Detection in Two-Dimensional Com-

munication Network”. In Conf. on Human Factors in

Computing Systems, 2010.

[3] S. Saito et al. “Indoor Marker-based Localization Using

Coded Seamless Pattern for Interior Decoration”. In

Virtual Reality Conf., 2007.

[4] L. Jorissen et al. “Robust Global Tracking Using a

Seamless Structured Pattern of Dots”. In Augmented and

Virtual Reality, pages 210–231. Springer, 2014.

[5] R. Mautz. “Indoor Positioning Technologies”. Habilita-

tion Thesis, ETH Zürich, Switzerland, 2012.

[6] M. P. Pettersson. “Method and Device for Decoding a

Position-Coding Pattern”, December 5 2006. US Patent

7,145,556.

[7] E. Aboufadel et al. “Position Coding”. arXiv preprint

arXiv:0706.0869, 2007.

http://dx.doi.org/10.1016/j.jbiomech.2008.06.024
http://dx.doi.org/10.1016/j.jbiomech.2008.06.024
http://dx.doi.org/10.1016/j.jbiomech.2008.06.024
http://dx.doi.org/10.1145/1753326.1753673
http://dx.doi.org/10.1145/1753326.1753673
http://dx.doi.org/10.1145/1753326.1753673
http://dx.doi.org/10.1109/VR.2007.352465
http://dx.doi.org/10.1109/VR.2007.352465
http://dx.doi.org/10.1007/978-3-319-13969-2_17
http://dx.doi.org/10.1007/978-3-319-13969-2_17
http://dx.doi.org/10.3929/ethz-a-007313554
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=7145556
http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=7145556
http://arxiv.org/abs/0706.0869

	Introduction
	Theory & Localization Pipeline
	Encoding Principle
	Localization Pipeline
	Image Processing
	Initial Grid Estimation
	Grid Refinement
	Likelihood Assignment
	Best 88 Decoding Region Selection
	Finding the Correct Orientation
	Decoding
	Sub-Grid Accuracy

	Implementation
	Reference Hardware & Software
	Dot Pattern
	Exposure
	Focusing & Framing of the Image
	Image Capture
	Image Processing & Pattern Decoding

	Open-Source Software Release

	Validation
	Methodology
	Results

	Conclusions

