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Abstract. Distance bounding protocols become important since wire-
less technologies become more and more common. Therefore, the security
of the distance bounding protocol should be carefully analyzed. However,
most of the protocols are not secure or their security is proven infor-
mally. Recently, Boureanu and Vaudenay defined the common structure
which is commonly followed by most of the distance bounding protocols:
answers to challenges are accepted if they are correct and on time. They
further analyzed the optimal security that we can achieve in this struc-
ture and proposed DBopt which reaches the optimal security bounds.
In this paper, we define three new structures: when the prover registers
the time of a challenge, when the verifier randomizes the sending time
of the challenge, and the combined structure. Then, we show the opti-
mal security bounds against distance fraud and mafia fraud which are
lower than the bounds showed by Boureanu and Vaudenay for the com-
mon structure. Finally, we adapt the DBopt protocol according to our
new structures and we get three new distance bounding protocols. All of
them are proven formally. In the end, we compare the performance of the
new protocols with DBopt and we see that we have a better efficiency.
For instance, we can reduce the number of rounds in DB2 (one of the
instances of DBopt) from 123 to 5 with the same security.

1 Introduction

Some important applications such as NFC-based payments, RFID access cards
in our daily lives provide services according to the user’s location. Relay attacks
are serious threats against these applications. For instance, if someone makes a
payment with a card on a malicious device then the device can relay to a fake
card which is paying for something more expensive [13]. Similarly, a malicious
person can open a car by relaying the communication between the wireless key
and the car.

In [2], the fact that the speed of communication cannot be faster than the
speed of light is used to detect relay attacks. Then, Brands and Chaum [7]
introduced the notion of distance bounding (DB) protocols where a prover proves
that he is close enough to a verifier. Simply, in distance bounding protocols,
the verifier determines the proximity of the prover by computing the round
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trip communication time in challenge/response rounds. The proximity proof is
disincentive against relay attacks. The literature considers the following threat
models:

– Distance Fraud (DF): A malicious prover far away from the verifier tries to
convince him that he is close enough.

– Mafia Fraud (MF) [12]: A man-in-the-middle (MiM) adversary between a far
away honest prover and a verifier relays or modifies the messages to make the
verifier accept.

– Terrorist Fraud (TF) [12]: An adversary tries to make the verifier accept with
the help of far away and malicious prover without gaining any advantage to
later pass the protocol on his own.

– Impersonation fraud (IF) [1]: An adversary tries to impersonate the prover to
the verifier.

– Distance Hijacking (DH) [11]: A far away prover takes advantage of some
honest, active provers to make the verifier accept.

Some of the distance bounding protocols [7–9,15,18,20–22] have been broken
since either their security were not proven formally or they do not have any
security proofs. Amongst existing distance bounding protocols, only the SKI
protocol [3–5], the Fischlin-Onete (FO) protocol [14,23] and the DBopt protocol
[6] are formally proven to be secure against all above threats.

Boureanu and Vaudenay [6] formalize the threat models and propose a new
distance bounding protocol DBopt which has three concrete instances DB1, DB2
and DB3. They give the definition of the “Common Structure” for the distance
bounding protocols. A DB protocol in common structure consists of three phases:
an initialization phase and a verification phase which do not depend on com-
munication time, and a distance bounding phase between them. The distance
bounding phase consists of number of rounds. In each round, the prover responds
the challenge of the verifier. The verifier checks if the responses are on time and
correct. DBopt follows the common structure and all instances have the secu-
rity proofs against DF and MF. All but DB3 have a security proof for TF. The
common structure is defined by four parameters: the number of rounds n, the
minimal number of correct rounds τ , the cardinality numc of the challenge set,
and the cardinality numr of the response set. The optimal security bounds for
DB protocols that follow the common structure are given in [6]. All instances of
DBopt have optimal security bounds against MF and all but DB2 have optimal
security bounds against DF.

Random delays for the messages (challenges and responses) on both the ver-
ifier and the prover side in the distance bounding phase is used for location
privacy as discussed in [17,19]. In this paper, we add random delays only on the
verifier side and achieve better security bounds.

The contribution of this paper is as follows:

– We define three new structures for distance bounding protocols. Differently
than the common structure [6], we suggest to add properties that the prover



480 H. Kılınç and S. Vaudenay

measures time like the verifier and the verifier sends challenge in a time that
is randomly chosen.

– We show the optimal security bounds for each new structure. Compared to
common structure [6], we obtain better security bounds.

– We modify DBopt protocol [6] according to the new structures and have new
protocols DBoptSync, DBoptSyncRand and DBoptRand. We prove the secu-
rity of them against DF, MF and IF (DH and TF resistance are unchanged
compared to [6]). We reach the optimal security bounds for DF and MF for
all of them in their respective structure.

– We analyse the performance of our new DB protocols and conclude that we
have a better efficiency than previous works [3–6,14,23].

2 Definitions and Preliminaries

In this section, we recall the formal model of distance bounding protocols
from [6].

Definition 1 (Distance Bounding Protocol). A (symmetric) distance
bounding protocol is a two party probabilistic polynomial time (PPT) protocol
and consists of a tuple (K, P, V,B). Here, K is the key domain, P is the proving
algorithm, V is the verifying algorithm where the inputs of P and V is from K,
and B is the distance bound. Given x ∈ K, P (x) and V (x) interact with each
other. At the end of the protocol, the verifier V (x) sends a final message OutV .
If OutV = 1, then the verifier accepts. If OutV = 0, then the verifier rejects.

In a DB protocol, apart from the prover and the verifier, there may exist
other participants called adversaries. Each participant has instances and each
instance has its own location. P denotes the set of instances of the prover, V
denotes the set of the instances of the verifier and A denotes the set of the
instances of the other participants.

Instances of an honest prover run the algorithm P denoted by P (x). An
instance of a malicious prover runs an arbitrary algorithm denoted by P ∗(x).

The verifier is always honest and its instances run the algorithm V denoted
by V (x).

The other participants are (without loss of generality) malicious. They may
run any algorithm without no initialized key. A denotes a participant from A.

The locations of the participants are elements of a metric space.

Communication and Adversarial Model: The communication and adver-
sarial model of a DB protocol [3] is the following:

DB protocols run in natural communication settings. There is a notion of
time, e.g. time-unit, a notion of measurable distance and a location. Besides,
timed communication follows the laws of physics, e.g., communication cannot
be faster than speed of light.

An adversary can see all messages (whenever they reach him). He can change
the destination of a message subject to constraints. Namely, a message sent by
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U at time t to V can be corrupted by A at time t′ if t′ + d(A, V ) ≤ t + d(U, V )
where d is a metric that shows the distance between its inputs. In addition, the
adversary may have extra technology to correct the noise of the channel while
honest participants cannot have it.

In fact, the adversary has very limited action because of the communication
speed. For instance if the adversary relays the messages between the far away
prover and the verifier, the responses arrive very late. Similarly if the adversary
forces the far away prover for any online help, still he cannot succeed to respond
correctly and on time. Basically, the adversary cannot break the laws of physics!

Definition 2 (DB Experiment). An experiment exp for a distance bound-
ing protocol with the tuple (K, P, V,B) is a setting (P,V,A) with several PPT
instances of participants, at some locations.

We denote by exp(V ) a distinguished experiment where we fix a verifier
instance V called the distinguished verifier. Participants that are within a dis-
tance of at most B from V are called close-by participants. Others are called
far-away participants.

Definition 3 (Common Structure [6]). A DB protocol with the common
structure based on parameters (n, τ, numc, numr) has some initialization and ver-
ification phases which do not depend on communication times. These phases are
seperated by distance bounding phase which consists of n rounds of timed chal-
lenge/response exchanges. A response is called on time if the elapsed time
between sending the challenge (by verifier) and receiving the response (by ver-
ifier) (See Fig. 1) is at most 2B. Provers do not measure the time. Challenges
and responses are in sets of cardinality numc and numr, respectively.

When the protocol follows the specified algorithms but messages during the
distance bounding phase can be corrupted during transmission, we say that the
protocol is τ -complete if the verifier accepts if and only if at least τ rounds have
a correct and on-time response.

In practice, the noise in the communication should be considered. We assume
that there is probability of noise pnoise in one round of distance bounding phase.
Therefore the probability that a number of τ responses are correct and on time
in the case of a close-by prover is Tail(n, τ, 1 − pnoise) where:

Tail(n, τ, ρ) =
n∑

i=τ

(
n

i

)
ρi(1 − ρ)n−i

Accordingly, the probability to fail is negligible when n
τ < 1 − pnoise due to

the Chernoff-Hoeffding bound [10,16].
We now give security definitions and theorems from [6] that show the optimal

security bounds for the DB protocols following the common structure.

Definition 4. (α-resistance to Distance Fraud [6]). The distance-bounding
protocol α-resists to distance fraud if for any distinguished experiment exp(V )
where there is no close participant to V, the probability that V accepts is bounded
by α.
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Theorem 1 ([6]). A DB protocol following the common structure with para-
meters (n, τ, numc, numr) cannot α−resists to distance fraud for α lower than
Tail(n, τ,max( 1

numc
, 1

numr
)).

This is the optimal security bound that a DB protocol can reach against
distance fraud. The DB1 and DB3 protocols from DBopt [6] reach this bound.

Definition 5 (β-secure Distance Bounding Protocol [6]). We say that a
distance-bounding protocol is β-secure if for any distinguished experiment exp(V )
where the prover is honest, and the prover instances are all far away from V (the
distance between the prover instances and V is more than B), the probability that
V accepts is bounded by β.

We recall that β-security captures the threat models MF, MiM and IF [6].

Theorem 2 ([6]). A DB protocol following the common structure with para-
meters (n, τ, numc, numr) cannot be β−secure lower than Tail(n, τ,max
( 1

numc
, 1

numr
)).

This is the optimal security bound that a DB protocol can reach against
mafia fraud. All instances of DBopt protocols [6] reach this bound.

t2

t0

PV

Fig. 1. The time check in the com-
mon structure is done by measuring
the time difference between the curly
parenthesis. t shows the time.

t2

t0

t1 PV

Fig. 2. The time check in the sync struc-
ture is done by measuring the time dif-
ference between the curly parentheses. t
shows the time.

3 Optimal Distance Bounding Protocol with Almost
Synchronized Parties

3.1 Definitions and Lemmas

Definition 6 (Sync Structure). A DB protocol with the sync structure based
on parameters (n, τ, numc, numr) has some initialization and verification phase
which do not depend on communication times. There is an n-round distance
bounding phase between the initialization and verification phase. The challenge
is on time if the elapsed time between sending the challenge (by verifier) and
receiving the challenge (by prover) (Corresponds first part in Fig. 2) is at most
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B. The response is on time if the elapsed time between sending the response
(by prover) and receiving the response (by verifier) (Corresponds second part in
Fig. 2) is at most B. Challenges and responses are in sets of cardinality numc

and numr, respectively.
When the protocol follows the specified algorithms but messages during the

distance bounding phase can be corrupted during transmission, we say that the
protocol is τ -complete if the verifier accepts if and only if at least τ rounds have
a correct and on-time response and challenge.

The important difference between “Common Structure” and “Sync Struc-
ture” is that provers now need to measure time since the verifier needs to check
if the challenge arrive on time to the prover.

Lemma 1. Let exp be an experiment, V be a participant and t0 be a time. We
consider a simulation expt0 of the experiment in which each participant U stops
just before time t0+d(V,U). We denote by Viewexp

t (U) and View
expt0
t (U) the view

of participant U at time t in exp and expt0 , respectively. For any t < t0+d(V,U),

Viewexp
t (U) = View

expt0
t (U).

Proof. We prove by induction on t that for all participant U such that t <
t0+d(V,U), Viewexp

t (U) = View
expt0
t (U). Clearly this is the case at the beginning

of the both experiments. If it is the case at any time less than or equal to
t − 1, we can now prove it is the case at time t. Let participant U be such
that t < t0 + d(V,U). We know that Viewexp

t−1(U) = View
expt0
t−1 (U). Any incoming

message m at time t from a participant U ′ was sent at time t′ = t−d(U,U ′). We
have t′ < t0 + d(V,U) − d(U,U ′) ≤ t0 + d(V,U ′). If U ′ is at a different location
than U , we have t′ ≤ t − 1 so we can apply the induction hypothesis. Therefore
Viewexp

t′ (U ′) = View
expt0
t′ (U ′) and so the message m is the same in exp and expt0 .

This applies to all instances at the same location as U , since they locally compute
the same messages for each other. Hence, Viewexp

t (U) = View
expt0
t (U). ��

Lemma 2. Given an experiment, if a message c is randomly selected with fresh
coins by a participant V at time t0, any ĉ received by a participant U at time
t1 < t0 + d(U, V ) is statistically independent from c.

Proof. We apply Lemma 1. c is not selected at all in expt0 because V stops just
before t0 in expt0 . Since t1 < t0 + d(U, V ), ĉ is the same in exp and expt0 . c is
randomly chosen with fresh coins, so ĉ is statistically independent from c. ��

Theorem 3. Assuming the time when V sends his challenge can be predicted
by the adversary, a τ−complete DB protocol following the sync structure with
parameters (n, τ, numc, numr) can not be β secure (Definition 5) for β lower than
Tail(n, τ, 1

numc.numr
).

Remark that this bound is an improvement compared to Theorem2 in the
common structure.
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Proof. We consider V, a far-away prover P and a MiM A with noiseless com-
munication. A relays the messages between V and P in the initialization and
verification phases which are time insensitive. During the challenge phase, A
should arrange the response and the challenge time. Since P is far-away, he can-
not just relay the messages. Therefore he should guess the challenge and the
response before receiving them. We denote that the distance between V and
A by d1 and the distance between A and P by d2. So it can do the following
strategy:

No-ask Strategy: A can guess the response and the challenge and forward
them before seeing them so that they arrive on time.

We assume that A knows the time t0 that V sends the challenge c and he
chooses a distance d ≤ B. He guesses the challenge and sends it to P at time
t0 + d − d2 so that P receives it at time t1 where t1 = t0 + d. He guesses the
response and sends V at time t0 + 2d − d1. V receives the response at time
t2 = t1 + d. Since t1 − t0 = d ≤ B and t2 − t1 = d ≤ B, the challenge and the
response rounds are on time.

As a result, A can be successful on the verification of the challenge and
the response time with no-ask strategy if he guesses both the challenge and
response correctly. The probability that he passes the verification for one round
is 1

numc.numr
and so the probability that the V accepts A is Tail(n, τ, 1

numc.numr
).
��

Fig. 3. The DBoptSync distance-bounding protocol
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3.2 DBoptSync with Synchronized Parties

We propose a new distance bounding protocol DBoptSync described in Fig. 3
which uses the ideas in [6]. The assumption here is that the prover P and the
verifier V have synchronized clocks.

DBoptSync is a symmetric distance bounding protocol in which P and V
share a secret x ∈ Z

s
2 where s is a security parameter. The notations are the

folllowing: n is the number of rounds, �tag is the length of the tag, τ is a threshold,
T is the set of all possible time values, q is a prime power.

As in DBopt, we use the function fx which maps different codomains depend-
ing on the input. fx(NP , NV , Lμ, b) ∈ GF (q)n and fx(NP , NV , Lμ, T, b, c) ∈
GF (q)�tag . Lμ is a mapping defined from a vector μ ∈ Z

s
2 where Lμ(x) =

(μ(x), μ(x), ..., μ(x)) and μ(x) = map(μ.x) such that map : Z2 → GF (q) is
an injection. Here NP , NV ∈ {0, 1}�nonce , Lμ ∈ L where L includes all possible Lμ

mappings, b, c ∈ GF (q)n and T ∈ T n.
The initialization phase of the DBoptSync is the same as in the DBopt proto-

col [6]. The distance bounding phase is almost the same. The difference is that P
saves the each time ti1 that he receives the challenge c′

i from V at round i and V
saves the times ti0 and ti2 that he sends the challenge ci and he receives response
r′
i, respectively. In the verification phase, the prover sets T = (t11, t

2
1, ..., t

n
1 ) and

c′ = (c′
1, c

′
2, ..., c

′
n) and calculates the tag fx(NP , NV , Lμ, T, b, c′). Then he sends

the tag and the verifier does the following:

– He checks if the tag and (c′, T ) are compatible which means the tag he received
is equal to fx(NP , NV , Lμ, T, b, c′). If it is compatible, he does the next step.
Otherwise he rejects P .

– V counts the number of correct rounds. A round is correct if c′
i = ci and r′

i = ri.
If the number of correct rounds are less then τ , he rejects P . Otherwise he
continues with the next step.

– V checks the challenge and response time for each correct round i. The chal-
lenge and response time is correct if ti0 ≤ ti1 ≤ ti2, ti1 − ti0 ≤ B and ti2 − ti1 ≤ B,
respectively. If the number of timely and correct rounds is at least τ , then V
accepts P . Otherwise, he rejects.

We note that the timely condition in DBoptSync implies ti2 − ti0 ≤ 2B, which
is the only verification done in DBopt [6]. Therefore, the DBoptSync’s timely
condition is more restrictive.

The responses are computed depending on the concrete instance of b and
φci . There are three protocols defined in [6] whose instances are given in Table 1.
Hence, DBoptSync has the same instances as well.

Theorem 4 (Security). Assuming that V and P are synchronized, the DBopt-
Sync protocol with the selection of b and φ as in Table 1 is β−secure,

– (DB1 and DB2) β = Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + (r + 1)ε + r2−�tag when f is a
(ε,K)-circular PRF (See AppendixA).

– (DB3) β = Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + ε + 2−�tag when f is a (ε,K)-PRF.
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Here, r is the number of honest instances and K is a complexity bound on the
experiment. β is negligible for τ

n ≥ 1
q2 + cte when r and K are polynomially

bounded and ε is negligible.

Table 1. Classification of the protocols according the selection of b and φ in DBoptSync

Protocol q map b φci

DB1 q > 2 map(u) �= 0 no b used φci(a,x
′
i, bi) = ai + cix

′
i

DB2 q = 2 map(u) = u Hamming weight n
2

φci(a,x
′
i, bi) = ai + cix

′
i + cibi

DB3 q ≥ 2 no map used Hamming weight n φci(a,x
′
i, bi) = ai + cibi

If ε, 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are optimal for
the security according to Theorem 3.

Proof. The proof starts like in [6]. We consider a distinguished experiment
exp(V ) with no close-by participant and no adversary and V accepts with prob-
ability p. We consider a game Γ0 where we simulate exp(V ) and succeed if and
only if V accepts P . So, the success probability of this game is p. We reduce
Γ1, Γ2 and Γ3 as in [6].

We reduce Γ0 to Γ1 whose success additionally requires that for every
(NP , NV , Lμ) triplet there is no more than one instance P (x) and one instance
V (x) using this triplet. Since P (x) is honest and P (x) and V (x) are selecting
NP and NV at random, respectively, so the success probability of Γ1 is at least
p − r2

2 2−�nonce .
Γ2 is the reduction where Γ1 and its success requires additionally that V does

not accept forged tag. fx satisfies the circular PRF assumptions (See Appen-
dixA) as shown in [6]. It means that the tag can be forged with probability ε +
2−�tag . Therefore the success probability of Γ2 is at least p− r2

2 2−�nonce −rε−r2−�tag

(See [6] for the full proof of this step).
Now, in whole game Γ2, we replace the oracle Ox,fx

by Ox̃,F and obtain a
simplified game Γ3. Γ3’s requirements for the success is the same with Γ2. So we
have PrΓ3 [success] ≥ p − r2

2 2−�nonce − (r + 1)ε − r2−�tag .
We now detail the analysis of Γ3 which differs from [6]. In Γ3, P and V never

repeat the nonces and use a random function F to select a. So, the distinguished
V has a single matching P and these two instances pick a at random. Further-
more, acceptance implies that both instances have seen the same Lμ, T, b, c. The
acceptance message of V also depends on the correct and timely response and
challenge. In the case that V accepts P , P has to receive the challenge c on time
and V has to receive the corresponding response r on time for at least τ rounds.
Let’s denote ti0 the time when V sends ci, ti1 the time when P receives c′

i and
ti2 is the time when V receives ri. Thanks to Lemma 2, the challenge that P (x)
receives is independent from the challenge that is sent by V (x), since the chal-
lenge c is randomly selected by V (x), the message that P (x) received matches
with probability 1

q .
Similarly, if we exchange the roles of P and V in Lemma 2 and replace t0 with

ti1 and t1 with ti2, we can conclude that r that V (x) receives is independent from
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the response r′
i that is sent by P (x) as well. The response functions on DB1,

DB2 in each round i depends on challenge, ai and x′
i. In Γ3, ai is random in

GF (q)n. Since φc′
i
(ai, x

′
i, bi) = ai + g(c′

i, x
′
i, bi) where g is a function (See Table 1

for the details of g) we can assume that ai is randomly selected in GF (q) just
when r′

i is computed. Equivalently, ri is uniformly selected in GF (q) just before
being sent. So, ri = r′

i with probability 1
q .

To sum up, we have p ≤ Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + (r + 1)ε + r2−�tag .

If φ and b are as in DB3 [6], we lose r2

2 2−�nonce from Γ0. In Γ1, we apply full
PRF reduction and lose ε to obtain Γ2 with a random function. We lose 2−�tag

more to assume that tag is received by V was not forged in some Γ3. Γ3 succeeds
with a probability bounded by Tail(n, τ, 1

q2 ) because of Lemma 1. In the end, we

have p ≤ Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + ε + 2−�tag for DB3. ��

3.3 DBoptSync with Unsynchronized Verifier and Prover

DBoptSync assumes that the prover and the verifier have synchronized clocks.
In this section, we discuss the problems of having unsynchronized clocks for P
and V in the DBoptSync. Let’s say that the time difference between the clocks of
the verifier and prover is |δ|1. For example, V has time t on his local clock while
P has time T = t + δ on his local clock. V sends the challenge at t0 according
to V’s local clock and P receives it at T1 = t0 + d1 + δ according to P ’s local
clock. Then V receives the response at t2 ≥ t0 + 2d1. So V gets the following
result in the verification of timing: T1 − t0 = δ + d1 and t2 − T1 = d1 − δ. If the
prover is close, the inequality |δ| ≤ B − d1 should be satisfied so that P passes
the protocol.

In addition, unsynchronized honest prover and verifier give advantage to the
adversary since he is able to do pre-ask (for δ > 0) and post-ask (for δ < 0).
Indeed, if the honest prover is far at a distance up to B + |δ| and at least
max(B, |δ|), A passes the protocol with probability Tail(n, τ,max( 1

numc
, 1

numr
)).

Note that ti2−T i
1 ≤ B and T i

1 −ti0 ≤ B imply that ti2−ti0 ≤ 2B which is what
is described in DBopt [6]. So, the security result of [6] apply to our protocol even
if the clocks are not synchronized.

Pre-ask: A guesses the challenge before it is released and asks for the response
to P on time so that he can later on answer. If P and V are synchronized,
this strategy never works because A relays the response from P to V where the
distance between them is more than B. However the following happens if P and
V are not synchronized and δ > 0.

We consider d1 + d2 ∈ [max(B, |δ|), B + |δ|]. V sends the challenge c at t0. A
guesses the challenge ĉ and sends it to P at tA to be determined which is before
receiving the challenge from V. P receives ĉ at T1 = tA +d2 +δ that is local time
of P . P sends response r and A relays it and V receives r at t2 = tA + 2d2 + d1.
1 If the difference between clocks is not constant it can be still considered as a constant

during the protocol since the distance bounding phase takes very short time (order
of nanoseconds).
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T1−t0 = tA+d2+δ−t0. By selecting tA = t0+d1−2δ, T1−t0 = d1+d2−δ ∈
[0, B]. So the challenge is considered on time.

t2 − T1 = tA + 2d2 + d1 − tA − d2 − δ = d1 + d2 − δ ∈ [0, B]. So the response
is considered on time.

Post-ask: A guesses the response at the same time he forwards the challenge
to P . If P and V are synchronized, this strategy never works because A relays
the challenge from V to P where the distance between them is more than B.
However the following happens if P and V are not synchronized and δ < 0.

We consider d1 + d2 ∈ [−δ,B − δ]. V sends the challenge c, then A relays c
and P receives it at T1 = t0 + d1 + d2 + δ. Without waiting the response from
P , A guesses response and sends it at time tA. So V receives it at t2 = tA + d1.

T1 − t0 = t0 + d1 + d2 + δ − t0 = d1 + d2 + δ ∈ [0, B]. So the challenge is on
time.

By selecting tA = t0 + d1 + 2d2 + 2δ, we have t2 − T1 = d1 + d2 + δ ∈ [0, B].
So the response is on time.

Therefore, there is an attack when the distance between P and V is in between
max(B, |δ|) and B + |δ|.

As a result, we have the security bound of Theorem4 if the distance between
P and V is more than B+|δ| even though P and V are not synchronized. However
if P is in the distance between B and B+ |δ|, we have the weaker security bound
as in Theorem 2.

One of the important problems in DBoptSync with unsynchronized P and
V is correctness, since the close-by P cannot pass the protocol, when d(P, V ) ≤
B − |δ|. Therefore if the verification fails in DBoptSync, V can do the time
verification of DBopt [6] which is checking if t2 − t0 ≤ 2B, but in this case we
have a weaker security which is as in DBopt. We stress that this does not require
to restart the protocol. We rather obtain a variant of DBoptSync which OutV
can take 3 possible values: “reject”, “DBopt accept”, or “DBoptSync accept”.
Applications can decide if a “DBopt accept” is enough depending on the required
security level.

4 Randomizing Sending Time of the Challenge

We think of a new modification to distance bounding protocols that are in either
“Common Structure” or “Sync Structure”. Before, we assumed that the sending
time ti0 of the challenge for each round i in distance bounding phase was known by
the adversary. Now, we suggest a new modification where the verifier randomizes
the sending time ti0 ∈ [T, T + Δ] where T and Δ are public and ti0 is uniformly
distributed (as real numbers) so that the exact ti0 cannot be accurately known
by the adversary before seeing the challenge.

4.1 Definitions and Lemmas

Definition 7 (Rand Structure). A DB protocol with the rand structure based
on parameters (n, τ, numc, numr,Δ) has the same properties with the common
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structure in Definition 3. Additionally, the verifier chooses randomly a sending
time in the interval [T, T +Δ] for each challenge in the distance bounding phase.

Definition 8 (SyncRand Structure). A DB protocol with the rand struc-
ture based on parameters (n, τ, numc, numr,Δ) has the same properties with the
sync structure in Definition 6. Additionally, the verifier chooses randomly a send-
ing time in the interval [T, T + Δ] for each challenge in the distance bounding
phase.

Theorem 5. A DB protocol following either the “Rand Structure” or the “Syn-
cRand Structure” with parameters (n, τ, numc, numr,Δ) cannot α-resists to dis-
tance fraud (DF) for α lower than Tail(n, τ,max( 1

numc
, 1

numr
).2B

Δ ).

Proof. We construct a DF following the early reply strategy: A malicious prover
guesses the challenge ci or the response ri before it is emitted, and then already
sends the response at time T i

1 (We use capital T since the prover does not
have to be synchronized with the verifier). Therefore the prover has to guess
proper time T i

1 to send the response because the verifier checks the inequalities
ti2 − ti0 ≤ 2B for the “Rand Structure” and T i

1 − ti0 ≤ B and ti2 − T i
1 ≤ B for

the “SyncRand Structure”. ti2 is the time that the verifier receives the response
so it depends on the sending time T i

1 of response by the prover. It means that
0 ≤ ti2 − ti0 = T i

1 + d − ti0 ≤ 2B where d is the distance between the prover and
the verifier. So we can conclude that if ti0 ∈ [T i

1+d−2B, T i
1+d] then P passes ith

verification. The probability that it happens is 2B
Δ . Once c is received, the prover

can deduce ti0 and use ti1 = ti0+ti2
2 in the “SyncRand Structure” since verifier

needs to know it to check if the response and challenge are on time. Therefore
the probability that prover succeeds the round i is max( 1

numc
, 1

numr
).2B

Δ since he
also have to guess correctly c or r. We can conclude that P succeeds at least τ
rounds with probability at least Tail(n, τ,max( 1

numc
, 1

numr
).2B

Δ ). ��

Note that in the “Rand Structure”, there is no change on the optimal β which
is given in Theorem 2. As for the “SyncRand Structure”, the new bound is as
follows.

Theorem 6. A τ -complete DB protocol following the “SyncRand Structure”
with parameters (n, τ, numc, numr,Δ) cannot be β-secure for β lower than
Tail(n, τ, 1

numc.numr
.B
Δ ).

Proof. We consider V, a far away prover P and MiM A with noiseless communi-
cation. As showed in Theorem 3, A can use No-ask strategy to pass the protocol.
Differently, he needs to guess proper time tiA to send guessed challenge to P .
P receives the challenge from A at time ti1 where ti1 = tiA + d2. If A passes ith

round, the following inequality 0 ≤ ti1 − ti0 ≤ B should be satisfied. It means
that 0 ≤ tA + d2 − t0 ≤ B. If tA satisfies this inequality then t0 should be in the
interval [tA+d2−B, tA+d2]. The probability that it happens is B

Δ . Therefore the
probability that prover succeeds the round i is 1

numc.numr
.B
Δ since he also have to

guess correct c and r. We can conclude that P succeeds at least τ rounds with
probability at least Tail(n, τ, 1

numc.numr
.B
Δ ). ��
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As a result of all the structures, “SyncRand Structure” gives the best optimal
security bounds for both β-security and α-resistance. See Table 2 for the review
of the optimal bounds for all of the structures.

Table 2. The review of optimal security bounds according to defined structures

Structure DF MF

Common Tail(n, τ, max( 1
numc

, 1
numr

)) Tail(n, τ, max( 1
numc

, 1
numr

))

Sync Tail(n, τ, max( 1
numc

, 1
numr

)) Tail(n, τ, 1
numc

. 1
numr

)

Rand Tail(n, τ, max( 1
numc

, 1
numr

). 2B
Δ

) Tail(n, τ, max( 1
numc

, 1
numr

))

SyncRand Tail(n, τ, max( 1
numc

, 1
numr

). 2B
Δ

) Tail(n, τ, 1
numc

. 1
numr

B
Δ

)

4.2 DBoptSyncRand and DBoptRand with Randomized Sending
Time

We construct new distance bounding protocols DBoptSyncRand and DBop-
tRand. DBoptSyncRand follows the same steps as in DBoptSync and DBoptRand
follows the same steps as in DBopt [6]. Differently in both of the protocols, the
verifier randomizes the send time ti0 ∈ [T, T +Δ] where T and Δ are public and ti0
is uniformly distributed (as real numbers) for each round i in the distance bound-
ing phase.

In Sect. 5, we consider Δ = 100B. For instance, Δ = 1μs and B = 10ns (this
corresponds to 3 m according to speed of light). n rounds take n μs which is
reasonable.

Theorem 7 (Security). Assuming that V and P are synchronized, the sending
time of the challenge is randomized and the time interval [T, T + Δ] to send the
challenge is public. Then the DBoptSyncRand protocol is β−secure for

– (b and φ as in DB1 and DB2 [6]) β = Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce + (r + 1)ε +
r2−�tag when f is a (ε,K)-circular PRF [6].

– (b and φ as in DB3 [6]) β = Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce + ε + 2−�tag when f is
a (ε,K)-PRF.

Here, r is the number of honest instances of the prover and K is a complexity
bound on the experiment and φ is response function. β is negligible for τ

n ≥
1
q2 + cte and r and K polynomially bounded and ε is negligible.

If ε, 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are optimal for
the security according to Theorem 6.

Proof. The proof is the same as Theorem 4 until game Γ3. The success of Γ3

depends on the correct and timely response and challenge. Lemma 2 shows that
the challenge and the response have to be independent so that they arrive on time
and these independent response and challenge can be correct with probability
1
q2 (See the proof of Theorem4). Additionally, the independent challenge ĉ is
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on time when the sending time is randomized, if ĉ is sent on proper time. This
proper time can be correct with probability B

Δ as showed in Theorem 6. Therefore
the probability of one successful round is 1

q2 .B
Δ .

Consequently, success probability Γ0 is at least Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce +
(r + 1)ε + r2−�tag for DB1 and DB2. For DB3, it is at least Tail(n, τ, 1

q2 .B
Δ ) +

r2

2 2−�nonce + ε + 2−�tag . ��

Theorem 8 (DF-resistance). The DBoptSyncRand and DBoptRand protocols
are α−resistant to distance fraud for

– (DB1 and DB3) α = Tail(n, τ, 1
q .2B

Δ ).

– (DB2) α =
n∑

i+j≥τ
i,j≤n/2

(
n/2

i

)
( 2B

Δ )i(1 − 2B
Δ )

n
2 −i

(
n/2
j

)
(B

Δ )j(1 − B
Δ )

n
2 −j.

DB1 and DB3 are optimal for the DF-resistance according to Theorem 5, while
DB2 cannot reach the optimal bounds for DF.

Proof. We consider distinguished experiment exp(V ) with no close-by partici-
pant. Due to the Fundamental Lemma in [6], the response ri is independent (in
the sense of Fundamental Lemma in [6]) from ci. For DB1 and DB2, ri is correct
with probability 1

q . Since ri has to be arrived on time, the proper time has to
be chosen. As stated in Theorem 5 the sending time is chosen correctly with
probability 2B

Δ . So the probability of success in one round i is 1
q .2B

Δ .
In DB2, half of the rounds where x′ = bi are correct because of the ham-

ming weight of b. Therefore, the only necessity in these rounds is sending the
response in correct time which can be chosen well with probability 2B

Δ . For
the remaining rounds (n

2 rounds), at least τ − n
2 rounds should pass correctly.

The correct response is chosen with the probability 1
2 and correct time with the

probability 2B
Δ . ��

5 Performance

Three new protocols DBoptSync DBoptSyncRand and DBoptRand have differ-
ent success probabilities for distance fraud and mafia fraud. DBoptSync and
DBoptSyncRand have better bound against mafia fraud compared to DBopt
while DBoptRand has the same security against mafia fraud with DBopt. In
addition, DBoptRand and DBoptSyncRand have the same and better success
probability for distance fraud compared to DBopt but DBoptSync is same with
DBopt.

Assuming a noise level of pnoise = 0.05 and B
Δ = 0.01, we get the results in

Tables 3 and 4. We find τ in terms of rounds n such that Tail(n, τ, 1 − pnoise) ≈
99% for τ−completeness. Table 3 shows the required number of rounds for dis-
tance fraud i.e. α ≤ s. Table 4 shows the number of rounds required for the
security i.e. β ≤ s. We used Theorems 4, 7 and 8 and theorems in [6] to compute
the required number of rounds to achieve security level.
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Table 3. Number of required rounds to be secure against distance fraud where s is the
security level in DB protocols. The bold protocols improve DBopt

s = 2−10 s = 2−20

DB1 DB1 DB2 DB3 DB1 DB1 DB2 DB3

(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 14 12 69 24 24 20 123 43

DBoptSyncRand 3 3 2 3 6 6 2 6

DBoptRand 3 3 2 3 6 6 2 6

DBopt 14 12 69 24 24 20 123 43

Table 4. Number of required rounds to be secure against mafia fraud where s is the
security level in DB protocols. The bold protocols improve DBopt

s = 2−10 s = 2−20

DB1 DB1 DB2-DB3 DB1 DB1 DB2-DB3

(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 7 6 12 12 8 20

DBoptSyncRand 3 1 3 5 5 5

DBoptRand 14 12 24 24 20 43

DBopt 14 12 24 24 20 43

As we can see in Tables 3 and 4, we can use DB2 with 5 rounds (instead
of 123) in DBoptSyncRand and reach a pretty good security. If synchronized
clocks are not realistic, we can see that we have a much better DF-security with
DBoptRand with the same number of rounds.

6 Conclusion

We define new structures for DB protocols which are not used before. The first
structure is the “Sync Structure” where the prover measures the time as well
as the verifier. We modify the DBopt [6] according to sync structure and we
get DBoptSync which has better security against mafia fraud. Then we add new
modification which is randomizing the sending challenge time to both “Common
Structure” and “Sync Structure” and get the second and third structures “Rand
Structure” and “SyncRand Structure”, respectively. Similarly, we modify the
DBopt and DBoptSync protocols based on these structures and get better secu-
rity bounds against distance fraud for the DBoptSyncRand and DBoptRand
protocols and mafia fraud for DBoptSyncRand protocol. We give the optimal
security bounds against distance fraud and mafia fraud for all DB protocols that
follows the new structures.
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A Circular-Keying PRF

The notion of circular-keying in pseudorandom functions introduced in [4,5].
It is necessary to use circular-keying PRF in our protocols to prove security
against MiM attacks. Circular-keying PRF has an extra assumption to the PRF
(fx)x∈GF (q)s to handle reuse of a fixed x outside of a PRF instance fx.

Definition 9 (Circular PRF [6]). Let be s, n1, n2 and q some parameters. An
oracle Ox̃,F is defined as Ox̃,F (y, L,A,B) = A · L(x̃) + B · F (y), using dot prod-
uct over GF (q), given L : {0, 1}s → GF (q)n1 and F : {0, 1}∗ → GF (q)n2 . We
assume that L is taken from a set of functions with polynomially bounded repre-
sentation. Let (fx)x∈GF (q)s be a family of functions from {0, 1}∗ to {0, 1}n2 . The
family f is a (ε,K)-circular-PRF if for any distinguisher having K complexity,
if the probability of distinguishing Ox,fx

, x ∈ {0, 1}s from Ox̃,F is bounded by
1
2 + ε. Additionally, we require two conditions on the list of queries:

– for any pair of queries (y, L,A,B) and (y′, L′, A′, B′), if y = y′, then L = L′.
– for any y, if (y, L,Ai, Bi), i = 1, 2, ..., � is the list of queries using this value

y, then ∀ λ1, λ2, ..., λ� ∈ GF (q)

�∑

i=1

λiBi ⇒
�∑

i=1

λiAi = 0

over the GF (q)-vector space GF (q)n2 and GF (q)n1 .

References

1. Avoine, G., Tchamkerten, A.: An efficient distance bounding RFID authenti-
cation protocol: balancing false-acceptance rate and memory requirement. In:
Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS,
vol. 5735, pp. 250–261. Springer, Heidelberg (2009)

2. Beth, T., Desmedt, Y.: Identification tokens or: solving the chess grandmaster prob-
lem. In: Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology-CRYPTO
1990. LNCS, vol. 537, pp. 169–176. Springer, Heidelberg (1991)

3. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
97–113. Springer, Heidelberg (2013)

4. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Towards secure distance bounding. In:
Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 55–68. Springer, Heidelberg (2014)

5. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and Provably Secure
Distance-Bounding. IOS Press, Amsterdam (2015)

6. Boureanu, I., Vaudenay, S.: Optimal proximity proofs. In: Lin, D., Yung, M., Zhou,
J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 170–190. Springer, Heidelberg (2015)

7. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

8. Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time
attacks. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) Security and
Privacy in the Age of Ubiquitous Computing. IFIP AICT, vol. 181, pp. 223–238.
Springer, Heidelberg (2005)
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