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Abstract In this paper we study existence and uniqueness of weak solutions for
some non-linear weighted Stokes problems using convex analysis. The characteri-
zation of these considered equations is that the viscosity depends on the strain rate
of the velocity field with a weight being a positive power of the distance to the
boundary of the domain. These non-linear relations can be seen as a first approach
of mixing-length eddy viscosity from turbulent modeling. A well known model is
von Karman’s on which the viscosity depends on the square of the distance to the
boundary of the domain. Numerical experiments conclude the work and show prop-
erties from the theory.
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1 Introduction

Turbulent flows have an importance in many domains, including technology and in-
dustry. While measurements are sometimes difficult to make, the use of numerical
simulations of such flows in the process industries can be very useful: it allows op-
timization of activities and has led to reductions in the cost of products and process
development. The Navier-Stokes equations offer an accurate description of these
flows, whose Reynolds number is large. The resolution of these equations is conse-
quently a challenging task as the mesh required to obtain most of the structure of
these flows should be very thin.
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To overcome these difficulties, many turbulent models appears such as Large
Eddy Simulation (LES), mainly described in [19], that assume that the inertial scale
of the flow have been captured by an adequate grid. Another simpler approach we
consider here is the Reynold Averaged Navier-Stokes (RANS) model. This kind of
models assumes that the period of the mean solution is several order of magnitude
larger than the turbulence fluctuations. A type of simple model often used by en-
gineering is a mixing-length model called ”Smagorinsky Modelling” (see [19]). In
practise, these models consist in changing the initial viscosity of the fluid by a turbu-
lent viscosity depending of the velocity, transforming the initial linear elliptic term
in the Navier-Stokes equations by a non-linear one.

If u and p are the velocity and the pressure of a stationary incompressible fluid
of density ρ , submitted to a force f, flowing in a cavity Ω ⊂ Rn, n = 2,3, with a
Lipschitz boundary ∂Ω , stationary Navier-Stokes equations on Ω take on the form− div (2µε(u))+∇p = F(u) in Ω ,

div u = 0 in Ω ,
(1)

with u= 0 on ∂Ω , ε(u) =
1
2
(
∇u+∇uT ) and F(u) = f−ρ(u ·∇)u. In this paper we

will treat Smagorinsky models in which the viscosity depends on |ε(u)| and takes
the form

µ(|ε(u)|) = µL +κ
α

ρl2−α dα

∂Ω
|ε(u)| (2)

where µL > 0 corresponds to a laminar viscosity, κ = 0.41 is the von Karman con-
stant, l > 0 is a characteristic length of the domain, α ≥ 0 is a real number, d∂Ω (x)
is the distance of a point x ∈Ω to the boundary ∂Ω and |ε(u)|= (∑i, j εi j(u)2)

1
2 .

The cases with α = 0 can be treated in usual Sobolev spaces and their analysis can
be found in several papers [3, 21]. At the opposite, the cases with α > 0 have to be
treated in weighted Sobolev spaces and present several difficulties. In particular, we
will give some comments on a very popular model for a fluid flow in between to
close plates (Von Karman model) in which α = 2.

We proceed in this paper to an analysis of Problem (1) with a viscosity given by
(2) and α < 2. To do it, we have to start by considering the simpler Stokes prob-
lem with a given F function. By using several known results concerning weighted
Sobolev spaces [17, 5, 15, 18], we establish some theoretical results on the existence
and uniqueness of a velocity field of equation (1) when F is given. We show how is
important the role of the laminar viscosity µL when Von Karman model is used and
its impact on numerical results when we use a finite element method to discretize
Problem (1). The uniqueness of the pressure is sometimes an open question.
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2 Main Existence Theorem

In this section we prove that the problem (1) for a given F function has a unique
solution related to velocity in a space with free divergence. Let Ω be an bounded
open subset of Rn, n = 2,3, with a Lipschitz boundary ∂Ω . We first introduce some
adequate weighted functional spaces on Ω to define a weak problem from the equa-
tion (1) concerning the velocity. We then prove by convex analysis the existence of
such a velocity field. The section finishes with some results concerning the pressure.

2.1 Suitable functional spaces

Let d∂Ω (x) = dist(x,∂Ω) = miny∈∂Ω |x− y| the distance between x ∈ Ω and ∂Ω .
For 1≤ p < ∞ and α > 0, we denote the weighted Sobolev space of order one as

W 1,p(Ω ,dα

∂Ω
) =

{
v ∈ Lp(Ω ,dα

∂Ω
) | ∂v

∂xi
∈ Lp(Ω ,dα

∂Ω
), ∀i = 1, . . . ,n

}
where Lp(Ω ,dα

∂Ω
) =

{
v : Ω → R |

∫
Ω
|v|pdα

∂Ω
dx < ∞

}
provided with norm

‖v‖Lp(Ω ,dα

∂Ω
) :=

(∫
Ω
|v|pdα

∂Ω
dx
) 1

p . We thus endowed W 1,p(Ω ,dα

∂Ω
) with the norm

‖v‖W 1,p(Ω ,dα

∂Ω
) :=

(∫
Ω

|v|pdα

∂Ω
dx+

∫
Ω

|∇v|pdα

∂Ω
dx
) 1

p

. (3)

Lemma 2.1 For all 1 < p < ∞ and α ≥ 0, W 1,p(Ω ,dα

∂Ω
) endowed with the norm

(3) is a reflexive Banach space

Proof. The properties of spaces W 1,p(Ω ,dα

∂Ω
) are deduced from the ones of the

spaces Lp(Ω ,dα

∂Ω
) (see [17] or Theorem 1.3 in [11]). The reflexivity is due to the

uniform convexity of these spaces (Theorem III.29 in [4]).

For arbitrary weight ω , the books [17, 11] give a well overview of these spaces
that found applications in a large scale of problems such as p−Laplacian [7] or
degenerated elliptic problem [8]. Generally, the chosen weight ω belongs to the
Muckenhoupt class Ap (see [1, 6]). For weights which are a positive power of the
distance to the boundary, they belong to the Muckenhoupt class if 0 ≤ α < p− 1
(see [7]). Publications on the space generated with such weights are less frequent
but some papers and books treat many properties of these spaces, see for example
[5, 8, 2, 18]. One of the important property is that the embedding

W 1,p(Ω ,dα

∂Ω
) ↪→ Lp(Ω ,dα

∂Ω
) (4)

is continuous and compact, as it is shown in the theorem 3.8 from [18].
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Another characterization is that we can define a continuous and bounded trace op-
erator Tr : W 1,p(Ω ,dα

∂Ω
)→ Lp(∂Ω) if 1 < p < ∞ and 0 ≤ α < p− 1 (see theo-

rem 9.15 in [17]). In that case, the space W 1,p
0 (Ω ,dα

∂Ω
) (the closure of C∞

0 (Ω) in
W 1,p(Ω ,dα

∂Ω
)) for the norm (3)) can be identified with the space of functions in

W 1,p(Ω ,dα

∂Ω
) vanishing on the boundary:

W 1,p
0 (Ω ,dα

∂Ω
) = {v ∈W 1,p(Ω ,dα

∂Ω
) : Tr(v) = 0}.

Moreover, as the problem (1) involve vector fields u : Ω →Rn, u = (u1, . . . ,un), we
denote the following norms for u ∈ [W 1,p

0 (Ω ,dα

∂Ω
)]n as:

‖u‖W 1,p
0 (Ω ,dα

∂Ω
)

:= (
n

∑
i=1
‖ui‖p

W 1,p
0 (Ω ,dα

∂Ω
)
)

1
p ,

‖∇u‖Lp(Ω ,dα

∂Ω
) := (

n

∑
i, j=1
‖ ∂ui

∂x j
‖p

Lp(Ω ,dα

∂Ω
)
)

1
p and

‖ε(u)‖Lp(Ω ,dα

∂Ω
) := (

n

∑
i, j=1
‖εi j(u)‖p

Lp(Ω ,dα

∂Ω
)
)

1
p .

These above definitions and characterizations allows us to prove an important result:

Proposition 2.2 (Korn Inequality) Let 0≤ α < p−1. There exists a generic con-
stant C > 0 such that

‖∇u‖Lp(Ω ,dα

∂Ω
) ≤C‖ε(u)‖Lp(Ω ,dα

∂Ω
), ∀u ∈ [W 1,p

0 (Ω ,dα

∂Ω
)]n. (5)

Proof. The structure of the proof follows mainly the procedure developed in [16].
First of all, Theorem 6 in [15] states for −1≤ α < p−1 the existence of a constant
C > 0 such that

‖∇u‖Lp(Ω ,dα

∂Ω
) ≤C

{
‖u‖Lp(Ω ,dα

∂Ω
)+‖ε(u)‖Lp(Ω ,dα

∂Ω
)

}
, ∀u ∈ [W 1,p(Ω ,dα

∂Ω
)]n.

(6)
Consequently, it remains to prove that there exists a generic constant C > 0 such
that

‖u‖Lp(Ω ,dα

∂Ω
) ≤C‖ε(u)‖Lp(Ω ,dα

∂Ω
), ∀u ∈ [W 1,p(Ω ,dα

∂Ω
)]n.

By contradiction, we assume that there exists a sequence (ul)
∞
l=1 ∈ [W

1,p
0 (Ω ,dα

∂Ω
)]n

satisfying
‖ul‖Lp(Ω ,dα

∂Ω
) = 1 and lim

l→∞
‖ε(ul)‖Lp(Ω ,dα

∂Ω
) = 0. (7)

By using (6) and (7), the sequence {ul}∞
l is bounded in [W 1,p

0 (Ω ,dα

∂Ω
)]n and by

compacity (4), it is not restrictive to assume there exists u ∈ [W 1,p
0 (Ω ,dα

∂Ω
)]n such

that

lim
l→∞
‖ul−u‖Lp(Ω ,dα

∂Ω
) = 0 and ul ⇀ u weakly in [W 1,p

0 (Ω ,dα

∂Ω
)]n. (8)
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Relations (7) and (8) imply ε(u) = 0. Then from [16], the function u belongs to a
class of polynomial of degree one. Since u is vanishing on the boundary, then u≡ 0.
This contradicts the fact that ‖u‖Lp(Ω ,dα

∂Ω
) = 1.

Remark 2.3 In order to study Stokes problem (1) with viscosity (2), we will see be-
low that we need to work with weighted Sobolev spaces with p=3. In this particular
case, inequality (5) takes the following form: for 0 ≤ α < 2, there exists a generic
constant C > 0 such that

‖∇u‖L3(Ω ,dα

∂Ω
) ≤C‖ε(u)‖L3(Ω ,dα

∂Ω
), ∀u ∈ [W 1,3

0 (Ω ,dα

∂Ω
)]n.

In the following we consider 0 ≤ α < 2. The problem (1) involves homogeneous
Dirichlet conditions and takes into account two viscosity terms div (2µ0ε(u)) and
div (2κα ρl2−α dα

∂Ω
|ε(u)|ε(u)), see (2). Consequently, when we will consider a

weak formulation of Problem (1) (see section 3.2) we have to work in the two fol-
lowing Banach spaces H1

0 (Ω) and W 1,3
0 (Ω ,dα

∂Ω
). Let us remark that there exists α0

with 0≤ α0 < 2 such that W 1,3
0 (Ω ,dα

∂Ω
)⊂ H1

0 (Ω) when 0≤ α < α0 (see [17]) but
it is not the case when α is close to 2. Thus, if we want to analyse von Karman
model corresponding to α = 2, we have to define the space

Xα = H1
0 (Ω)∩W 1,3

0 (Ω ,dα

∂Ω
)

endowed with the following norm ‖v‖Xα
= ‖v‖H1(Ω)+‖v‖W 1,3(Ω ,dα

∂Ω
).

Lemma 2.4 The normed space (Xα ,‖ · ‖Xα
) is a reflexive Banach space.

Proof. The proof is a consequence of the compact embedding

H1
0 (Ω) ↪→ L3(Ω)⊂ L3(Ω ,dα

∂Ω
)

and (4). In particular, we prove that each bounded sequence in Xα has a weakly
convergent subsequence in Xα .

Lemma 2.5 The space Xα endowed with the semi-norm

|v|Xα
:= ‖∇v‖L2(Ω)+‖∇v‖L3(Ω ,dα

∂Ω
).

is a reflexive Banach space.

Proof. The proof is a consequence of Lemma 2.4 and from the equivalence of the
norm ‖·‖Xα

and the semi-norm | · |Xα
since H1

0 (Ω) ↪→ L3(Ω ,dα

∂Ω
) and by Poincaré’s

inequality.

2.2 On the velocity of Stokes problem

In this section we consider the non-linear Stokes problem (1) with viscosity (2) in
which F ∈ [L

4
3 (Ω)]n does not depend on u. The index α verifies 0≤ α < 2.
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As in problem (1) we are looking for a free divergence velocity field, we take now
the space

Xα,div = {v ∈ Xn
α , div v = 0}

endowed with the norm |v|Xα,div = ‖∇v‖L2(Ω)+‖∇v‖L3(Ω ,dα

∂Ω
). By multiplying the

Stokes equation in problem (1) by a test velocity field v ∈ Xα,div and integrating by
part, we obtain a weak formulation of the problem (1)-(2) for the velocity:
find u ∈ Xα,div such that∫

Ω

(2µ(|ε(u)|)ε(u) : ε(v))dx =
∫

Ω

(F ·v)dx, ∀v ∈ Xα,div. (9)

We use convex arguments to show existence and uniqueness of a solution to (9). Let
us define the functional J : Xα,div→ R by:

J(u) =
∫

Ω

[2A(x, |ε(u(x))|)−F(x) ·u(x)]dx,

where A : (x,s) ∈Ω ×R→ A(x,s) ∈ R is given by

A(x,s) =
µL

2
s2 +

1
3

κ
α

ρl2−α dα

∂Ω
(x)s3.

Lemma 2.6 The functional J is Gâteau-differentiable and its derivative at u in the
direction v is

DJu(v) =
∫

Ω

(2µ(|ε(u)|)ε(u) : ε(v))dx−
∫

Ω

F · vdx.

Proof. It is easy to verify that for β ≥ 2:

lim
t→0

|ε(u+ tv)|β −|ε(u)|β

t
= β |ε(u)|β−2

ε(u) : ε(v).

Taking in account that

∂

∂ s
A(x,s) = µLs+κ

α
ρl2−α dα

∂Ω
s2,

we obtain

lim
t→0

J(u+ tv)− J(u)
t

=
∫

Ω

[2ε(u) : ε(v)+2κ
α

ρl2−α dα

∂Ω
|ε(u)|ε(u) : ε(v)]dx

−
∫

Ω

F ·vdx.

In the following we are going to prove that the functional J is continuous, strictly
convex and coercive. Existence and uniqueness of a velocity field of the problem (9)
will then follow from results in [10].
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Lemma 2.7 Let f ,g ∈ Lr(Ω ,dα

∂Ω
) with 1≤ r < ∞. Then∫

Ω

|dα

∂Ω
(| f |r−|g|r)|dx≤ r‖| f |+ |g|‖r−1

Lr(Ω ,dα

∂Ω
)‖ f −g‖Lr(Ω ,dα

∂Ω
).

Proof. The proof is similar from Lemma 4 in [9]. Generalization with weighted
space is done using Holder inequality for weighted Lebesgue space: if p,q are such
that 1

p +
1
q = 1 and if h ∈ Lp(Ω ,dα

∂Ω
), l ∈ Lq(Ω ,dα

∂Ω
), then we have∫

Ω

dα

∂Ω
hldx≤ ‖h‖Lp(Ω ,dα

∂Ω
)‖l‖Lq(Ω ,dα

∂Ω
).

Lemma 2.8 The functional J is continuous for the norm | · |Xα,div .

Proof. Taking v ∈Xα,div in a neighbourhood of a fixed u ∈Xα,div and using lemma
2.7 with respectively r = 2,α = 0 and r = 3,α > 0, we have the existence of a
constant C > 0 (depending of u) such that∫

Ω

2|A(|ε(u)|)−A(|ε(v)|)|dx

=
∫

Ω

2

∣∣∣∣∣µL

2
(|ε(u)|2−|ε(v)|2)+

κα ρl2−α dα

∂Ω

3
(|ε(u)|3−|ε(v)|3)

∣∣∣∣∣dx≤C|u−v|Xα
.

Since F ∈ [L
4
3 (Ω)]n and by Poincaré inequality, we have the existence of a constant

C f > 0 such that

|J(u)− J(v)| =
∣∣∣∣∫

Ω

2|A(|ε(u)|)−A(|ε(v)|)|dx−
∫

Ω

F · (u−v)dx
∣∣∣∣

≤ C|u−v|Xα
+‖F‖

L
4
3
Cp‖∇(u−v)‖L2 ≤C f |u−v|Xα

.

where C f = (C+‖F‖
L

4
3
Cp). If u ∈ Xα,div, then we have

lim
v∈Xα,div,v→u

J(v) = J(u),

which finishes the proof.

Lemma 2.9 The functional J is strictly convex on Xα,div.

Proof. For x ∈Ω , the function A(x,s) is strictly convex on R+ in s variable since

∂ 2

∂ s2 A(x,s)≥ µL > 0 when s > 0.

For 0 < η < 1 and ξ 6= ν ∈ Rn×n, we have using triangle inequality

|ηξ +(1−η)ν | ≤ η |ξ |+(1−η)|ν |.
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Since A(x,s) is strictly convex and monotone in s variable,

A(x, |ηξ +(1−η)ν |)≤ A(x,η |ξ |+(1−η)|ν |)< ηA(x, |ξ |)+(1−η)A(x, |ν |)

which proves that A(x, | · |) is strictly convex. Let u,v ∈ Xα such that u 6= v and
0 < η < 1. Thus ε(u) 6= ε(v) since ε(u)−ε(v) = ε(u−v) 6= 0, see [16]. Moroever∫

Ω

A(x,η |ε(u)|+(1−η)|ε(v)|)dx<η

∫
Ω

A(x, |ε(u)|)dx+(1−η)
∫

Ω

A(x, |ε(v)|)dx.

It follows that J is strictly convex on Xα,div.

Lemma 2.10 For 0≤ α < 2, the functional J is coercive on Xα,div in the following
sense:

lim
u∈Xα,div;|u|Xα,div→∞

J(u)
|u|Xα,div

→ ∞.

Proof. We have by definition of the function A and by the remark 2.3 the existence
of C1,C2 > 0 such that

∫
Ω

A(x, |ε(u)|)dx =
∫

Ω

(
µL

2
|ε(u)|2 +

ρκα l2−α dα

∂Ω
(x)

3
|ε(u)|3

)
dx

≥ C1‖∇u‖2
L2(Ω)+C2‖∇u‖3

L3(Ω ,dα

∂Ω
)
.

Since F ∈ [L
4
3 (Ω)]n, there exits C3 > 0 such that∫

Ω

|F ·u|dx≤ ‖F‖
L

4
3
‖u‖L4 ≤C3‖F‖

L
4
3
‖u‖H1 ≤C3‖F‖

L
4
3
‖∇u‖L2 .

Consequently, we have

J(u) :=
∫

Ω

2A(|ε(u)|)dx−
∫

Ω

F·udx≥ C̃1‖∇u‖2
L2(Ω)+C̃2‖∇u‖3

L3(Ω ,dα

∂Ω
)
−D‖∇u‖L2

where C̃1,C̃2,D are constants independant of u. Finally we easily obtain

lim
u∈Xα,div;|u|Xα,div→∞

J(u)
|u|Xα,div

→ ∞.

Proposition 2.11 There exists a unique u ∈ Xα,div such that

J(u) = inf{J(v) : v ∈ Xα,div}.

Moroever, u is the unique solution of the problem (9).

Proof. Corollary III.8 in [4] shows that the functional J is weakly lowest semi-
continuous. The proof then follows from [10] using the reflexivity of Xα,div and
lemma 2.8-2.9-2.10. In particular, uniqueness comes from the strict convexity of J.
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2.3 On the pressure of Stokes problem

In the previous section we focus on the existence of a divergence free velocity field
u. As the problem (1) involves the pressure, we study now existence of a solution of
the mixed problem: find (u, p) ∈ Xα ×Yα such that

∫
Ω

2(µL +κα ρl2−α dα

∂Ω
|ε(u)|)ε(u) : ε(v))dx−

∫
Ω

pdiv(v) =
∫

Ω
(F ·v)dx,

∀v ∈ Xα ,∫
Ω

qdiv(u) = 0 ∀q ∈ Yα ,
(10)

with 0 ≤ α < 2 and where Yα is a space that should be defined. In particular, we
investigate the existence of a pressure field p ∈ Yα with Yα an adequate functional
space related to the velocity space Xα that gives a sense of∫

Ω

pdivvdx, ∀v ∈ Xα .

We start with some useful results:

Proposition 2.12 The dual of the space Lp(Ω ,dα

∂Ω
) can be identified with

Lq(Ω ,d−αq/p
∂Ω

), for 1 < p,q < ∞ satisfying 1
p +

1
q = 1.

Proof. Take a function g ∈ Lp(Ω ,dα

∂Ω
) and define g̃(x) = g(x)d

α
p

∂Ω
(x). Then g̃ is in

Lp(Ω). We consider

B : Lp(Ω ,dα

∂Ω
)→ Lp(Ω) given by: B(g) = g̃.

The operator B is linear and invertible, with B−1(g̃) = g̃d−
α
p . Suppose that K is in

Lp(Ω ,dα

∂Ω
)′ (the dual space of Lp(Ω ,dα

∂Ω
)). We consider K̃ : Lp(Ω)→ R given by

K̃(g̃) = K(g) for all g ∈ Lp(Ω ,dα

∂Ω
). We easily see that K̃ is a linear and continuous

functional and thus there exists a unique ũ ∈ Lq(Ω) with 1
p +

1
q = 1 such that∫

Ω

ũvdx = K̃(v), ∀v ∈ Lp(Ω).

If we define u = ũd
α
p

∂Ω
, it means that u ∈ Lq(Ω ,d−αq/p

∂Ω
) and we have

K(g) = K̃(g̃) =
∫

Ω

ũg̃dx =
∫

Ω

ugdx, ∀g ∈ Lp(Ω ,dα

∂Ω
).

We have shown that for each K in Lp(Ω ,dα

∂Ω
)′, there exists u ∈ Lq(Ω ,d−αq/p

∂Ω
)

unique such that ∫
Ω

ugdx = K(g), ∀g ∈ Lp(Ω ,dα

∂Ω
).
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Consequently K : Lp(Ω ,dα

∂Ω
)′→ Lq(Ω ,d

− αq
p

∂Ω
) given by K (K) = u is an isomor-

phism and Lp(Ω ,dα

∂Ω
)′ can be identified with Lq(Ω ,d−αq/p

∂Ω
) within the ”L2 scalar

product”.

Definition 1. For all α ≥ 0 and 1 < p,q < ∞, we denote

Lq
0(Ω ,d−αq/p

∂Ω
) :=

{
q ∈ Lq(Ω ,d−αq/p

∂Ω
)|
∫

Ω

q = 0
}
.

Lemma 2.13 The spaces [W 1,p
0 (Ω ,dα

∂Ω
)]n and Lp

0(Ω ,dα

∂Ω
)′ := Lq

0(Ω ,d−αq/p
∂Ω

) sat-
isfy the inf-sup condition: there exists C̃ > 0 such that

inf
q∈Lq

0(Ω ,d−αq/p
∂Ω

)

sup
v∈[W 1,p

0 (Ω ,dα

∂Ω
)]n

∫
Ω

qdiv(v)dx
‖q‖Lq

d−αq/p
‖v‖W 1,p

dα

> C̃.

Proof. From theorem 3.1 in [12], given f ∈ Lp
0(Ω ,dα

∂Ω
), there exists a vector field

v : Ω → R such that 
v ∈ [W 1,p

0 (Ω ,dα

∂Ω
)]n,

div v = f ,

‖∇v‖W 1,p
0 (Ω ,dα

∂Ω
)
≤ c‖ f‖Lp

0 (Ω ,dα

∂Ω
).

.

In other words, this show that the operator div: [W 1,p
0 (Ω ,dα

∂Ω
)]n → Lp

0(Ω ,dα

∂Ω
) is

surjective. Lemma A.42 in [13] and proposition 2.12 conclude the proof.

We consider now the unique velocity field

u ∈ Xα,div := {v ∈ [H1
0 (Ω)∩W 1,3

0 (Ω ,dα

∂Ω
)]n|divu = 0}

that solves∫
Ω

(2µL +κ
α

ρl2−α dα

∂Ω
|ε(u)|)ε(u) : ε(v))dx =

∫
Ω

(F ·v)dx, ∀v ∈ Xα,div,

(see proposition 2.11). Since the inf-sup conditions is satisfied for the couple of
spaces [H1

0 (Ω)]n,L2
0(Ω), there exists a unique function p1 ∈ L2

0(Ω) such that∫
Ω

p1div(v) =
∫

Ω

2µLε(u) : ε(v))dx−
∫

Ω

(F ·v)dx, ∀v ∈ [H1
0 (Ω)]n.

On the other hand, and using Lemma 2.13 with p = 3 and q = 3
2 , we can also obtain

a unique function p2 ∈ L
3
2
0 (Ω ,d

− α
2

∂Ω
) such that∫

Ω

p2div(v) =
∫

Ω

2κ
α

ρl2−α dα

∂Ω
|ε(u)|)ε(u) : ε(v))dx, ∀v ∈ [W 1,3

0 (Ω ,dα

∂Ω
)]n.
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Given now Xα = [H1
0 (Ω)∩W 1,3

0 (Ω ,dα

∂Ω
)]n and Yα := L2

0(Ω)⊕ L
3
2
0 (Ω ,d

− α
2

∂Ω
), we

immediately deduce the following result for problem (10):

Theorem 2.14 There exists (u, p = p1 + p2) ∈ Xα ×Yα such that relations (10) are
satisfied.

Remark 2.15 In theorem 2.14, the pressure p ∈ Yα is not necessary unique. In fact
the second equation in (10) can be written as∫

Ω

qdiv(u) = 0 ∀q ∈ L2
0(Ω),∫

Ω

qdiv(u) = 0 ∀q ∈ L
3
2
0 (Ω ,d

− α
2

∂Ω
).

These two relations imply div(u) = 0 a.e. in Ω and are redundant. Thus as we are
looking for p under the form p1 + p2 ∈ Yα , the decomposition could not be unique

since in general L2
0(Ω) is not included in L

3
2
0 (Ω ,d

− α
2

∂Ω
).

Nevertheless, uniqueness of the pressure is sometimes available. We start with a
remark:

Remark 2.16 Consider Λ = [0,1] and the weight dist(x,{0}) = x. Thus if we take
g ∈ L3(Λ ,dα

{0}) then we have:

∫ 1

0
|g|2dx =

∫ 1

0
(|g|2x

2α
3 )x−

2α
3 dx≤

(∫ 1

0
|g|3xα dx

) 2
3
(∫ 1

0
x−2α dx

) 1
3

.

The second integral
(∫ 1

0 x−2α dx
) 1

3
is bounded if 0 ≤ α < 1

2 . When α ≥ 1
2 , this

integral diverge. We then have ‖g‖L2(Λ) ≤C‖g‖L3
dα
{0}

if 0≤ α < 1
2 .

The previous remark shows that if 0 ≤ α ≤ 1
2 , we have then L3(Λ ,dα

{0}) ⊂ L2(Λ).

More generally, and using the proposition 6.5 in [17], we can show that there exists
a number α0 ≤ 1

2 such that

W 1,p(Ω ,dα

∂Ω
)⊂W 1,p(Ω)

with continuous injection for 0 ≤ α < α0. It means in particular that L2(Ω) ⊂
L

3
2 (Ω ,d

− α
2

∂Ω
) and thus Yα := L2

0(Ω)⊕ L
3
2
0 (Ω ,d

− α
2

∂Ω
) becomes Yα := L

3
2
0 (Ω ,d

− α
2

∂Ω
).

Consequently, we can obtain the following result when F belongs to the dual space
of [W 1,3

0 (Ω ,dα

∂Ω
)]n:

Theorem 2.17 There exists 0 < α0 ≤ 1
2 such that for all 0 ≤ α < α0 and for all

F ∈ [L
4
3 (Ω)]n, the problem (10) posesses a unique solution (u, p) ∈ Xα ×Yα , with

Xα = [W 1,3
0 (Ω ,dα

∂Ω
)]n and Yα := L

3
2
0 (Ω ,d

− α
2

∂Ω
).
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3 Some comments on the Von Karman model

The turbulent viscosity of the popular von Karman model (α = 2) for a fluid flow
between to close plates [19] is given by:

µ = µL +κ
2d2

∂Ω
|ε(u)|.

In fact, the weight dα

∂Ω
does not belong to the Muckenhoupt classe A3 when α = 2

[1, 6]. This has two major consequences:

1. The space W 1,3(Ω ,d2
∂Ω

) has in fact no trace on the boundary (an example is
given in one dimension by g(x) = ln(| ln(x)|), x ∈ (0, 1

2 ), with dist(x,0) = d∂Ω ).
Recall that in [17] a trace operator Tr: W 1,p(Ω ,dα

∂Ω
)→ Lp(∂Ω) is defined if

1 < p < ∞ and 0 ≤ α < p− 1. In that case, the space W 1,p
0 (Ω ,dα

∂Ω
) (the clo-

sure of C∞
0 (Ω) for the norm (3)) can be identified with the space of functions

in W 1,p(Ω ,dα

∂Ω
) whose Tr(u) is vanishing on the boundary. For α ≥ p−1, the

trace operator cannot be defined and for α > p− 1 the closure of C∞
0 (Ω) in

W 1,p(Ω ,dα

∂Ω
) is the space itself.

Nevertheless, the space W 1,3(Ω ,d2
∂Ω

) does not correspond to any of these cases
and its characterization is more complicated (see section 8 in [17]).

2. The second Korn inequality in [15] is valid only for u ∈ [W 1,3(Ω ,dα

∂Ω
)]n with

−1≤ α < 2. This is an open question when α = 2 and thus we cannot prove the
first Korn inequality. Counterexample is expected in that case.

The direct consequence of these remarks is that when µL = 0, the von Karman model
is ill-posed. In this case the boundary condition u = 0 on ∂Ω has no meaning.
A main consequence is when a numerical method is used for obtaining an approxi-
mation of von Karman model with µL small (with respect to the numerical viscos-
ity), the obtained results depend strongly on the mesh of the method as shown in the
following section.

4 Numerical experiments

In this section, we provide some numerical experiments of the problem (1) with
viscosity (2) using different values of α and µL. The following benchmark example
in three dimensional case is considered: let Ω ⊂R3 be the rectangular parallelepiped
with characteristic length l = 0.1 given by

Ω = [0;1]× [0;1]× [0;0.1].

For N ∈ N we discretize Ω by splitting each side of that rectangular parallelepiped
with N nodes. It gives N3 hexahedron, all of which are subdivided into five tetrahe-
dron. We obtain then a triangulation Th of Ω composed of 5N3 tetrahedron K with
h = 1

N being the reference mesh size.
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Let P1(K) be the space of polynomial of degree one on K. We define the following
finite dimensional spaces:

χh = {v ∈C0(ΩR)
3|v|K ∈ (P1(K)⊕BK)

3 and v|∂ΩR = 0},

ϒh = {q ∈C0(ΩR)|q|K ∈ P1(K) and
∫

Ω

qdx = 0}.

Here BK denote the Bubble function on K. A renormalized version of the Problem
(1)-(2) is discretized with this Galerkin approximation to obtain approximate so-
lutions (uh, ph) ∈ χh×ϒh. In particular we set ν = µ

ρ
, with renormalized p and f

divided by ρ (p := p/ρ, f := f/ρ). In that case the turbulent kinematic viscosity is
given by

ν = νL +κ
α l2−α dα

∂Ω
|ε(u)|.

The renormalized relation (1)-(2) is a non-linear problem which is solved by a New-
ton method based on the work [14]. The method is iterated to reach a velocity field
uh with a precision of TolNew = 1e−8.
Each iteration of that Newton method leads to solve a linear system given by the
Galerkin matrix of the Stokes problem. This system is solved with GMRES algo-
rithm [20] with ILU(2) preconditioner and a tolerance of TolGMRES = 1e−8.
In all the following computations, we consider the following force field which gen-
erates a velocity field composed of two axial symmetric vortex:

F(x,y,z) =

 0.3∗ (y−0.5)2

0.3∗ (−x+0.5)2

0

 .

On figure 1, we display for different values of α and νL the maximum of the Euclid-
ian norm of the velocity field umax, the numerical kinematic viscosity νL (the numer-
ical value of l2−α κα dα

∂Ω
|ε(umax)|) and the resulting Reynolds number ReT = umaxl

νT
.

The main observations are the following:

• For α = 0 and different values of νL, the maximum value of the velocity con-
verges as the mesh decreases and does not depend of νL.

• When α ∈ {1,2} the convergence is more difficult to obtain, especially in the
case α = 2. We observe that when N is increasing, the maximum value of the
velocity increases too. Consequently, when the laminar viscosity νL is small with
respect to the numerical viscosity νT , the obtained results depend strongly on the
mesh. The same behavior is observed for the stationary Navier-Stokes equations
corresponding to (1)- (2).

Acknowledgements The authors would like to thank Rio-Tinto Alcan Company for their financial
support and Agnieska Kalamaskya for her input on Korn’s Inequalities.
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α = 0
STOKES NAVIER-STOKES

νL = 1e−5 νL = 1e−7 νL = 1e−5 νL = 1e−7

νT umax ReT νT umax ReT νT umax ReT νT umax ReT

N
20 4.05e-4 4.84e-2 12 4.08e-4 4.86e-2 12 4.01e-4 4.83e-2 12 4.06e-4 4.85e-2 12
40 4.22e-4 5.21e-2 12 4.29e-4 5.28e-2 12 4.21e-4 5.20e-2 12 4.27e-4 5.26e-2 12
80 4.32e-4 5.32e-2 12 4.36e-4 5.38e-2 12 4.30e-4 5.30e-2 12 4.34e-4 5.33e-2 12

α = 1
STOKES NAVIER-STOKES

νL = 1e−5 νL = 1e−7 νL = 1e−5 νL = 1e−7

νT umax ReT νT umax ReT νT umax ReT νT umax ReT

N
20 2.54e-4 1.59e-1 62 2.57e-4 1.61e-1 63 2.46e-4 1.54e-1 63 2.48e-4 1.56e-1 63
40 2.55e-4 1.84e-1 72 2.58e-4 1.88e-1 73 2.47e-4 1.83e-1 73 2.50e-4 1.86e-1 74
80 2.55e-4 1.99e-1 78 2.58e-4 2.04e-1 79 2.49e-4 1.95e-1 78 2.51e-4 2.01e-1 80

α = 2
STOKES NAVIER-STOKES

νL = 1e−5 νL = 1e−7 νL = 1e−5 νL = 1e−7

νT umax ReT νT umax ReT νT umax ReT νT umax ReT

N
20 1.79e-4 2.01e-1 112 1.85e-4 2.07e-1 112 1.61e-4 1.95e-1 121 1.68e-4 2.01e-1 121
40 1.88e-4 2.68e-1 142 1.95e-4 2.81e-1 144 1.64e-4 2.45e-1 149 1.66e-4 2.55e-1 152
80 1.97e-4 3.20e-1 162 2.10e-4 3.45e-2 173 1.62e-4 2.79e-1 172 1.69e-4 2.98e-1 177

Fig. 1 Numerical resolution of the normalized non-linear stationary Stokes problem (1)-(2) and
the stationary Navier-Stokes problem for different values of α and νL. The domain is a rectangular
parallelepiped Ω = [0,1]× [0,1]× [0,0.1] with N nodes on each side for a total of 5N3 tetrahedra.
The force is given by f = (0.3∗ (y−0.5)2,0.3∗ (x−0.5)2,0) and we set l = 0.1.
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