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Abstract

The human face has evolved to become the most important source of non-verbal in-

formation that conveys our affective, cognitive and mental state to others. Apart from

human to human communication facial expressions have also become an indispensable

component of human-machine interaction (HMI). Systems capable of understanding

how users feel allow for a wide variety of applications in medical, learning, entertain-

ment and marketing technologies in addition to advancements in neuroscience and psy-

chology research and many others. The Facial Action Coding System (FACS) has been

built to objectively define and quantify every possible facial movement through what is

called Action Units (AU), each representing an individual facial action.

In this thesis we focus on the automatic detection and exploitation of these AUs

using novel appearance representation techniques as well as incorporation of the prior

co-occurrence information between them. Our contributions can be grouped in three

parts. In the first part, we propose to improve the detection accuracy of appearance

features based on local binary patterns (LBP) for AU detection in videos. For this pur-

pose, we propose two novel methodologies. The first one uses three fundamental image

processing tools as a pre-processing step prior to the application of the LBP transform

on the facial texture. These tools each enhance the descriptive ability of LBP by em-

phasizing different transient appearance characteristics, and are proven to increase the

AU detection accuracy significantly in our experiments. The second one uses multi-

ple local curvature Gabor binary patterns (LCGBP) for the same problem and achieves

state-of-the-art performance on a dataset of mostly posed facial expressions. The curva-

ture information of the face, as well as the proposed multiple filter size scheme is very

effective in recognizing these individual facial actions.

In the second part, we propose to take advantage of the co-occurrence relation be-

tween the AUs, that we can learn through training examples. We use this information

in a multi-label discriminant Laplacian embedding (DLE) scheme to train our system

with SIFT features extracted around the salient and transient landmarks on the face. The

system is first validated on a challenging (containing lots of occlusions and head pose

variations) dataset without the DLE, then we show the performance of the full system

on the FERA 2015 challenge on AU occurrence detection. The challenge consists of

two difficult datasets that contain spontaneous facial actions at different intensities. We

demonstrate that our proposed system achieves the best results on these datasets for de-

tecting AUs.

The third and last part of the thesis contains an application on how this automatic AU

detection system can be used in real-life situations, particularly for detecting cognitive

distraction. Our contribution in this part is two-fold: First, we present a novel visual
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database of people driving a simulator while being induced visual and cognitive dis-

traction via secondary tasks. The subjects have been recorded using three near-infrared

camera-lighting systems, which makes it a very suitable configuration to use in real

driving conditions, i.e. with large head pose and ambient light variations. Secondly, we

propose an original framework to automatically discriminate cognitive distraction se-

quences from baseline sequences by extracting features from continuous AU signals and

by exploiting the cross-correlations between them. We achieve a very high classification

accuracy in our subject-based experiments and a lower yet acceptable performance for

the subject-independent tests. Based on these results we discuss how facial expressions

related to this complex mental state are individual, rather than universal, and also how

the proposed system can be used in a vehicle to help decrease human error in traffic

accidents.

Keywords: facial analysis, facial expressions, action units, local binary patterns, Gabor

wavelets, multi-label embedding, driver monitoring, cognitive distraction
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Résumé

Le visage humain a évolué jusqu’à devenir la source d’information non-verbale la

plus importante permettant de communiquer notre état affectif, cognitif ou mental. Outre

la communication interpersonnelle, nos expressions faciales sont également devenues

une composante indispensable des interactions homme-machine (human-machine in-

teraction, HMI). Les systèmes capables de comprendre l’état d’esprit d’un utilisateur

ouvrent un large champ d’applications dans les domaines des technologies médicales, de

l’apprentissage, du divertissement et du marketing parmi tant d’autres et permettent des

avancées en neurosciences ou en psychologie. Le Facial Action Coding System (FACS)

a été développé pour permettre de définir objectivement et de quantifier tous les micro-

mouvements possibles du visage à l’aide d’unités d’action (action units, AU), chacune

représentant un changement distinct d’apparence faciale.

Dans cette thèse, nous nous concentrons sur la détection et l’utilisation automatique

de ces AU à l’aide de nouvelles techniques de représentation de l’apparence ainsi que de

l’intégration de l’information préalable de cooccurence de celles-ci. Nos contributions

peuvent être divisées en trois parties.

Dans la première partie, nous proposons d’améliorer le taux de détection des attri-

buts d’apparence basées sur des motifs binaires locaux (local binary pattern, LBP) pour

la détection d’AU dans des vidéos. A cet effet, nous proposons deux approches métho-

dologiques. La première fait usage de trois outils fondamentaux du traitement d’image

comme étape de pré-traitement avant le calcul des LBP sur la texture du visage. Chacun

de ces outils améliore la capacité descriptive des LBP en mettant l’accent sur différentes

caractéristiques transitoires de l’apparence. Il en résulte une augmentation significative

du taux de détection des AU dans nos expériences. La seconde utilise plusieurs motifs

binaires de courbure de Gabor locaux (local curvature Gabor binary patterns, LCGBP)

pour le même problème et atteint les performances de l’état de l’art sur un ensemble

d’images d’expressions faciales principalement posées. L’information de courbure du

visage ainsi que le schéma de filtres multiples que nous proposons sont particulièrement

efficaces dans la reconnaissance des actions faciales individuelles.

Dans la seconde partie, nous proposons de mettre à profit les relations de cooccu-

rance entre les AU que nous pouvons apprendre à l’aide d’exemples d’entrainement.

Nous utilisons cette information dans un système multi-étiquettes discriminant de plon-

gement laplacien (discriminant Laplacian embedding, DLE) pour entraîner notre sys-

tème avec des attributs SIFT extraits autour de points caractéristiques saillants du visage.

Le système est d’abord validé sans le DLE sur un ensemble de vidéos difficiles (conte-

nant beaucoup d’occlusions et de variations dans la pose de la tête). Les performances du

système entier sont ensuite évaluées sur la base de données du challenge FERA 2015 de
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détection d’occurences des AU. Ce challenge est constitué de deux ensemble de données

très difficiles qui contiennent des actions faciales spontanées de différentes intensités.

Nous montrons que notre système atteint les meilleurs résultats sur ces ensembles de

données de détection d’AUs.

La troisième et dernière partie de cette thèse contient une application démontrant

comment ce système automatique de détection d’AU peut être utilisé dans des situa-

tions de vie réelle, en particulier pour détecter une distraction cognitive. Notre contri-

bution dans cette partie est double : premièrement, nous présentons une nouvelle base

de données de sujets conduisant un simulateur tout en étant soumis à des distractions

visuelles et cognitives sous forme de tâches secondaires. Les sujets ont été enregistrés à

l’aide d’un système de trois caméras et d’éclairage proche-infrarouges, le rendant par-

faitement adapté pour un usage dans des conditions de conduite réelles, soit avec de

grands mouvements de la tête et des variations de la lumière ambiante. Deuxièmement,

nous proposons un système original permettant de différencier automatiquement les sé-

quences de distraction cognitive des séquences de base en extrayant certaines attributs

des signaux continus d’AU et leur corrélation croisée. Nous atteignons une très grande

précision de classification lorsque nous considérons chaque sujet individuellement et des

performances moins bonnes, mais néanmoins acceptables, lors de tests indépendants du

sujet. Sur la base de ces résultats, nous discutons l’individualité des expressions faciales

liées à cet état mental complexe et leur manque d’universalité. Nous discutons égale-

ment comment le système proposé peut être utilisé dans un véhicule afin de réduire les

accidents de voiture dus à des erreurs humaines.

Mots clefs : analyse de visages, expressions faciales, unité d’action, motifs binaires

locaux, ondelettes de Gabor, plongement multi-étiquette, surveillance de conducteur,

distraction cognitive
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Preface 1
1.1 Context and Motivations

"A man’s face as a rule says more, and more interesting things, than his mouth, for it
is a compendium of everything his mouth will ever say, in that it is the monogram of all
this man’s thoughts and aspirations." said philosopher Shopenhauer. Shakespeare, on

the other hand, stated how difficult it is to read those things: "there is no art to find the
man’s construction in the face." Faces and what they show and hide have always been

of great interest to humanity probably even before the emergence of languages.

In terms of affective computing the importance of facial expressions and their auto-

matic detection is reviewed in the further chapters of the thesis, both for theoretical and

experimental sciences and application-wise. In this opening chapter we would rather

talk about specific questions that the thesis focuses on. The main focus of the thesis is

automatic detection and analysis of action units (AU) as defined by the Facial Action

Coding System (FACS) (Ekman & Friesen, 1977), which are the most basic and objec-

tive way of explaining what is in a face. Here, we use the word basic not in the sense of

being simple or incompetent but rather as unitary and primary.

As detailed in the next section, the thesis consists of three main subjects around this

primary focus: Individual AU detection, Multi-label AU detection and Driver’s cognitive

distraction detection using AUs. Each part aims to address different issues in the domain

and proposes solutions with a novel approach.

Although great advancement has been achieved, especially in the last decade, the

automatic AU detection problem is still far from being considered solved. One of the

biggest issues is how to handle differences in individual’s facial configuration. Even

in the neutral case (no expression) people differ in terms of the size and placement of

the facial components (e.g. eyes, nose, mouth) with respect to each other. A possible

solution to this problem is to apply a subject based normalization either in the feature

extraction level or at the decision level, i.e. normalizing the continuous AU output values

by those obtained from the neutral face of the same subject. In this thesis we apply both

techniques within the different contributions. Although we propose to use manually

annotated neutral frames of subjects, there exist methods to do this automatically, e.g.

1
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via averaging on many frames of that subject, or projecting the face in a test frame onto a

lower dimensional manifold obtained from neutral faces of many other training subjects.

Another important issue, even though it is not directly addressed as a major contri-

bution in this thesis, is how to handle pose variations when using the systems in natural

environments with users moving freely. These movements cause a change of appear-

ance with respect to the camera acquisition regardless of the facial action. The relatively

recent and growing trend is to use 3D acquisition systems as they become more avail-

able. However, in addition to requiring special equipment, this is also a computationally

expensive approach. In this thesis we only use 2D videos and corresponding solutions

to the head-pose problem, and in a specific application use a three camera acquisition

system whose captured images we then use to construct a virtual frontal view and apply

AU detection on this virtual image.

Individual AU detection refers to systems that do not use the joint AU information,

i.e. treat each AU as an independent image label. A lot of research has already been

performed on this issue, yet there is still room for improvement in terms of facial repre-

sentation that can more efficiently detect the appearance changes. The use of filtering for

pre-treatment of images is rarely encountered in facial image analysis. The more com-

mon practice is to directly use image transformations with varying configurations. With

our first major contribution we aim to show that the filtering methods commonly used in

other domains are also effective in improving the descriptive properties of facial appear-

ance features in terms of facial action recognition. With the second one we introduce

the use of curvature based appearance features in order to better represent these facial

features. The face indeed consists of curved components and these are more accented

when we consider the variation between the neutral face and the one that contains muscle

contractions (facial actions). Curvature features had already been shown to be effective

in face recognition and motivated by these facts we aimed at demonstrating their impact

in AU detection.

The multi-label structuring of the AU detection problem is an approach that is much

less investigated. Considering it as an image labeling problem, faces contain combina-

tions of active or non-active AUs at all times, i.e. a binary label vector of dimension the

same as the number of AUs under question. These labels are not necessarily indepen-

dent of each other, although some are less correlated than others. This fact overseen by

many, probably due to the added complexity, is not only useful for exploitation of the

AU information but also on the detection side. AUs are indeed individual units that work

in combination with a certain delay in time to construct what we perceive as a facial

expression. Their combined dynamic evolution has been studied by some researchers,

using learning models such as Dynamic Bayesian Networks (DBN) or Conditional Ran-

dom Fields (CRF). Within the scope of this thesis we stay in the static case (for detection

only) and apply a discriminant multi-label embedding scheme to learn bases for AU de-

tection that promote closeness of commonly occurring AUs and separation of differently

labeled data points on the projection space.

On the application side, driver monitoring systems keep getting more commonly

encountered in our daily lives, mainly due to the emergence of automatic and semi-

automatic vehicles. Inferring certain states of the driver (fatigue, distraction, emotional

state) has the possibility to be used for various in-car systems that aim at augmenting
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safety and comfort. To list a couple, cars could have alerting systems that notify the

driver when he/she is in a state that will be dangerous for driving, or a semi-automatic

vehicle can decide to switch between the automatic and manual driving modes depending

on the driver’s alertness level.

In this thesis, we address the problem of automatically detecting driver’s cognitive

distraction, which is a very complex cognitive state, especially in terms of facial reper-

cussions. As the case with most affective and cognitive states, this specific type of dis-

traction, which can also be called mind wandering, is a very personal experience in terms

of the mechanisms lying behind. In addition, it has no one-to-one correspondence to any

AU or AU combination in theory, as is the case for some of the emotions for example.

These facts make the problem we try to tackle very challenging and explains the low

number of similar works in the literature. The application that we present in this thesis

is within the context of driving, yet the methodology is valid for any situation in general

that involves cognitive distraction or similar complex states. Within this application we

once again aim to make use of inter-AU relations, but this time in a dynamic manner and

for another level of inference than AU detection. We build a hypothesis that not only

the existence of certain AUs is informative for detecting cognitive distraction, but also

different synchronization patterns between them.

In the following section, we detail how we approach all these issues with an emphasis

on our contributions to the related literature in the field.

1.2 Major contributions
and organization of the manuscript

We organize this thesis in four main parts, grouped in a way to represent the neces-

sary background information and the three fundamental subjects on which we propose

multiple contributions. The first part (Part I) consists of two background chapters. In

Chapter 2 we first review the different approaches proposed in order to define, cate-

gorize and understand the mechanisms behind emotions. We focus on three particular

approaches, namely the basic emotions, dimensional and appraisal based approaches.

These models are important within the context of this thesis, as they provide a theoreti-

cal rationale behind certain propositions of the thesis, if not are related directly to them.

Then we introduce the Facial Action Coding System (FACS) and the Action Units (AUs)

also giving their relations to the aforementioned emotion models. Needless to say, AUs

form the skeleton of the rest of the dissertation and this chapter contains the necessary

background information on them.

Chapter 3 contains the technical background on face tracking, feature extraction

and machine learning methods used for facial analysis systems in general, and AU de-

tection in particular. We specifically detail the methods which are used in latter parts of

the thesis, and review other notable methods in the literature. We also provide a review

of the existing facial expression databases and applications of facial expression analy-

sis to complete this survey of the state-of-the-art in AU detection and facial expression

recognition research.

In Part II we present our two contributions on individual AU detection, i.e. where
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the inter-AU relations are not taken into account in the framework. In both contribu-

tions we investigate novel feature extraction methods, that are based on Local Binary

Patterns (LBP), in order to achieve very high precision AU detection in video frames.

Our first contribution, presented in Chapter 4, uses the edge-preserving bilateral filter

and morphological opening and closing operations by reconstruction as a preprocessing

method to LBP feature extraction in order to enhance certain appearance properties and

eliminate irrelevant ones on the face image. We also introduce extracting LBP from

overlapping windows of varying sizes, which results in an enriched representation of the

facial texture. These advancements result in a significant performance increase in our

tests using the well-established CK+ dataset of facial expressions (Lucey et al., 2010).

In Chapter 5 we investigate the use of curvature Gabor wavelets within the AU detection

problem once again in combination with LBP. The Gabor wavelets extracted in multiple

orientations, scales, curvature degrees and filter sizes bring about a rich set of features

that describe the facial texture in different levels. Comparing the different combinations

of these filters we demonstrate the efficacy of the proposed system over existing ones.

The very high accuracy results obtained show the effectiveness of the proposed novelty

especially in dataset (or subject) specific applications.

Part III of the thesis, or the associated Chapter 6, explores the added-value of using

the co-occurrence of AUs in natural (spontaneous) situations for their detection, as its

main contribution. First, we propose a new real-time AU detection system that is based

on Scale Invariant Feature Transform (SIFT) features, which are calculated must faster

than the LBP based features with sufficient performance, allowing us to test extensions

and enhancements to this base system. We first validate it on the CK+ dataset and then

we extend this base system with a multi-label discriminant Laplacian embedding (DLE)

scheme, to incorporate the AU co-occurrences in the training phase. This multi-label

framework is validated on the FERA2015 challenge for AU detection (Valstar et al.,
2015). The proposed system is the winner of the AU occurrence detection sub-challenge,

successfully detecting AUs in two databases of spontaneous expressions recorded during

natural interactions. This chapter is particularly important, since it is one of the few

works in the literature that use the joint-AU information in the AU detection learning

phase. Another contribution is the first-time use of the DLE framework in the context of

facial action recognition.

In Part IV, we present an application type of contribution that uses the AU infor-

mation, obtained via the system presented in the preceding chapter, to detect cognitive

distraction of drivers. Cognitive distraction is a complex mental state that does not nec-

essarily manifest itself with a universal facial expression, as claimed for certain emo-

tions. Yet, it is an important state that can alter one’s coordination and decision making

abilities and cause danger during driving. With this work we aim to examine the feasi-

bility of its detection using novel feature extraction methods related to facial appearance

changes. This part consists of two complementary chapters. In Chapter 7 we present

a new database, called the EPV-DIST, of 46 subjects recorded while driving a simulator

and being induced visual and cognitive distraction at the same time via secondary tasks.

Publicly available databases on driving are very rare and so are those annotated for dis-

traction. With the EPV-DIST database, we aim to provide the research community a

database that is recorded with a realistic setup that represents an in-vehicle configura-
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tion and that contains segments annotated for the two types of distractive conditions and

driving performance measures.

Then in Chapter 8 we present our framework to detect sequences of cognitive dis-

traction sequences in comparison to the baseline, where the drivers are not induced any

kind of distraction. Our framework is based on dynamic low level descriptors of con-

tinuous AU values and the cross-correlations of AUs. The cross-correlations give in-

formation about the AU-synchronization characteristics at different time delays and as

the experiments demonstrate are helpful in the discovery of facial behaviour during cog-

nitive distraction. The AUs are detected on virtual frames that are generated through

three camera views to represent a frontal one. We also propose methods to deal with

the subject-biased data distribution and thus present a complete framework that can be

integrated in cars for detection of cognitive distraction in real driving situations.

Finally, in Chapter 9 we give a summary of the learnings from each contribution

in these parts, discuss the strong and weak points and also give an outlook on how they

can be improved, extended and used in real-world applications. The related publications

for each chapter are provided in the corresponding overview sections at the beginning of

each part.
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As individuals and social beings, we constantly receive internal and external stim-

uli that affect our decisions, determine our way of communication, cause physiological

changes, influence our perception of the world and in the long term transform and build

our personal character and social norms. All these transformations, in return, alter how

we perceive and appraise future stimuli. Emotions are in the center of this constant loop

as the driving force. They continually form the reason and consequence of our actions.

They have influenced art, science, philosophy, sociology and other areas ever since they

existed. Facial expressions, which constitute the core of this thesis, are one of the most

significant means of communicating emotions, may it be voluntarily or involuntarily.

In this introductory chapter, we move slightly away from the technical point of view

and review the various definitions and categorizations of emotions, the link to facial ex-

pressions and describe the Facial Action Units, which are the building blocks of these

expressions.

2.1 Emotions and emotion models

How to define what an emotion is and what it covers has been of substantial interest

since the great ancient philosophers and still is a matter of discussion in philosophy,

psychology, psychiatry and cognitive science among many other disciplines. Quoting

from Izard (1969): "The area of emotional experience and behavior is one of the most
confused and ill-defined in psychology." The word emotion is believed to have originated

from the Latin verb emovere, which can be described as to move out, stir, or agitate. As

a safe definition (although one could still debate this), emotion is a psycho-physiological

mechanism that occurs as a consequence of internal and / or external stimuli and usually

expresses itself in terms of physiological or biomechanical changes (motor expressions)

in the body.

Many theories and models have been proposed to understand and define the meaning

and nature of emotions. One of the most powerful and influential one is the Darwinian

approach, which states that the same state of mind is expressed throughout the world

with remarkable uniformity (Darwin, 1872). According to Darwin, emotions are the re-

9
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sult of an evolutionary process and directly related to survival purposes, and so are the

corresponding expressions. Following Darwin, researchers like Paul Ekman (Ekman &

Keltner (1970)) and Caroll Izard (Izard (1969)) based their emotion models on a categor-

ical approach that states that there are discrete emotions that serve unique purposes, are

expressed in a similar fashion universally and are universally understood, or decoded. A

less strictly distinct, yet still categorical model is the one of Plutchik, who built a model

where every emotion can be generated by mixing eight primary ones (Plutchik (1980)).

Another approach is the dimensional one, which describes and categorizes emo-

tions in terms of multiple continuous dimensions. The most commonly adopted one

is Russell’s circumplex model (Russell, 1980), which claims that emotions lies on a

two dimensional space representing its positive or negative valence and arousal effect.

Later, other dimensions have been added, such as control (or dominance). The third

most important approach is the appraisal based models. The main and common theory

of appraisal models is that emotions occur as a result of how one appraises a received

stimulus, and is affected by many internal and external factors. The appraisal based ap-

proach may be said to focus more on the cognitive basis of the nature of emotions, rather

than giving names or assigning dimensions to them. The main proposition of appraisal

theories of emotion is that they are elicited and differentiated by the subjectvie interpre-

tation of the personal significance of events (Sander & Scherer, 2009). In the rest of this

section we detail the emotion models that have influenced this dissertation work, namely

the Basic Emotions Model by Ekman 2.1.1, the 2-D representation by Russell 2.1.2 and

the component process model of emotion based on appraisals by Scherer 2.1.3, also dis-

cussing the pros and cons of each one, particularly from an automatic facial expression

recognition and affective computing point of view.

2.1.1 The Categorical Approach - Ekman’s Basic Emotions Model

The categorical approaches, as mentioned earlier, aim at classifying emotions or their

neurophysiological or anatomical productions (such as facial expressions) into a known

number of categories that can exist independently of one another. These categories are

called primary, fundamental or as more commonly used basic emotions. The main issues

across the basic emotion theories are how many of them there are, which ones they are

and which criteria make them basic. Indeed, there exist theories that claim there are

only two (e.g. Happiness and Sadness in Weiner & Graham (1984), or Pain and Pleasure

in Mowrer (1960)) while some identify 18 of them (Frijda (1986)). One could argue

that the choice of words is critical in the choice of these emotions. For example, in

many cultures the words anger, annoyance and rage would mean the same thing, yet

different theorists include different wording for similar emotions in their categorization.

Ortony & Turner (1990) provides an extensive review of basic emotion theories with the

contradicting points between all these theories.

A criterion embraced by some theorists is that the basic emotions are psychologi-

cally primitive, in the sense that they cannot be decomposed into other emotions. For

instance, distress, although it is included in the basic emotions according to some, can

be explained as a state of anxiety and expectation, sometimes combined with shame and

even rage, depending on the context. In addition, this is definitely not the sole descrip-
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tion one could find for distress. While joy (or happiness) is a state of positive valence,

experienced due to a factor giving pleasure. Describing it using words representing other

emotions would be redundant at the best case. We notice, also that it is important to make

the distinction between emotions and cognitive states, as also pointed out by Ortony &

Turner (1990). Fear could be considered an emotion, for instance, while distraction or

interest would be better called cognitive states.

The other criterion adopted by many (Izard (1969), Plutchik (1980)), Ekman et al.
(1972)), and the one which we will be focusing on more in this section, is that for each

basic emotion there exists biological evidence, that is generally assumed to be related

to an evolutionary process. In particular, Paul Ekman proposed that an emotion has to

have a distinctive facial expression that is universal, to be one of the basic ones (Ekman,

1984). Universality of a facial expression indicates that it is presented in a particular

fashion, in the same way among everyone regardless of the age, gender, ethnicity or

cultural background; also that it is genetically inherited due to human evolution and not

learned, thus, once again, not related to one’s social experiences, family or the norms

acquired from the society. To find proof of his claims Ekman even conducted a study on

a culturally isolated society in New Guinea and has concluded that they could recognize

which emotions are represented by portrayals of six facial expressions Ekman (1980).

According to Ekman there are six of those emotions: Happiness, Surprise, Anger, Sad-
ness, Fear and Disgust. The facial expressions corresponding to these emotions can be

seen in Fig. 2.1, which includes posed expressions that we have acquired by instructing

the subjects. Later, Ekman also added contempt to the list and increased the number to

seven.

For reasons of coherence, this model is revisited and the basic facial expressions are

discussed in detail in Section 2.2, in relation with the AUs and the proposed Darwinian

explanations. In this section, only a description of the emotions are provided:

• Happiness - Emotion associated to pleasurable, positive stimuli. It can be ex-

pressed with various other words, generally depending on intensity, such as joy,

contentment, amusement or euphoria.

• Disgust - A negative emotion related to repulsion due to an unpleasurable stimulus.

It is one of the easier emotions to naturally induce, for instance using visual or odor

stimuli.

• Anger - Another negative emotion that involves high levels of arousal, or excite-

ment. It is also associated with a tendency of aggression towards the source of the

emotion, and could be classified in two as cold anger and hot anger (rage).

• Sadness - The emotion of despair, agony and grief due to an unpleasant and gen-

erally uncontrollable event.

• Fear - It is the emotion where one also feels a loss of control on the possible

outcomes of a stimulus, the reason being either a learned unpleasant consequential

event or not knowing the effects of an unfamiliar source.

• Surprise - Emotion felt due to an unexpected, novel event. The primitiveness of

surprise is the one that is most open to discussion as it can take many forms and
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(a) Happiness (b) Disgust (c) Anger

(d) Sadness (e) Fear (f) Surprise

Figure 2.1: Facial expressions corresponding the six basic emotions

is commonly accompanied by one of the other basic emotions. For example, the

emotion felt after hearing good news that were unanticipated or winning a prize

results in a state of happy-surprise, while unpleasant news lead to sad-surprise or

unexpected .

One of the reasons that Ekman’s model is so commonly used in affective computing

is that it provides a basis with distinctive classes with well-defined rules, so it is suitable

for human ratings, as well as automatic classification by machine learning. It is yet open

to discussion, how sufficient these six (or seven) words are in terms of coverage and

specificity. The model lacks many cognitive states that are quite important to affective

computing applications, such as interest, engagement, shame, guilt, stress, distraction or

pain. In addition, even if it is assumed that facial expressions are universal, words are not

and in fact can have different meanings even to individuals possessing the same mother

tongue. Ekman’s model does not take into account variations and intensities of the basic

emotions, which can indeed be expressed differently. Also Ortony & Turner (1990) ar-

gue that emotions should be affectively valenced, positively or negatively, which is not

necessarily the case for surprise. He also argues that it may be true that facial expres-



2.1 Emotions and emotion models 13

Figure 2.2: Plutchik’s wheel of emotions

sions are hardwired (and genetically inherited) but not necessarily the corresponding

emotions. In summary, although Ekman’s model is practical in terms of classifying

emotions, how adequate and efficient it is to restrict emotions (and the corresponding

facial expressions) into six (or seven) categories is very much open to debate.

Another categorical model that contains the intensities and more classes is Plutchik’s

wheel of emotions (Plutchik, 1980). Plutchik suggests that basic emotions should have

an evolutionary background related to survival, and thus proposes eight basic emotions.

These emotions are acceptance, anger, anticipation, disgust, fear, joy, sadness as can be

seen in Fig. 2.2. According to Plutchik these emotions can be explained in terms of

survival purposes, as in fear being related to the need for protection or sadness to the

need to maintain possession of a pleasurable object (Plutchik (1980), Ortony & Turner

(1990)). Other emotions are generated from these basic ones, as represented in Fig. 2.2,

where each of the eight primary colors represents a basic emotion and the intensities

change with the color tone, representing other emotions.

In Plutchik’s model, thanks to the conical shape and the color palette, the emotions

that are closer to each other are placed closer and more emotions can be generated by

their mixture, as in fear and trust leading to submission. Also, less intensified emo-

tions are placed further apart and represented by lighter colors, implying they are less

significant and harder to be detected, for example interest and serenity contrary to their
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stronger counterparts vigilance and ecstasy, placed in the center.

Categorical models are useful in terms of practical applications, for instance when

there is a discrete number of virtual emotional avatars that will be activated according

to a user’s emotion, or when a system is trained to detect for instance when a user is

disgusted or happy about a product. However, they are quite limited especially because

of language limitations. The direct correspondence with universal facial expressions also

make them attractive, but the universality of those expressions is also questionable, as

argued for instance in Jack et al. (2012), and on which we elaborate further in Sec. 2.2.

2.1.2 The Dimensional Approach

Another approach in defining emotions is to map them on several continuous di-

mensions that represent certain physiological, cognitive or characteristic projections of

the subject. This continuous dimensions approach does not carry the key limitation of

categorical models, that depend on a list of names of emotions of a finite number.

The most popular of these mappings is the one by Russell, where every emotion is

assumed to exist in a 2-D space defined by the valence and arousal components (Russell

(1980)). The valence dimension defines how positive or negative an emotion or an emo-

tional stimulus is, while arousal defines the activation or excitement level. For example,

anger of the basic emotions is highly negative in valence and also of high arousal, while

a similar affect, impatience, is less negative and less activated. Fig. 2.3 shows the two-

dimensional model with various emotions projected, with additional two dimensions that

will be discussed further within the appraisal model in Sec. 2.1.3.

More dimensions have been proposed in addition to valence and arousal, as reviewed

in Russell (1980). Dominance (or control) is a commonly adopted one. The dominance

dimension defines the amount of power that the subject has. It is useful to differentiate

affective states that are similar in both valence and arousal. For example, anger and fear

are both emotions with high arousal and highly negative valence, but fear involves less

control than anger.

The valence arousal model (and variations) are very useful, both in defining affective

states and also in terms of affective computing. It intrinsically contains the intensity of

the emotion, in addition to the liberty of not being obliged to giving an exact name to it. It

is efficient when subjects are asked to evaluate how they feel or when they are asked how

someone is feeling by observations, for example using the Self Assessment Mannekin

(SAM) (Morris, 1995) or an annotation system using a knob that is continuous over time

and affective dimensions. The automatic recognition of these dimensions, therefore,

usually requires regression instead of classification. The drawback of the (two or three)

dimensional model is that, it lacks in explaining the contextual factors that give rise to

an emotion, which may commonly be varying among individuals. Also, in terms of

automatic facial expression analysis, the arousal dimension especially is very difficult to

be recognized since there is no facial expression that is common in highly aroused and

lowly aroused affective states.
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Figure 2.3: A dimensional representation of the combination of the three kinds of emo-

tion models (Scherer (2005))

2.1.3 Appraisal Based Approaches and the Component Process Model of
Emotion

Appraisal related theories of emotion aim at defining it in terms of how one ap-

praises, or evaluates an event depending on several internal and external factors. It can

be said that they are more interested in the cognitive processes taking place during and

after these evaluations and not necessarily giving names or classifying the whole emo-

tional experience.

Magda Arnold and Richard Lazarus were two of the first theorists to support a model

based on an evaluation of events (Arnold (1960), Lazarus (1991)). Following their lead

Ortony, Close and Collins proposed the OCC model, where emotions are defined as

valenced reactions to events, agents, or objects, with their particular nature being deter-

mined by the way in which the eliciting situation is construed (Ortony et al. (1990)). The

three main components founding an emotion are therefore the type of the stimulus, the

affected agent (usually self) and the valence component (positive or negative).

Klaus Scherer adopted a similar yet more detailed approach and proposed the Com-

ponent Process Model (CPM) of emotions which is a dynamic model that involves a

sequence of evaluations and the consequential responses in several organismic subsys-

tems (Scherer, 1987). The CPM defines emotion as an episode of interrelated, synchro-

nized changes in the states of the organismic subsystems in response to the evaluation
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Table 2.1: Components of emotions in the CPM with the corresponding functions and

organismic subsystems

Emotion Function Emotion Component Organismic Subsystem

Evaluation of objects & events Cognitive Information Processing (CNS)

System regulation Peripheral efference Support (CNS,NES,ANS)

Preparation and direction of action Motivational Executive (CNS)

Communication of reaction and
Motor expression Action (SNS)

and behabioral intention

Monitoring of internal state and
Subjective feeling Monitor (CNS)

organisim-environment interaction

of an external or internal stimulus event. The synchronization of changes in multiple

physical and cognitive components is an important proposition of the CPM. Accord-

ing to Scherer there are five components of an emotion corresponding to five distinctive

functions (Scherer, 2001). Table 2.1, adapted from Scherer (2001) shows these compo-

nents along with the corresponding organismic subsystems that subserve them: Central

Nervous System (CNS), Neuro-Endochrine System (NES), Autonomic Nervous Sys-

tem (ANS) and Somatic Nervous System (SNS).

Figure 2.4: An illustration of the component process model of emotion (Sander et al.
(2005))

Scherer suggests, as an important component of his theory, a set of criteria called

the Stimulus Evaluation Check (SEC) (Scherer, 2001). According to the CPM, as an
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event unfolds, the individual concerned would evaluate its significance based on these

criteria, in a sequential (or causal) manner Scherer (1999). The SEC are grouped in five

according to their function as seen in Fig. 2.4, and the definitions of each one are as

follows (taking as reference Scherer (2001) and Sander et al. (2005) ):

• Relevance detection checks: Evaluation of whether an object or event is relevant

according to:

– Novelty Check: (i) Suddenness or abruptness, produces orientation response

(ii) Familiarity; based on schema matching (iii) Predictability; based on past

observations;

– Intrinsic pleasantness: Likelihood to result in pleasure or pain; leads to ap-

proach or withdrawal

– Goal-Need relevance: The importance for one’s goals or needs

• Implication assessment: A check of causes and possible outcomes of an event:

– Causal attribution check: Who and why

– Outcome probability check: Likelihood of consequences

– Discrepancy from experience check: Consistent or discrepant with individ-

ual’s expectations

– Goal / Need conduciveness check: Conduciveness or obstructiveness, lead-

ing to positive or negative emotions

– Urgency check: Depends on goals/needs and temporal consequences, leads

to action readiness

• Coping potential determination: Assessment of one’s abilities and power related

to:

– Control: Check whether an event or its outcomes can be influenced

– Power : Check ability to change contingencies

– Potential for adjustment : Ability to live with and accommodate to the effects

• Normative significance evaluation: Evaluating the event in terms of learned inter-

nal and external norms

– Internal standards check: Self-ideal and internal modal code

– External standards check : Perceived norms or demands of a reference group

The CPM can be thought of mapping the affective states onto dimensions as well,

but this time a larger number that involves the reasons of the stimulating event, the pos-

sible outcomes and individual differences in appraising it. It is also inline with previous

theories of emotions, such as the valence-arousal-dominance dimensional model. The

valence dimension is directly related to the goal / need conduciveness check, arousal to

urgency and control to coping potential (Scherer, 2001). Some of the components are
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associated with the basic emotions of Ekman. For example, a high novelty would yield

the same expressions of surprise or a goal obstructive evaluation is a part of sadness.

The theories on related facial expressions for some SEC are reviewed and discussed in

the following section (Sec. 2.2). Fig. 2.3 is an illustration of such a mapping scheme.

A very important drawback, which will hopefully be tackled with more experiments

in the future, is the lack of a well-defined specific facial expression for each component.

A facial expression, or action, can imply many of the appraisals, and it is very difficult to

manipulate a specific appraisal using special stimuli. There are on-going studies using

facial expressions (and electromyography (EMG) measurements), physiological signals

and brain imaging in order to identify what happens when each specific appraisal is ac-

tivated. One of the few recent studies, for example, has used EMG signals to measure

facial activity during manipulations in a gambling task and obtained evidence for the dif-

ference facial actions occurring during goal conduciveness and power related appraisals,

in addition to their causality and accumulation (Gentsch et al., 2015). Despite these dif-

ficulties in experimentation, CPM is arguably the most complete emotional model, that

also involves a causal reasoning of how and why an affective state is present.

2.2 Facial Display of Emotions and Facial Action Units

Facial expressions are the most powerful non-verbal way of communicating emo-

tions and contains a lot of information on one’s affective, mental and cognitive state.

Fig. 2.5 shows examples of facial expression depictions in artworks from the early ages

of human civilization and during and after the renaissance. Facial expressions have al-

ways been important to humans, yet the first scientific studies were not until the 19th

century. Duchenne was the first to analyze the mechanism behind facial expressions us-

ing electrical stimulation of the facial muscles on corpses and living bodies of humans

(Duchenne, 1876). The most intriguing work was undoubtedly by Charles Darwin in his

progressive book “The expression of emotions in man and animals” (Darwin, 1872). It

is considered as his most revolutionary work after the publication of “On the Origin of
Species by Means of Natural Selection” in 1859 and “The Descent of Men, and Selec-
tion in Relation to Sex” in 1871. What made Darwin’s work special was that he was the

first one to ask the question “Why?” in addition to what and how. As in “Why is that

specific muscle contracted when people feel happy or sad or afraid?”. The book is also

distinguished since it was one of the first scientific works ever to use photographs, and

is seen as a milestone in terms of the usage of visuals in publications.

Darwin observed many expressions that humans perform, find counterparts that are

observed in various animal species and proposed evolutionary explanations of these

expression mechanisms. We will refer to his theories for each kind of expression in

Sec. 2.2.2 also in relation to the emotion models described in 2.1, but first we will in-

troduce the Facial Action Coding System (FACS), which defines the Action Unit (AU),

which are at the core of this dissertation.
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Figure 2.5: Depictions of facial expressions in various forms of art

2.2.1 Facial Action Coding System

The Facial Action Coding System (FACS) was developed by Ekman and Friesen

(Ekman & Friesen, 1977) and revised later in 2002 to achieve its final form (Ekman

et al., 2002). Previous attempts trying to define and classify facial actions were based

on observer’s judgments and limited to the taxonomy that was available (see Sec. 2.1).

FACS, on the other hand, aims to objectively qualify and quantify every possible facial

movement in an objective way as it depends solely on the appearance outcome of mus-

cle movements (their consequent effects on the visible layers of the face) and does not

involve any mapping to classes or dimensions related to emotions or other phenomena.

On the human face it is estimated to exist 43 muscles (depending on what is counted

as a separate muscle and where the face starts and ends); these are also called mimetic

muscles and most of them are directly or indirectly responsible for the various types of

facial expressions that we observe. Fig. 2.6 show illustrations of these muscles from a

frontal and side view of the face. The individual or grouped contraction or relaxation of

these muscles form what is called Action Units (AUs). AUs are the measurement units of

FACS. There are 46 AUs which describe the facial movements. Some of these have been
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removed later due to redundancy or classified as Action Descriptors (ADs) due to non-

existence of a muscular basis. There exist 14 additional AUs which describe the gaze

directions and head movements in the three dimensions (yaw, pitch and roll). These AUs

are different from the 46 facial ones in terms of how they are defined and they describe

actions in a coarser manner. Table 2.2 shows the facial AUs with the corresponding

definitions and related muscle movements and Table 2.3 shows the 14 AUs for defining

the gaze and head movements. The ADs, such as AD19 (tongue out) or AD 30 (jaw

sideways), are not shown in Table 2.2 since they are less precisely defined in terms of

muscle movements, as in . The full-list may be found in the FACS manual (Ekman et al.,
2002). In the rest of the dissertation what we refer to as simply AUs are the facial AUs,

excluding the 14 for head and gaze directions and the ADs.

It can be seen from Table 2.2 that while a single muscle can be responsible for mul-

tiple AUs (as in AUs 22, 23, 24 and 28 by the Orbicularis Oris muscle), the contraction

/ relaxation of multiple muscles can be necessary for a single AU (e.g. AUs 9 and 10),

as well. It should be noted that there is no one-to-one correspondence between AUs and

facial muscles, and that the AUs are not unitary muscle movements. The eye brow rais-

ing movement, for example, is divided in two as inner (AU1) and outer (AU2) yet are

controlled by different parts of the same muscle, frontalis. Fig. 2.7 shows an example for

each AU that is mentioned in this thesis and included in at least one of the AU detection

systems proposed, in total 21 AUs. While most of the AU combinations are additive (in

terms of the change in appearance) there are some cases where the combination of AUs

result in a different appearance than the addition of the involved AUs. The AUs account

for any possible facial expression which may practically reach a few hundred combina-

tions, and there are few AUs that cannot occur simultaneously. These AUs are called

antagonistic AUs, as in the case of AUs that involve mouth opening vs. lips pressed

(Ekman & Friesen, 1976).

FACS also includes intensity annotations of the AUs. The intensities are defined as

A - Trace, B - Slight, C - Marked, D - Severe and E - Maximum, and were introduced

in the revised version (Ekman et al., 2002). For example a face image annotated as 1C

- 2A -6B - 12C means the inner eye brows are visibly raised with a trace of raise in the

outer eye brows accompanied with a pronounced lip pull motion (what might be called a

smile) and a slight raise of the cheek. AUs provide a means of objectively defining what

is present on the face depending only on the appearance changes and independently of

the underlying reason or emotion causing the facial changes.

FACS annotation requires an intense training to obtain a reliable annotation and in

most cases it might be very difficult to differentiate which actions are present and at what

level. In practice a change of appearance might resemble multiple actions. The same

issue is also present in automatic AU detection systems. For example, it is quite difficult

to differentiate between the actions AU 25, 26 and 27 using automatic detection methods.

All three are related to a mouth opening action, and the difference is sometimes even

invisible to the human eye. For this reason in the revised version of FACS (Ekman et al.,
2002) the annotation for AUs 26 and 27 have been revised and are always accompanied

by AU25, if the lips part. Similarly, AUs 41 (lid droop), 42 (eye slit) and 44 (eye squint)

are re-assigned to intensities of AU43 (eyes closed).

A similar problem exists between AUs 12 and 13. Although different muscles are
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Figure 2.6: Drawing of the facial muscles responsible for facial actions (Sobotta & Figge

(1974))
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Table 2.2: AUs, FACS definitions and the facial muscles responsible for their activity

AU Definition Related Muscles

1 Inner Brow Raiser Frontalis (Medial)

2 Outer Brow Raiser Frontalis (Lateral)

4 Brow Lowerer Depressor Glabellae; Depressor Supercilli; Corrugator

5 Upper Lid Raiser Levator Palpebrae Superioris

6 Cheek Raiser Orbicularis Oculi (Orbital)

7 Lid Tightener Orbicularis Oculi (Palebral)

8 Lips Toward Each Other Orbicularis Oris

9 Nose Wrinkler Levator Labii Superioris, Alaeque Nasi

10 Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis

11 Nasolabial Furrow Deepener Zygomatic Minor

12 Lip Corner Puller Zygomatic Major

13 Cheek Puffer Caninus

14 Dimpler Buccinnator

15 Lip Corner Depressor Triangularis

16 Lower Lip Depressor Depressor Labii

17 Chin Raiser Mentalis

18 Lip Puckerer Incisivii Labii Superioris & Inferioris

20 Lip Stretcher Risorius

22 Lip Funneler Orbicularis Oris

23 Lip Tightener Orbicularis Oris

24 Lip Pressor Orbicularis Oris

25 Lips Part Depressor Labii, or Mentalis or Orbicularis Oris Relaxation

26 Jaw Drop Masetter; Temporal and Internal Pterygoid Relaxed

27 Mouth Stretch Pterygoids; Digastric

28 Lip Suck Orbicularis Oris

38 Nostril Dilator Nasalis, Pars Alaris

39 Nostril Compressor Nasalis, Pars Transversa and Depressor Septi Nasi

41 Lid Droop Levator Palpebrae Superioris Relaxation

42 Slit Orbicularis Oculi

43 Eyes Closed Levator Palpebrae Superioris Relaxation

44 Squint Orbicularis Oculi, Pars Palpebralis

45 Blink Levator Palpebrae Relax.; Orbicularis Oculi, Pars Palpebralis

46 Wink Orbicularis Oculi

contracted during the Lip Corner Puller action (AU12 - zygomaticus major) and Cheek

Puffer (AU13 - caninus) the difference in facial appearance is not very significant, and

therefore AU13 is usually annotated and / or detected as a high intensity AU12. Also,

sometimes in order to accurately (manually or automatically) annotate a face one might

require the neutral face of the same person, that is with no AUs present. This is because

of the person-dependent appearance differences, for example due to naturally higher

eye-brows resembling AU1 or AU2 or a downward shaped mouth, resembling AU15.

FACS is therefore more efficient in annotating sequences of images rather than single

frames. These issues are discussed further in the following sections while reviewing the

weaknesses and robustness of the detection systems presented.

Another issue is what is called competitive AUs. These AUs might occur at the same

time and the appearance change might be dominated by one of the AUs. For instance,

a dimpler (AU14) and a cheek puller (AU12) frequently occur simultaneously, yet the

AU14 might only be visible from a different view than the frontal one, so it is annotated
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Table 2.3: Head and gaze movement related AUs

AU Definition

51 Head turn left

52 Head turn right

53 Head up

54 Head down

55 Head tilt left

56 Head tilt right

57 Head forward

58 Head back

61 Eyes turn left

62 Eyes turn right

63 Eyes up

64 Eyes down

65 Walleye

66 Cross-eye

as only AU12. The same is true for some mouth actions and Ekman and Friesen admit

themselves also that the lower face related actions may not be fully comprehensive as

there probably exists an infinite number of possible actions (Ekman & Friesen, 1976).

Despite these minor issues, there is no doubt that FACS is the most exhaustive mea-

surement system of facial actions, allows very little subjective interpretation and is very

useful for practical applications as well as psychology and neuroscience research (see

Sec. 3.5 for example applications).

Temporals of Facial Actions

The evolution of facial expressions and AUs is not instantaneous but a rather dy-

namic process. The dynamic properties of facial actions are important in discriminating

facial configurations with similar appearance but different psychological and cognitive

meaning. The temporal features such as the duration, speed of the phases of AUs can

be used in applications in recognizing rather complex cognitive states such as pain (Ek-

man & Rosenberg (1997), Bartlett et al. (2014) or distinguishing between posed and

spontaneous expressions (Hess & Kleck (1997), Cohn & Schmidt (2004), Valstar et al.
(2007)).

There are four main phases of a facial action. The onset is when the related muscles

begin contracting (or relaxing depending on the type of action), apex is when the action

reaches its peak intensity, offset is when the muscles begin relaxing and the face begins to

return to its original state and finally the neutral phase is when there is no more evidence

for the particular action. Fig 2.8 shows an example sequence of AU12 activity in time.

The sequence is from the MMI database of facial expressions (Valstar & Pantic, 2010),

which has been annotated for the existence of AUs and the beginnings of their onset,

apex and offset phases.

The intensity plot in Fig. 2.8 is, of course, only representative and the dynamics of
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(a) AU1 - Inner Brow Raiser (b) AU2 - Outer Brow Raiser (c) AU4 - Brow Lowerer

(d) AU5 - Upper Lid Raiser (e) AU6 - Cheek Raiser (f) AU7 - Lid Tightener

(g) AU9 - Nose Wrinkler (h) AU10 - Upper Lip Raiser (i) AU11 - Nasolabial Deep-

ener

(j) AU12 - Lip Corner Puller (k) AU14 - Dimpler (l) AU15 - Lip Corner Depres-

sor

(m) AU17 - Chin Raiser (n) AU20 - Lip Stretcher (o) AU23 - Lip Tightener

(p) AU24 - Lip Pressor (q) AU25 - Lips Part (r) AU26 - Jaw Drop

(s) AU27 - Mouth Stretch (t) AU28 - Lip Suck (u) AU45 - Blink

Figure 2.7: AUs according to the FACS
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Figure 2.8: The dynamics of an example AU12 sequence from the MMI database. The

sequence starts with a neutral phase, the action starts with the onset, reaches its peak at

the apex, starts decreasing in intensity at the offset, and again reaches the neutral state.

facial actions are rarely that symmetric. In fact, it might happen that multiple apices are

present along a sequence, that is a second peak of intensity with a precedent offset phase

that never reaches the neutral. It is also important to notice that annotating the temporal

phase of an action based on a single frame is almost impossible based on a single frame,

and the preceding and following frames are also required. As stated earlier, these phases

and the transitions between them contain important information. For instance, Cohn &

Schmidt (2004) have shown that spontaneous smiles have a longer onset phase compared

to posed smiles and can contain multiple AU12 apices; or as demonstrated by Valstar &

Pantic (2006), spontaneous and deliberately displayed eye brow actions (AUs 1,2 and 4)

differ in the duration, speed of onset and offset phases and in the order and timing of the

actions.

2.2.2 Expressions of emotion models

Certain facial expressions are assumed to belong to certain emotions, and similarly

certain emotions are thought to evoke specific expressions by certain theorists, including

Darwin himself (Darwin (1872), Ekman (1989)). Although there are debates and ques-

tions on the validity of both correspondences, we list in this section those expression

assumptions in terms of AUs in addition to those corresponding to certain components

in the appraisal based model explained in Sec. 2.1.

Table 2.4 shows a list of AUs associated to the six basic emotions and some com-

ponents of the CPM, with some of these AU combinations shown in Fig. 2.9 on images

from the CK+ database (Kanade et al., 2000). The AU - appraisal correspondences are

mainly based on Kaiser & Wehrle (2001), where the authors review works that have stud-
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Table 2.4: AUs related to the six basic expressions and some appraisal components

Expression Related AUs

Happiness 6, 12, 25

Anger 4, 7, 10, 17, 22, 23, 24, 25

Sadness 1, 4, 6, 11, 15, 17

Disgust 9, 10, 16, 17, 25, 26

Surprise 1, 2, 5, 25, 26, 27

Fear 1, 2, 4, 5, 20, 25, 26, 27

Appraisal

Novelty

(High) Suddenness 1, 2, 5, 25

(Low) Familiarity 4,7

(High) Intrinsic pleasantness 6 , 12

Goal conduciveness

Obstructive 4, 7, 17, 23

Conducive 6, 12

(Low) control 1, 15, 41

(Low) Power 20, 26

(High) Power 17, 24

(Low) External norms 10

ied evidences of facial expressions of appraisals, and Scherer (1993). In CPM, contrary

to Ekman’s approach, facial expressions, as well as other modalities (e.g. physiological

or vocal changes), follow a causal pattern with response to an emotional stimulus that

depends on the individual’s evaluation. According to Darwin’s theory some expressions

might be explained as serviceable, as in they actually serve for a momentary or long-

term purpose, while some arise from his principle of antithesis as opposite in nature to a

serviceable action that serves no purpose and some carry only the purpose of a nervous

discharge (Darwin (1872)). For example, the AU5 action (eyes wide open, see Fig. 2.9a)

is thought to be related to action tendency, as in an orientation towards an unexpected or

novel stimulus (Sander & Scherer, 2009). Similarly, the eye-brow raising actions aim at

increasing the field of vision, and the ability to move the eyeballs easily in any direction

(Darwin (1872), Hess & Thibault (2009)). However, shrugging shoulders, for example,

has no explicable purpose and is theorized as an antithesis action.

In particular, the expression associated to the happiness emotion, or high intrinsic

pleasantness and goal conducive appraisals of an event, or positively valenced states is a

smile, generally accompanied by a cheek-puller action and the appearance of crow-feet

wrinkles around the eyes (Fig. 2.9b). This is also called a Duchenne smile and is con-

sidered a sign of genuine enjoyment. Smiles are not particular to a positiveley valenced

emotion though, the underlying reasons may differ considering the social context, e.g.

they are commonly expressed as a sign of dominance (or control). Genuine expressions

of happiness or amusement on the other hand are more reflexive and do not carry a

purpose in the short-term, in an evolutionary point of view.

The expression of anger involves the contraction of the corrugator muscle (AU4, or

a frown) and is what resembles a distressed state (Fig. 2.9c). A similar expression is
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(a) 1 + 2 + 5 + 25 + 27 * (b) 6 + 12 + 25 * (c) 4 + 7 + 17 + 23 + 24 *

(d) 4 + 7 + 10 + 16 + 25 (e) 1 + 4 + 5 + 12 + 20 + 25

*

(f) 1 + 4 + 15 +17 *

(g) 4 + 9 + 10 + 25 *

Figure 2.9: AU combinations related to the basic emotions and appraisal components.

(* Images are from the CK+ database)

hypothesized for the low familiarity and a goal obstructive evaluation of an event in the

CPM, which also causes a negatively valenced and possibly high arousal state, as also

confirmed in a study by Van Reekum (2000). An example is how people lower their

eye-brows also when they do not understand or they are concentrated on something,

which presents a cognitive difficulty. Also tightened lips displaying the teeth is a very

common anger expression (Fig. 2.9d), which can be interpreted as a sign of aggression,

thus action tendency and an attack response. Tightened closed lips, on the other hand,
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is also related to an assessment of high control over the emotional event in addition to

anger.

A particular expression that is common to fear and sadness is the combined action

of AU1 + AU4, which is very difficult to perform deliberately (to pose), therefore it is

a strong and reliable indicator of sadness or fear (or the goal obstructive SEC in CPM).

The lower face actions during fear (AU20 & AU25, see Fig. 2.9e) are indicators of a

withdrawal action in response to a threat. Sadness, on the other hand, is typically ex-

pressed with lowered mouth corners (AU15) and a raised chin (AU17) (Fig. 2.9f), also

a sign of low control. In a Darwinian perspective, sadness expression can be interpreted

as a socially adaptive behavior, signaling others of the discontent, and to elicit sympa-

thetic responses in observers. Finally, the disgust expression involves wrinkling of the

nose (AU9) and raising the upper lip (AU10) (Fig. 2.9g), this expression is encountered

when a situation or event does not comply with one’s self or social norms as explained

by CPM. Darwin explains the disgust expression as part of a vomiting response.

We have listed, in this section, the facial actions that are related to some categorical

emotions, with explanations in terms of emotional dimensions and with correspondence

to the SECs in Scherer’s CPM. As can already be seen, the different emotional models

involve variations also in their correspondences to facial expressions. However, they all

have in common the concept of a resulting facial muscle movement in common, which

leads us once again to AUs and their added value in terms of emotion theories. In this

thesis, we mainly focus on AU detection methods with certain references to how they

apply within these different emotion models.

2.3 Conclusion

In this chapter we have provided an introduction to the concepts that are used or

addressed in the dissertation. In particular, in Sec. 2.1 we have reviewed the various

definitions for emotions and the models that are used to classify, differentiate and con-

ceptualize emotions. We detailed Ekman’s basic emotions model, the valence-arousal

dimensional model and Scherer’s component process model of emotions. We have also

discussed their strong and weak points, also in terms of an affective computing perspec-

tive.

In the second part (Sec. 2.2) we have moved on to the facial display of emotions,

summarized why they are important and explained the FACS, which defines the primary

units of facial motions, AUs, the automatic detection of which this dissertation focuses

on. We explain each AU in detail with the corresponding anatomical basis, then de-

scribe the temporal components of facial actions. Finally, we reviewed the link between

facial expressions and the two emotion models; we have explained each expression cor-

responding to the six basic emotions as well as certain appraisals of the CPM. We have

also provided the theories on the evolutionary basis of each. In general, we have tried to

demonstrate the importance of the concepts and issues that lie at the heart of the rest of

the thesis.
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The concept of Affective Computing has entered our lives not before the 1990’s,

and since then it has constituted an important research and application area as a bridge

between computer science, signal processing, wearable device technology, psychology

and neuroscience among many others. It is defined by Rosalind Picard as computing

that relates to, arises from, or influences emotions in her famous work, that is con-

sidered to have introduced the term (Picard, 1997). Affective computing can be per-

formed using three main modalities: audio, physiological or visual signals, that are

also commonly used in combination with each other, in a multimodal fashion. Audio

cues, that are used in affective computing, can be verbal (the actual words) as well as

non-verbal, as in features of the voice such as the intonation, or the speed and dura-

tion of the speech and its segments. Some physiological signals related to emotions

are the electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Re-

sponse (GSR), electrodermal activity (EDA), heart rate (HR), breathing rate or even

brain imaging techniques such as the functional Magnetic Resonance Imaging (fMRI).

Visual cues, on the other hand, may involve the pose, displacement and gestures of the

various body parts (or the whole body) and sometimes the identity of the person in-

volved.

Among those, facial cues are arguably the richest and most effective sources of in-

formation in terms of affective computing. In terms of real-world applications, facial in-

formation is more continuously accessible compared to audio cues, for instance, which

are absent when the person is not speaking or producing a sound. It is non-invasive, as

opposed to physiological signals, which require special equipment attached to the body

and whose performance is easily affected by noise. Finally, it is less subject-dependent

(nearly all humans perform the same set of AUs, for example) and contains more affect

related material compared to gestures of other body parts. Automatic Facial Expression

Analysis (AFEA), therefore, is an essential branch, or component, of affective comput-

ing as well as the more recent areas of Socially-Aware Computing (Pentland (2005))

and Social Signal Processing (SSP) (Pantic et al. (2011)), which aim at understanding

and modeling social interactions and making use of this ability in Human-Computer

Interaction (HCI) systems.

29



30 Tools for Facial Action Unit Detection and Expression Recognition

In this chapter we review the existing methods, tools, performance measures in-

volved in and databases and applications related to AFEA systems. Note that, facial

analysis systems (including face recognition) can be performed on 2-dimensional (2D)

or 3-dimensional (3D) data; 2D being the grey-level or RGB images and 3D meaning

additional depth information. Since the contributions in this dissertation are applied on

2D data only, we mainly include the state-of-the-art in 2D face analysis systems. An

AFEA system consists of three main parts: Face acquisition (detection and/or tracking),

facial feature extraction and classification according to the task (Figure 3.1). The term

facial expression analysis comprises the differentiation of a facial image according to all

categorizations or dimensional projections previously listed in Chapter 2, i.e. basic emo-

tions, valence-arousal dimensions, SEC and AU presence. They involve the same steps

in terms of acquisition and feature extraction and differ mainly in the final classification

stage.

The face acquisition step refers to the automatic localization of either the whole face

or certain landmarks on it. It can further be divided in two as detection and tracking;

detection referring to frame-wise independent localization and tracking to making use

of the position inferred on one or more precedent frames. The next step is extracting

features that are relevant to the facial expression, which can be of two types: geometric

or appearance (texture) based. The final step is obtaining a decision (e.g. on which AUs

are present) using these features and by means of classification, clustering or regression

if the desired output is of continuous form. An optional step is dimension reduction or

feature selection, whose explanation is also included in this final phase within this thesis

as they are frequently directly linked to the classification scheme and / or use similar

techniques.

Figure 3.1: The three steps of an automatic FER or AU detection system.

All of these components involve a training phase (to learn the parameters or to learn

the class separation), for which a (great) number of data with ground-truth is needed.

The ground-truth information is obtained by manual or semi-automatic methods, as for

example in the FACS annotations explained in Sec. 2.2.1. Thanks to the research effort

by the facial analysis community, many databases have been published with annotations

available for either the basic emotions, two (or more) continuous emotion dimensions

or AU presence, which can be used for training, validation and testing new AFEA sys-

tems. In the rest of the chapter we review important examples of all these components
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mentioned, the existing databases and proposed applications, with particular emphasis

on those utilized, adopted or used for comparison in this dissertation.

3.1 Face and Facial Points Detection Methods

Face localization and detection methods can be sub-categorized in two as holistic

and local (or part-based) approaches. Holistic approaches aim to model the whole face

as a single object and look for the complete face in an image. Local approaches, on the

other hand, are able to localize parts or landmarks on the face and from there estimate the

location of the face. They can, in turn, be said to be better handling partial or occluded

views of faces. The term face detection refers to detecting the presence and location of

all faces in an image, while localization refers to finding the location of a single one.

We will use the terms interchangeably from here on, since the focus of the dissertation

is the analysis of individuals’ faces. Facial points refer to salient landmarks on the face

that can be consistently identified across different faces. Facial points detection can be

classified as shape, appearance and regression based methods. In this section we give a

short review and explain three important facial point detection methods, which are used

and referred to in latter chapters of the dissertation, in detail: Active Appearance Models

(AAM), Constrained Local Model (CLM) and Supervised Descent Method (SDM). For

methods other than those provided here, Hjelmås & Low (2001), Li et al. (2004), Zhang

& Zhang (2010), Wang et al. (2014) provide extensive reviews from earlier attempts to

more up-to-date ones.

Earlier approaches to face detection used information such as skin color or motion

(e.g. Wang & Chang (1997), Chai & Ngan (1999)). Modern techniques rely on learn-

ing methods and classifiers that utilize appearance-based descriptors of the face or its

landmarks. The most commonly known and used face detection system is the one by

Viola & Jones (2004). It has drawn a lot of attention when it was published, as it is the

first real-time face-detection method and since then has been integrated in many facial

analysis systems, including on mobile platforms, and is still commonly employed as

the initialization method for newer and more precise methods. It is based on learning a

cascade of weak classifiers using Adaboost Schapire & Singer (1999). The weak clas-

sifiers use Haar-like features, which can simply be explained as horizontal and vertical

pixel differences at different scales. The face detector performs an exhaustive search

in the image and outputs the square with the highest score to be the closest to a face.

The downside of the Viola-Jones algorithm is that, its training is tedious and requires

thousands of face and non-face images, it usually outputs multiple detections for a sin-

gle face, and consequentially the output is not precise enough for further facial analysis

methods (e.g. expression recognition or AU detection). In addition, the method is not

very robust against occlusions or variations of head-pose, especially if relevant samples

had not been included in the training.

3.1.1 Active Appearance Models

The AAM, proposed by Cootes et al. (2001), aims to represent, or explain, an ob-

ject (the face in this case) in terms of a set of model parameters, which are obtained by



32 Tools for Facial Action Unit Detection and Expression Recognition

constraining solutions to be valid instances of a model. Active appearance models are

statistical models of deformable objects which contain both the shape and texture vari-

ation among a set of training images of the object. It is more suitable for applications

in facial analysis, since it provides positions of the facial features such as eyes, brows,

nose, mouth etc. as well as the strict boundaries of the face. They can be seen as an ex-

tension to the Active Shape Models (ASM), which proposed such a statistical modeling

of the shape variation for the first time (Cootes et al., 1995).

The images in the training set are first aligned for the shape (generally using Pro-

crustes analysis) and then texture normalized to reduce the effect of the change in light-

ing conditions. Given a set of shapes s represented as a vector of 2 × nlandmarks and g
the matrix of grey-level pixel intensities within s, the training process of AAMs consists

first of obtaining statistical shape and texture models separately by applying Principal

Component Analysis (PCA):

s = s +Φsbs (3.1)

g = g +Φtbt (3.2)

where s and Φs represent the mean and eigenvectors of the covariance matrix of the

shape, and g and Φt represent those of the texture. In order to obtain a complete model

of appearance the model parameter vectors bs and bt are concatenated and a third PCA

is applied to this concatenated vector:

s = s +Qsc (3.3)

g = g +Qtc (3.4)

where c is the complete appearance model parameters vector, and Qs and Qt are the

principal modes of the combined variation. Using this model a new face instance can be

generated by alternating the model parameters c, which consists of non-rigid parameters

for the shape and rigid parameters for the global transformation, defining the overall

Point Distribution Model (PDM).

The idea of the AAM search algorithm is then to synthesize a new example by the

adjustment of these model parameters (Fig. 3.2a), and it is generally treated as a mini-

mization problem of the difference between the synthesized image and the original un-

seen image, so that the two are as close as possible.

The main limitation of the original AAM is that the fitting is constrained by the

variation among the training set. Therefore, it is more accurate in person-specific appli-

cations (Gross et al., 2005). The original AAM was proposed as a 2D model trained for

faces with near-frontal poses. This, of course is not sufficient for real applications. How-

ever, if many pose configurations are included in training, then the accuracy of landmark

detection decreases for all. In addition, some pose variations result in self-occlusion of

certain landmarks and AAM is not flexible enough to handle this issue.

To overcome this problem many methods have been proposed, namely 3D (Ramnath

et al. (2008)), or 2D+3D model (Xiao et al., 2004) extensions,the multi-view nonlinear

active shape model by Romdhani et al. (1999) which employs the Kernel PCA, manifold

approaches as in (Osadchy et al., 2007) or the use of multiple AAM and adequate model

switching according to the pose (Li et al. (2005),Yüce et al. (2011)).
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(a) Variation of appearance in the AAM as moving away from

the mean

(b) Illustration of the CLM

(c) Illustration of the SDM

Figure 3.2: Representation of the AAM, CLM and SDM methods. Images from (a) Sorci

(2009), (b) Saragih et al. (2011), (c) Xiong & De la Torre (2013)

3.1.2 Constrained Local Models

CLM is the name given to the ensemble of methods that aim at localizing a set of

points on a given image, constrained by an overall statistical shape. The first CLM was

proposed by Cristinacce & Cootes (2006), where again a PDM is generated, but this time

local appearance patches around the shape points are tried to match in the image using

feature templates, instead of the actual pixel values of the whole image, compared to the

AAM, which naturally leads to a better generalization.

The original method can be summarized as replacing the texture vector g in Eq. 3.2

with a vector that is the concatenation of patches extracted around each feature and

normalised to have zero mean and unit variance. Each of these patches output a response
image that defines a cost term. The total cost is optimized by manipulating the shape

parameters, explaining the constraint coming from the overall shape model (Fig. 3.2b).
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These response images can also be created using other appearance descriptors, such as

LBP or Histogram of Oriented Gradients (HoG).

A notable adoption of the technique is by Saragih et al. (Saragih et al., 2011), where

they have proposed a non-parametric distribution to approximate the response image and

the shape fitting is reduced to a regularized mean-shift. This method is very efficient and

is robust against partial occlusions and a larger variety of head-poses, and is therefore

frequently employed in facial analysis applications1.

3.1.3 Regression based methods - Supervised Descent Method

Another efficient approach to facial point detection and tracking is regression-based

methods. Regression-based methods learn a mapping from local image patches to a

probability over the parameter space, the 2D position of the facial points on the next

frame, in this case. Due to their efficient computation and robustness against variability

of head-pose and image resolution they have been effectively used recently for facial

point detection. In a relatively early attempt Cristinacce & Cootes (2007) have extended

the ASM with a GentleBoost regression scheme. In Valstar et al. (2010) SVM regres-

sion is combined with conditional Markov Random Fields (MRF), in Dantone et al.
(2012) the authors use Conditional Regression Forests that are conditional to the global

face properties, such as the head-pose. Cao et al. (2014b) propose a two-level boosted

regression with explicit shape correction, which was further extended by Richter et al.
(2014) to allow for different feature channels and include head pose information to im-

prove detection performance.

Xiong & De la Torre (2013) proposed to use the Supervised Descent Method (SDM)

for the minimization of non-linear least-squares problems and applied it successfully to

the problem of facial point tracking. The real-time performance and the publicly avail-

able implementation makes it the most commonly used state-of-the-art face and facial-

point tracking system2. It is an extension of Newton’s gradient descent method which

aims at minimizing a function by sequential updates or cascaded regression (Fig. 3.2c).

SDM carries out this function in a supervised manner, i.e. for a training set of known

facial point locations and corresponding templates or appearance features (e.g. SIFT)

SDM learns a series of parameter updates and generic descent directions and for an un-

seen image the extracted templates are projected onto the learned descent direction to

obtain the displacement update of the facial features.

Common to all regression-based methods, for tracking the points in a sequence it

requires an initial estimate of the positions, which is typically chosen as the mean shape

of the training set, scaled and translated using a face detector. For the rest of the frames,

previous locations of the facial points are used to regress from.

3.2 Geometric and Appearance Based Feature Extraction

Feature extraction is the process of obtaining representations from images, or se-

quences of images, that are ideally relevant to the discrimination task and that can be

1Code available at: https://github.com/kylemcdonald/FaceTracker
2Available at: http://www.humansensing.cs.cmu.edu/intraface
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formulated in a fixed-size vector form to be used in a classifier or regressor. For facial

analysis systems the features used in the literature can be categorized in two: Geomet-

ric features and Appearance based features. Geometric features are the ones that are

calculated through the locations of certain points (landmarks) on the image and do not

include any pixel intensity information (except for being used to locate these landmarks).

Appearance based features, on the other hand, rely on these pixel intensities either di-

rectly or via image transformations on a global level or extracted locally. Geometric and

appearance based features can also be used in combination (in feature-level or classifier-

level fusion) and have even shown better performance in certain cases compared to their

individual usage. In this section we review and explain commonly used features of both

types, with a discussion on their weak and strong points.

3.2.1 Geometric Features

The geometric features of the face consist of the ones that involve the actual location

of facial landmarks. This location information is then converted in a feature representa-

tion either via normalized direct coordinates of the image or as a function of the distance

between multiple points. The geometric features can be calculated in a single frame or

can be calculated over two or more frames as a difference or trajectory function.

Features of this type that have been used in various works can be listed as follows:

(a) Locations of facial landmarks (e.g. eyebrows, mouth contours etc.) (b) Distance

between landmark-pairs (e.g. distance between two mouth corners or uppermost and

lowermost points of the eye contours) (c) Angle of the lines joining landmark-pairs (d)

Angle between edges of polygons joining 2+ landmarks (e) Difference of these fea-

tures in the current frame and a reference frame (f) Trajectory of these features along

a sequence frame, represented in a fixed size feature vector, e.g. via coefficients of a

polynomial fit (g) Coefficients of a shape model fitted on the specific image.

The location-related information has to be normalized with respect to the overall

size of the face so as to remove the effects of the distance to the camera and individual

differences in face size. This can be performed using the distance for example between

the most extreme points of the chin on the horizontal axis, if these points are provided

by the facial landmark detector, or the distance between the innermost eye points which

is unaffected by facial actions. In addition, a precise face registration needs to be applied

prior to extracting the features, as all three of the yaw, pitch and roll rotations of the head

directly influence the feature values. Another solution is to use a representation that is

intrinsically invariant to these transformation.

Geometric features are also highly affected by subjective differences in facial land-

mark configurations. This problem cannot be solved through a simple normalization of

the face size etc. as individuals also differ in terms of the relative positions of facial fea-

tures such as the eyes, nose, mouth, even in the neutral (expressionless) case, i.e. when

no facial action is present. To avoid the effect of these individual factors some systems

use a neutral face of the subject as a reference frame and the features extracted from

other frames are calculated relative to the values obtained from this reference frame (e.g.

Lien et al. (1998), Senechal et al. (2011), Yüce et al. (2013a)). This requires, of course,

the presence of a neutral frame and the knowledge that it is indeed expressionless, which
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is attainable with tests performed on databases with human annotations yet not always

feasible in real applications. To overcome this problem Senechal et al. (2011) have pro-

posed to generate a neutral face of the subjects by PCA reconstruction using a basis

created only with expressionless faces.

Since the efficacy of geometric features is directly related to the precision of the

facial landmark detection system, geometric features are not very suitable to detect subtle

facial expressions. The feature vectors contain the accumulated noise introduced by the

facetracker, for example when using the evolution of locations in two or more frames.

When the landmark detector is accurate, however, geometric features are very effective

in detecting AUs (especially some AUs that are marked relatively more by movement

of salient facial points) and even the temporal phases of AUs (e.g. Pantic & Patras

(2006), Valstar & Pantic (2012)), particularly on data where the head-pose does not vary

significantly over sequences.

3.2.2 Appearance Features

Appearance features are based on the texture information in an image, that is the

pixel intensities. These pixel intensities can be used as they are directly as features for

facial action recognition. However, this requires an accurate registration of the faces,

as well as intensity normalization for illumination and individual skin color differences.

This direct appearance information has been used for example within an AAM frame-

work in Mahoor et al. (2009). Feature transformations are in general less influenced

by these aforementioned factors and they are able to represent effectively additional in-

formation on the face, such as edges, corners, frequency etc. This information is more

meaningful and discriminative in terms of facial actions, therefore it is common to apply

a transformation on a face image and form a feature vector through this transforma-

tion. Chew et al. (2012) have investigated the benefits of using feature transformations

compared to using raw pixel information for the task of AU detection and they have

concluded that feature transformations are useful in cases of alignment errors and illu-

mination variations, but not so much when these conditions are perfect.
The most commonly used appearance descriptors in the literature are the HoG (Dalal

& Triggs, 2005), Discrete Cosine Transform (DCT) (Ahmed et al., 1974), LBP and its

variants in 3D and the frequency domain, filter banks (Gabor wavelets in particular) and

SIFT features. The construction of the HoG features are similar to that of the SIFT and

an example of usage in the facial action context can be found in Chew et al. (2012).

The DCT features provide a direct representation of the texture frequency and has been

used for facial expression recognition in Gao et al. (2014) and AU detection in Gehrig

& Ekenel (2011). LBP, Gabor wavelets and SIFT features are explained in detail in the

subsections below, since they are used extensively in the following chapters of the thesis.

Similar to the shape (geometric) features, explained in Section 3.2.1, appearance

based features can also be constructed frame-wise or using multiple frames of a se-

quence. The dynamic feature extraction is performed either by using a distance function

between feature vectors of different frames or by extending the feature transformation

techniques to 3D, the third dimension being the time.
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Local Binary Patterns

Local Binary Patterns (LBP) have been introduced by Ojala et al. (1996) as a method

for general usage in texture description and soon after was discovered to be a perfect tool

for facial image analysis. The original LBP is based on representing pixels in terms of

their comparison with neighboring pixels and many variants have been proposed con-

tinously for a better representative power, including its frequency counter-part named

Local Phase Quantization (LPQ), which provides additional robustness against image

blurs (Ojansivu & Heikkilä, 2008). In Huang et al. (2011) and Shan et al. (2009) are re-

views on its multiple variants with a focus on the uses in facial image analysis problems,

including face detection, face recognition and facial expression analysis. In this section

we give the definition and formulation of the basic LBP and some example variants from

the literature so as to supply a sufficient background for the following chapters.

For a pixel located at coordinates pc and intensity I(pc), the original LBP transform

is calculated using the intensities of neighboring pixels pk in a P neighborhood as :

LBP(pc) =

P−1∑
k=0

t(I(pk) − I(pc)).2k (3.5)

where the function t is a binary thresholding function of the form

t(x) =

{
0 if x < 0

1 otherwise
(3.6)

The resulting value is a P-bit binary value, or a non-negative integer < 2P − 1. Since

it depends on pixel differences, LBP can efficiently represent the edge information in the

image in a way that is robust against illumination changes. The choice of neighborhood

is an important factor when extracting LBP features. The original LBP was proposed

within a rectangular neighborhood, while it is also very common to use a circular neigh-

borhood, resulting in what is called the circular LBP. A feature vector is then created

using histograms over the whole image or over smaller predefined windows, although

it is safe to say that LBP is more effective for modeling local texture information. See

Chapter 4 for an example implementation with overlapping windows of various sizes.

The resolution of the LBP can also be varied using the distance of neighboring pixels

to the center pixel, as well as the number of neighboring pixels taken into calculation in

this neighborhood. Fig. 3.3 shows some examples of representations at different resolu-

tions; LBP8,1 for example denotes the LBP that is calculated in an 8-neighborhood with

1 pixel radius, or LBP16,2 is the one that uses 16 pixels within a 2 pixel radius circle and

so on. This is a parameter that needs to be chosen depending on the type of applica-

tion and images. A lower resolution (larger neighborhood), for instance, may be more

suitable when the images are noisy. Multiple resolutions of LBP can also combined via

concatenation of feature vectors or a decision-level fusion to create multi-resolution LBP

(Ojala et al., 2002).

Two commonly used extensions of the LBP are the uniform-LBP and rotation in-

variant LBP (Ojala et al., 2002). They both decrease the histogram size significantly

by grouping the possible patterns. The uniform-LBP keep 58 of the original circular
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Figure 3.3: Illustration of two LBP resolutions. Pixel interpolations with larger values

than the center pixel (in red) are shown in filled circles.

LBP8,1, which contain at most two bitwise transitions between 0 and 1 and which have

been shown to be the most representative, and groups the rest in a single bin resulting in a

59-bin histogram. The rotation invariant LBP groups the patterns that result in the same

binary vector when an in-plane rotation is applied on the neighborhood. For example

the vectors 00110000 and 00001100 are placed in the same bin, and the same for all the

patterns that differ only in terms of the roll type of rotation. The rotation invariant LBP

allows for directly using it without the need for correction for in-plane pose variations.

The LBP can also be extended to represent dynamic patterns. The LBP computed

on Three Orthogonal Planes (TOP) is such an extension, and has been used extensively

for facial expression recognition and AU detection (Zhao & Pietikainen, 2007). LBP-

TOP allows obtaining patterns for both the appearance and motion. In addition to the

horizontal and vertical spatial dimensions X and Y the third dimension T represents the

time and allows computing LBP on the three planes XY , XT and YT independently of

each other.

Gabor Wavelets

Wavelet transforms allow representing the texture in images in different frequency

bands and Gabor wavelets in particular have been proposed (Daugman, 1985) as a model

of the simple cells in the visual cortex and they possess the desirable characteristics of

capturing salient visual properties, such as spatial localization, orientation selectivity,

and spatial frequency. 2D Gabor kernels are spatial bandpass filters that achieve the

theoretical limit for conjoint resolution of information in the 2D spatial and 2D Fourier

domains, i.e. an optimal localization in both domains (Lee, 1996). They have been

recognized as one of the most successful feature extraction methods for texture classi-

fication and in particular for face representation. They form a well-established image

decomposition because of their spatial locality and orientation selectivity characteristics

and have been used successfully for face and facial expression recognition and analysis
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Figure 3.4: Real-part of Gabor wavelet kernels with 5 different scales (vertical axis) and

8 different orientations

(Lyons et al. (1998), Shen & Bai (2006)).

The 2D Gabor wavelet is defined as follows:

ψ(�x; ν, μ) =
k2
ν,μ

σ2
e(− k2

ν,μ ||�x||2
2σ2 )

[e(ikν,μ�x) − e(−σ2

2 )] (3.7)

with �x =
(
x
y

)
=

(
xcosφ + ysinφ
−xsinφ + ycosφ

)
and e(ikν,μ�x) is the oscillatory wave function, whose real

part and imaginary parts are respectively the cosine and sine functions. μ controls the

orientation of the filters while ν scales the center of the filter in the frequency domain

Daugman (1985). Fig. 3.4 shows the real-part of different Gabor kernels produced by

variation of the μ and ν parameters.

Gabor wavelets have been extensively used for facial action and expression recog-

nition in the literature due to these properties mentioned above. A common practice is

to use Gabor filters in combination with the LBP transform, constructing what is called

Local Gabor Binary Patters (LGBP) (Zhang et al., 2005) and by projection on the dif-

ferent orthogonal planes as a natural extension LGBP-TOP (Almaev & Valstar, 2013) .

Gabor and LGBP transform are revisited in Chapter 5, where we propose to use LGBPs

with the additional curvature properties for facial AU detection.

Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) has been proposed by Lowe (2004) as a

means to represent, detect, match and track objects in images and image sequences.

What makes the SIFT special compared to similar descriptors such as HoG or Harris

corner detectors, is its invariance to changes in scale, i.e. an object (or keypoint) is

represented with the same feature vector regardless of its size in an image allowing for

efficient object matching in multiple images and tracking in videos.
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What gives SIFT its scale-invariance is the use of Difference of Gaussians (DoG)

obtained by Gaussian filtering with two different σ values on different scales, creating a

Gaussian pyramid. Afterwards the local extrema are detected by comparing pixels with

its neighbors over scale and space, resulting in the detection of key-points in image.

Figure 3.5: Illustration of the SIFT keypoint descriptor construction (Image from Lowe

(2004))

Each keypoint is then assigned an orientation to achieve invariance to rotation. The

gradient magnitude and direction is calculated in a neighborhood around the keypoint

resulting in a histogram of orientation of 36 bins to cover the 360 degrees of direction.

The feature representation is achieved through keypoint descriptors, which are either

predefined or detected using the keypoint detection algorithm. The keypoint descriptor

construction is illustrated in Fig. 3.5. The 16 by 16 neighborhood around the keypoint is

divided into 16 sub-blocks of 4 by 4 , for each of which an 8 bin orientation histogram is

created. This results in a total of 128 bin values and thus a vector of features of the same

size. The choice of neighborhood and number of bins are parameters to be tuned, but it

is very common to use the original configuration proposed in Lowe (2004).

It is relatively recent that SIFT is utilized for facial analysis applications (e.g. Ding

et al. (2013), Ringeval et al. (2014)), where the keypoints are provided by the face-

tracker or facial landmark detector. The keypoint descriptors are calculated around these

landmarks to be fed into the classifier for action detection or face recognition. SIFT

descriptors are invariant to illumination changes in addition to scale and rotation differ-

ences. Their calculation is very fast allowing for their usage in real-time applications,

as we present in an example in Chapter 6. An extension of the original SIFT is the 3D-

SIFT that can be applied to 3D data as well as image sequences which are considered as

volumes, in order to represent motion of objects and recognize actions (Scovanner et al.,
2007).

3.3 Machine Learning Methods for Feature Selection and Clas-
sification

After extracting features from the facial image, the final step is to use that informa-

tion to make a decision on the image, be it detecting the existing AUs, recognizing one
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of the basic expressions or mapping it via regression to the continuous emotional di-

mensions (see Section 2.1 for various categorization methods). This process can involve

a feature selection or dimension reduction step, which serves to decrease the number

of dimensions by removing the redundancy between features or directly eliminating the

irrelevant ones. In this section we review the machine learning tools that are used in

the various chapters of this dissertation and give descriptions of the performance metrics

that are used to evaluate the contributions.

3.3.1 Principal Component Analysis

PCA, also called the Karhunen-Loeve transform, is a linear orthogonal transforma-

tion technique for multivariate data aiming at mapping the data on a lower dimensional

space in a way that keeps an important portion of the variation among the data points.

It is useful when applied prior to classification in cases where the data contains a lot of

redundancy or noisy features, which is information that is not useful for discrimination.

It is based on eigen-analysis of the covariance matrix of the data.

Given a data matrix X of n data points of dimension d each and its mean vector X of

size d, the d × d covariance matrix Cx and its eigencomposition are calculated as:

Cx = (X − X)T (X − X) (3.8)

CxΦ = ΦΛ (3.9)

Φ being the eigenvectors and Λ the diagonal matrix containing the corresponding eigen-

values λ1 · · · λd. The value of the eigenvalues represent the amount of variance explained

by the corresponding eigenvector or principal component. For dimension reduction ap-

plications these values can be used to determine the number of dimensions wished to

keep, for example if a certain percentage of the total variance is wished to be retained

then the sum of the eigenvalues of the principal components kept should not exceed the

same percentage of the sum of all eigenvalues. Unseen data can then simply be projected

on the new space created by multiplying it with the corresponding eigenvectors, being a

rotation in the original space.

Turk & Pentland (1991) have proposed a simple trick to overcome the computational

problem of calculating the huge covariance matrix and its Singular Value Decomposi-

tion (SVD) when the number of dimensions is much larger than the number of data-

points. It is simply to compute the covariance matrix on the transposed data matrix X
and multiplying the calculated pseudo-eigenvectors by the covariance matrix in order

to obtain the same first n eigenvectors for a much lower complexity. Note that, projec-

tions of images on PCA-bases can also be used directly as features for classification as

a simplified representation, as in the case of the Eigenfaces method (Turk & Pentland,

1991).

3.3.2 Linear Discriminant Analysis

A linear discriminant function is the set of linear relations that provides the best

separation between classes. In the binary class case it can be notated as:

y(x) = wT x + w0 (3.10)
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where w is the weight vector, w0 is the bias factor and the datapoint x is said to belong

to class C0 if y(x) < 0 and to C1 if y(x) > 0. The case where y(x) = 0 is called the d − 1

dimensional separating hyperplane, where the dimension of the data is d. In cases where

the number of classes k is greater than two, one can take two approaches. The first one is

the one-versus-the-rest approach where k − 1 classifiers of this kind are learned, one for

each class. The second approach is the one-versus-one where k(k − 1)/2 classifiers are

learned to separate each class from one another, and the final decision can be assigned

by majority voting. From now on, we will be referring to the binary-class case (k = 2)

in the explanation and notations, which has mainly been adopted from Bishop (2006).

In linear discriminant analysis or Fischer’s linear discriminant the linear classifica-

tion model is considered as a dimensionality reduction problem and for a d-dimensional

data vector define y(x) = wT x as a projection to a single dimension. The classification

provided by Eq. 3.10 can still be applied as if y(x) > w0 x belongs to class C1 and vice

versa. This projection may cause a loss of the discrimination present in the original

space if the choice of w is not made to maximize the separation between classes. Taking

m0 and m1 as the mean vectors of the data belonging to the two classes, the choice can

be made to maximize the separation between the class means in the projection space, i.e.

maximizing

m1 − m0 = wT (m1 − m0) (3.11)

with

mk = wT mk (3.12)

(a) (b)

Figure 3.6: Illustration of the LDA. (a) shows the separation obtained by projecting

on the line connecting the means of the classes (b) shows the advantage of Fischer’s

discriminant. Images are from Bishop (2006).

Constraining w to have unit length we obtain w ∝ m1 − m0, which provides a fair

classification by projecting the data on the line joining the two means with the separation

being in the middle. However, as shown in Fig. 3.6a, this does not necessarily lead to

the best discrimination as we do not take into account the inter and intra class variations.

Fischer proposed to solve this problem by maximizing the inter-class separation while

minimizing the intra-class variation so as to minimize class overlap on the projected
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space. Fischer’s criterion is defined as the ratio of between-class variation to the within-

class variation:

J(w) =
wT SBw
wT SWw

(3.13)

where the between-class covariance matrix SB and within-class covariance matrix SW

are defined as:

SB = (m1 − m0)(m1 − m0)T (3.14)

SW =
∑
n∈C0

(xn − m0)(xn − m0)T +
∑
n∈C1

(xn − m1)(xn − m1)T (3.15)

To maximize J(w) we differentiate Eq. 3.13 by w and obtain:

(wT SBw)SWw = (wT SWw)SBw (3.16)

The magnitude of the projection is not important, but only its direction. Also we

know that SB is always in the direction of (m1 − m0) .Therefore, dropping the scalar

factors we obtain Fischer’s linear discriminant as:

w ∝ SW
−1(m1 − m0) (3.17)

Fischer’s discriminant provides a projection that can be used as a dimension reduc-

tion technique and also a classifier by using appropriate thresholding. LDA is able to

take into account the differences in the within-class variations, but a drawback is that it

reduces the classification problem to k− 1 dimensions, which may not be sufficient for a

complex classification.

3.3.3 Support Vector Machines

The Support Vector Machine (SVM) is a maximum margin binary classifier, which

tries to separate two classes by a margin whose width is maximized so as to decrease

the generalization error over all training instances. SVM is a very successful machine

learning tool that has been effectively used for a variety of classification and regression

problems (Bishop, 2006).

Given a set of N training instances and corresponding labels (xi, li), with xi ∈ Rd and

li ∈ −1, 1, and coming back to the linear separation problem:

y(x) = wTφ(x) + b (3.18)

where φ(x) is an optional feature transform, b is a bias parameter and the labels li take

values −1 or +1 according to the sign of y(xi). A margin is defined as the distance that

between the closest instance and the decision hyperplane. SVM tries to maximize this

margin by solving the optimization problem:

argmin
w,b,ξ

1

2
‖w‖2 +C

∑
i

ξi

subject to li(wTφ(xi) + b) ≥ 1 − ξi

and ξi ≥ 0, i = 1, · · ·N
(3.19)
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ξi are called the slack variables, introduced to cope with potential non-separable in-

stances lying in the decision margin region providing a so called "soft-margin" and mak-

ing the optimization problem solvable (Smola & Schölkopf, 2004). C > 0 is the cost

(penalty) parameter that indirectly defines how tight the margin of the classifier will be.

A larger C means a larger penalty, thus a smaller margin. Although a large C ensures

less classification error in the training data, it can also lead to overfitting and thus a worse

performance for unseen data, particularly when noise was present in the training data.

The Kernel Trick

Although SVM is by nature a linear classifier, it also allows for non-linear classifi-

cation using what is called the Kernel Method or the kernel trick. A kernel is defined as

a dot-product in the feature space and this feature space can be created using a mapping

function φ.

K(xi, x j) = 〈φ(xi), φ(x j)〉∀ xi, x j (3.20)

where 〈·, ·〉 defines a dot-product and the kernel matrix K therefore defines a pairwise

relation between samples. The kernel trick is the ability to use this pairwise relation

instead of explicitly defining the feature mapping φ. In addition, since it is defined as a

dot-product, K is positive definite symmetric (PSD) kernel, also called Mercer kernel,
and can be used within machine learning tools to replace the original feature space.

Many kernels have been proposed and used, mostly depending on the particular ap-

plication type. A review of these could be found in Schölkopf & Smola (2002). Some

commonly used kernels are:

• Linear kernel:

K(xi, x j) = 〈xi, x j〉 (3.21)

It is the kernel corresponding to an identity mapping φ(x) = x, the pairwise simi-

larity measure is thus just a dot-product.

• RBF kernels:

K(xi, x j) = exp(−γ‖xi − x j‖2
2) (3.22)

Also called the Gaussian kernel, the Radial Basis Function (RBF) kernels impose

a similarity related to the Euclidean distance regularized by the parameter γ > 0,

called the bandwidth parameter, defining the width of the kernel.

• Polynomial kernels:

K(xi, x j) = (xi · x j + b)p (3.23)

They have two parameters to tune: p ≥ 1, the degree of the polynomial, and b, the

offset. Note that, the linear kernel is a polynomial kernel of degree 1.

The parameters of the kernels (if applies) and the cost parameter C of the SVM are

generally optimized using a grid-search and n − f old cross-validation on the training

set. That is, each time 1/n of the training data is left out for validation, while the rest

of the data is used to train a classifier with all possible discrete sets of parameters to be

tuned and this is repeated n times. The best parameters are then the set that gives the
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best average result over the n-folds and a final classifier is trained with these parameters

using all training data, to be used with the new unseen data. This ensures the separa-

tion of training and validation data and thus overfitting of the parameters to the training

instances.

3.3.4 Boosting Methods

Boosting is the term that is used to define the ensemble of methods that aim at com-

bining multiple classifiers to produce a committee of decisions, that is used as the final

classifier and whose performance is ideally better than any of the "base" classifiers.

These base classifiers are generally chosen from weak learners, which are very simple

classifiers with only better than random performance, and still can create very powerful

classifiers when combined in a boosting scheme.

f (x) = sign
( M∑

m=1

αm fm(x)

)
(3.24)

In 3.24 each fm(x) is a weak learner (a decision function based on the data x) and

α1, α2, · · · , αM are the corresponding weights that are learned using the boosting al-

gorithm.

The most well-known and commonly used boosting algorithm is AdaBoost or adap-

tive boosting, that was developed by Freund et al. (1996). It is the method that is also

used in the Viola & Jones (2004) face detection method. The main idea is to give em-

phasis by weighting the instances that are misclassified at each step of the classifier, i.e.

adapt the classifier to better handle problematic instances. The AdaBoost.M1 algorithm,

also known as the Discrete AdaBoost since the base classifiers return a discrete label, is

outlined in Algorithm 1.

Algorithm 1 Discrete AdaBoost (AdaBoost.M1)

1: Initialize the weights wi = 1/N, i = 1, · · · ,N, with N = number of training instances

2: for m = 1 to M do
3: Fit a classifier fm(x) on training data using weights wi

4: Compute

errm =

∑N
i=1 wiI(li � fm(xi))∑N

i=1 wi
(3.25)

5: Compute αm = log((1 − errm)/errm)

6: Set wi ← wiexp[αm · I(li � fm(xi))], i = 1, · · · ,N
7: Renormalize s.t.

∑
i wi = 1

8: end for
9: Output f (x) = sign

[∑M
m=1 αm fm(x)

]

Note that, the type of weak learner as well as the overall error function in Eq. 3.25 can

be modified based on the application. GentleBoost, proposed by Friedman et al. (2000),

for example chooses the fm at each iteration that minimizes the weighted least-squares
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term
∑N

i=1 wi(li − fm(xi))
2. While the original AdaBoost favors the highest possible α

values, GentleBoost is more conservative algorithm that uses Newton updates for the

weights. It has been shown to converge faster and outperform AdaBoost and its variants

(Friedman et al., 2000).

In the case where each of the weak-learners use a single feature to make a decision,

boosting algorithms weight the feature of each performance, or in other words learn the

best separating feature at each step. This information can be used as a method for feature

selection. GentleSVM, which means selecting the most discriminative features with

GentleBoost and using them in an SVM classification framework, has been successfully

employed for classification problems and is also used in the following chapters of this

dissertation.

3.3.5 Random Forests

Random Forest (RF) is another powerful classification method that can be defined

as an ensemble of trees that are each trained using randomly selected training instances.

This selection of samples from the training data is called bagging or bootstrap aggrega-
tion. Bootstrap methods allow for the non-parametric estimation of the data distribution

and therefore can be used as a way of estimating the classifier or regressor accuracy for

a given parameter set.

Given a training set with data-label pairs {xi, li}, bagging averages the prediction

over a collection of bootstrap samples, drawn from the training data with replacement

and reduces the variance of accuracy by averaging these noisy yet unbiased models. This

bagging estimate is defined simply as:

fbag(x) =
1

B

B∑
b=1

f ∗b(x) (3.26)

B being the number of bags, this expression is a Monte Carlo estimate of the true bagging

estimate, approaching it as B → ∞ (Hastie et al., 2005).

Random Forests combine the idea of bagging with trees, which can be defined as a

series of splits. The trees are grown using a random selection of features (variables) for

each split. The trees are grown a certain depth, which is the minimum node size, being

a parameter to tune. In random forests the classifier is learned on out-of-bag estimates

to estimate the performance of a tree only on instances that were not included in the cor-

responding bag. This technique removes the need for an additional independent test set

(Breiman, 2001). The generalization error computed on this out-of-bag estimates con-

verges as the number of trees (thus the number of bags) increases. The final classification

decision is then made by the voting of all these trees as illustrated in Fig. 3.7.

Random forests are very effective classifiers that are robust against overfitting and

can better handle class imbalance, due to their bagging-based nature. Their main draw-

back is the large number of parameters that one needs to tune in order to get the optimal

results, such as when to stop splitting the nodes, the maximum number of random fea-

tures chosen at each split, the number of instances in the bags and the total number of

trees to train. Since they also provide a ranking of the features, random forests can also
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Figure 3.7: Illustration of the Random Forest Technique

be used as a feature selection tool so as to prune the features which show low overall

performance among the splits that they have been selected in.

3.3.6 Performance Metrics

There exist various metrics used to quantify and compare the performance of classi-

fication (or detection) and regression systems, each of which measure and give emphasis

to a different quality. The classification problem can be one-class, two-class, multi-class

or multi-label. One-class problems refer to cases of novelty or outlier detection prob-

lems, for example. The difference between a one-class classification and the two-class,

or binary-class, one is that in the two-class problem both the negative and positive data

points are included in learning the discrimination, while one-class classifiers are trained

using only the class that is of interest or available at training time.

Multi-class problems have more than two mutually independent classes, where each

sample can only belong to one and only one of the 3+ classes. Face recognition systems

that match a given face to an identity from a set of identities are examples of this type.

The multi-label case, on the other hand, does not have the mutual independence assump-

tion, i.e. data points can possess multiple labels at the same time. Multi-label problems

can be binary or multi-class, for instance as in the case of the identity, sex, age and pro-

fession of a person. Due to the nature of the problems attacked in this thesis, we will

mainly refer to the metrics that are relevant to binary-class classification or regression

problems, that output continuous values. However, most of these metrics also apply to
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the multi-class case, and some to the multi-label one.

Figure 3.8: The confusion table of a two-class (0 for the negative case or 1 for the pos-

itive) classification problem and the definitions of four performance metrics: Precision,

Recall, Specificity and Negative Predictive Value (NPV)

• Confusion Table: Also called a Contingency Table, it shows the correspondence

between each true-class and the predicted output. It of size nclass (number of

classes) by nclass. In the binary-class case the cells represent the number of the

True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives

(FN), where one of the classes is treated as the one being of interest to detect

(Fig.3.8).

• Overall Accuracy (OA): It is the ratio of correctly classified instances out of all

instances. It is a useful measure taking into account equally all classes, but can be

misleading in case of imbalanced classes.

OA =
T P + T N

T P + T N + FP + FN
(3.27)

• Precision: As the name implies, it is a measure of how precise a system is and

defined as the ratio of correctly labeled positive instances over all instances that are

labeled as positive. In other words, it explains how many of the cases detected as

positive are indeed of the class of interest. It is also named the Positive Predictive

Value (PPV).

Precision =
T P

T P + FP
(3.28)

• Recall: It is a metric of the sensitivity of the system, and explains how many of

the positively labeled instances a system is able to detect. It is also called the True
Positive Rate (TPR).

Recall =
T P

T P + FN
(3.29)
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• False Positive Rate (FPR): It explains how many of the negative instances were

classified incorrectly as positive, and is complementary to the term specificity,.

It is different from the False discovery rate (FDR), which defines the ratio of

instances incorrectly labeled as positive overall instances labeled as positive.

FPR =
FP

FP + T N
= 1 − speci f icity (3.30)

• F1-Score: The balanced F-Score (or F1 score) is a measure that takes into account

both the precision and recall of a system, calculated as the harmonic mean of the

two. It is a balanced metric that favors the sensitivity and the precision at the same

time. It is particularly meaningful in cases of class imbalance. For instance, in

a classification problem with 90% of the data carrying the negative label, even if

the system classifies all instances as negative it will reach a 90% OA, but the F-

Score will be too low, or indefinite. It ranges between 0 and 1, 1 being the perfect

classification case.

F1 − S core = 2 × Precision × Recall
Precision + Recall

(3.31)

• Receiver Operator Characteristics (ROC) curve: The ROC curve shows the

relationship between the FPR and TPR values, i.e. it shows how many false pos-

itives have to allowed to reach a certain amount of true positives. In case the

classifier employed outputs a continuous confidence measure (e.g. the distance to

hyper-plane in SVM, or the probability output of the RF), it can be generated by

tuning the decision threshold from the minimum to the maximum value. It is very

useful to show the balance between the two measures, and can be used to obtain

a threshold that is suitable for the particular application. For instance, in some

medical diagnosis problems it is important to detect all pathological cases no mat-

ter the number of false positives, as a precaution. While in user state monitoring

systems that provide feed-back or use the information for system adaptation, it is

important for the acceptability of the system not to output too many unnecessary

detections, so in this latter case the FPR is more important. In the best case the

curve would be where T PR = 1 for all FPR ≥ 0 and in the random classification

case T PR = FPR for all values. The Area Under Curve (AUC) is a measure used

to compare ROC curves, which is 1 in the perfect case, 0.5 for random, and ≤ 0.5

for worse than random (a concave curve) (Fig. 3.9).

• Root Mean Squared Error (RMSE): It is used when the decision output is not

binary or it is of continuous type, thus applies to regression problems. It is defined

as the root of the expected value of the squared differences between the true labels

and the predicted outputs.

• Intraclass Correlation Coefficient (ICC): It is also used as a metric to com-

pare non-binary output systems. It is calculated as the difference of within-target

mean squares and residual sum of squares, normalized by the within-target mean

squares. In addition to regression problems, it is also very commonly used to

assess the quality of human ratings when there are multiple raters.
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Figure 3.9: Receiver Operator Characteristics (ROC) curve and the possible outcome

cases, with the area under curve (AUC) shown for each case

• Concordance Correlation Coefficient (CCC): It is a measure that combines the

Pearson’s correlation coefficient (ρ) and the mean square error in a single metric:

ρc =
2ρσxσy

σ2
x + σ

2
y + (μx − μy)2

(3.32)

where σ2
x and σ2

y are the variances and μx and μy are the means of the continuous

valued vectors x and y that are in comparison.

3.4 Existing Databases

Facial expression databases are crucial tools for facial analysis research, both for

training and testing. Publicly available image and video databases help advancements

in the field and allow for objective comparison of system performances. Creating a

database of facial expressions is a tedious task mainly due to providing the ground-truth.

Databases currently available to the community come with annotations for the six (or

seven) basic expressions, the emotional dimension (valence, arousal, dominance etc.),

AU existence or intensity, or a specific condition or state, for instance pain, interest,

engagement, distraction.

In the earlier years of automatic face analysis research the databases mostly con-

sisted of posed expressions, i.e. the subjects were given explicit instructions to perform

a certain facial action combination. Although this provides convenience in terms of data

annotation (since the sequence-level ground-truth labels come automatically during data

acquisition), the data obtained is not natural and quite different from what one observes

in real-world applications. The later trend, therefore, is to obtain expressions in a spon-

taneous manner, that is either by emotion elicitation or by having human-raters annotate

the data through visual observation. Human annotations, of course, bring along the prob-

lem of subjectivity, even in the case of FACS annotations, which is the most objective

and well-defined system to date. For this purpose some databases use multiple human
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raters that annotate the same data and a measure of reliability is provided along with the

annotations.

Table 3.1 gives a list of some commonly used publicly available databases, the type

of annotations (ground-truth) provided, the existence of spontaneous expressions and 3D

data. Posed expression databases such as the CK (Kanade et al., 2000) and its extension

CK+ (Lucey et al., 2010), the MMI (Valstar & Pantic, 2010) and the Bosphorus (Savran

et al., 2008) have been widely used in the field and provide a well-established perfor-

mance baseline for AU and expression recognition systems. The existence of both kind

of labels also allow for training and testing systems that use AUs to recognize the basic

expressions. The GEMEP-FERA database is between the posed and spontaneous cate-

gory (Valstar et al., 2011). It contains actors uttering meaningless sentences while trying

to perform in a certain emotional way. The emotions intended therefore are not real,

but the expressions are natural. It also allows for multimodal analyses since it contains

videos of the whole upper body and speech.

Databases containing spontaneous expressions use either emotion elicitation using

visual stimuli such as movies (e.g. NVIE - Wang et al. (2010b), DISFA - Mavadati

et al. (2013)) or they are recorded during natural interactions between people (RECOLA

- Ringeval et al. (2013)) or people interacting with a software (AVEC databases - Valstar

et al. (2013) and Valstar et al. (2014)) or an avatar controlled by another person, as

in SEMAINE (McKeown et al., 2012) where the avatars represent and act in a certain

emotional state (e.g. joyful or angry). The AVEC 2013 and 2014 databases are particular

in the sense that it contains labels for the Beck’s Depression Index (BDI) score, which

is a questionnaire measuring a person’s depression level. The database can therefore be

used to investigate visual and audio cues of different levels of depression.

In this section we have provided an overview of some of the existing databases,

elicitation and annotation methods. In the following chapters we explain in more detail

the corresponding databases that are actually used for training or test purposes.
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3.5 Applications

In Chapter 2 we have already discussed why facial expressions are important and

how they provide information on one’s affective or cognitive state. In this section we

provide a short review of some of the application areas in the literature, that use auto-

matic detection of AUs or facial expressions as a source of information. Note that this

review does not include applications of face recognition (e.g. in forensics or face veri-

fication); for the corresponding applications the reader is referred to Jain & Li (2005).

Automatic facial expression analysis is firstly an essential component of HCI (which can

also be called Human-Machine Interfaces (HMI) in this case). Systems that are able to

understand affective and cognitive states of users use this information to mediate and

adapt their behaviour for a more user-friendly and efficient system. HCI applications

range from gaming to medical and learning assistance.

One of the most commonly encountered use of automatic analysis of facial expres-

sions is in the field of marketing. Analyzing people’s facial reactions when they watch

advertisements or browse a product allow measuring their liking and intent to purchase

the product. Using this information producers, retailers or online shopping sites can

build marketing strategies, reorganize product placements and infer about their target

population (Texeira et al. (2012), McDuff et al. (2014)). This idea does not only apply to

direct purchasing behaviour, but also to assessment of liking multimedia content in gen-

eral. For example, as a very interesting recent application, a comedy club in Barcelona,

Spain has placed cameras in front of the audiences’ faces, detects every time you smile,

and charges you according to your number of smiles / laughs during the performance.

Another field of application is in the health-care area. Certain psychopathologies

have been shown to have as symptoms flat or abnormal affect. Abnormal affect is de-

fined as not feeling or expressing a feeling in an expected way, for example getting

extremely raged as response to an amusing stimulus with no apparent side reasons. Flat

affect, on the other hand, is the deficiency to lack to feel or express a feeling when you

are expected to. Flat and abnormal affect is encountered in patients with schizophrenia,

depressive disorder, manic-depressive disorder and certain types of autism spectrum dis-

order (e.g. Asperger’s syndrome). These disorders are also characterized by not being

able to recognize others facial expressions (Sander & Scherer (2009), Kring & Stuart

(2005)). Automatic facial expression recognition tools can be used for the diagnosis

(Kächele et al. (2014), Valstar et al. (2014), Cohn et al. (2009)) and treatment (Gordon

et al. (2014), Picard (2009)) of those psychopathologies and evaluation of psychiatric

intervention. Another application in the healthcare area are systems that measure the

pain level, for instance after surgeries or during regular monitoring of the elderly, and

help take appropriate measures (Ashraf et al. (2009), Sikka et al. (2015)).

A similar type of approach is also used to model, understand and provide feed-back

to learning and teaching systems, the main idea being that understanding and being able

to interpret the student’s feelings and cognitive states (e.g. distracted, confused) one

can adapt their behaviour for a more efficient interaction. In the case of online-learning

systems or teaching using robots facial analysis software become even more essential, as

real-time system adaptation is feasible (e.g. Whitehill et al. (2008), Cooper et al. (2010),

Grafsgaard et al. (2013)).
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Another application field that is on the rise is driver and pilot monitoring systems

via facial analysis. These systems detect particular states of the drivers (e.g. fatigue,

distraction, rage) that can be hazardous for driving and allow for taking appropriate

measures. An extensive review on existing systems is given in Chapter 8 along with our

contribution on detecting cognitive distraction of drivers using AUs.

Facial analysis tools can also be useful in better understanding human behaviour and

the underlying neurological processes. Researchers are working towards an accurate AU

detection system (as in the focus of this dissertation) in order to be able to fully-automate

the FACS coding process. FACS codes are then used by theoretical psychologists and

cognitive neuroscientists to study the mechanisms that give way to facial expressions

and also certain deficiencies in the brain that cause impairments.

3.6 Conclusion

In this section we have provided a review and explanation of the main tools that are

needed for an automatic facial expression recognition system: Face and facial landmark

detection, geometric and appearance based feature extraction and machine learning for

feature selection and classification. We have presented an overview of existing sys-

tems, databases and related application fields. The review covers both AU detection

and Facial Expression Recognition (FER) systems. We have given emphasis to methods

and resources that are utilized in the following chapters of the thesis and the proposed

contributions. With this section we conclude the introductory part of the thesis.







Part II

Individual and Multi-Label Action
Unit Detection





Overview

Automatic facial action unit (AU) detection in videos is the key ingredient to most

systems that use a subject face for either interaction or analysis purposes. From new

generation game consoles to market research or software used for the treatment of psy-

chopathologies, many applications and devices nowadays make use of facial analysis

of users, consumers or patients, as previously reviewed in Section 3.5. Automated fa-

cial action detection and classification therefore continues to be an important research

issue in the computer vision area. With the ever growing range of possible applications,

achieving a high accuracy in the simplest possible manner gains even more importance.

In this part of the thesis we propose two different methods to increase frame-level AU

detection accuracy, both of which utilize LBP based features with different extensions.

LBP and its variants have already been proved to be very effective descriptors of the fa-

cial texture (see Sec. 3.2.2); with our two contributions we present two novel extensions

to achieve state-of-the-art AU detection performance.

In Chapter 4 we aim to reinforce LBPs using certain image processing techniques,

that have been used in the domain of automatic facial analysis for the first time. These

are the bilateral filter, morphological opening by reconstruction and morphological top-

hat transform by reconstruction. These image transformations are applied on the face

image prior to the LBP transform in order to enhance different appearance-based prop-

erties of the face, e.g. via smoothing of certain regions. The proposed system combines

these texture based features with additional features based on facial point geometrical re-

lations between the neutral and expressive frames and we show that it achieves detection

rates higher than methods previously proposed, using a small number of features and ba-

sic support vector machine classification, by using some fundamental image processing

tools.

Our second contribution, presented in Chapter 5, we explore the use of curvature Ga-

bor wavelets together with LBP once again for the problem of AU detection in videos.

Gabor wavelets, as reviewed in Section 3.2.2, are efficient texture descriptors with the

ability to represent appearance in various scales and orientations. Curvature Gabor

wavelets extend this representation to different curvature degrees. In this contribution

we investigate their use in facial action recognition for the first time in the literature, in

addition to the advantages of using different kernel sizes for the wavelets, making what is

called Multiple Local Curvature Gabor Binary Patterns. The proposed framework proves

very efficient and we show with experiments that the inclusion of various degrees of cur-

vature and kernel sizes substantially increase detection accuracy of AUs, obtaining the

state-of-the-art performance on the CK+ dataset (Lucey et al., 2010), composed mostly
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of posed expressions. We also show the application of the system in a cross-database

manner and discuss the strengths and drawbacks of the methodology.

To summarize, in this part of the dissertation we investigate two novel methods so

as to show how to more efficiently use LBP based appearance features for the problem

of AU detection in video frames. The proposed methods have also appeared in the

publications Yüce et al. (2013a) and Yüce et al. (2013b).



Improving LBP based AU
detection using
morphological and
bilateral filters 4
4.1 Introduction

In this chapter we propose a novel extension to LBP based AU detection that uses

certain fundamental image processing tools as a preprocessing step so as to increase the

efficiency of the output appearance features, as our main contribution. With additional

novelties, extensions and feature combinations we build a framework that significantly

increases AU detection accuracy.

Although the LBP and its many variants have been extensively investigated for AU

detection and expression recognition purposes (see Shan et al. (2009) and Section 3.2.2

for a review), too few of the works have gone further than extracting histograms on a

fixed grid in 2D or 3D (the third dimension being time). In Senechal et al. (2010) and

Senechal et al. (2011), the authors have successfully used the difference of the LGBP

histograms between the neutral image and the peak expression. We adopt a similar

approach, however we compute the LBP histograms obtained from overlapping win-

dows and compute a single feature per window, which is the χ2 distance between the

histograms, resulting in a smaller number of features which search more extensively

throughout the image.

In addition, we apply three different filters (using morphology by reconstruction

and bilateral filters) separately before applying the LBP transform on the image. This

lets us obtain three different LBP transforms which define more clearly the edges than

directly applying the LBP transform, and we show with experimental results that indeed

the new features proposed achieve a better accuracy. We also show that by combining

these texture features with certain shape features we can achieve detection performances

higher than other methods that have reported results on the same database that we use

for our tests.

The majority of the work included in this chapter has already been published in the

Proceedings of the FG’13 conference (Yüce et al., 2013a). In the rest of the chapter we

first describe the shape features, preprocessing methods and texture feature extraction
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procedure along with the feature selection and classification method that is used. In

Section 4.3 we present the results obtained using texture features by themselves and in

conjunction with shape features and compare these results to other methods. Finally, in

Section 4.4 we conclude the chapter with a discussion.

4.2 Proposed Method for Improving LBP based AU Detection

In this section we explain in detail the method proposed for the AU detection system.

Since our main contribution is in features extraction, the emphasis is also given to this

component of the system.

4.2.1 Shape Features

To obtain the shape features we need to localize the face and certain points on it,

either by manual human annotations or with the help of a face tracking system. In

order to avoid any noise possibly introduced by automatic face tracking and to better

observe the improvement provided by the proposed texture based features (explained in

Section 4.2.2) we use manual annotations of 68 facial points for the tests presented in

this work.

The face is divided into three regions and only a certain group of the facial points are

used corresponding to each region. The reason for doing this is that none of the action

units causes a substantial change in the whole face or all of the 68 points defined, but

only a specific portion. So, we can reduce the computational burden and noise caused

by the feature extraction and selection processes. More precisely, we use 29 points and

the texture contained inside and around for each of the upper face (AUs 1,2,4,5 and 7),

middle face (AUs 6 and 9) and lower face (AUs 12,15,17,20,23,24,25 and 27) action

units. The selected points for each type can be seen in Fig.4.1.

Figure 4.1: Points used in feature extraction; Upper face points are shown in red, blue

or yellow; Middle face points in green, blue, magenta or yellow; Lower face points in

cyan, magenta or yellow; Black points are not taken into account for any AU
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The shape features are then obtained using the initial frame (containing no expres-

sion) and peak expression frame (referred to as peak frame throughout the rest of the

chapter) of each video sequence containing an expression of N frames, similarly to Val-

star & Pantic (2006) with the difference of using only 2 frames rather than the whole

sequence. All of the shapes (68 points) were aligned to a single shape to exclude the

effect of translation, rotation and scale. The first features obtained is the position change

in horizontal and vertical directions of the 29 points defined, which is called set S. Thus,

we compute for each point i in S

F1(i) = xi,N − xi,1 (4.1)

F2(i) = yi,N − yi,1 (4.2)

F3(i) =
√

(xi,N − xi,1)2 + (yi,N − yi,1)2 (4.3)

where xi,N denotes the position in x coordinate of point i in frame number N, or the peak

frame, and similarly xi,1 that in the first, or neutral, frame.

Then, we also take as features the change in position of all points with respect to

each other in the peak and initial frames, i.e.

F4(i, j) =
√

(xi,N − x j,N)2 + (yi,N − y j,N)2 − (4.4)√
(xi,1 − x j,1)2 + (yi,1 − y j,1)2 (4.5)

F5(i, j) = atan
|yi,N − y j,N |
|xi,N − x j,N | − atan

|yi,1 − y j,1|
|xi,1 − x j,1| (4.6)

(4.7)

for all points i � j in S. Obtaining in the end the feature set Fs = [F1,F2,F3,F4,F5] of

899 shape features.

4.2.2 Texture Features

The texture related features that we propose to use are based on LBP histograms

obtained from overlapping windows of various sizes. The LBP transform is applied on

three images obtained by three different filters and the final features are the histogram

differences between initial and peak frames. These filters are the bilateral filter, opening

by reconstruction filter and black top-hat by reconstruction filter. We explain in the

following subsections how each of them works and why they are relevant to our task, in

addition to a brief description of the LBP transform and the feature extraction procedure.

More details on LBP and its variants can be found in Sec. 3.2.2 of the dissertation.

4.2.2.1 Bilateral Filter

The first preprocessing method we perform in order to eliminate irrelevant facial de-

formations or noise present in the image is the bilateral filter. The bilateral filter is a non-

linear filter introduced by Tomasi & Manduchi (1998) and has been vastly used mainly
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for the purposes of image denoising and for creating special effects in photographs. Its

main advantage compared to linear filters is that it smooths an image while preserving

the edges with the help of two different kernels called the domain and range filter. The

equation of the bilateral filter is given as

Î(pc) = w−1
c

∑
k∈Q

e
− ||pc−pk ||2

2σ2
d e

− (I(pc)−I(pk ))2

2σ2
r I(pc) (4.8)

where Q is the particular neighborhood taken around the pixel located at pc and I de-

notes the corresponding gray-level intensity. The normalization factor wc is simply the

summation of the weights over the neighborhood Q.

wc =
∑
k∈Q

e
− ||pc−pk ||2

2σ2
d e

− (I(pc)−I(pk ))2

2σ2
r (4.9)

The first kernel in Eq. 4.8 is the simple Gaussian smoothing filter, called the domain

filter in this case. The second one, called range filter, is where the non-linearity appears

and it smoothes the image in the intensity domain. This means that, the neighboring

pixels with intensity values close to the center pixel are assigned a smaller weight than

the pixels that have a larger intensity difference. Thus, the areas which contain edges

(high intensity changes) are less affected by the smoothing performed by the domain

filter.

The bilateral filter is suitable for our case, since our main source of information is

contained on the edges created by the facial actions, and we want to smooth out the

regions that contain other irrelevant deformations. The main issue with bilateral filters is

the choice of the 3 parametersσd, σr and the neighborhood size, which affect directly the

amount of smoothing and edge preserving. No optimization of these parameters exists

in the literature and the optimal parameters depend highly on the application, so, in this

work, we choose empirically as parameters σd = 3, σr = 50 and a square neighborhood

of size 11, which provides a reasonable smoothing. An example result of the bilateral

filter and the LBP transform applied on it can be seen in Figures 4.2d and 4.2l. As

expected the bilateral filter - LBP transform combination results in smoother regions,

so that the main patterns explaining the facial features are better viewed and, of course,

identified.

4.2.2.2 Morphological Operations by Reconstruction

The second type of preprocessing that we use is based on mathematical morphol-

ogy. Opening and closing are two of the most commonly used morphological opera-

tions. Morphological opening serves to identify or isolate structures (or connected com-

ponents) that are brighter than their environment. Morphological closing isolates and

flattens image structures that are darker than their surroundings and that have a smaller

support than the structuring element (SE), which is used for the consecutive dilation

and erosion operations. Depending on the structuring element, the way that the image

behaves under these filters thus provides information on structural features of the ob-

jects present in the image. They have been frequently used to obtain feature sets using
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varying sizes of structural elements in tasks like image classification and segmentation,

especially in remote sensing applications (Dalla Mura et al., 2011).

Based on this ability of defining bright and dark structures in images, we adopt the

idea of using the morphological filters as a preprocessing method applied before the

LBP transform. The standard opening and closing operations, however, result in the

deformation of important geometrical structures as well. To prevent this severe effect, a

shape preserving method called morphological filtering by reconstruction was proposed

(Crespo et al., 1995), with the idea of avoiding deformation of structures larger than the

structuring element.

Opening and closing by reconstruction are performed in two steps. In the case of

opening, first a marker image IM is obtained by applying erosion (represented by ε) on

the original image I, using the structural element B.

IE = εB(I) (4.10)

The second phase is iteratively performing a geodesic dilation starting with the

marker image IE until no further change in the image pixels is obtained. The geodesic

dilation on an image is defined simply as the pixel-wise minimum (∧) of the elementary

dilation (dilation with the smallest structuring element, represented as δ1) on the image

and a mask image, which is in our case the original image, I (Dalla Mura et al., 2011).

After n iterations we obtain the opening by reconstruction, IOR, in the form

IOR = δ
n
1,I(IE) = δ1,I(δ1,I . . . (δ1,I(IE))) (4.11)

with

δ1,I(IE) = ∧{δ1(IE), I} (4.12)

and

δn+1
1,I (IE) = δn

1,I(IE) (4.13)

Closing by reconstruction (ICR) is obtained, similarly, by iteratively applying the

geodesic erosion operation on the marker image obtained by dilating the original image

with a structural element B, until the resulting image is identical to the one in the pre-

vious iteration. The geodesic erosion is defined as the pixel-wise maximum (∨) of the

elementary erosion of the marker image and the mask image, which is once again our

original image I.

ICR = ε
n
1,I(ID) = ε1,I(ε1,I . . . (ε1,I(ID))) (4.14)

with

ε1,I(ID) = ∨{ε1(ID), I} (4.15)

We use as our morphological preprocessing methods the opening by reconstruction

and the black top-hat by reconstruction method. The black top-hat transform (also called

the closing by top-hat or top-bottom transform) is the residual of a closing image when

compared to the original image:

IBTR = ICR − I (4.16)
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(a) Original neutral

image

(b) LBP of the origi-

nal neutral image

(c) Neutral image

with bilateral filter

(d) LBP of neutral im-

age with bilateral fil-

ter

(e) Neutral image

with morphological

opening

(f) LBP of neutral im-

age with morphologi-

cal opening

(g) Neutral im-

age with top-hat

transform

(h) LBP of neutral

image with top-hat

transform

(i) Original peak

expression image

(j) LBP of the orig-

inal peak expression

image

(k) Peak expression

image with bilateral

filter

(l) LBP of peak ex-

pression image with

bilateral filter

(m) Peak expression

image with morpho-

logical opening

(n) LBP of peak ex-

pression image with

morphological open-

ing

(o) Peak expression

image with top-hat

transform

(p) LBP of peak ex-

pression image with

top-hat transform

Figure 4.2: Examples of the preprocessed images and their LBP transforms for the neu-

tral (no AU present) and the peak of expression cases
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Example results of the opening by reconstruction, black top-hat transform and the

LBP transform applied on top can be seen in Figures 4.2f & 4.2n and 4.2h & 4.2p respec-

tively. As we can see the opening performed serves to flatten the bright areas on the face,

emphasizing the important intensity changes caused by the facial features, and to help

the LBP transform obtain clearer structures. The black top-hat transform, on the other

hand, identifies the dark regions on the face (such as the mouth opening and eyebrows)

and therefore cause the LBP to have more significant boundaries around these regions.

As the structuring element we use a disk shape of size 30 by 30 pixels, for images of

size 640 by 490. All filter parameters were chosen based on visual observations for this

work.

4.2.2.3 Feature Extraction by Uniform Local Binary Pattern Histogram Differ-
ences

LBP is an efficient gray-scale texture descriptor proposed by Ojala et al. (1996) and

has been used widely in various texture description and classification problems, includ-

ing expression recognition and AU detection, along with its many variants. Its main

advantage is that it is invariant to illumination changes since it is defined by the relation-

ship of a pixel with its neighbors, thus can identify successfully the microstructures in

an image. More details about different LBP types and their usage in the literature can be

found in Section 3.2.2.

The basic LBP is defined for a pixel pc as

LBP(pc) =

P−1∑
k=0

l(I(pk) − I(pc)).2k (4.17)

where I(p) denotes the intensity of a pixel p, and P is the total number of pixels in the

chosen neighborhood of the center pixel pc. The function l is a simple thresholding

function in the form

l(x) =

{
0 if x < 0

1 otherwise
(4.18)

In the end we obtain a binary pattern of P bits for each pixel. By varying this number

P and the radius of the circular neighborhood one can obtain LBP at different resolutions.

In this work we use the uniform LBP on a neighborhood of radius=1 and P = 8. Uniform

LBP (Ojala et al., 2002) is an extension of the standard LBP, where the binary patterns

are grouped according to the number of 0/1 transitions that they contain, and the patterns

containing more than 2 transitions (non-uniform patterns) are assigned the same identity,

since it was shown that they occur much less frequently than the others, namely the 58

uniform patters. So, for each pixel in a region of interest we assign a value from 0

to 58, and obtain a 59 bin histogram for that region. Figures 4.2b and 4.2j show the

uniform LBP transformation of an example face with and without expression from the

CK+ database (Lucey et al., 2010).

In our experiments we scale each face region (upper, middle or lower as explained in

Section 4.2.1) in the initial and peak frames to a standard size of 240 to 120 pixels. Then
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we obtain the 59 bin uniform LBP histograms of 324 overlapping windows of different

sizes, the smallest window size being 40 by 40 while the largest one is 240 by 120

containing the whole region of interest. Figure 4.3 shows an illustration of the windows

with the smallest size along with the first two slid versions; the overlap size is M1 − 20

by M2 − 20 for each window of size M1 by M2. Most of the works to date using LBP

histograms for action unit detection have used standard size non-overlapping windows.

However, for each AU the most important information may be contained in windows of

different sizes and positioned in various locations. For instance, for AU2 (outer brow

raise) the large window containing both of the eye brows is intuitionally more important

than the smaller window containing only the inner brows, while for AU1 (inner brow

raise) it is not the case. Therefore, we prefer not to discard any of these overlapping

regions, and let the feature selection step choose the most relevant ones.

Figure 4.3: Illustration showing the smallest window size used for LBP histogram ex-

traction and the first two overlapping translated versions

Once we have obtained the histograms for each of the windows on each of the ini-

tial and peak frames, we compute the histogram variation between the two frames, the

reason being, using the change in the LBP profiles rather than the profiles directly in the

peak frame eliminates the variations due to identity and provides a stronger feature set

(Senechal et al., 2010). Instead of the direct difference of 2 histograms and using every

bin as separate features as done by Senechal et al. (2010), we use the χ2 distance, Dχ2 ,

which is defined as

Dχ2 (HN ,H1) =
∑
b∈B

(HN(b) − H1(b))2

(HN(b) + H1(b))/2
(4.19)

where HN(b) denotes the value at bin b of the histogram for the Nth frame, and B denotes

the set of all the bins. The texture features for the region of concern is thus these distance

measures for each of the 324 windows.

Applying the LBP transform and obtaining these texture features explained, for all

three of the preprocessed images (bilateral filter, opening by reconstruction, black top-

hat by reconstruction) we have our final set of 972 texture related features. The three

different filtering methods, combined with the local binary pattern transform, allow us
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to obtain an extended set of features explaining the facial structure and as presented in

the next section provide a much better AU detection accuracy compared to the LBP used

alone, both in combination with the shape features and by themselves.

4.2.3 Feature Selection and Classification

Once the full set of features (shape + texture) is obtained, we perform feature selec-

tion using the GentleBoost algorithm (Friedman et al. (2000), see Section 3.3.4 for de-

tails) to choose the most relevant features for each of the AUs. We therefore perform this

process 15 times independently, for the action units 1,2,4,5,6,7,9,12,15,17,20,23,24,25

and 27. Feature selection is a crucial step in the AU detection process, since it dis-

cards the irrelevant and redundant features which constitutes a huge portion of the total

number of features extracted, due to the large number of LBP windows and inter-point

relations we use for building our features set. For each action unit 200 features are

extracted in total as result of the GentleBoost, then the optimal number of features is

chosen by performing leave-one-subject-out tests (explained in detail in Section 4.3)

with 30,50,100,150 and 200 features for each AU separately.

For the detection of action units using these selected features, we train 15 Support

Vector Machine (SVM), once again for each AU. The SVM are binary, the classes being

if the specific AU is present in the image sequence or not. As kernels we use Gaussian

RBF, and optimize the classifier parameters σ and C using a 5-fold cross validation on

the training set. The cross-validation tests and parameter optimization are explained in

more detail in Section 4.3.

4.3 Experimental Results

For all the experiments that we performed we have used the Extended Cohn-Kanade

(CK+) database (Lucey et al., 2010), which consists of a total of 593 image sequences of

123 different subjects posing in various facial expressions and contains different numbers

of examples of many action units. The action units present on the peak frame of each

sequence were identified by human coders for each sequence. We have applied our

methods to detect 15 action units which have a reasonable number of occurrences in the

database. We take, for each AU, as positive examples all the sequences that it is present

in the peak frame, regardless of the intensity of the action. For the LBP and the three

proposed filters we have used our own implementation on C++, for the GentleBoost we

have used the method provided within OpenCV1 and finally for the SVM classification

we use the publicly available LibSVM library (Chang & Lin, 2011)2.

For each of the tests presented, we have performed a leave-one-subject-out (LOO)

cross-validation; meaning, all sequences of a specific subject were excluded in the set

used to train the classifier, then the classifier was tested on the excluded sequences and

the overall accuracy was calculated by adding the number of correctly classified se-

quences for each subject. The best parameters set {σ,C} of the SVM (corresponding to

1http://opencv.org/
2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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the highest classification rate) were chosen out of 25 possible combinations, using a 5-

fold cross validation on the training set for each subject. The LOO tests were performed

for each AU using 30,50,100,150 and 200 features and the one giving the highest overall

accuracy was chosen as the final result.

We group the results we obtained in two parts: The first one is the AU detection per-

formance using only texture features in the feature selection and classification, and com-

pares the two results obtained by the preprocessing methods, explained in Section 4.2.2,

applied before the LBP transform and by the LBP transform applied directly on the

original image. The second part presents the detection results obtained by using these

texture features in conjunction with the geometric features detailed in Section 4.2.1, and

compares these results to other methods in the literature that have reported results on the

same database.

4.3.1 Experiments with only texture features

First, we train our feature selector and classifiers using only the texture features,

not including yet the geometric features, in order to observe the advantage of applying

the preprocessing methods proposed over using LBP transform directly on the image by

itself. Table 4.1 presents the number of features used, overall accuracy and area under

the ROC curves, which are presented in Fig.4.4, for each of the 15 action units and for

both methods. The overall accuracy (OA) stands for the correct classification rate for

both the positive and negative examples for each AU.

We can see from these results the significant increase in accuracy when we use the

extended set of texture features, i.e. with the preprocessing applied. For all AUs we

obtain a higher accuracy and AUC with the feature extraction method using the filters,

resulting in an average increase of 2.34% in the OA, 4.57% in the AUC, which is more

meaningful than the OA due to the unbalanced number of positive and negative exam-

ples. The number of features giving the highest accuracy in each case is particularly

interesting, since for certain AUs this number is higher for the method using only LBP,

although the total number of features before feature selection is only one third of the

other method (324 vs. 972). This fact serves to show us that the increase in accuracy

is not at all dependent on the number of features extracted but rather on their ability to

describe the facial actions.

These tests show not only the advantage of the preprocessing methods proposed, but

also the potential of the system when it is completely automated. The texture features

are mostly independent from the facial point annotations, for which we used manual

annotations at this step, except for obtaining the relevant region part of the face. This

can be easily and efficiently performed using existing facial landmark detection methods

in the literature (as performed in the following chapters) and we see, as explained in

the following section and presented in Table 4.2 that we achieve accuracy measures

competitive with other state-of-the-art methods even using only texture features.
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Table 4.1: AU Detection Results for the preprocessing + LBP texture features

(Pre+LBP) and for only LBP texture features (LBP). NP: Number of positive exam-

ples for the AU in the database, nFts: Number of features used, OA(%): Percentage

overall accuracy, AUC(%): Area under ROC curve

AU NP nFts OA AUC

Pre+LBP LBP Pre+LBP LBP Pre+LBP LBP

1 177 200 150 0.909 0.862 0.959 0.889

2 117 200 150 0.941 0.933 0.977 0.929

4 194 100 150 0.879 0.821 0.942 0.882

5 102 30 100 0.919 0.890 0.936 0.871

6 123 100 150 0.890 0.869 0.929 0.885

7 121 100 150 0.836 0.836 0.867 0.831

9 75 50 150 0.975 0.955 0.992 0.958

12 131 150 50 0.934 0.909 0.954 0.933

15 94 50 150 0.922 0.880 0.936 0.894

17 202 150 50 0.895 0.865 0.940 0.911

20 79 100 100 0.926 0.921 0.949 0.916

23 60 100 150 0.922 0.894 0.882 0.779

24 58 50 150 0.926 0.914 0.896 0.843

25 324 150 100 0.880 0.858 0.937 0.925

27 81 100 150 0.961 0.959 0.987 0.950

Avg. 0.914 0.891 0.939 0.893

4.3.2 Experiments with shape and texture features combined

The second group of experiments we perform is using the shape features (explained

in Section 4.2.1) in combination with the texture features explained in Section 4.2.2.

Once again we conduct the experiments using the LBP on top of three preprocessing

methods, and using LBP directly on the image separately. In the first case the feature

selection algorithm is fed 1871 features in total, while in the second this number is 1231.

In this study aiming to test the efficiency of the proposed texture features we use only

manual annotations of the facial points in order to eliminate the bias factor introduced by

the possible noise from facetracking. Due to the high accuracy of these features and the

ratio of the shape vs. texture features, the feature selection tends to select shape features

more frequently in the LBP features without preprocessing case, as expected. Therefore,

the difference in accuracies obtained by the two different methods is less significant

than that presented in Section 4.3.1. With the preprocessed features we obtain 94.74%

overall accuracy and 96.97% AUC, while with only the LBP features we obtain 94.13%

accuracy and 96.01% AUC as average over the 15 AUs tested.

The preprocessed features achieve higher accuracy and AUC for 12 AUs, the ex-

ceptions being AU 23 and 24 for only the overall accuracy, which is rather meaningless

since they have very few positive examples, and AU25 (jaw drop) for both accuracy and

AUC, which has proven by the performance difference between using shape+texture fea-

tures and only texture features (shown in Table 4.2), to be very dependent on the features
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Figure 4.4: Receiver Operator Characteristics curves for each of the Action Units in-

cluded in the experiments. Red curves are the ones obtained using preprocessing and

LBP texture features, while blue curves are the ones obtained using only LBP texture

features

provided by the geometry of the facial points rather than the texture. Comparing these

two performances (shape+texture vs. texture) we see that while shape features bring

about a higher accuracy in all AUs, for some of them this change is more substantial,

like AU1 (inner brow raise) in addition to AU25. This tells us that for these AUs, change
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of location of facial points contains more important information than the change in tex-

ture contained in or around. It makes complete sense in the case of AU1 and AU25, for

example, where we do not see a significant texture variation on the area related to these

actions but an obvious position change of certain facial points.

We also compare our results with three different methods that have reported results

on the same database. The first one is the method by Senechal et al. (Senechal et al.,
2010) in which they use as features the histogram differences of Local Gabor Binary

Patterns (LGBP) in non-overlapping fixed size windows, and build a special kernel using

this difference for the classifier. Since separate AU performances were not reported and

the lower AUs are not the same ones tested in this work, we can only compare the mean

upper AU detection performance. The best results that they achieve is with the special

kernel which is 97.3% AUC, while for us this measure is 96.8%. With, the Gaussian

RBF kernel, however, they achieve 96.2%, from which we can deduct that with a much

lower number of features selected efficiently, higher performances can be achieved.

Table 4.2: AU Detection Results comparison using our method with shape + texture

features (SHTXT), our method with texture features only (TXT), the method proposed

by Valstar et al. (2012) (referred to as Valstar) and the method proposed by Bartlett et al.
(2006) (referred to as Bartlett). OA: Overall accuracy, F1: F1 measure, AUC: Area under

ROC curve

AU OA F1 AUC

SHTXT TXT Valstar Bartlett SHTXT TXT Valstar SHTXT TXT Bartlett

1 0.965 0.909 0.918 0.92 0.938 0.841 0.826 0.983 0.959 0.95

2 0.976 0.941 0.939 0.88 0.939 0.836 0.833 0.991 0.977 0.92

4 0.911 0.879 0.870 0.89 0.862 0.809 0.630 0.968 0.942 0.91

5 0.944 0.919 0.904 0.92 0.829 0.745 0.596 0.976 0.936 0.96

6 0.911 0.890 0.930 0.93 0.778 0.716 0.811 0.946 0.929 0.96

7 0.882 0.836 0.870 0.88 0.688 0.531 0.290 0.917 0.867 0.95

9 0.992 0.975 0.928 1 0.966 0.895 0.573 0.998 0.992 1

12 0.944 0.934 0.930 0.95 0.865 0.838 0.836 0.974 0.954 0.98

15 0.953 0.922 0.969 0.85 0.839 0.726 0.361 0.956 0.936 0.91

20 0.963 0.926 0.908 0.92 0.849 0.690 0.517 0.973 0.949 0.84

24 0.946 0.926 0.935 0.92 0.682 0.511 0.497 0.945 0.896 0.88

25 0.959 0.880 0.851 0.89 0.963 0.889 0.748 0.984 0.937 0.93

27 0.985 0.961 0.964 0.99 0.945 0.855 0.854 0.996 0.987 1

Avg. 0.949 0.915 0.916 0.909 0.857 0.760 0.638 0.969 0.943 0.926

The comparison with the other two methods can be seen in Table 4.2 for the 13

common AUs that were tested in all three works. The first method (Valstar et al., 2012)

proposes using as features only the position change of facial points throughout the whole

sequence and does not report the AUC measure so we compare the F1 measure instead,

noting that we tune our parameters to give the highest classification accuracy and not

the highest F1. The second method (Bartlett et al., 2006) uses only Gabor features with

an Adaboost classifier. We achieve in average, and for most of the action units, superior

performance compared to the 2 methods, both when we use shape and texture features

together and when we use only the texture features. Once again, the shape features we

use depend highly on the accuracy of the facial points, for which we have only used

human annotations at this stage, but the promising accuracy measures obtained for both

types of features already show the strength of the proposed features in detecting action
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units.

4.4 Conclusion

In this chapter we have presented a simple, novel and efficient method for extracting

features for AU detection in videos that is based on LBP applied separately to images

processed by three different filtering methods, namely the bilateral filter, opening by

reconstruction and black top-hat by reconstruction. The results obtained show that this

method provides a significant increase in the accuracy measures for all 15 action units

tested compared to using LBP by itself.

We have also used the extracted texture related features along with certain transient

geometric features, and demonstrated that we achieve performances superior to existing

approaches tested on the same database. The presented results show the performance by

using human annotations for calculating the geometric features, the reason being to show

the efficiency of the proposed appearance-based feature amelioration and to avoid possi-

ble bias introduced by face tracking error. Our experiments using only texture features,

which are mainly independent of the tracked points, result in very high performances

already, proving the strength of the features proposed in detecting facial actions. Our

contribution in this chapter shows that using simple, yet competent, image processing

methods the performance of LBP based appearance features for AU detection can be

increased substantially.



Multiple LCGBPs for
Facial Action Unit
Recognition 5
5.1 Introduction

As already reviewed in previous chapters the FACS is the most objective means of

describing and quantifying facial actions (see Section 2.2.1) and automatic detection

of the AUs have proven very useful in many facial analysis applications especially for

HCI. Curvature Gabor features have recently been shown to be powerful facial texture

descriptors with applications on face recognition (see Section 3.5 for a short review). In

this chapter we introduce their use in facial action unit (AU) detection within a novel

framework that combines multiple Local Curvature Gabor Binary Patterns (LCGBP) on

different filter sizes and curvature degrees. The proposed framework proves to provide

very accurate detection results, which is an important quality of automatic facial analysis

systems.

In this work we propose as features the variation among frames of a combination of

LCGBP as descriptors of facial action. LCGBP is an extension to the LGBP which have

been used extensively for face recognition and AU detection (e.g. Zhang et al. (2005),

Senechal et al. (2010)), since they have proven to be quite robust against variations

of conditions such as illumination. By adding the affect of curved formations, which

are common in the facial texture, the curvature Gabors provide a much more efficient

way of representing the facial components (Hwang et al., 2011) and have already been

shown to be successful in recognizing facial identity (Arar et al., 2012). Here, we apply

this idea by using the change in LCGBP histograms between neutral and expressive

images for detecting the AUs. It has been shown that using this variation of histograms

between frames is more efficient than using the histograms themselves directly (Senechal

et al. (2010), Yüce et al. (2013a) - our contribution presented in Chapter 4 ). The main

contribution of this work is introducing a unique way of extracting Gabor features, which

includes the curvature information and proves to be very powerful descriptors for facial

actions by the very high accuracy results.

The majority of the work included in this chapter has already been presented in Yüce

et al. (2013b). The rest of the chapter is formed as follows: First, we explain the formu-

lation of LCGBP in Section 5.2, then in Section 5.3 we describe the framework that we

75
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propose for AU detection and detail the parameter selection and test settings. Section 5.4

presents the results obtained by several experiments on two databases and comparisons

with other types of features and some existing methods in the literature. Finally, we

report our conclusions, discuss the advantages and weak points of the proposed system

and possible future directions for further improving the system in Section 5.5.

5.2 Local Curvature Gabor Binary Patterns

5.2.1 Curvature Gabor (CG) Wavelets

Gabor wavelets have been recognized as one of the most successful feature extraction

methods for face representation. They form a well-established image decomposition be-

cause of their spatial locality and orientation selectivity characteristics. Therefore, they

are optimally localized in the space and frequency domains, and can be used successfully

in facial image processing for face and facial expression recognition and analysis.

The conventional Gabor wavelet definition is as follows:

ψ(�x; ν, μ) =
k2
ν,μ

σ2
e(− k2

ν,μ ||�x||2
2σ2 )

[e(ikν,μ�x) − e(−σ2

2 )] (5.1)
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)
=
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)
and e(ikν,μ�x) is the oscillatory wave function, whose

real part and imaginary parts are respectively the cosine and sine functions. μ controls

the orientation of the filters while ν scales the center of the filter in the frequency domain

(Daugman, 1985).

A typical neutral face image contains curve-like features because it contains perma-

nent facial components such as eyes, nose, cheeks, lips, and eyebrows as well as straight

features. Since facial expressions are generated by the movement of groups of muscles

in any orientation and transient features like wrinkles and furrows, images with expres-

sions contain even more curvature characteristics than straight ones. Therefore, as one

way of modeling curve-like features, we include CG wavelets for face representation in

addition to the conventional Gabor wavelets.

Peters et al. (1997) obtained CG wavelets by adding a curvature parameter to the

conventional Gabor formulation as follows:
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k2
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)
(5.3)

where c corresponds to the curvature ratio.

CG wavelets do not have the orientation symmetry as in conventional Gabor wavelet

as shown in Fig. 5.1 (Arar et al., 2012). For the conventional Gabor wavelet setting, it

is usually sufficient to have 8 orientations. However, this number should be increased to

16 to obtain the same orientation utilization in case of CG wavelets.
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Figure 5.1: Illustration of orientation asymmetry in CG wavelets with c = 0.1 (middle

and bottom row) in comparison with the conventional Gabor wavelet (top row).

In CG wavelets, one can use different curvature degrees, i.e., c = {0.05, 0.1, 0.2},
and Gaussian sizes, i.e., σ ∈ {0.5π, π, 2π}, for multi-curvature utilization as well as scale

space utilization. In this way, a much stronger representation power of modeling facial

structures is obtained by extracting both fine and coarse features with straight and curved

filters as can be seen applied on an example image from the MMI database (Valstar &

Pantic, 2010) in Figure 5.2.

Figure 5.2: Gabor wavelets of different Gaussian sizes (σ) and curvature degrees (c)

applied on an image

5.2.2 Local Binary Patterns

The LBP transformation has been proposed as a texture description method (Ojala

et al., 1996) and has proven to be very effective in representing facial texture and been

widely used for both face and facial action recognition as explained in the previous

chapter and in Section 3.2.2. It maps the texture variation around each pixel to a binary

pattern and the histogram of these patterns in a local window can be used directly as a

descriptor for that certain region of interest. The computation of the pattern for a pixel

at position x of an image I is as follows:
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LBPP(x) =

P−1∑
p=0

t(I(xp) − I(x)).2p (5.4)

In this representation, each I(xp) is a neighboring pixel of the center pixel I(x) on

a neighborhood defined by the number of pixels P as well as the shape (rectangular

or circular) and the distance to the central pixel which determines the resolution of the

transformation. The function t(x) is the simple thresholding function which returns 1 if

the input pixel difference is positive and 0 if it is negative. In this way we obtain a P−bit
binary value, or an integer between 0 and 2P − 1 to represent each pixel.

In this work we use an 8-pixel circular neighborhood with the radius 1, giving 256

possible patterns. It has been shown, however, that only 58 of these patterns, called

the uniform patterns, contain the important part of the texture information (Ojala et al.,
2002). So, we can reduce the size of the descriptor to 59 bins by assigning all the non-

uniform patterns into a single bin.

Applying the LBP on top of Gabor magnitude images with various scales and ori-

entations results in obtaining a richer representation and finer description of the facial

texture (Zhang et al., 2005). In our work we extend this variation of descriptors by also

including multiple curvature degrees and Gaussian sizes, obtaining the Local Curvature

Gabor Binary Patterns (LCGBP) representation as can be seen in Figure 5.3. Of course,

this extension substantially increases the number of features obtained, in addition intro-

duces more redundancy between features and possible noise for the final classification

task. Therefore, whether using directly the LCGBP histogram bins as features or, as

we perform in this particular work, using a dissimilarity measure for the histograms be-

tween frames, a feature selection or dimension reduction technique is essential to be able

to perform a meaningful classification using these features. The details on how we com-

pute the histogram dissimilarity as well as the feature selection technique and the types

of selected features are explained in more detail in the following sections.

Figure 5.3: Visualisation of Gabor wavelets with various Gaussian sizes and curvature

degrees
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5.3 Facial Action Recognition Framework

This section describes in detail each step in our automated facial action unit detection

system using LCGBP as seen in Fig. 5.4.

Figure 5.4: Complete flowchart of the proposed framework for an input video

5.3.1 Face Localization

To be able to perform an effective feature extraction among all images in the dataset,

we first need to locate our region of interest, which is the face, as accurately and con-

sistently as possible. Existing face detection systems, which output a rectangular region

around the face, are generally not reliable enough to extract appearance features since the

performance varies across subjects, expressions and head poses. Therefore, we choose

to use a facial point tracking system instead, which provides more stable boundaries for

the face region.

In this work, we localize 66 facial landmarks as seen in Fig. 5.4, using a publicly

available automatic face tracking system proposed by Saragih et al. (2011). The face

tracker is based on constrained local models (CLM) (Cristinacce & Cootes, 2006) with

regularized landmark mean-shift as the fitting strategy. The CLM, similar to the Active

Appearance Model (AAM) (Cootes et al., 2001), uses a combined model for the shape

and texture, but the model in CLM consists of templates of appearance around each fa-

cial landmark point, as explained in more detail in Section 3.1.2. This local nature of the

CLM combined with the fitting algorithm proposed in Saragih et al. (2011) allows accu-
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rately tracking facial points even under extreme head poses, intensive facial expressions

and presence of occlusions.

Once we locate the facial landmarks using the face tracker, we crop the image using

the most extreme landmarks on the facial mask obtained, with a certain safety margin

(Fig. 5.4). No registration or texture warping is performed, since the databases that

we use to train and test our system were recorded in quite constrained situations with

respect to head pose and since the types of features we use have proven to be robust

against misalignment. Since the databases that we use in this work contain very little

pose variation we only scale each detected face region to a fixed size of 120 by 120

pixels, and do not perform any other registration.

5.3.2 Feature Extraction

After locating and scaling the face region we extract the appearance features using

a combination of LCGBP transforms, which is the LBP transform applied on top of the

image filtered by various curvature Gabor wavelets, as explained previously in Section

5.2 and as represented in Fig. 5.4. For our training and testing purposes we apply this

filtering to the frame with a neutral expression and the frame with the peak of the posed

expression separately for each sample video, since we utilize the comparison between

those frames. For the CK+ database (Lucey et al., 2010) these frames correspond to the

first and last frames respectively, while on the MMI database (Valstar & Pantic, 2010)

they are once again the first frame and the one marked as the first frame of apex phase

of the expression (see Sec. 2.2.1 for a definition), obtained from the annotation provided

within the database for certain recordings. At this point the system requires that a frame

is marked as neutral expression, then the method can be applied to any other frame of the

same subject to detect action units at different intensities. This automatization problem

can be effectively solved by projecting the subject face with any expression to the PCA

space created by examples of expressionless faces, as proposed in Senechal et al. (2010).

However, we have not tested this method in the scope of this thesis.

The first step of feature extraction is applying the Gabor transforms to the input

images. The classic method for generating Gabor representations of images is to apply

wavelets in different scales and orientations with a fixed Gaussian size. In addition

to adding the curvature component in various degrees we also include wavelets with

different Gaussian sizes, similar to Arar et al. (2012). This is expected to result in a

richer representation of finer details of facial texture components, which are crucial for

high accuracy action recognition, compared to a single Gaussian size, and so is proven

with our test results (presented in the following section). To be more precise we use

Gabor wavelets of 3 different scales (ν ∈ {0, 1, 2}), 8 (or 16 in case of curvature because

of the asymmetry, see Fig. 5.1 ) orientations (μ ∈ {0, · · · , 7}), 3 Gaussian sizes (σ ∈
{π/2, π, 2π}) and 4 curvature degrees (c ∈ {0, 0.05, 0.1, 0.2}). This results in a total of

504 separate filters (1 × 3 × 3 × 8 + 3 × 3 × 3 × 16).

Next we apply the uniform LBP transform on each of the magnitude images of the

outputs of these 504 filters for both the neutral and peak expression frame. Then to obtain

the local texture information we calculate the histograms on 400 overlapping windows

of sizes 20 by 20, 20 by 40, 40 by 20 and 40 by 40 with an overlap size of 10, all units
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in pixels. The conventional tendency in the literature for LBP histogram extraction has

been to use non-overlapping windows of a fixed size, but as shown in Chapter 4 of the

dissertation, varying the size and performing a more extensive search using overlaps,

combined with a powerful feature selection step, results in a more informative feature

set. Then we compute for each of these windows the χ2 distance of corresponding

histograms in the neutral and peak expression frames, and obtain our full set of features

of size 201600 (400 × 504). Using these alterations from the neutral face as features

not only eliminates the variation caused by identity (Senechal et al. (2010), Yüce et al.
(2013a)) but also allows tracking the relative intensity of the movement between frames.

5.3.3 Relevant Feature Selection and AU detection

The extensive representation and search strategy chosen in the feature extraction

technique results in a huge number of features which causes two main problems. The

first problem is that most of these features are correlated with each other so using them

in combination in a classification task introduces an unnecessary computational burden.

Secondly, only a portion of them are relevant to the task, i.e. detecting a specific action

unit. The irrelevant features cause only noise and a decrease in accuracy in classifica-

tion. Therefore we need to use a feature selection method that addresses both of these

problems and that is specific to each action unit. Boosting techniques allow both reduc-

ing the dimensionality of the feature vector and eliminating the irrelevant features, since

they are trained in a manner that maximizes the classification rate.

We adopt in this work the GentleBoost technique, since it has already been shown

in the literature to be effective when used in combination with Support Vector Machines

(SVM) (Valstar et al. (2012),Yüce et al. (2013a)), which is the classification method that

we utilize. For 17 AUs, which have a reasonable number of examples in our training

database (CK+), we select 1000 features out of 201600 using GentleBoost separately,

so we obtain the most relevant features in terms of Gabor scale, size, orientation and

curvature ratio as well as the location in the 2D space. Then we train, once again for

each AU, an SVM , for which the two output classes are whether the AU is present or

not. We perform the leave-one-subject-out tests on the CK+ database for each AU using

100, 200, 300, 400, 500, 750 and 1000 features in the SVM and at each case choose the

number of features giving the highest overall accuracy rate. Using the publicly available

LibSVM implementation (Chang & Lin, 2011) we have performed the tests with both

linear-SVMs and RBF kernels (parameters optimized using a 5-fold cross validation).

Here, however, we only report results using the RBF kernels, since they result in better

accuracy compared to the linear SVM in every AU, but there is no substantial difference

when comparing different types of features. These results are presented in the following

section.

5.4 Experimental Results

In this section we report the results of our experiments performed on the Extended

Cohn-Kanade database of facial expressions (CK+) (Lucey et al., 2010), where each

sample video starts with a neutral expression and ends with the peak of the expression.
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We train and test our system using only this final frame of each sequence. We have

implemented the LBP and Gabor filters on C++, for the GentleBoost we have used the

method provided within OpenCV1 and finally for the SVM classification we use the

publicly available LibSVM library (Chang & Lin, 2011)2. The code for the CLM based

facetracker is also publicly available3.

All presented results are those obtained by a leave-one-subject-out test, i.e. training

the Gentle-SVM classifier on samples of 122 subjects and testing it on the remaining

subject. We also present our results obtained by training the system on CK+ and testing

on 253 videos of the MMI database (Valstar & Pantic, 2010) to demonstrate the gener-

alizability property of the system. The used videos are those annotated for the temporal

phases (onset, apex, offset) of the AUs (see Sec. 2.2.1), and once again we use only the

first frame annotated as apex, as the test frame for each video.

5.4.1 Comparing types and combinations of Gabor features

We first compare the test results obtained by various parameter settings for the

LCGBP and also using only LBP as a baseline comparison method. All settings are

kept the same for this comparison, except that for the LBP the maximum number of

features tested in the training phase of SVM is kept at the physical maximum, i.e. 400.

We have tested 14 configurations in addition to the standard LBP features; namely

12 settings for LCGBP with 3 scales and 8 (or 16) orientations and a fixed Gaussian

size (σ) chosen from 0.5π, π or 2π and fixed curvature degree (c) from 0, 0.05, 0.1, 0.2

(0 meaning standard LGBP with 9600 total features, each of the rest yields 19200), one

setting combining all proposed σ choices with c = 0 (28800 features) and one setting

combining all possible σ and c choices (201600 features), which is the setting for the

main proposed system. The comparison in three types of accuracy measures (overall

accuracy, F1 and AUC of the ROC) averaged over 17 AUs (Upper face AUs 1, 2, 4, 5, 6,

7, 9 and lower face AUs 11, 12, 15, 17, 20, 23, 24, 25, 26, 27) can be seen in Fig. 5.5

and Table 5.1 for a more detailed view. The ROC curve was obtained by alternating the

SVM decision threshold.

The first observation, other than the definite superiority of LGBP to standard LBP,

is that for all fixed σ settings the curvature Gabors perform significantly better than the

non-curvature standard Gabor setting, which is the first indication of the effectiveness

of curvature features for facial action recognition. Another important comparison is the

one between the 4 non-curvature LGBP settings. Using different sizes of Gaussians in

the Gabor formulation in combination with each other results in a substantial increase

in accuracy with respect to any fixed σ configuration. This indicates the necessity of

alternating the Gaussian size along with the scale and orientation in any Gabor setting,

which contradicts with the usual tendency in the literature for selecting Gabor wavelets

for facial expression or action unit detection.

The proposed setting, which is combining 3 different σ values and 4 different cur-

vature degrees gives the highest classification accuracy for all action units, as expected.

1http://opencv.org/
2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3https://github.com/kylemcdonald/FaceTracker
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(a) Overall Accuracy (%)

(b) F1 (%)

(c) Area Under ROC Curve (%)

Figure 5.5: Comparison of three different accuracy measures for different LCGBP fea-

ture settings & LBP

The results for each AU tested can be seen in Table 5.2 in comparison with the non-

curvature case combining different σ’s. The superiority is clearly not because of the

greater number of features extracted (201600 vs. 28000), but because the various cur-
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OA F1 AUC

LBP 0.901 0.658 0.887

σ = 0.5π, c = 0 0.949 0.848 0.973

σ = 0.5π, c = 0.05 0.953 0.855 0.974

σ = 0.5π, c = 0.1 0.956 0.860 0.978

σ = 0.5π, c = 0.2 0.947 0.823 0.976

σ = π, c = 0 0.945 0.827 0.968

σ = π, c = 0.05 0.956 0.858 0.979

σ = π, c = 0.1 0.962 0.885 0.987

σ = π, c = 0.2 0.954 0.855 0.983

σ = 2π, c = 0 0.918 0.738 0.951

σ = 2π, c = 0.05 0.943 0.804 0.975

σ = 2π, c = 0.1 0.949 0.828 0.978

σ = 2π, c = 0.2 0.962 0.877 0.987

σ = 0.5π, π, 2π, c = 0 0.967 0.890 0.989

σ = 0.5π, π, 2π, c = 0, 0.05, 0.1, 0.2. 0.986 0.963 0.997

Table 5.1: Overall accuracy (OA), F1 and area under ROC curve (AUC) values for dif-

ferent settings (averaged over 17 AU’s)

vature degrees and filter sizes allow extracting those that are relevant to each specific

action unit. We observe that for some AUs the difference between the two cases is less

significant than others, and this can be explained by the variation of amount of curvature

that shapes the deviation from the resting state for each action unit. However, observ-

ing Table 5.3, which shows the ratio of features chosen by the GentleBoost with respect

to σ and c values and the deviation among action units, we can say that none of the

types of features show a too powerful dominance over others in none of the AUs, al-

though the non-curvature features are selected significantly less frequently than the rest.

This suggests that every type of feature chosen is of similar importance to the detection

task in hand and their combination is essential for such a highly accurate classification

performance.

5.4.2 Comparison with existing work

We compare our results, as shown in Table 5.4, with three recently conducted works:

Valstar et al. (2012), Senechal et al. (2010) and our previous work in Yüce et al. (2013a)

(also presented in Chapter 4) which have reported results on the Cohn-Kanade database

and have used similar techniques either in the feature extraction or the classification

phase. Valstar et al. (2012) have used the evolution of certain facial landmarks through-

out the video sequence as features and utilized the Gentleboost and SVM as the feature

selection and classification methods. In Yüce et al. (2013a), we have also used Gentle-

boost and SVM with a combination of shape features similar to Valstar et al. (2012) and

LBP features that are improved with the help of three different preprocessing filters (see

Chapter 4 for details). The work on Senechal et al. (2010), on the other hand, uses as

features directly the bins of histogram difference of LGBP magnitude images extracted
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AU No Feat. OA F1 AUC

Curv. No curv. Curv. No curv. Curv. No curv. Curv. No curv.

AU1 750 750 0.976 0.958 0.959 0.928 0.995 0.983

AU2 1000 1000 0.992 0.987 0.978 0.965 0.997 0.998

AU4 750 750 0.963 0.935 0.942 0.897 0.994 0.976

AU5 750 1000 0.985 0.965 0.956 0.895 0.997 0.992

AU6 1000 1000 0.985 0.955 0.963 0.884 0.998 0.991

AU7 750 750 0.968 0.936 0.917 0.835 0. 996 0.969

AU9 750 300 1 0.995 1 0.979 0.998 0.994

AU11 1000 300 0.997 0.979 0.969 0.786 0.999 0.984

AU12 1000 1000 0.988 0.968 0.973 0.923 0.998 0.994

AU15 1000 750 0.988 0.969 0.962 0.897 0.999 0.993

AU17 1000 1000 0.975 0.956 0.963 0.935 0.993 0.989

AU20 500 1000 0.983 0.975 0.937 0.905 0.996 0.991

AU23 750 500 0.993 0.971 0.967 0.838 0.999 0.993

AU24 750 1000 0.993 0.965 0.964 0.796 0.999 0.989

AU25 500 1000 0.979 0.966 0.982 0.969 0.994 0.994

AU26 1000 1000 0.989 0.959 0.938 0.721 0.999 0.987

AU27 200 1000 0.998 0.995 0.994 0.981 0.999 0.999

Avg. 0.986 0.967 0.963 0.89 0.997 0.989

Table 5.2: Number of features giving the maximum overall accuracy, Overall accuracy

(OA), F1 and area under ROC curve (AUC) values for combinations of LCGBP (Curv.)

and LGBP (No curv.) for 17 AUs

from 16 non-overlapping windows with a fixed Gaussian size and no curvature, and as

classification adopts SVM with a specially trained kernel.

As seen in Table 5.4, our method certainly outperforms all the other state-of-the-

art methods on the CK+ database in AU detection accuracy. The comparison with the

two methods (Valstar et al. (2012) and Yüce et al. (2013a)) using the same type of

feature selection and classification, shows the efficiency of the type of features utilized

in our system, while the comparison with Senechal et al. (2010), which uses a rather

complicated classification scheme, proves the utility of using curvature based features

and combining different sizes of Gabor wavelets.

5.4.3 Cross database performance

We also test our system trained on the CK+ database on 253 sample videos from the

MMI database (Valstar & Pantic, 2010), which were annotated for the temporal phases

of the expression, to obtain the peak expression frame. This allows us to reach an idea on

the generalizability of the system, since the two databases were recorded independently.

The F1 and AUC results obtained, as well as the F1 results from Valstar et al. (2012)

for the common AUs can be seen in Table 5.5. The comparison with Valstar et al.
(2012) is not necessarily firm, since the number of training and testing examples in the 2

cases are different; yet it gives the reader a view in the state-of-the-art for cross-database

performance.
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c \σ 0.5π π 2π Total

0 3.7 ± 0.6 4.8 ± 0.9 5.4 ± 1.4 13.9 ± 1.6

0.05 7.6 ± 1 9.2 ± 1.2 10.6 ± 1.4 27.3 ± 2.2

0.1 7.6 ± 1.2 8.8 ± 1 11.3 ± 1.1 27.7 ± 1.1

0.2 8.2 ± 1 9.7 ± 0.8 13.3 ± 2.6 31.1 ± 2.3

Total 27 ± 2.6 32.5 ± 1.8 40.5 ± 2.7

Table 5.3: Mean and standard deviation of percentage of features chosen from different

Gaussian sizes defined by σ and curvature values (c).

Type of acc. F1(%) AUC(%) AUC(%)

No of AUs 14 16 14

Method Valstar et al. (2012) O.W. Senechal et al. (2010) O.W. Yüce et al. (2013a) O.W.

61.86 96.09 96.45 99.69 96.9 99.65

Table 5.4: Accuracy comparison of our method with three other methods; No of AUs

represents the number of common AUs taken into accuracy consideration and “O.W."

stands for our work

Valstar et al. (2012) Our work Valstar et al. (2012) Our work

AU F1 F1 AUC AU F1 F1 AUC

1 0.255 0.481 0.871 12 0.400 0.455 0.764

2 0.467 0.471 0.872 15 0.229 0.200 0.673

4 0.414 0.493 0.758 20 0.341 0.143 0.563

5 0.149 0.154 0.501 24 0.292 0.154 0.667

6 0.571 0.302 0.673 25 0.746 0.608 0.715

7 0.211 0.174 0.796 26 0.203 0.045 0.527

9 0.286 0.519 0.916 27 0.591 0.524 0.956

Avg. 0.368 0.337 0.732

Table 5.5: Accuracy results of testing our system on the MMI database with the training

on CK+ and F1-measure comparison with Valstar et al. (2012) for the same experiment

settings.

The significantly lower results compared to the within database results formerly pre-

sented may be related to a number of factors. First one is that there are certain differ-

ences in the way that the action units are posed and annotated in the two databases, so

the training data has no experience on what it will be tested on. For instance, in the MMI

database, action units 12 (lip corner puller) and 13 (sharp lip puller) are annotated as

separate actions while they have a negligible difference in the appearance change they

cause. Also, AU26 (jaw drop) is many times posed in the MMI database by moving the

jaw to left or right side, while in the CK database this never occurs.

Another important factor is the difference in intensity of the posed expressions in the

two datasets. This factor can be better observed on the AUs where the F1 measure is low
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but the AUC measure is acceptably high, suggesting a successful generalization (e.g.

AU1, AU2, AU9, AU27). The AUC compared to measures like F1 or true positive rate

or false positive rate is more robust against this factor, since it is obtained by alternating

the decision threshold of the classifier. Nonetheless, these initial results that we present

do not assess a firm low or high generalizability quality on the system, but rather serve

as a means of showing its applicability to different types of data. Further tests need to be

performed with the system trained on a dataset with more variability to be able to assess

the generalization, which will be the next direction we plan to improve the system.

5.5 Conclusion and Discussion

We have presented a novel framework for facial action unit detection in videos. The

proposed system consists of extracting a combination of curvature Gabor features at dif-

ferent filter sizes, applying the LBP on top and computing the difference in histograms

for neutral and peak frames. Then the obtained features are used in an AU specific fea-

ture selection and classification process to detect the present AUs. We achieve 98.6%

accuracy, 96.3% F1 and 99.7% AUC scores in average for the leave-one-out test per-

formed on the CK+ database, which is to our knowledge the highest reported to date.

We also report our results for a cross-database test, which are not as highly accurate,

yet promising, especially for certain AUs. To assess the generalizability of the system,

further tests should be performed with a training set containing a larger variability among

expressions. However, the extremely high accuracy presented in this work already shows

the representation and discriminative power of the proposed features, which we believe

will constitute an important position in future facial action recognition and expression

analysis research.

This is the first time that the curvature type Gabor wavelets have been used for facial

action detection. They are particularly suitable for the task because of their ability to rep-

resent curved structures on the face, such as wrinkles and furrows, which are important

indicators of facial muscle movements. The proposed system, however, has some draw-

backs. This first one is the low generalizability, that is the very high accuracy obtained

on test samples from the same dataset as the training does not apply to the cross-database

performance. We do demonstrate, though, the promise for certain AUs especially for the

AUC measure, which is a more meaningful metric with tunable systems. A comparably

more suitable use of the system would be on subject-dependent systems, as in an HCI

system that is custom-trained on a specific users facial actions.

Another drawback is the high computation time for the multiple Gabor wavelets

proposed. The high number of the different wavelets lead to a heavy computation (in

the order of a few seconds per frame, in the worst case), although they are capable of

representing facial features in multiple scales, shapes etc. In the next chapter (Chapter 6)

we propose a real-time AU detection system that can be more easily extended to other

methods, such as our proposed multi-label AU detection framework.





Part III

Multi-Label Action Unit Detection





Overview

Following the contributions presented in Chapters 4 and 5, in this part of the the-

sis we present our final contribution on the AU detection problem with a completely

different approach. Firstly, we present a real-time subject-independent AU detection

framework that is easy to apply to large amounts of data and secondly we present a

multi-label solution to the AU detection problem using a manifold embedding extension

that incorporates the co-occurrence information between multiple AUs. This is quite a

novel approach in the sense that it is the first time in the literature that the inter-relations

of AUs is exploited in such a scheme.

This part of the dissertation presents a contribution with two levels. First, we present

our real-time AU detection method that is based on extracting SIFT features around fa-

cial landmarks detected through an SDM based facetracker. The methods presented in

Chapters 4 and 5 have shown state-of-the-art performance on the CK+ database, yet they

do not run in real-time and / or require a heavy parameter tuning stage within training.

This makes it difficult to study and test extensions and use them in real-world appli-

cations or on a large amount of test data. To this end, we propose our real-time AU

detection system using SIFT and validate it on the CK+ database, similarly to the previ-

ous contributions.

The system that is presented is then extended to a multi-label embedding scheme

for the AU detection problem and we also present in this chapter our participation in

the Facial Expression Recognition and Analysis (FERA) 2015 sub-challenge for spon-

taneous action unit occurrence detection. The problem of AU detection is a multi-label

classification problem by its nature, which is a fact overseen by most existing work.

The correlation information between AUs has the potential of increasing the detection

accuracy. We investigate the multi-label AU detection problem by embedding the data

on lower dimensional manifolds which prioritize multi-label correlation. For this, we

apply the multi-label Discriminant Laplacian Embedding (DLE) method as an extension

to our base system. The extended system also uses SIFT features around a set of facial

landmarks that is enhanced with the use of additional non-salient points around transient

facial features. Both the base system and the DLE extension show better performance

than the challenge baseline results for the two databases in the challenge. The proposed

extension achieves close to 50% as F1-measure on the testing partition in average, a

score that is 9.9% higher than the baseline in the best case and more accurate than other

participants, winning the participated sub-challenge.

Our contributions in this part form an easily applicable AU detection system that is

validated through multiple datasets and an internationally recognized challenge on the
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subject. The work presented here include parts of the publications Gao et al. (2014),

Ringeval et al. (2014) and Yüce et al. (2015). In the next and final part of the thesis we

present the system being used for driver monitoring, showing an example function in a

real-world application.



Multi-Label Action Unit
Detection 6
6.1 Introduction

We have reviewed in the previous chapters why automatic AU detection is a useful

and important tool and what the main open issues in the field are. Real-world AU de-

tection systems are to be utilized during natural interactions and thus require robustness

against low intensities and short durations of facial muscle contractions during spon-

taneous behavior, uncontrolled scene configurations and subjective appearance varia-

tions, primarily among many other factors. In this chapter we address these issues by

proposing an AU detection system that is validated on first the CK+ database, as in the

previously proposed systems, and secondly through the Facial Expression Recognition

and Analysis Challenge 2015 (FERA2015) sub-challenge on AU occurrence detection.

The FERA2015 challenge (Valstar et al., 2015) is important since it tries to stimulate

research on AU detection in a way that addresses the difficulties listed above within the

datasets used. Both SEMAINE (McKeown et al., 2012) and BP4D Zhang et al. (2014)

databases include spontaneous facial expressions that contain AUs of various intensities

and durations that were recorded in a mostly unconstrained manner.

Since the first FERA challenge (FERA 2011 (Valstar et al., 2011),(Valstar et al.,
2012)) many advances have been proposed. Variants of Local Binary Patterns (LBP)

are still popular for static and dynamic 2D or 3D action unit detection because of their

efficiency (e.g. Almaev et al. (2013),Bayramoglu et al. (2013)). SIFT (Scale Invariant

Feature Transform) descriptors have also been used efficiently within various frame-

works (Ding et al. (2013), Zhu et al. (2011)). In this chapter we also propose a base

system that uses SIFT features, validate its efficacy on the CK+ (Lucey et al., 2010) and

then propose an extension to this system that uses SIFT on an enhanced set of facial land-

marks that includes non-salient points around transient facial features and a multi-label

manifold embedding in the training phase to integrate co-occurrence relations between

different AUs.

The AUs generally occur in combinations during natural behavior and these combi-

nations form a correlation pattern between them. However, there is not a lot of work in

the literature on the use of multi-label information for AU detection rather than treating
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them as independent labels. This information may prove valuable since AU recognition

is actually a multi-label problem, i.e. a data point belongs to multiple labels. A well-

known work that uses this information in a temporal manner is the one by Tong et al.
(2007). Mahoor et al. (2009) have combined Laplacian Eigenmaps, which is a local-

ity preserving method for embedding the data on a lower dimensional manifold, with

spectral regression to learn separate sub-spaces for AUs to detect their intensity. There

have also been other attempts to use manifold learning type of projections for facial

expression recognition, e.g. Shan et al. (2006). In this work we also propose an ex-

tension to our system that uses Discriminant Laplacian Embedding (DLE) (Wang et al.,
2010a). DLE is a method that combines the concept of Laplacian Eigenmaps (Belkin

& Niyogi, 2003) and a multi-label adaptable variant of Linear Discriminant Analysis

(LDA), which constitutes the discriminative part of the system. It has been applied suc-

cessfully for classification of multi-label data (Wang et al., 2010a), and this is the first

time it is applied on the AU detection problem.

The challenge data is composed of three partitions: training, development and test.

The test set is the one that is used for ranking and it is not available to the participants.

Therefore, in contrast to the development set, the results used for ranking are obtained

in a blind fashion by sending a software to the organizers without possibility of param-

eter tuning etc. We show that our proposed system performs successfully on both of the

challenging datasets used (BP4D and SEMAINE) and outperforms the challenge base-

line for both the development and test sets. In addition, we present the initial analysis

on the effect of the proposed DLE extension on both the development and test partitions.

We show improvement for certain AUs, while also observing that the performance is

quite data dependent.

In the rest of this chapter, we first explain the proposed base system in Sec. 6.2 along

with its performance on the CK+ database and then we present the proposed extension

of multi-label DLE in Sec. 6.3. Sec. 6.4 demonstrates our results for the FERA 2015

challenge on the development and test partitions of the two challenge datasets in com-

parison with the baseline results as well as between the two proposed methods. In Sec.

6.5 we present our conclusions on the results and effectiveness of the proposed method

and list potential improvement methods. Parts of the work included in this chapter have

been adapted from the following publications: Yüce et al. (2015), Gao et al. (2014) and

Ringeval et al. (2014).

6.2 Proposed AU Detection System Overview

In this work, we have used an AU detection system that uses SIFT features as the

main difference with the systems presented in Chapters 4 and 5. Another difference is

the use of an SDM based facetracker instead of CLM, which operates faster and is more

robust against large head-pose variations. In this section we provide a brief review of this

system, which is then used as a base system for the multi-label extension, as explained

in Section 6.3.

Common to any automatic facial analysis system, the initial step for AU detection is

to locate the face region and facial landmarks in the images, for which we employ a face
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tracker based on the SDM (Xiong & De la Torre, 2013). The SDM starts with an initial

guess and estimates the shape using a cascade of regression models that are learned at

each step using local texture features (SIFT features in this case) extracted from the

landmarks estimated in the previous step, as explained in more details in Section 3.1.3.

The initialization for the tracker is performed using the commonly used Viola-Jones

facetracker (Viola & Jones (2004) and see Section 3.1). The tracker in the end provides

49 landmarks on the face for each frame in the tracked video sequence. Subsequent to

the facial landmarks tracking each tracking is aligned to reduce the effects of appearance

variations due to the head pose. For this purpose, we have used an affine warping scheme

using the detected eye locations. This technique was used in our applications on the CK+

dataset and the FERA2015 challenge (including the multi-label extension), since the

data contains small head-pose variations in terms of yaw and pitch, thus affine warping

provides a registration that is sufficiently good.

After aligning the face and scaling it to a fixed size of 200 by 200 pixels we ex-

tract local appearance features around the 49 landmarks using SIFT (Lowe (2004) and

Sec. 3.2.2). The SIFT descriptors are extracted in the 32 by 32 local neighborhood

around each landmark, resulting in a feature vector of size 128 × 49 = 6272. We reduce

this dimension using PCA, that retains 98% of the total variance contained in the features

and the extracted feature vectors are used in an L1-regularized linear-SVM classification

scheme.

Table 6.1 shows the leave-one-subject-out AU detection accuracy on the CK+ database

(Lucey et al., 2010). Note once again that, although the accuracies are lower those pre-

sented in Chapters 4 and 5, since the feature extraction scheme is much faster (compared

to application of multiple Gabor or reconstruction filters) the method is much faster to

train and apply. Therefore, it allows for more easily investigating extensions and im-

provements. In addition, since it does not involve a rigorous feature selection process

it is better generalizable to different datasets recorded in independent conditions. The

complete AU detection framework operates at > 15 f ps, while the speed of previous

methods presented are in the order of a few seconds per frame. Another application of

the base AU detection system with SIFT features can be found in Ringeval et al. (2014)

within the framework of multimodal valence and arousal recognition in natural videos.

The work has not been included in this thesis for reasons of consistency.

For the FERA challenge, the training is performed on a custom training set that is

the combination of the neutral and peak frames of each sequence in the CK+ database

(Lucey et al., 2010), non-speech frames of the training partition of the GEMEP-FERA

database (Valstar et al., 2011) and examples from the SEMAINE (McKeown et al., 2012)

and BP4D (Zhang et al., 2014) training partitions down-sampled such that there is a

certain minimum number of examples of each AU that is present in each sequence. The

resulting combination is a set of 6713 examples and each AU retains a positive/negative

sample ratio of at least 10%. The C parameters of the linear-SVMs are learned through a

5-fold cross-validation within this training set. Differently from what has been explained

above, the final vector dimension after the PCA was chosen separately for each AU, and

this dimension is learned through the development set accuracies. For the final system

submission we also learn a threshold for the distance to the separating hyper-plane in

a way that maximizes the F1-score on the development set. This threshold can be an
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Table 6.1: AU Detection Accuracy on the Extended CK database, OA: Overall accuracy,

F1: F1-Score AUC: Area under ROC curve

AU OA F1 AUC

1 (Inner Brow Raiser) 0.919 0.860 0.948

2 (Outer Brow Raiser) 0.941 0.829 0.939

4 (Brow Lowerer) 0.851 0.767 0.908

5 (Upper Lid Raiser) 0.939 0.810 0.966

6 (Cheek Raiser) 0.894 0.712 0.928

7 (Lid Tightener) 0.847 0.573 0.884

9 (Nose Wrinkler) 0.981 0.923 0.989

12 (Lip Corner Puller) 0.954 0.894 0.974

15 (Lip Corner Depressor) 0.932 0.770 0.950

17 (Chin Raiser) 0.934 0.904 0.977

23 (Lip Tightener) 0.939 0.632 0.912

25 (Lips Part) 0.951 0.955 0.988

27 (Mouth Stretch) 0.971 0.894 0.985

effective biasing parameter between the precision and recall and may depend on factors

such as database recording conditions or subjective appearance differences. However,

the results reported on the development set still use the default 0 as the decision threshold

in order to have a fair comparison with the baseline and between the proposed systems.

6.2.1 Extending the Facial Mask

Using the locations of the 49 points provided by the SDM facetracker we estimate

the position of eight additional points that contain important local appearance informa-

tion related to certain AUs. The positions of these points are calculated after an affine

warping performed to correct for the in-plane rotation. They mostly mark the non-salient

landmarks on the face, which generally appear as result of a muscle contraction, com-

pared to the main set of 49, which locate the salient facial features. The locations of these

additional points (AP) are illustrated on an example image from the BP4D database in

Fig. 6.1(a) as well as the landmarks that are used in their calculation.

AP1 is located at the center of the inner most points of the two eyebrows and locates

a critical region mostly for AU4 (brow lowerer) but also for AU1 (inner brow raise).

AP2 and AP3 are located around the crow-feet wrinkles close to the two eyes and their

positions are calculated using the corners of the eye-brows and the center of the eye.

These wrinkles are important indicators of AU6 and are potentially correlated to AU7

(eye-lid tightener). AP4 and AP5 are located on each side of the nose and mainly added

to include appearance information that occurs during AUs such as AU10 (lip raiser) or

AU9 (nose wrinkler, not included in this challenge). The positions of AP6 and AP7 are

calculated as the x position of the corresponding corner of the mouth and the y location

of the nose tip. These points mark the nasolabial furrows, whose appearance change

with action units like AU6 (cheek raiser) and AU10. Finally, AP8 is the point located on

the chin that is obtained such that it is equidistant to the nose tip with AP1, assuming a



6.3 DiscriminantMulti-LabelManifold Embedding for AU Detection 97

vertical symmetry on the face. This point is mainly important for AU17 (chin raiser) but

also contains information for other AUs that cause a shape and appearance change on the

chin and the lower lip. These eight points provide more coverage on the face and thus

additional appearance information. Note that the locations of these points are invariant to

pose change since they are calculated relatively to the 49 points obtained from the SDM

face tracker after correction for the in-plane rotation. Fig. 6.1(b) shows the complete

mask consisting of 57 points and resulting in a SIFT feature vector of dimension 7296.

(a) 8 Additional facial landmarks (green) and (b) The full 57 points mask on a sample

the landmarks (red) used in their computation image from the SEMAINE database.

on a sample image from the BP4D database.

Figure 6.1: Facial landmarks obtained from the face tracker and 8 additional points.

Note that, this facial mask extension is only part of the FERA 2015 application and

was not used for the the CK+ database. In the following section we explain the multi-

label extension and its application on the FERA2015 challenge.

6.3 Discriminant Multi-Label Manifold Embedding for AU
Detection

The problem of AU detection has rarely been treated as a multi-label problem. In

this work we apply the multi-label DLE method proposed in Wang et al. (2010a) to in-

vestigate the advantage of using the mutual information between AUs instead of treating

them independently. DLE makes use of the similarities of samples in the training data in

terms of both the features and labels, allowing the integration of the correlation between

multiple labels.

The method can be summarized as the combination of LDA and Laplacian Embed-

ding (Belkin & Niyogi, 2003) in a multi-label setting in order to utilize the locality

information of the data in a supervised manner. Given a data matrix X of n samples and

the corresponding label matrix Y of size n × P (P being the number of different labels,
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meaning Y contains a binary-valued vector for each sample indicating the existence of

each AU in our case) the embedding is performed by solving the eigenvalue problem:

(A−
1
2 S w

1
2 S bS w

− 1
2 A−

1
2 )U = ΛU (6.1)

Λ being the set of eigenvalues and U the combination of eigenvectors, that will be used

to project the data matrix X. S w and S b are the within-class and between-class scatter

matrices, defined similarly to those in standard LDA (explained previously in Sec 3.3.2

and revisited later in this section) and A = XLXT , with L being the graph Laplacian

(Belkin & Niyogi, 2003). L = D − W, D being the diagonal of W and W defined as

the "Label Correlation Enhanced Pairwise Similarity" in the work that we have adopted

(Wang et al., 2010a) and is formulated as the weighted sum of the feature similarity
matrix, Wx and the label similarity matrix, WL:

W = Wx + μWL (6.2)

Wx is the n × n pairwise similarity matrix, similar to most embedding algorithms, and is

calculated through the Gaussian kernel similarity function (aka. heat kernel). The band-

width of the kernel function σ is fixed as the average of all absolute pairwise differences

in the training set.

WL, on the other hand, is calculated using the pairwise similarities between the label

vectors y of each sample and for two samples i and j is formulated as:

WL(i, j) =
yi

TCy j

||yi||||y j|| (6.3)

C is the P × P label-correlation matrix calculated from the training data. Embedding

C in WL allows weighting the pairwise label similarities by how correlated two labels

are and thus results in placing two samples that have co-existence in highly correlated

labels close to each other in the final embedding space. To give an example, if two

samples are both labeled as AU1 = 1 and AU2 = 1 these samples will be close to

each other in the final space because of the high correlation between AU1 and AU2 (c.f.

Fig. 6.2), whereas they would have been placed further if we had not incorporated this

correlation of labels. Fig. 6.2 shows the correlation between every AU, where the high

correlation between certain AUs can be marked with a lighter color. Samples from the

BP4D database were excluded in the computation of AU25 and AU45 correlations, since

these were not annotated. In addition to the labels defining whether each of the 14 AUs

under question within this challenge exist or not, we add a 15th binary label to include

the cases where none of these AUs exist. This additional label, of course is not correlated

to any of the 14 AUs (Fig. 6.2).

Finally, μ in Eq. 6.2 is the balance parameter between the pairwise feature and label

similarity matrices and was optimized on the development partition of the challenge data

separately for each AU.

The second component of the DLE is the multi-label LDA. The standard LDA aims

to project the data on a lower dimensional space in which the distance between samples

with different labels are maximized and samples with the same labels are densely placed
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Figure 6.2: Action Unit Correlation Matrix on the Training Set

close to each other. This is performed by maximizing the between-cluster scatter and

minimizing the within-class scatter (see Sec. 3.3.2). In the multi-label case the corre-

sponding matrices are defined as the sum of the single-label scatter matrices for each

type of label p (Wang et al. (2010a)):

S b =

P∑
p=1

S p
b , S

p
b =

( n∑
i=1

Yip
)
(mp − m)(mp − m)T (6.4)

S w =

P∑
p=1

S p
w, S

p
w =

n∑
i=1

Yip(xi − mp)(xi − mp)T (6.5)

where mp is the mean of all samples belonging to the label p and m is the multi-label

global mean:

m =
∑P

p=1

∑n
i=1 Yipxi∑P

p=1

∑n
i=1 Yip

(6.6)

These two kinds of projections allow us both to learn a correlation enhanced lower-

dimensional manifold and a multi-label discrimination of the data. Projecting the data

on the embedding space defined by U, which is learned by solving Eq. (6.1), we obtain

a lower dimensional feature vector as input to the classifier. These features are more

discriminative while still containing the correlations between the AUs in addition to the

locality properties of the original data. In our tests, the data matrix X of size n by d is

obtained by projecting the full data matrix on the PCA space. This initial dimension

reduction step enables removing most of the redundancy in the data and thus, allows for

a more efficient embedding. The final number of eigenvectors to be used is chosen by

optimizing the F1-score, which is a balanced compromise between precision and recall,

on the development partitions for both datasets and separately for each AU.
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6.4 Results on the FERA 2015 Challenge

The FERA 2015 challenge consists of three sub-challenges: AU occurrence de-

tection, AU intensity recognition with prior occurrence knowledge and full AU occur-

rence and intensity detection. The challenges are on two spontaneous facial expression

databases with AU annotations: SEMAINE database (McKeown et al., 2012) and BP4D

database (Zhang et al., 2014). The participants are provided with a training and devel-

opment set for each database and are asked to run their programs on independent test

sets, which they do not see and they have no prior knowledge about, except that they

are part of the same database. The test partitions of both datasets contain subjects from

the development and training sets as well as unseen subjects. For more details on the

databases and partitions the reader is referred to the challenge baseline paper (Valstar

et al., 2015).

We have participated in the AU occurrence detection sub-challenge and in this sec-

tion report our results on the development and test partitions. The fact that these databases

are recorded spontaneously makes the task more challenging since the recorded sub-

jects act completely naturally without any instructions about their facial behaviour. This

causes more variant AU appearance and occurrences in terms of intensity and combina-

tion compared to databases with constraints on the action units or facial expressions

performed, e.g. CK+ (Lucey et al., 2010), GEMEP-FERA (Valstar et al., 2011) or

MMI (Valstar & Pantic, 2010)).

6.4.1 Results on the Development Set

We first test our proposed system and the Discriminant Laplacian Embedding exten-

sion on the development set. No image from the development sets of the two datasets

were included in the training of the classifiers or learning the PCA and embedding bases.

However, the development set allows us to obtain the number of features that are optimal

for each action unit and also to learn the threshold for the SVM decision value to be used

on the test partition. This threshold was kept at 0 for the results on the development set

in order to obtain a fair comparison with the baseline results and also between the two

proposed methods. The DLE was applied to the PCA projected matrix of dimension

d = 1000.

Table 6.2 shows the average Overall Accuracy (OA) and F1 measures obtained us-

ing the two systems (PCA-SIFT and DLE-SIFT) in comparison with the baseline results.

Tables 6.3 and 6.4 present our results for each AU on the BP4D and SEMAINE develop-

ment partitions, respectively in terms of OA, Area Under ROC Curve (AUC) and F1. As

can be seen from Table 6.2 both systems achieve significantly better performance than

the baseline systems (with geometric and LGBP-TOP features (Almaev et al., 2013)) on

the development set. For a detailed per-AU comparison the reader is referred to the base-

line paper (Valstar et al., 2015). The increased accuracy compared to the baseline shows

the efficacy of the chosen features and also the advantage of the enhanced set of facial

landmarks. The enhanced set indeed results in an average F1-score increment of 0.7%

and 2.6% on the BP4D and SEMAINE development partitions respectively, compared

to the 49 point standard set, tested under the same conditions.



6.4 Results on the FERA 2015 Challenge 101

Table 6.2: Comparison with Average Baseline Results on the Development Partitions

SEMAINE BP4D

OA F1 OA F1

Baseline Geometric 0.735 0.351 0.712 0.580

Baseline Appearance 0.680 0.298 0.639 0.539

PCA-SIFT (Prop. 1) 0.793 0.417 0.735 0.589

DLE-SIFT (Prop. 2) 0.802 0.435 0.735 0.591

Table 6.3: Results on the BP4D Development Partition

PCA-SIFT DLE-SIFT

AU OA AUC F1 OA AUC F1

1 (Inner Brow Raiser) 0.717 0.674 0.395 0.694 0.695 0.41
2 (Outer Brow Raiser) 0.669 0.563 0.284 0.664 0.563 0.262

4 (Brow Lowerer) 0.791 0.786 0.472 0.805 0.78 0.509
6 (Cheek Raiser) 0.809 0.888 0.802 0.801 0.873 0.783

7 (Lid Tightener) 0.698 0.765 0.761 0.691 0.756 0.746

10 (Lip raiser) 0.734 0.795 0.781 0.729 0.789 0.789
12 (Lip Corner Puller) 0.859 0.933 0.877 0.839 0.914 0.857

14 (Dimpler) 0.606 0.699 0.611 0.598 0.706 0.616
15 (Lip Corner Depressor) 0.732 0.779 0.447 0.728 0.769 0.43

17 (Chin Raiser) 0.642 0.724 0.573 0.70 0.761 0.604
23 (Lip Tightener) 0.831 0.782 0.486 0.838 0.783 0.487

Average 0.735 0.762 0.589 0.735 0.763 0.591

Table 6.4: Results on the SEMAINE Development Partition

PCA-SIFT DLE-SIFT

AU OA(%) AUC(%) F1(%) OA(%) AUC(%) F1(%)

2 (Outer Brow Raiser) 0.804 0.753 0.308 0.822 0.732 0.306

12 (Lip Corner Puller) 0.671 0.677 0.480 0.682 0.731 0.512
17 (Chin Raiser) 0.957 0.889 0.394 0.957 0.886 0.303

25 (Lips Part) 0.757 0.74 0.482 0.725 0.74 0.494
28 (Lip pucker) 0.978 0.906 0.509 0.982 0.947 0.672

45 (Blink) 0.591 0.683 0.329 0.649 0.668 0.324

Average 0.793 0.775 0.417 0.803 0.784 0.435

The advantage of using a DLE with multi-label information over standard PCA, on

the other hand, is not that clear. Although for some AUs the method is more efficient, in

average the improvement remains marginal. The difference is clearer when tested on the

SEMAINE database, which suggests that the success of the method may depend on the

data distribution or the similarity of the distribution of data between the training and test

sets. On the SEMAINE database the clearest improvement is on AU28, while on BP4D
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it is on AU4 and 17 . The same improvement not appearing on the two databases further

suggests that the data distribution is an important factor. More training data will probably

provide better variability and thus better generalization of the success of embedding.

6.4.2 Challenge Results for AU Occurrence Detection on the Unseen Test
Set

This section presents the results we have obtained on the test partitions, which con-

stitute the main challenge. Tables 6.5 and 6.6 show the F1-scores obtained on the BP4D

and SEMAINE test partitions respectively using the two proposed systems and in com-

parison with the challenge baseline results obtained with the geometric and appearance

features. The first observation is that both of the proposed systems clearly outperform

the challenge baseline on the test set except for some AUs, namely AUs 2, 12, 14 and 45,

for which geometric features are apparently more effective. As weighted average on the

two databases, the best F1 score (0.499) is obtained with the PCA-SIFT system and is

0.099 higher than the challenge baseline with appearance features (improved by 24.8%)

and 0.054 higher than that with geometric features (improved by 12.3%). The proposed

system also outperforms all other participating systems: Gudi et al. (2015) who proposed

a deep learning framework (reported an overall F1-score of 0.458) and Baltrušaitis et al.
(2015) who have proposed improvements through various person-specific normalization

methods (reported an overall F1-score of 0.48).

Table 6.5: F1-Scores on the BP4D Test Partition

Our Results Baseline

AU PCA-SIFT DLE-SIFT Geo. App.

1 0.261 0.226 0.188 0.180

2 0.167 0.149 0.185 0.159

4 0.283 0.233 0.197 0.225

6 0.729 0.697 0.645 0.671

7 0.785 0.802 0.799 0.751

10 0.802 0.742 0.801 0.799

12 0.779 0.784 0.801 0.792

14 0.625 0.599 0.72 0.666

15 0.348 0.223 0.238 0.139

17 0.380 0.325 0.311 0.245

23 0.441 0.424 0.320 0.239

Average 0.508 0.473 0.473 0.442

For BP4D, the accuracies obtained are much lower compared to the development set.

This is expected as the few parameters (number of features, decision thresholds and μ in

6.2) that we have were optimized on the development set. However, on the SEMAINE

test partition we obtain better results than the development set, which is possibly an

indicator that the SEMAINE test and development partitions are more similar to each

other compared to BP4D and that our classifiers are able to generalize well enough to
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Table 6.6: F1-Scores on the SEMAINE Test Partition

Our Results Baseline

AU PCA-SIFT DLE-SIFT Geo. App.

2 0.655 0.663 0.569 0.755
12 0.769 0.759 0.595 0.517

17 0.215 0.255 0.091 0.066

25 0.623 0.613 0.445 0.400

28 0.251 0.262 0.250 0.009

45 0.325 0.347 0.396 0.209

Average 0.481 0.483 0.391 0.326

this unseen dataset. As explained in the definitions of the sets (Valstar et al., 2015),

the test set of BP4D was indeed recorded at a different time, possibly under different

conditions.

Our results show that the DLE system achieves a marginal increase in the mean

accuracy on the SEMAINE database, compared to the system with standard PCA. Better

results are obtained for AUs 2, 17, 28 and 45. However, this is not the case for the BP4D,

with higher F1 measure only for AUs 7 and 12. This probably implies once again that

the DLE is highly dependent on the data distribution and that the BP4D development

and test partitions contain more variation of AU combinations than that is contained in

the training set compared to the SEMAINE database. More tests with more variability

and a higher number of training data is needed to reach a conclusion on the benefits of

the method, which will be performed next as an extension to this work. Better tuning

of the parameters may also greatly increase the accuracy. Another possible cause of the

problem is the very low rank of the between-class scatter matrix. Our further work will

include using the Laplacian of a dissimilarity matrix instead of the LDA terms in the

formulation.

6.5 Conclusion

In this chapter, first we have presented an AU detection system that uses SIFT fea-

tures extracted around facial landmarks detected through an SDM facetracker and fed

into SVM classifiers to detect the existence of AUs on the frame level. We presented the

detection results obtained on the CK+ database for validating this base system.

Then, we have presented an extension of this system that uses an enhanced facial

landmarks configuration that includes points around transient facial features and a Multi-

label Discriminant Laplacian Embedding with integrated correlation between AUs. The

system is applied to the FERA 2015 sub-challenge for spontaneous AU occurrence de-

tection on the SEMAINE and BP4D databases. We obtain a significant increase of ac-

curacy compared to the challenge baseline with both the proposed systems and in the

best case obtain 49.85% F1 score as average on the test sets of the two databases, out-

performing other participants and obtaining the best results on the challenge.

Comparing the efficiency of the proposed extension of DLE, we observe better re-
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sults on certain AUs, but only a small increase in the average accuracy is obtained. Using

multi-label information in AU detection is a difficult task mainly due to the large num-

ber of labels and huge variability in terms of their co-occurrence. In this work, taking

into account the different performances on the two test partitions we reach the conclu-

sion that the success of the multi-label DLE might also be data dependent and needs

further analysis. The high accuracy of the method on some AUs suggests that the DLE

is worthy of more investigation. Our future work will include integrating a dissimilarity

matrix instead of the LDA related matrices, which are generally of very low rank. An-

other extension for further improvement would be to include the temporal adjacency of

data points in the embedding or classification scheme.



Part IV

Automatic detection of driver’s
cognitive distraction





Overview

Visual driver monitoring systems keep gaining attention in the computer vision com-

munity, especially with the wide possibility of applications made available by the intro-

duction of semi-automatic and automatic vehicles. The Advanced Driver Assistance

Systems (ADAS), integrated within several components of the cars aim at providing

increased security and comfort to the drivers while being as least distractive and disturb-

ing as possible. The assistance systems that involve automatic visual detection of driver

states (e.g. fatigue, emotional disturbance or distraction) therefore need a high true posi-

tive and low false positive detection rate. In addition, this precision needs to be obtained

in real-time and in a way that is robust against the varying conditions that occur during

driving (e.g. changes in illumination or driver’s position).

Driver’s distraction is a very important factor that is among the most influential ones

to cause human error while driving, thus leading to traffic accidents, injuries and casual-

ties. Efficient detection of distracted states of the driver will allow in-vehicle systems to

launch an alarm system that can vary in intensity from a visual message on the console

to a beeping sound and even automatic stopping of the car. The methods proposed in this

part to detect cognitive distraction may also be applied to other applications, such as de-

tecting the engagement level during learning applications or for monitoring the treatment

of certain psychopathologies that cause difficulty of concentration and engagement. Ex-

amples of similar applications have been reviewed in Section 3.5 in the introductory part

of the dissertation.

In this part of the thesis, we present two main contributions in Chapters 7 and 8,

which are contributions that are complementary to each other. First, in Chapter 7 we

introduce the EPV-DIST database, which is a multi-camera visual database of 46 people

driving a simulator with different distraction conditions induced. The recording setup

for our database has been planned to represent a configuration that is feasible to place

in a car and work robustly in different light conditions. The experiment consists of three

baseline driving conditions and two separate distraction conditions, namely visual and

cognitive distraction induced through secondary tasks performed at the same time while

driving. The software that we use allows recording the wheel and pedal information

continuously, which is then used to assess the driving performance at each segment of

the driving experience. Chapter 7 starts by reviewing existing definitions of driver dis-

traction and works that have studied its effects on driving performance and car accidents.

Then we explain the acquisition system and distraction induction methods to obtain the

EPV-DIST database. Finally, we present statistical analyses of the subjects’ driving per-

formances so as to show the effectiveness of the distraction induction.
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Secondly, in Chapter 8 we propose a method based on Facial AUs to detect the con-

ditions where the drivers were induced cognitive distraction in the EPV-DIST database.

AUs model every unitary muscle movement on the face and are the most objective means

of defining and quantifying what is on the face. The system avoids using other catego-

rizations of facial expressions (as reviewed in Section 2.1), since cognitive distraction is

a complex mental state that does not have an existing correspondence to a pre-defined fa-

cial expression. The system proposed first generates a virtual frontal view from the three

frames captured by the multi-camera system, then applies the AU detection we have pre-

viously proposed in Chapter 6. Then, we extract features from the dynamic continuous

value outputs of the AU detection system, independently for each of the 14 AUs de-

tected, and also from their cross-correlations at different delay points. This second type

of features allows exploiting the dynamic inter-relations of AUs and their synchroniza-

tion behaviour in different conditions, with the hypothesis that it will improve detection

of facial expressions that are indicators of this complex state. All features are then fed-

into SVM or Random Forests (RF) classifiers to obtain a decision on each sequence that

has been labeled as cognitive distraction or not. Our findings show that the correspond-

ing facial behaviour are very subject-dependent and although we achieve an acceptable

accuracy in the subject independent tests, it is evident that a subject-based training will

help obtaining higher precision. Chapter 8 first reviews existing systems of visual driver

monitoring systems, then explains our proposed cognitive distraction detection system,

presents the results obtained on the EPV-DIST database, and discusses the subjectivity

problem as well as proposals of possible uses of the proposed system.

This final part of the thesis constitutes mainly an application of the previous contri-

butions, with added novelty in terms of the database introduced and the detection system

that combines several analysis methods. The majority of the work presented in Chap-

ters 7 and 8 has also been submitted as a journal article and is under review at the time

of writing (Yüce et al., Under Review).



A Database for
Spontaneous Facial
Expressions of Distraction
During Driving 7
7.1 Importance of Distraction during Driving

Driver monitoring in real-time is an emerging topic thanks to the availability of faster

software and smaller and more powerful hardware that can easily be integrated in con-

sumer vehicles. In addition to systems that record and analyze driving data, e.g. wheel

movement, speed and acceleration, or driver’s physiological signals, research on visual

monitoring systems are also on the rise and such systems will soon be more and more

frequently integrated in automobiles on the market. In this work we introduce a visual

database of drivers in a simulator setting while being induced different types of dis-

traction. The database has been recorded in realistic conditions with a system that can

be integrated in a vehicle and provides temporal annotations for driving conditions and

performance.

There has been a long discussion on how to define driver distraction. Pettitt et al.
(2005), Lee et al. (2008) and more recently, Regan et al. (2011) have published works on

how to define the term and compile the existing definitions. Lee et al. (2008) summarizes

it as the diversion of attention away from activities critical for safe driving toward a

competing activity. In Pettitt et al. (2005) there is a more extensive definition and driver

distraction is stated as a delay by the driver in the recognition of information necessary

to safely maintain the driving task, due to some event, activity, object or person, within

or outside the vehicle that compels or tends to induce the driver’s shifting attention away

from fundamental driving tasks by compromising the driver’s auditory, biomechanical,

cognitive or visual faculties, or combinations thereof (Regan et al. (2011), Stutts et al.
(2001)). Driver distraction can be in three types depending on its source and demand:

visual, manual and cognitive (Strayer et al., 2011). Even though we introduce a database

that includes all three types of distraction, the automatic system presented in Chapter 8

focuses on detecting cognitive distraction, which can be defined as a diversion of the

driver’s attention from the driving task, not necessarily requiring any sharing of visual

processing or involving or demanding a biomechanical action. It includes internally
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induced distraction, such as mind wandering or daydreaming but excludes cases such as

boredom, sleepiness, or driving under the influence of alcohol or drugs and substances

that alter the mental state.

Many studies show that driver distraction is one of the most important causes of

traffic accidents, along with alcohol use and speeding. A study conducted in France

showed that 17% of 453 accidents that resulted in admittance to the emergency room was

caused by a high mental distraction of the responsible driver (Galera et al., 2012). More

recent studies from the same group have shown that induced distractive thoughts led to

less micro-regulation of both speed and lateral position and narrowed visual scanning

of the driving scene (Lemercier et al., 2014), mind wandering is the cause of 8% of

close to 1000 accidents according to emergency room interviews with the drivers (Bakiri

et al., 2013) and that it affects 85.2% of the drivers especially in situations requiring

less attention from the driver such as an everyday commute or a monotonous motorway

(Berthié et al., 2015).

In Neale et al. (2005), the authors have collected and analyzed almost 43000 hours of

driving data and shown that 78% of the crashes and 65% percent of near-crash incidents

involve driver inattention due to various secondary tasks. A similar study sponsored

by the United States department of transportation showed that drivers investigated were

engaged in non-driving related tasks in 71% of crashes (Olson et al., 2009). Again in the

U.S., it is estimated that around 20% of all police-reported road crashes involve driver

distraction as a contributing factor (Victor et al., 2013). In Young & Salmon (2012) the

authors provide a large scale examination of the relationship between driver distraction

and driver errors, along with a list of existing studies. Even though the numbers differ

depending on the type and amount of data analyzed in each study, they all show that

internally or externally caused driver distraction is a critical risk factor. Therefore, in

this thesis (Chapter 8) we address the problem of automatic detection of cognitive driver

distraction using visual monitoring of the driver’s face and propose a system that is tested

on simulation data and that can easily be integrated in real cars for applications like an

early alert system or activation of countermeasures in order to help the driver regain his

attention on the driving task.

In this chapter, we present the EPV-DIST database that we have recorded for pur-

poses of training and testing our system for automatic detection of driver distraction, as

well as providing the research community a database that is rich in the number of sub-

jects and types of annotations related to driving. The database consists of 46 subjects

driving a simulator while performing additional tasks in order to induce visual and cog-

nitive distraction. In the following sections of the chapter, first we describe the recording

setup that was used in the experiments in Sec. 7.2 as well as a summary of the demo-

graphics of the subjects recorded. Then, we explain the methods used to induce the

distraction state aimed at in 7.3 with a statistical analysis of the effects on driving perfor-

mance and conclude the chapter with a discussion on the usefulness of the database 7.4.
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7.2 Description of Recording Configuration

One of the main contributions of this work is the introduction of a new video database

with induced distraction during simulated driving. In this section we describe the details

of the database, which we name EPV-DIST, which is short for the EPFL-PSA-Valeo

Near Infrared (NIR) Multi-Camera Database of Visual and Cognitive Distraction during

Driving. The aim of the database is to provide videos of natural behavior of drivers while

performing additional visual and cognitive tasks. Another point worth mentioning is that

the recording setup is built in a way that can be integrated directly in an actual consumer

vehicle (in terms of camera positions), and provides robustness against real-life driving

conditions, such as ambient light and head pose variations.

We have recorded 48 subjects, two of whom had to be excluded from the database

due to technical problems during the recording. The subjects were recruited from stu-

dents and research and administrative staff of EPFL and EPFL Innovation Park. As the

mental tasks were prepared in French, they were asked to possess a sufficient level of

understanding and speaking in French and also have a sight enough to drive without

glasses, in order to avoid reflections of the NIR lighting. They did not need to possess

a driving license as the simulator is very simple and since we have included a familiar-

ization step prior to the recorded experiments. The subjects’ ages are between 19 and

52 with an average of 30. The number of female and male subjects are equal and all

subjects have given their consent for the use of their data in research on automatic visual

behavior analysis. The total length of the recordings is approximately 25 minutes per

subject, making a total of more than 19 hours of recording.

We plan to make the database publicly available solely for research purposes in the

future, to help advance the research on facial behavior analysis during driving under

various, predefined conditions. In the rest of this section we give details on the data

acquisition setup.

7.2.1 Data Acquisition System

The EPV-DIST dataset consists of multi-view videos that are recorded using three

NIR cameras and a special lighting equipment per camera with adequate filters, in order

to filter out ambient light. Figure 7.1 shows the recording setup and the position of the

recorded subject during the experiments.

Both the choice of the recording material and the placement of the cameras (see Fig.

7.1a) are based on a realistic application in a real consumer vehicle. Since the light con-

ditions change very often during driving we have performed the recordings with cameras

with a wide wavelength capture range (PointGrey Flea3) and adequate band-pass filter-

ing. We have also built three integrated NIR-Light Emitting Diode (LED) (850 nm)

circular lighting circuits that can be placed around the cameras and illuminated in syn-

chronization with the frame-grab of the cameras using a micro-controller. These lighting

systems make sure there is constant illumination around the face and the bandwidth fil-

ter, at the same wavelength as the LEDs, filters out a substantial amount of the ambient

light. This allows for a continuous visibility of the driver’s face with close to constant il-

lumination and is suitable for a real application in a car in any light condition, e.g. when
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(a) The Three-Camera Acquisition Setup (b) Driver’s position during the recording

Figure 7.1: The recording setup of the experiment

there is too much sunlight or while passing through a tunnel. The camera-light pair has

already been used in our previous experiment on posed expressions of stress (Gao et al.,
2014), where we have shown the feasibility of facial expression recognition with such

a system in the single camera case. In addition to the circular LEDs we have placed

similar lighting at the four corners of the simulator screen which are illuminated in turns

with the lighting around the cameras, to create the glint and dark/bright pupil effect for

use in future research for gaze analysis. The gaze related features have not been included

in the automatic detection system presented in Chapter 8 in order to avoid possible bias

and noise in the experimental results due to unoptimized gaze measurements.

As for the choice of the number and positions of the cameras, there exist two con-

straints for a realistic setup. The first one is the amount of head-pose coverage using

a virtual frontal view generation from all cameras, explained later in Chapter 8. The

second one is the feasibility of placement of the cameras in an actual car, without block-

ing the driver’s sight and where there is already support to place the camera. We have

chosen to use a three-camera system and placing the cameras as can be seen in Fig. 7.1.

The first camera, the semi-frontal one (referred to as the frontal camera from this point

on) is placed in the representative position inside the console behind the wheel. The left

camera (with respect to the driver) is where would be the highest point of the left pillar in

a car. Finally, the right camera is on the representative position of the bottom-left corner

of the rear-view mirror.

The three cameras record frames synchronously at a rate of 20 fps as seen in Fig.

7.2a, 7.2b and 7.2c for the left, right and frontal cameras, respectively. We only use

every second of these frames, those that correspond to the bright ones. These three

images are then used to reconstruct a virtual frontal view of the driver’s face as seen

in Fig. 7.2d. The details of this reconstruction are given in Subsection 8.3.1. This

three camera system allows invariability against head pose changes, which occur quite

frequently while driving, and also against occlusions that occur in one or more views.

All these properties of the setup provide a realistic sense into our database, as it would

be a suitable setup to integrate in an actual vehicle.
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(a) Left Camera (b) Frontal Camera

(c) Right Camera (d) Generated Virtual Frontal View

Figure 7.2: Images acquired by the three cameras and the corresponding generated vir-

tual frontal view.

7.3 Experiment Protocol and Methods for Distraction Induc-
tion

The driving task we used for our experiments is the Lane Change Test (LCT) (Mat-

tes, 2003). LCT is a simple, easy to manipulate driving simulator that has become the

standard simulator for testing secondary tasks while driving (ISO, 2010). It has been

commonly used in the past for experiments involving such secondary tasks (Harbluk

et al. (2007), Engström & Markkula (2007)). We have used a Logitech G27 wheel and

pedals set for the control and the LCT allows continuous recording of the wheel and

pedal motions, which are useful in providing a metric for the driving performance (ex-

plained in detail in Sec. 7.3.2). The LCT consists of a series of lane change tasks which

are presented as road signs on the simulator screen (see Fig. 7.1a) and the drivers are

asked to change their lane according to the sign presented, as soon as they see the sign

and as quickly as possible before passing by the sign. We have fixed the maximum

speed at 60 km/h and the distance between two signs at 150 meters, which results in

Lane Change Sequence (LCS) of approximately 9 seconds, since the drivers were asked
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to maintain the maximum speed. The road signs appears ∼ 1 sec after the introduction

of the distraction (if it applies), and disappear 40 meters later, giving the drivers around

2.4 seconds to perform the appropriate lane change.

7.3.1 Driving Conditions

All subjects were asked to perform the driving task in three conditions: The baseline,

solely the driving task without any distractors; visual distraction, a visual secondary

task which requires the driver to take the eyes off the road; and cognitive distraction,

where the attention is directed to a non-driving related task without the need to take

the eyes off the road. All factors other than the distractive agents were kept the same

for the three conditions. Each subject has completed a total of five driving tasks, three

baselines, one visual distraction and cognitive distraction. The order of the distraction

related tasks have been randomized among subjects, such that there is an equal number

of subjects who have performed the visual task before the cognitive one and vice versa.

This randomization is to decrease the secondary effects of uncontrollable confounding

factors, such as fatigue or disengagement.

The baseline condition is to obtain a ground measure for the driving performance and

facial behavior without workload of the subject. It is performed three times in total, the

beginning (after the familiarization part, which is not recorded), between two distractive

conditions and the end. Each one consists of 18 lane changes, equally distributed for

the 6 possible types of lane change between the left, right and middle lanes, in order to

avoid effects of learning. In the end, we obtain 54 LCS, 9 for each lane change type, per

subject.

(a) Easy condition (b) Difficult condition

Figure 7.3: Sample questions from the SURT task

The visual task used to induce visual distraction is the Surrogate Reference Task

(SURT). The SURT is a standardized test (ISO, 2012), where the participants are shown

two images with many circles and are asked to pick the side of the screen on which the

biggest circle is present (Fig. 7.3). The images are shown on an additional screen at

the right of the main simulator screen (see Fig. 7.1a), which is a representation of a

screen position in the center console in an automobile. SURT is a visual-manual task

with a high level of distraction as it requires a relatively long glance at the secondary

screen in order to differentiate the biggest circle among many similar objects. The driver

then gives his/her response by pressing the left or right pedal behind the wheel, which
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constitutes the manual part of the task. The SURT has been applied at two difficulty

levels, which differ by the number and sizes of the circles (Fig. 7.3a and 7.3b). All

subjects performed the task with both difficulty levels, which were randomized in order,

once again for the reasons listed above. The analysis of the visual distraction task videos

have not been included in this thesis, since the focus is cognitive distraction, which is

a mental state that is harder to detect by face - head related visual cues. The visual

distraction component of the database will be used in future experiments and have been

included in the database to provide the community videos of varying head poses during

driving, with a measure of the driving performance.

The final driving condition is the induced cognitive distraction, which forms the

main focus of this part of the thesis. This was performed using an auditory version

of the Operation SPAN (OSPAN), developed by Turner & Engle (1989) and has been

used by the National Highway Transports Safety Administration in US (NHTSA) as a

standard task simulating driver cognitive distraction. The OSPAN task makes use of the

working memory and attention of the driver and does not require the visual attention as

the task is presented in audio and the response is either manual or by speech.

The OSPAN task is composed of two components, the first one is making simple

calculations and the other memorizing words. At each LCS the driver is told a simple

mathematical calculation statement, e.g. Two times four plus one is ten. The driver

needs then to press the corresponding hand pedal behind the wheel if they think the

statement is true or false. The choice of pedal for the right and wrong answers have

been randomized to reduce the effects of the natural tendency to unintentionally think

that one side represents the correct one. Right after the statement the subjects also hear

a simple word in French, e.g. maison (house), rouge (red) or chemise (shirt), which

they were asked to memorize and repeat at the end. The LCS that we analyze do not

include the part where the drivers repeat the words they had to memorize. In the easy

condition the participants hear two mathematical calculations only including addition

and subtraction along with two words to memorize, while in the hard condition they

hear three calculations that also include multiplication and three accompanying words.

All participants receive an equal number of easy and hard tasks following each other and

the order of which has been randomized equally among participants. The calculations

and words have been recorded prior to the experiment and was repeated from a speaker

in the experiment room, synchronized to appear at the same instant for every subject.

The OSPAN task creates an additional load to the working memory of the subject and

aims to pull the attention of the driver off the road and the driving task. Note that we

have not aimed at any positive or negative valence effect of the cognitive distraction, for

example as performed in Chan & Singhal (2013) by selecting words related to positive

and negative emotions.

In order to put the driver in a multitasking condition each distraction task started a

couple of seconds before the appearance of the lane change sign. The participants had

not been given any instruction prior to or during the experiment regarding the priority

of the driving vs. secondary task. Each participant, therefore, chooses such a priority

depending on his/her own workload and sometimes in a varying manner for each task,

as observed from their recorded data.
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7.3.2 Measuring Driving Performance

The LCT simulation system allows recording the wheel and pedal motion at all times,

which we then use in order to calculate a performance measure for each of the LCS. The

measure that we calculate is the Mean Deviation from the normative lane change be-

havior, or Mdev. The Mdev is measured by calculating the area between the expected

driving behavior for a specific lane change and the actual one (Fig 7.4). It is a stan-

dard way of quantifying the driving performance on a simulator over short distances

(ISO, 2010). The area between the two trajectories is sensitive to perception (missing

the sign), reaction time, quality of the maneuver and lane keeping (Mattes, 2003). Note

that the Mdev could also have been used as an indirect measure of the level of cognitive

distraction, and a ground-truth for the classification problem in this thesis (Chapter 8).

However, due to the distribution of the Mdev values, this would have caused an imbal-

anced classification or regression task. Also, the problem we address in this work is to

detect when a driver is imposed an additional mental load, or cognitive distraction and

not the facial behavior during unsuccessful driving but before that happens. Therefore,

we use the Mdev values only to show whether the induced distraction has an overall

effect on the driving performance.

Figure 7.4: Mdev calculation as the area between the expected lane change and the

observed driver behavior

In order to show the effectiveness of the visual and cognitive distraction induction

that we used, we have performed a statistical analysis of the Mdev performance values,

comparing the three tasks. We have calculated the Mdev value for each 8.5 seconds

sequence (the first 0.5 seconds were removed to remove noise) and Fig. 7.6 shows the

distribution of the Mdev values among all sequences for every subject in the three con-

ditions. The initial observations are the difference between the Baseline (BL) versus the

Cognitive Distraction (COG) and Visual Distraction (VIS) in variance (0.098 for BL vs.

0.295 for COG and 0.278 for VIS) and the shift in the mean value (0.809 for BL vs.

1.048 for COG and 1.053 for VIS) median (0.772 for BL vs. 0.944 for COG and 0.941
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(a) Baseline vs. Cognitive Distraction

(b) Baseline vs. Visual Distraction

Figure 7.5: Mean Mdev values for each subject in three conditions: Baseline, Cognitive

Distraction and Visual Distraction.

for VIS) and the maximum values (2.481 for BL vs. 5.769 for COG and 5.631 for VIS).

In addition, we have performed a Wilcoxon signed-rank statistical test (WSR) test on the

mean Mdev values of the subjects in the BL vs. COG and BL vs. VIS conditions. The

WSR test is a non-parametric paired difference test used to compare two related samples

(Wilcoxon, 1945). It is used to compare ordinal random variables that are non-Gaussian

distributed, which fits perfectly our case (Fig. 7.6c, 7.6b and 7.6a). The signed-rank test

gave a p − value < 0.01, showing that the two distributions (in both comparisons) are

significantly different from each other, proving the effectiveness of the manipulation for

the visual and cognitive distraction. We also observe a higher mean Mdev value for all

48 subjects in both distractive cases (see Fig. 7.5).

7.4 Conclusions

We have presented a database, called EPV-DIST, of 46 people recorded using three

cameras while driving a simulator in baseline, visual distraction and cognitive distraction

conditions. The recordings have been configured to represent a configuration that could

be integrated and work robustly inside an actual car during real driving conditions. To
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(a) Distribution of the visual M_dev values

(b) Distribution of the cognitive M_dev values

(c) Distribution of the baseline M_dev values

Figure 7.6: Comparison of the M_dev values for the three driving conditions, with a

polynomial fit plotted on top of each distribution. The smaller plots show the deviation

from a normal distribution, indicating that the distributions cannot be assumed normal.

the best of our knowledge this is the first database to include such a high number of

subjects, in addition to the first time use of the multi-camera setup.

We have also presented some statistics on the driving performance of the participants

and showed that the distraction induction methods result in a significant decrease in

performance compared to the baseline, using the Mdev value as a performance metric. In

the next chapter we present our proposed methods to detect cases of cognitive distraction

using AUs, their dynamics and their inter-relations. We believe that the introduction of

this database will stimulate further research in the field of driver state monitoring.
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Cognitive Distraction
Detection 8
8.1 Introduction

Cognitive distraction, which can be caused by mind wandering or cognitive load, is

a factor that seriously affects the driving performance as it causes a diversion of attention

from the primary task, that is driving. The studies on statistics of the effects of cognitive

distraction, as well as other types of distraction, have been reviewed in Section 7.1. In

this chapter we present a novel method to automatically detect driver’s cognitive distrac-

tion using dynamic information of AUs as well as their correlations. For this purpose,

we use the EPV-DIST database that has been presented in Chapter 7. The EPV-DIST

database is a database of 46 subjects recorded using three NIR camera-light systems

while driving a simulator and performing additional tasks at the same time, to induce

visual and cognitive distraction separately.

In this chapter we only aim to tackle the problem of visual detection of cognitive dis-

traction, since the focus of the thesis is facial actions and visual distraction is identified

with changes in the head-pose and gaze avertion towards the distractive agent. Cognitive

distraction is not a mental or affective state that has pre-defined universal expressions,

such as those explained in Section 2.2.2. Its automatic detection is therefore a very chal-

lenging task, which is why in this work we propose novel feature extraction and data

normalization schemes to handle it.

In the rest of the chapter, we first give a review of existing methods for automatic

visual driver monitoring systems in Sec. 8.2. Then in Sec. 8.3 we give an overview of the

system that we use to extract the visual features related to cognitive distraction, includ-

ing a summary of the AU detection system that has already been presented in Chapter 6.

In Sec. 8.4 we present our results for classifying the LCS as baseline or cognitive dis-

traction, as previously described in Chapter 7. In Sec. 8.5 we give a discussion on the

effectiveness of the system, as well as the individuality of the concerned facial actions

and possible applications of the detection system. Finally, we conclude the chapter in

Sec. 8.6.
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8.2 Related Work on Visual Driver Monitoring

This section presents a brief review of existing work on visual driver monitoring

for various applications as well as different modalities used for detecting various types

of driver distraction. An extensive review is given in Dong et al. (2011) and Kang

(2013), the interested reader is referred to these publications for more approaches and

applications not listed here.

Over the years most of the research on visual driver monitoring systems have fo-

cused on fatigue detection, which is another critical factor for human error in driving

and can be considered related to cognitive distraction, yet excluded from the definition

that we adopt for cognitive distraction (see Sec. 7.1). An approach on fatigue detection,

rather close to ours is the work by Vural et al. (2007), where the authors use many AUs,

including head-pose, and analyzed their relation to fatigue during a three-hour simulator

driving experiment after midnight. As expected, the most relevant features were related

to eye-blink (AU45) and also outer brow raise (AU2), as the subjects tried to remain

awake. In Rongben et al. (2004) an automatic mouth movement analysis is performed to

detect fatigue related actions, and also speaking, while in Gu & Ji (2004) AUs are used

within a Dynamic Bayesian Network (DBN) to detect driver vigilance. The head pose

dynamics have also been successfully exploited in a real-time driver awareness detection

system (Murphy-Chutorian & Trivedi, 2010). Another commonly used visual cue for fa-

tigue detection is the Percent Eye Closure Measure (PERCLOS), as used for instance in

Bergasa et al. (2006).

As for automatic detection of distraction, a non-vision based system is presented in

Tango et al. (2010) where the driving information, such as the speed, position of the

pedal and steering wheel have been used to detect visual distraction tested with various

machine learning methods. Wöllmer et al. (2011) also used the driving information and

non-vision based head tracking data to detect cases of visual distraction while perform-

ing various tasks. In Liang et al. (2007) the authors used eye movements and driving

performance data within a Bayesian Network framework to predict ∼ 80% of distraction

cases while interacting with an in-vehicle information system (IVIS). A similar study

is presented in Jimenez et al. (2012) where the gaze angle and fixation data was used

once again to recognize distraction induced by the IVIS. In D’Orazio et al. (2007), the

eye movements are analyzed to predict visual inattention using Neural Networks. The

gaze information was used along with head movements and lane position of the ve-

hicle in Kutila et al. (2007) to detect induced visual and cognitive distraction using a

stereo-vision system integrated in trucks and passenger cars. For cognitive distraction,

the authors achieve 68% on the truck experiments and 86% for the passenger car exper-

iments. However, the low number of drivers tested (3 for the passenger car, 12 for the

truck) is insufficient to discuss the generalization capability of the system. In Jabon et al.
(2010) several features related to the coordinates of 22 facial landmarks and driving data

were used to predict accidents. In Ragab et al. (2014) the arm position, eye closure, eye

gaze, facial expressions, and orientation provided by Kinect to detect visual and manual

distraction on 6 subjects.

The closest approach to one that is presented in this work is the one by Li & Busso

(2015) where the authors use AUs, gaze and head pose information to detect visual
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and cognitive distraction. Apart from the difference in the methodology to induce the

cognitive distraction, a very important difference in their approach is that they ask human

evaluators to extract sequences of distraction based on the facial behaviour of the drivers.

This fact makes their work and ours incomparable, as the problem they try to tackle

becomes how to detect human perception of expressions of distraction. Nonetheless,

it provides us a list of AUs related to this problem, which can be used for comparison

with the discoveries in our work. With the experiments performed on 20 subjects, the

F-score for detection cognitive distraction is 73.8% and for visual distraction 80.8% (Li

& Busso, 2015).

To the best of our knowledge, ours is the first work that presents a completely au-

tomatic system, that can be integrated in a vehicle, to detect cognitive distraction with

an objective ground-truth, using non-intrusive visual monitoring of the driver’s face and

tested on such a large variety of subjects.

8.3 System Overview and Proposed Feature Extraction Scheme

Figure 8.1: Virtual face generation pipeline

This section describes the methods built and adopted in order to detect the presence

of cognitive distraction in the sequences of the EPV-DIST database (introduced in Chap-

ter 7) via the driver’s facial actions. In our context, this means classifying each recorded

LCS as belonging to the baseline or cognitive task, as explained in Section 7.3. The

outline of the pipeline is as following: First we generate a virtual frontal view of the

driver’s face in each frame using a Bilinear 3D face model and texture mapping from a

2D image. Then we detect 14 AUs on the generated virtual frontal view of the face by

extracting Scale Invariant Feature Transform (SIFT) features and applying SVM classi-

fication for each AU separately. Next, we extract features from the dynamic continuous

valued output of the SVMs, also investigating the correlated behavior between the AUs

and finally feed these features in an SVM or Random Forest classifier to obtain a binary

response for each sequence as distracted or not. The details of each method, as well as

their implementation are given in the rest of the section.

8.3.1 Virtual View Generation from Three Cameras

The model based face pose normalization / frontalization has been applied widely in

face recognition (Gao et al. (2009), Asthana et al. (2011), Taigman et al. (2014)). It is

also known as virtual face frontal view generation. One can fit a 2D deformable mesh
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model to a non-frontal face and apply non-linear warping to generate a virtual frontal

face (Gao et al., 2009). However, it has been shown that warping with a sparse 2D mesh

model is sub-optimal due to artifacts and discontinuity. Instead, we fit a 3D dense mesh

model and map texture directly to the mesh vertices. The frontal view face is rendered

by applying inversed rigid motion of the 3D face model. Fig. 8.1 shows the concept of

our face pose frontalization method.

Fitting a 3D dense face mesh model with texture information is far from efficient for

real time application. We adopted a feature based 3D mesh model fitting and which pro-

vides a good balance between fitting efficiency and accuracy for real time virtual frontal

view generation. In order to recover the expression variations in addition to identity

variations of human faces for emotion detection applications, a bilinear 3D morphable

model (Cao et al., 2014a) is considered. The model has two sets of parameters, which

control expression changes and identity changes separately.

A sparse set of facial landmark features are then selected and the objective of the

3D model fitting is to minimize the projection error of these facial landmark features,

with respect to the corresponding 2D features detected on a 2D facial image. In total

68 salient facial features are selected and the 2D salient facial features are detected and

tracked using SDM (Xiong & De la Torre, 2013), which is reused in the AU detection

step as explained in Sec. 8.3.2.

The feature based 3D face mesh model fitting can be easily extended to multiple

camera setup. The coefficients of the bilinear face model are not dependent on the view-

point because they are characterizing 3D object’s shape and not its projection on the

image plane. It has been shown in Faggian et al. (2008) and Ecabert et al. (2015) that

fitting a 3D morphable model in a multi-view setup provides more accurate and robust

results. Therefore, we reconstruct the mesh based on the tracking from the three cameras

positioned as shown in Fig. 7.1a.

To generate a virtual frontal view image, texture information needs to be extracted

from a 2D image and the values are mapped on the corresponding vertices of the recon-

structed 3D face mesh. The texture information can be extracted from a specified camera

view, or the optimal camera view, or an adaptive fusion of multiple camera views. Given

a reconstructed 3D face mesh f and its estimated projection operator L with respect to

an input face image I, the visible vertices in f are determined by checking the normals

and the viewing angle. Those vertices are projected on the 2D image plane with the

projection operator, The underlying pixel values T are assigned to their corresponding

visible vertices. An example of a rendered frontal face image is show in Fig. 8.1. In this

work, we obtain the pixel values from the view with the smallest absolute yaw angle,

which is mostly the frontal view due to the nature of the driving and secondary tasks.

Fig. 7.2 shows the three views and the reconstructed virtual face on an highly expressive

real-case frame from our database.

8.3.2 AU detection from Virtual Frontal View

Once we generate the virtual frontal view from the three cameras, we detect 14

AUs from the generated frame. For this purpose we adopt the system that we have

proposed in Chapter 6 and Yüce et al. (2015) and that has won the AU occurrence de-
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tection sub-challenge of the FERA2015 (Valstar et al., 2015). The FERA2015 challenge

was organized to promote advances in research on AU and AU intensity detection. It

is composed of two challenging datasets (BP4D (Zhang et al., 2014) and SEMAINE

(McKeown et al., 2012)) with spontaneous and natural behavior each annotated frame-

wise for the presence and intensities of AUs. The participants were provided with two

sets of training and development partitions and asked to send a working program that

would be applied on two unseen test partitions, in order to assess the efficiency of the

systems in a blind manner, i.e. without the advantage of parameter tuning or usage of

prior knowledge on the data. Our framework presented in the scope of FERA2015 allows

us to obtain a continuous AU occurrence signal for 14 AUs, which are listed in Table 8.1

along with their definitions. For more information on these and other AUs please see

Chapter 2.2.1, where we provide an extensive review on the FACS. An overview of the

system is presented here and more details have been provided in Chapter 6.

Table 8.1: Detected AUs and their definitions

Action Unit Definition

AU1 Inner Brow Raiser

AU2 Outer Brow Raiser

AU4 Brow Lowerer

AU6 Cheek Raiser

AU7 Lid Tightener

AU10 Lip Raiser

AU12 Lip Corner Puller

AU14 Dimpler

AU15 Lip Corner Depressor

AU17 Chin Raiser

AU23 Lip Tightener

AU25 Lips Part

AU28 Lip Pucker

AU45 Blink

The initial step in the AU detection system is to locate the facial landmarks, around

which we will then acquire the relevant appearance based features. For this purpose,

we use the state-of-the-art face tracker based on the SDM (Xiong & De la Torre, 2013).

The SDM starts with an initial guess and estimates the shape using a cascade of re-

gression models that are learned at each step using local texture features (e.g. SIFT)

extracted from the landmarks estimated in the previous step. Note that, since the virtual

view generation and AU detection systems are currently implemented as two separate

pipelines, we reapply the SDM tracker on the generated virtual view. In the future, these

systems will be combined for efficiency reasons. The SDM outputs the locations of 49

landmarks and using this mask we calculate the locations of 8 additional non-salient
landmarks. The details for the calculation are present in Section 6.2. These additional
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points (AP) are generally excluded from face trackers or facial landmark detectors as

they mark transient features of the face and their annotation and detection are not as

trivial as the non-transient landmarks. However, they contain very important local ap-

pearance information related to facial actions as many appearance changes occur around

these points during certain muscle contractions. These points can be seen on an example

virtual face image from the EPV-DIST database in Fig. 8.2 along with original SDM

landmarks and their locations and some of the related AUs are listed as follows:

• AP1 - The center of the eyebrows, relevant to AU4 and AU1

• AP2 and AP3 - Around the crow-feet wrinkles, relevant to AU6 and AU7

• AP4 and AP5 - Sides of the nose, relevant to AU10 and AU9 (nose wrinkler)

• AP6 and AP7 - Nasolabial furrows, relevant to AU6 and AU10

• AP8 - On the chin, relevant to AU17

Figure 8.2: The facial mask used to obtain appearance features. The red points show the

original SDM landmarks and the green ones are the additionally calculated points.

After obtaining the landmarks from the face tracker, the face is aligned using the

eye locations to correct for any possible in-plane rotation still remaining from the virtual

view generation. This is performed before the APs are extracted, so that the calculation

of their locations is invariant to the head-pose. Later, the face is scaled to a fixed size

of 200 by 200 pixels and the SIFT features (Lowe, 2004) are extracted around the 57

landmarks in total. SIFT features have been effectively used in mainly object recognition

and tracking (Li & Allinson (2008),Zhou et al. (2009)) and successfully applied on the

AU detection problem as well (Ding et al. (2013), Ringeval et al. (2014)). The SIFT

descriptors extracted in a 32 by 32 local neighborhood around each landmark result in a

feature vector of size 7296, which is then reduced using Principal Component Analysis

(PCA), retaining a certain number of final features learned for each AU separately.
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These features are used to train a L1-regularized linear-SVM classifier for each AU

separately on a custom made training set that includes images from the CK+ (Lucey

et al., 2010), GEMEP-FERA (Valstar et al., 2011) databases in addition to the challenge

datasets SEMAINE (McKeown et al., 2012) and BP4D (Zhang et al., 2014). The train-

ing set consists of 6713 images in total and, in addition to the well-established standard

database CK+ of posed expressions, includes many non-posed, or spontaneous, exam-

ples of expressions from the other three databases. This fact is particularly useful when

the system is applied on real data, as in the case of our application.

The results we obtained on the unseen test-set of the two challenge datasets are revis-

ited in Table 8.2 in comparison with the best challenge baseline results. The presented

F1 scores on this challenging AU detection problem shows the efficiency of the system

and proves suitable for use in a real application. Note that, although, the original work

(Chapter 6 and Yüce et al. (2015)) proposes a multi-label manifold embedding scheme

to improve AU detection and achieves a better result on one of the two unseen parti-

tions, we have chosen not to adopt this part of the system in order to obtain a better

generalization on unseen data.

Table 8.2: F1-Scores on the FERA Challenge (revisited)

Database BP4D

AU Prop. System Yüce et al. (2015) Best Baseline Valstar et al. (2015)

1 0.261 0.188

2 0.167 0.185
4 0.283 0.197

6 0.729 0.645

7 0.785 0.799

10 0.802 0.801

12 0.779 0.801
14 0.625 0.72
15 0.348 0.238

17 0.380 0.311

23 0.441 0.320

Average 0.508 0.473

Database SEMAINE

AU Prop. System Yüce et al. (2015) Best Baseline Valstar et al. (2015)

2 0.655 0.569

12 0.769 0.595

17 0.215 0.091

25 0.623 0.445

28 0.251 0.250

45 0.325 0.396
Average 0.481 0.391

The SVM classifiers each give a continuous value output, which is the distance to the

hyper-plane. It has been long debated in the community whether the output of classifiers

trained in a binary manner should be used to quantify the intensity of AUs. For example,

recently Girard et al. (2014) have shown that the intensity of smiles are better recognized
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using classifiers directly trained with annotated intensities . Nonetheless, we use the

decision to the hyper-plane of the SVM as a relative intensity measure as it provides

enough comparative information when the purpose is not a direct AU intensity detection

defined by the FACS (Friesen & Ekman (1978), Sec. 2.2.1.

8.3.3 Feature Construction

For the classification between the sequences belonging to the baseline and cogni-

tive distraction in the EPV-DIST database (Chapter 7), we extract features from the AU

signals obtained using the system described in Sec. 8.3.2. The sequences that contain

too few frames due to misconduct during recording or face detection failure because of

heavy occlusion (e.g. by the hands on top of the steering wheel) have been removed

from the analysis resulting in a total of 4520 LCS.

The first set of features, which we will refer to as Feature Set 1 from this point on,

comes directly from the continuous individual AU signals. For each of the 14 AU sig-

nals (see Table 8.1 for the list) we obtain the mean, variance, maximum and minimum

values along the 8.5 second sequences. This process is performed by dividing the se-

quence in four in time. The reason for splitting the signals in time is to make use of the

differences in AU behavior that may occur on different portions (or quarters) of the LCS.

For instance, a person might display a facial reaction while listening to the calculation

sentence he/she needs to respond to, or during the lane change task which follows the

auditory input. Splitting the feature extraction into smaller segments makes it feasible to

extract this sort of dynamic information.

The second type of features (Feature Set 2) are derived from the cross-correlations of

AUs on different time delay levels. While constructing these features we were inspired

by the Appraisal Model of Emotion, as proposed by Scherer (Scherer, 2001), which

states that the activation of certain physiological components are coupled, or synchro-

nized, when we are faced with an emotional stimulus. An extensive explanation of this

model, also called the CPM may be found in Section 2.1.3. Also following this the-

ory, Kroupi et al. (2013) have shown coupling between the phase and amplitude of the

EEG and EDA signals while the subjects are watching emotionally stimulating music

videos. Another example of a similar analysis is the multiple works by Williamson et

al., who have shown the existence of a difference in coordination, movement, and timing

of vocal and facial components between patients suffering from Major Depressive Dis-

order (MDD) vs. control subjects (Williamson et al. (2014), Williamson et al. (2013)),

winning the AVEC 2013 (Valstar et al., 2013) and AVEC 2014 (Valstar et al., 2014)

challenges on automatic detection of MDD severity.

Using a similar idea, we calculate the cross-correlation between each of the 14 AUs,

within a delay of −80 to +80 frames with 2 frames interval. This corresponds to a signal

of length 81 for each AU pair and allows modeling the sequential behavior between AUs

on a scale of −4 to +4 seconds. From those signals we extract, once again, the mean,

variation, maximum and minimum values, in addition to the location in time of these

maximum and minimum values, and the correlation values at delays corresponding to

−40,−30,−20,−10, 0, 10, 20, 30 and 40 frames, i.e. at each second in a bi-directional

manner. This enables us to obtain an extensive set of features that represent factors like
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Figure 8.3: Correlation table for the 14 AUs, a higher correlation indicates a high number

of co-occurrences between AUs in the training set. The matrix was truncated for values

< 0.25 to indicate the cross-correlations that were excluded

the total amount of co-activation and its variation, moments of maximum and minimum

synchronization and the level of co-activation at certain levels of delay between AUs

located in similar or different parts of the face. Finally, we truncate the feature set ac-

cording to the correlation priors between AUs. This truncation serves for keeping AU

combinations that frequently occur and removing those with little or no correlation. In

case such an unusually high correlation is observed, for instance caused by a distortion

from the virtual view reconstruction due to heavy head-pose, this process will make sure

this noisy observation has no effect on the overall feature set. As correlation priors we

use the co-occurrence table of AUs obtained from the AU detection training set, as used

in Chapter 6, and use a threshold of 0.25 as shown in Fig. 8.3.

Our hypothesis is that this dynamic co-activation information will help better differ-

entiate the facial behavior of the complex mental state that is cognitive distraction. In

Section 8.4, we show that, indeed the cross-correlation based features improve the accu-

racy on a subject based analysis, yet they are not so helpful for the subject-independent

classification task.

8.3.4 Person Specific Normalization for Classification using SVM and Ran-
dom Forests

The final component of the distraction detection system is the classification part.

For this, we use linear SVM for the subject-based tests, where the training and test

examples are relatively on similar manifolds compared to between-subject tests. For

the subject independent tests, we therefore compare the performance of the SVM with

RF classifiers. RF are known to be less effected by over-fitting thanks to their bagging

mechanism (Breiman, 2001). They learn the best splitting by multiple features each
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time randomly choosing a random subset of samples and features. They are also more

suitable for cases with a large number of features.

For the SVM training and testing we make use of the LibSVM library (Chang &

Lin, 2011) and for the RF we use the Scikit-learn machine learning library for python

(Pedregosa et al., 2011)1. The hyper-parameter C for the SVM and the number of

trees, maximum number of features and minimum number of samples per split hyper-

parameters of the RF were optimized using a 5-fold cross-validation on the training data

in a subject independent manner.

While analyzing the data we have discovered that although both type of features

are very effective in discriminating the distraction and baseline sequences of individ-

ual subjects (see Subsection 8.4.1) the performance on the subject-independent tests are

very low. We assume that the reason is that the types of features that we use are dis-

criminative enough to model individual behavior, yet they remain too person-specific.

Indeed, visualizing the data, we have seen that most of the subjects are clustered among

their own samples. Fig. 8.4a shows an illustration of this phenomenon using the first

two principal components of Feature Set 1 after PCA applied on all training data. We

can see that even using two dimensions the data points belonging to the test subjects

can be easily separated into the labels, yet the same is not true for the training data, for

which samples from the two labels do not demonstrate any noticeable pattern and are

scattered across the feature space instead. After the subject-based normalization, on the

other hand, we observe that the data is much better centralized (Fig. 8.4b). Of course,

the projection on 2D is not very meaningful when using complex classification methods;

Fig. 8.4a and 8.4b are only for illustrative purposes.

To overcome this problem, instead of the common convention of normalizing the

whole training data to zero-mean and unit standard deviation, we propose to perform

this operation subject-wise, as:

∀x ∈ F : x =
x − xs

σs
(8.1)

where x is any point in the features set F belonging to the subject s, xs is the mean of

all data points belonging to subject s and σs the standard deviation. Even though, this

may seem as a factor preventing a real-time application on an unseen subject, the only

implication it brings is actually the need for some seconds of frames from the consid-

ered subject. In other terms, the person-adaptation is completely unsupervised, does not

require any re-training of the classifier (as we only need to change the placement of the

test subject) and as seen in Section 8.4.2 increases substantially the subject-independent

detection rates.

8.4 Classification Results

This section presents our classification result for the baseline vs. cognitive distrac-

tion cases. Out of the 4520 LCS in total (∼ 100 per subject), the number of the sequences

for the cognitive distraction case is 2156. We present our experimental results for the

1http://scikit-learn.org
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(a)

(b)

Figure 8.4: The data distribution on the two first principal axes with an example subject

chosen as the test case, before (top) and after (bottom) the subject based normalization

classifiers trained per-subject and in a subject independent manner using different feature

configurations and classifiers. Table 8.3 presents the accuracies for the best performing

systems for the two types of experiments, serving as a summary of the results and the

details are presented in the rest of the section.

Table 8.3: Results of Best Performing Systems for Subject Independent and Dependent

Cases - OA: Overall Accuracy, F1: F-score, Prec.: Precision, Rec.: Recall

OA (%) F1 (%) Prec. Rec.

Sub. Dependent 95.51 95.16 96.38 93.97

Sub. Independent 68.10 65.57 67.22 64.00
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8.4.1 Subject-Dependent Cognitive Distraction Detection

We first train classifiers independently for each of the 46 subjects in a leave-one-out

manner. That is, we learn the classifier hyper-parameters using a 5-fold cross-validation

and train the classifier with the best parameters on all sequences for a certain subject

points except for one, and test it on the left-out sequence, or data point. The classifier we

use for the subject-dependent tests is the linear SVM. In Table 8.4 we show the results

obtained using Feature Set 1 alone, Feature Set 2 alone and the two in combination, and

compare the accuracies obtained with and without the truncation of correlation features

as explained in Sec. 8.3.3.

Table 8.4: Subject Dependent Detection Results - OA: Overall Accuracy, F1: F-score,

FT: Feature Truncation on Set 2

Feature type OA (%) F1 (%)

Feature Set 1 93.74 93.39

Feature Set 2 93.85 93.47

Feature Set 2 + FT 93.89 93.49

Features Sets 1 + 2 94.88 94.57

Feature Sets 1 + 2 + FT 95.51 95.16

As shown in Table 8.4, the best results are obtained by combining the features ex-

tracted directly from AU signals (Feature Set 1) and those from the cross-correlations

(Feature Set 2), supporting our hypothesis that the dynamic inter-relations of AUs are

useful in determining individuals’ expressions of cognitive distraction. Using Feature

Set 2 alone also proves as efficient as using Feature Set 1. The best accuracies obtained

are 95.51% with a standard deviation (std.) across subjects of 3.44 for the overall accu-

racy and 95.16% for the F-score with std. 3.67. These values are calculated over all data

points, which corresponds to an average weighted by the number of sequences per sub-

ject. The very high accuracy measures, and low variation among subjects, demonstrate

the efficiency of the proposed system, when it is trained on labeled data of a specific

subject. A side-observation is that, the feature truncation improves accuracy in both of

the relevant cases (Feature Set 2 alone and Feature Set 1 and 2 combined), validating the

usefulness of exploiting prior AU co-occurrence information. The per-subject accuracies

for the best performing system are shown in Fig. 8.5, which will be referred to again in

the following subsections.

8.4.2 Subject-Independent Cognitive Distraction Detection

The second set of experiments we have performed is the subject-independent tests,

that is carried out in a leave-one-subject-out manner. This time, we also use RF in

comparison with SVM, since RF are known to be less affected by overfitting on training

data, or subjects in our case. Table 8.5 presents the results obtained using both classifiers,

Feature Set 1 and 2 alone and in combination, additional PCA (retaining 98% of the total

variance, performed for SVM only since RF internally handle the problem of irrelevant

features) and the subject-based normalization as explained in Sec. 8.3.4.
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Table 8.5: Subject Independent Detection Results - OA: Overall Accuracy, F1: F-score,

FS: Feature Set, SN: Subject-wise data normalization

Cl. type Feature type OA (%) F1 (%)

SVM

FS 1 63.36 59.69

FS 1 + PCA 63.74 58.42

FS 1 + SN 65.5 62.32
FS 1 + PCA + SN 65.35 61.77

FS 2 57.85 54.95

FS 2 + PCA 59.38 55.31

FS 2 + SN 61.39 58.95

FS 2 + PCA + SN 62.72 62.14

FS 1 + 2 61.82 59.19

FS 1 + 2 + PCA 59.58 54.65

FS 1 + 2 + SN 62.99 60.92

FS 1 + 2 + PCA + SN 63.96 61.49

RF

FS 1 63.98 61.93

FS 1 + SN 68.10 65.79
FS 2 57.19 59.31

FS 2 + SN 63.98 61.49

FS 1 + 2 58.83 60.61

FS 1 + 2 + SN 65.29 64.17

The best results are obtained using RF classifier with Feature Set 1 alone when the

person-specific normalization is applied with overall accuracy 68.10% (std. = 12.71)

and F-score 65.79% (std = 14.02). The person-specific normalization is indeed very ef-

fective with all features types, especially with RF. This confirms our rationale explained

in Sec. 8.3.4, claiming that the data points of each subject are clustered separately in the

feature space. However, it is not effective enough to obtain an accuracy close to the clas-

sifiers trained in a subject-based manner (Sec. 8.4.1). As it can be seen in Fig. 8.5, which

shows the comparison of subject dependent and independent results for each subject, this

effect is more critical in certain subjects (e.g. Subjects 4, 7, 13) and less in others (e.g.

Subjects 5, 6). Also, we observe that the correlation related features (Feature Set 2) do

not increase the detection efficiency when used in combination with Feature Set 1, and

also result in lower results when used alone. These results suggests the individuality

of such dynamic multi-AU patterns, i.e. that this kind of information is more meaning-

ful when it is learned on each subject independently. This problem of individuality is

discussed further in the rest of the chapter.

8.4.3 A look into the relevant features

In order to see which AUs or AU pairs are the most relevant to our proposed classi-

fication task we inspect the correlations of each feature in Feature Set 1 and 2 with the

ground-truth labels for baseline and cognitive distraction. Since the subject-dependent
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Figure 8.5: Overall Classification Accuracies for each subject, for the best performing

methods in subject independent and subject-based training conditions

classification is significantly more efficient compared to the subject-independent one, we

find it more meaningful to perform this analysis on a subject level as well.

Figure 8.6: Percentage of the most correlated AUs within the top 50 for each subject in

Feature Set 1

First, we calculate the correlation of all 224 features from Feature Set 1 with the

labels for each of the 46 subjects. Then, for the 50 most correlated features for each

subject we look at which AU signal and which temporal segment they belong to. Fig. 8.6

shows the total percentage of each AU among those features, Fig. 8.7 shows the mean,
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Figure 8.7: Average (per subject) number of features included in the 50 most correlated

AUs set, with the min. and max. values shown by the error bar

Figure 8.8: Average (and std.) number of features selected from each time segment of

the sequences within the 50 most correlated for each subject in Feature Set 1

minimum and maximum number of each AU per subject and Fig. 8.8 shows the mean and

standard deviation for each of the four segments (std. removed from Fig. 8.6 for clarity

of presentation). We observe that the AU that appears most in the analysis is AU7 (eye-

lid tightener), which indeed appears frequently in expressions related to concentration,

thinking or focusing. It is followed by the outer and inner eye-brow raise motions AU2

and AU1, lips part AU25 and chin raise AU17, without any clear difference in amount

of occurrence. The fact that many AUs occur frequently in the list of correlated features

once again shows the large variety of expressions related to cognitive distraction, and

helps explaining the difficulty in obtaining a highly-accurate subject independent system.

Two of the five most correlated AUs (AU1 and AU17) are also in line with the features

found relevant to human perception of cognitive distraction, reported in Li & Busso

(2015).

For the temporal segments, none of the segments seem to dominate the others; yet,
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the first quarter is observed to appear less (see Fig. 8.8). This is expected, since it

corresponds to the first two seconds of the LCS where the secondary task is presented

(mental calculation) and the lane change task appears only in the second quarter, forcing

the driver to divide his attention and workload between tasks.

Figure 8.9: Percentage of the most correlated AU pairs within the 100 most correlated

for each subject in Feature Set 2

We perform the same procedure for Feature Set 2 and plot the percentage occurrence

of features belonging to AU pairs as seen in Fig. 8.9. This time we investigate the 100

most correlated features, as the whole set is larger (of size 750). Some relevant AU pairs

worth mentioning are AU7−AU1, AU45−AU2, AU1−AU2, AU1−AU4, AU17−AU23

and AU2−AU17 . Although it is harder to interpret the features this time, we observe that

most of them are related to eye / eye-brow actions, as in the single AU case. Interestingly,

the most correlated upper AU pair includes the AUs identified as related to fatigue in

Vural et al. (2007), which possibly implies an effort to regain attention, commonly in the

two conditions. The lower face combination AU17−AU23, on the other hand, can appear

in expressions related to pensiveness or assessment of coping potential depending on the

simultaneous upper face actions (see Section 2.2.2). Therefore, it makes sense that this

combination is relatively meaningful for the differentiation between cognitive distraction

and baseline.

8.5 Discussion

The presented results demonstrate that, although a subject based training or adapta-

tion is necessary in order to obtain a highly precise detection, the subject-independent

system still achieves an acceptable accuracy in detecting the cognitive distraction se-

quences. It is a known fact that the cognitive distraction is not one of the basic emo-
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tions (or states) that are conveyed similarly by everyone in terms of facial expressions

(Section 2.1.1). The subject dependency issue is therefore expected in systems aiming

at recognizing such complex expressions. As for the unsupervised subject-based nor-

malization proposed, with an unseen driver the system requires only some couples of

seconds of images of the driver’s face to increase the detection rate ∼ 4%.

As stated earlier, the system is designed so that it can be completely integrated into a

passenger vehicle. All components, except for the texture mapping to the generated 3D

mesh, work in real-time (> 15 f ps). The texture mapping still needs to be optimized for

real-time operation, and integrating the two separately implemented pipelines of virtual

view generation and AU detection will also increase speed.

A possible real-world application could be to integrate the system within the human-

machine interface of the vehicle, and to activate a visual or audio alert to warn the driver

in case a critical level of distraction is detected, as a part of Advanced Driver Assistance

Systems (ADAS). With the semi-automatic driven cars slowly entering our lives, such

systems gain even more importance, for instance to assess the driver’s state when the

driver needs to retake the car’s control or to decide when it is safe (or suitable) to switch

to fully autonomous driving. The current system outputs a decision based on 8.5 seconds

of recording due to the definition of the lane change task, but is fully adaptable to shorter

or longer durations and to the fusion of multiple sequences. For instance, a moving

window that collects distraction info in time can be utilized and the relevant alert system

could be activated when the number of segments involving cognitive distraction reaches

a certain threshold. According to the detected level of cognitive distraction the severity

of the countermeasure can also be adjusted, ranging from a small alerting beep or a

message on the console to automatically slowing down or even stopping the car when

conditions are suitable.

Further user studies need to be performed in real driving conditions to assess the

robustness of the detection, considering the head movements in real conditions, but a

general convention in driver feed-back systems is to alert the driver timely, only when

really needed and in a way that does not annoy the driver. This requires a good balance

between the precision and recall, i.e. false positives and false negatives. The proposed

system is suitable to be adjusted for the precision/recall ratio (e.g. by tuning the deci-

sion level of the classifiers) and the length of the temporal window and the previously

mentioned threshold can also be tuned to obtain the best compromise between the driver

comfort and safety.

Distraction does not affect our lives only in the driving context. Knowing that abnor-

malities in maintaining attention are symptoms of disorders such as Attention deficit hy-

peractivity disorder (ADHD), Asperger’s syndrome or other Autism spectrum disorders,

and considering the high accuracy of our subject dependent system, another possible use

of the proposed system could be a personalized monitoring system to provide feed-back

during treatments, that involve interaction with a human or a machine, of individuals

suffering these disorders. A review of works on such interactive technologies can be

found in Boucenna et al. (2014) and Section 3.5.
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8.6 Conclusion

In this chapter we have demonstrated a complete pipeline to discriminate the cog-

nitive distraction segments from the baseline based on AUs, for the sequences in the

EPV-DIST database. The proposed system first reconstructs a virtual frontal face image

using the input from the three cameras, applies AU detection on the virtual image, then

uses features extracted from the dynamic AU signals and cross-correlations of AU pairs

to classify segments in the two driving conditions.

Using different configurations and methods we obtain an accuracy of ∼ 95% when

the system is trained separately on each subject, and ∼ 68% in the subject-independent

case. Based on these results, and further analyses we identify that facial expressions of

cognitive distraction vary hugely among subjects and also report the AUs and AU pairs

that show relevance most commonly among the subjects. The completely automatic

non-intrusive detection system is ready to be accommodated in consumer vehicles for

use within applications aiming to prevent, or decrease, human error in accidents. Our

further research will include the gaze and head-pose related features and their benefits

for detecting the various types of distraction along with AUs. Compared to existing

related work, this study is the one performed with the highest number of participants

using solely automatic analysis of facial actions.

With this chapter we conclude the presentation of our contributions. This chapter

has been an application of most of the concepts and our other contributions presented

in the previous chapters. It is important as it shows a real-life application of how the

presented methods can be beneficial in our daily lives.
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In this final chapter we summarize our contributions presented in this thesis and

discuss the benefits they bring about, as well as their limitations. We also present an

outlook for future research in the related areas and propose ideas for advancement.

9.1 Summary and discussion of findings

Our first contribution (in Chapter 4) presents a system that looks at automatic fa-

cial expression analysis from an image processing point of view, applying fundamental

filtering tools to the problem. All three of these tools (bilateral filtering, morphologi-

cal opening by reconstruction and morphological top-hat transform by reconstruction)

have the property of edge preserving and thus when they are applied to a face image

they conserve the information relevant to facial actions and eliminate those that are to be

considered noise. In addition, the novel scheme of extracting the LBP from overlapping

windows of different sizes also enhances the potential of LBP based texture representa-

tion and advances the state-of-the-art in the area.

One potential drawback of the system is the rather long computation times for the it-

erative reconstruction algorithms, as well as the computational burden brought by adding

more windows for extraction. However, with today’s systems this is a very manageable

issue since the proposed algorithms are very suitable to be parallelized and programmed

on the Graphics Processing Unit (GPU).

In Chapter 5 we have proposed an extended feature extraction scheme using curva-

ture Gabor wavelets. It is common to use Gabor filters in combination with LBPs, but

this is the first time the curvature Gabor filters have been investigated in terms of facial

action recognition, and AU detection in particular. We have presented a detailed analysis

of the effects on accuracy of combining different curvature degrees and filter sizes and

showed that one can achieve very high detection rates using this enriched representation

of appearance. The curvature type of features are of special importance in terms of facial

actions since they can better explain the changes in texture of the skin due to the muscle

movements (e.g. on the wrinkles accented) but also the curved form of permanent facial

features such as the eyes, mouth contours etc.
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We have also presented results for a cross-database experiment, and showed the

method’s potential for generalization, especially for certain AUs. The performance, as

expected, is lower than the one for within-database tests and it is true that the very high

dimension of the feature space might have caused the system to better predict data that is

similar to the training instances. More tests need to be performed with a larger training

set to reach a conclusion. The very high accuracy of the single database case, already

carries a lot of potential, for example for systems that are custom optimized for a certain

subject or a specific image acquisition configuration. The very high precision of the

system makes it suitable to replace manual FACS coding with a semi-automatic system,

e.g. for neuroscience research that investigates facial behaviour patterns. The drawback

of computation time is also valid for this case, but the system is also eligible for speed

optimization using GPUs, as each of the filters operates individually and they are not

combined until the feature selection step.

In the second part of the thesis contributions (Chapter 6) we have presented a multi-

label approach to AU detection by an embedding scheme to incorporate AU correlations

in the training. This time, our base system uses SDM based face tracking and SIFT for

the appearance features, allowing us to obtain real-time performance. Although the ac-

curacies are somewhat lower than the systems presented in Chapters 4 and 5, the high

training and operation speed has allowed us to test various extensions and improvements

also with more flexibility in terms of generalization. These extensions include an ex-

tended set of facial landmarks, not included in the facetracker mask, to mark transient

facial features that are important for facial actions.

The multi-label embedding extension was applied on the FERA 2015 challenge for

AU occurence detection and was shown to outperform both the baseline and other con-

testing systems. Although this extension works better compared to our proposed base
system for a portion of the tested data, it has not been the case for all AUs in all datasets

of the challenge’s unseen test partition. The obtained results may suggest that the suc-

cess of the proposed might be data dependent. Probably, the embedding framework is

more effective when the test data has a similar distribution to the training in terms of

AU co-occurences. Nonetheless, considering the low number of studies on this topic,

we show that the label correlation information is useful for learning to detect AU occur-

rences. It is very intuitive that the AUs cannot be considered completely independent

of each other and a certain amount of prior on what combinations they appear in helps

building a more informative basis to embed the data. Our further studies will focus on

making the method better generalizable to unseen data obtained in conditions completely

independent than those for the training.

The final part of the dissertation focuses on a visual driver monitoring system, that

combines the know-how presented in the prior chapters with novel frameworks to achieve

a full-pipeline real-world application. In the first half (Chapter 7) we present a new video

database of driver behaviour while being induced distraction. This database is important

mainly in two senses. Firstly, it is a large source of data that is recorded in conditions

representing those that can actually be integrated in an actual car to work in real driving

situations. This is obtained through the multi-camera system that acquires NIR videos.

This fact makes the setup convenient for use in large head-pose variations and ambient

light changes, which are the most critical challenges in terms of computer vision for out-
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door and natural conditions. Secondly, the database has been validated for the induction

of the two types of distraction and contains per-sequence annotations for the driving per-

formance and the raw driving information. These two qualities make the database very

beneficial for future research in affective computing and computer vision.

In Chapter 8 we propose a framework to detect sequences of cognitive distraction

in this dataset. The system uses the AU detection system presented in Chapter 6 to

obtain a continuous valued output for 14 AUs then extracts dynamic information from

these AU signals and their cross-correlations. Both inspecting the data and from the

results we have observed that the facial manifestation of the cognitive distraction state is

highly dependent on the individual. This is an expected outcome as it is a state that does

not directly correspond to any of the basic emotions (and thus basic expressions) or a

unique combination of SECs in the CPM approach. We believe this is one of the reasons

why automatic detection of cognitive distraction through facial expressions has not been

studied very often in the literature. To this effect we have also proposed a normalization

method, that increases the generalizability across subjects, yet still not achieving the

high accuracies obtained in the subject-based case.

When using the additional information from AU correlations we have been inspired

by the synchronization theory of the CPM of emotion. AUs can be considered as indi-

vidual physio-mechanical responses to emotional stimuli (although cognitive distraction

is not an emotion but more a cognitive state) and thus their synchronization behaviour

would alter in the distracted state compared to the neutral one. The experimental results

show that, indeed, this correlation information is relevant to the detection task in the

subject-based case, but not so much in the subject-independent case. We believe, the

main reason is once again the individual differences in how one processes and expresses

this cognitive state. The inclusion of head-pose and gaze behaviour could also be bene-

ficial for the detection problem, but we have chosen not to include those in the scope of

this dissertation as the main focus is the facial actions of this complex state of mind. We

aim to perform this as the next step, as well as detecting the visual distraction sequences

in order to fully validate the presented database.

In terms of application, this contribution has great impact potential in the driving

industry, but also in other domains. For transport systems it is an important feature

to be able to detect when the driver is splitting his/her workload rather than focusing

solely on the driving task. For visual distraction, this is an easier task, as it involves

simply recognizable head and gaze movements. For cognitive distraction, however, it

is a greater challenge and with our system we able to achieve successful performance,

especially for a subject-based system. The use of this system in a consumer vehicle

would be to activate an alarm when a critical value for cognitive distraction is detected,

over data collected within a time window. Safety is, of course, of primary importance but

user studies still need to be performed to assess the acceptance of drivers, i.e. to perform

this alerting operation without causing annoyance or discomfort. The proposed system

also has potential to be used in other domains where knowing a subjects engagement vs.

distraction level is important, e.g. HCI systems for learning applications or assessing the

progress of treatment of disorders such as ADHD or Asperger’s syndrome.
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9.2 Outlook and Future Perspectives

It is without any doubt that the field of affect computing and automatic facial analysis

will keep growing. Cloud computing and powerful mobile devices make it especially

attractive for researchers to advance the techniques and build new applications. We

believe the future of affective computing lies in more subject-based or user oriented

systems, that can adapt themselves according to the particularities of individuals, their

needs and personal usage habits.

In our contributions we have aimed to propose solutions to the subject dependency

issue that require as little supervision, or manual intervention, as possible. Further work

would be to perform this in a completely unsupervised manner using for example un-

supervised domain adaptation methods. Another approach we would like to venture is

active (or online) learning methods, which is a semi-supervised scheme that need little

data labeling and more importantly does not require re-training of the system. This is an

important quality in real-world applications that can achieve the adaptation-to-subject

property mentioned earlier.

One approach that we have not had the chance to include in the thesis is exploit-

ing the collective dynamics of AUs for their detection. We have shown how their prior

co-occurrence information can improve AU detection accuracy, yet this contribution re-

mained in the static case. The temporal adjacency of frames containing similar multi-

label vectors is a factor that can be included in the embedding scheme. The label and

temporal adjacency information can also be used directly in the classification model. Re-

cently dynamic models, such as the CRF, are being effectively used for detecting AUs or

expressions on a frame-level. We would like to investigate the advantage of a dynamic

model that contains edges not only between labels in a single frame or between the same

label across frames (in the first order sense) but also across labels and across frames

with a higher order. This model would allow us to learn the temporal evolution of AUs

in relation with each other across sequences.

Also related to this temporal aspect, on the next step we would like to apply space-

time graph clustering methods to the facial analysis domain, the AUs forming the nodes

in the space component. This type of clustering allow identifying temporal patterns that

are specific to a test group, e.g. to differentiate between patients with MDD from healthy

ones. One possible drawback of the approach is that it is highly effected by noisy ob-

servations since the graph is constructed using the binary activation of the nodes (AUs

in this case). However, with the systems we have proposed in this thesis we achieve

precisions that are good enough to be used to build such graphs. Graph clustering will

also allow identifying in a more constructed the way the temporal patterns that are re-

lated to the classification performance, similar to what we have performed for cognitive

distraction detection. Finally, this differentiation through graphs can provide the context

needed to better specialize the dynamic models used for AU detection, in a feed-back
loop manner.
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